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Abstract 
This paper proposes Health Drive, a novel mobile 

healthcare platform with context-aware multiple-
sensor integration to promote safe driving. Health 
Drive employs a multi-tier vehicular social network 
(M-VSN) architecture that consists of three tiers: 
network tier, mobile device tier and cloud tier. The 
network tier provides communication supports, and the 
mobile device tier works in parallel with the cloud tier 
to integrate and interpret diverse sensing data. The 
three tiers work together to provide a seamless 
solution that can efficiently collect and interpret 
diverse sensing data in the heterogeneous 
environments found in vehicular networks, to deliver 
personalized service to drivers for safety improvement 
in real-time. We evaluate the system performance of 
Health Drive and provide results of practical 
experiments to show the desired functionality and 
feasibility of Health Drive in the real-world for safety 
improvement in transportation.  
 

1. Introduction  

According to the statistics of World Health 
Organization (WHO), 1.2 million people die and 50 
million people are injured or disabled on roads every 
year, and such unsafe road traffic condition is 
increasing and seriously harming global public health 
and development [1]. Also, WHO contends that the 
current level of road traffic injury is largely avoidable 
through promoting safe driving behaviors, such as 
avoiding fatigue driving, discouraging drinking and 
driving, and discouraging speeding. 

With the development of mobile computing, cloud 
computing and worldwide deployment of mobile 
networks, current mobile devices such as smart phones 
can work with customized cloud computing platforms 
to provide emerging and pervasive healthcare 
applications to people anytime and anywhere. A 
number of research works have demonstrated that 

applying mobile healthcare to intelligent transportation 
system (ITS) could potentially prevent traffic accidents 
and promote human society significantly [2].  

Currently, a variety of mobile healthcare solutions 
have been proposed for safety improvement in 
vehicular application scenarios, such as V-Cloud [3]
and seeded cloud [4]. Most of them focus on the long-
term health monitoring of vehicular users, or only 
consider the real-time traffic situations to avoid traffic 
accidents [5]. However, many research works have 
identified that for the time-sensitive and complex 
environments of vehicular safety applications, multiple 
factors like driver status and driving environment must 
be taken into account as one whole system for more 
effective safety systems [6]. For example, studies show 
that approximately 10% to 20% of all traffic accidents 
are due to drivers with a diminished vigilance level [7];
and the vigilance level not only depends on the health 
status of the drivers, but also the specific road 
conditions (i.e., under certain health status, a driver 
may react fast enough in a suburban district but needs a
better status when driving in urban areas) [8].  

Thus, a seamless solution that can collect and 
interpret data from multiple sources (i.e., healthcare 
data, vehicular operational data and dynamic traffic 
data) simultaneously in an efficient and effective 
manner from mobile devices is needed but has yet to 
be developed. Such a solution is important as it can 
help to improve drivers’ safety through applications 
running in popular mobile devices they carry daily. 
There are several challenges that need to be addressed 
for developing such a solution, such as the 
heterogeneous service requirements and preferences of 
vehicular users (which may depend on the drivers’ age, 

sex, and ethnic origin) and different versions of 
operating systems (OSs) of mobile devices (i.e., 
Android, iOS, Windows Phone) on aboard vehicles [9].
There is no specific mobile healthcare application that 
can fully meet such requirements and conveniently be 
used by different drivers [6]. Consequently, a seamless 
and effective solution that could widely facilitate real-
world deployment of different customized mobile 
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healthcare applications to promote safe driving in 
transportations still needs to be investigated. 

This paper fills the gaps identified above by 
proposing Health Drive, a novel mobile healthcare 
platform which employs a multi-tier vehicular social 
network (M-VSN) architecture to extend mobile 
healthcare to vehicular environments and to support the 
deployment of context-aware mobile healthcare 
applications for safe driving. Our major contributions 
are summarized as follows:  

We present the overall architecture design and 
practical implementation of Health Drive. The M-VSN 
architecture of Health Drive provides a generic 
architectural model, which consists of the first 
seamless solution to collect and interpret data from 
multiple sources on mobile devices, to deliver 
personalized healthcare service to drivers for safety 
improvement in transportations.

 We deploy and evaluate Health Drive through a set 
of real-world scenarios which not only verify the 
feasibility of Health Drive for real-world deployment 
but also provide practical experience. 

The organization of the rest of the paper is as 
follows. Section 2 reviews the background of related 
techniques and concepts of Health Drive. Section 3 
presents the M-VSN architecture of Health Drive 
consisting of three tiers: network tier, mobile device 
tier and cloud tier, and discusses how they address the 
challenges of healthcare for safety improvement in 
vehicular networks. Section 4 shows application 
examples of the proposed Health Drive platform.
Section 5 evaluates the system performance of Health 
Drive. Section 6 reviews existing system level 
solutions for healthcare in transportations and 
compares them with Health Drive. Section 7 concludes 
the paper with remarks on the prospects of Health 
Drive for future mobile healthcare applications in 
transportations. 

2. Background  

In many parts of the world, a large number of 
people in urban areas spend hours on their daily 
commute to and from work, traveling along the same 
routes at about the same time. Their travel patterns are 
highly predicable and regular. Consequently, there is 
an opportunity to form recurring virtual mobile 
communication networks and communities between 
these travelers or their vehicles, i.e., vehicular social 
networks (VSNs) [10]. VSNs provide an ideal platform
to efficiently aggregate health information and travel 
information to detect traffic accidents and provide 
situational awareness services to first responders [11].

VSN systems are built on top of vehicular networks 
that provide connectivity between users and devices 
participating in the VSN as well as the Internet at-large. 
While cellular networks can provide such connectivity, 
the cost may be too high and the latency too large. 
Instead, a vehicular ad-hoc network (VANET) may be 
inexpensively established to connect the users and 
devices onboard vehicles that are physically close to 
each other [12]. In our paper, we leverage advantages 
of both VANETs and cloud computing via Internet to 
construct the M-VSN architecture for Health Drive, so 
as to provide a multi-dimensional and seamless 
solution for the deployment of different customized 
mobile healthcare applications in vehicular networks to 
promote safe driving. 

3. M-VSN architecture of Health Drive 

As shown in Figure 1, the M-VSN architecture of 
Health Drive consists of three tiers: network tier, 
mobile device tier, and cloud tier. 

Network tier: As introduced in Section 2, the 
network tier makes use of any available connectivity 
upon VANETs and Internet, such as WiFi direct 
between the mobile devices on board vehicle, 
Dedicated Short Range Communications (DSRC) 
between the devices embedded in vehicle and roadside 
infrastructures, and 3G/HSPDA/LTE for connecting to 
the Internet. One of the crucial challenges for mobile 
healthcare applications is how to disseminate and 
collect the related sensing data efficiently and reliably 
over the heterogeneous vehicular networks. We will 
discuss the details later in Section 3.1. 

Mobile device tier: The mobile device tier works on 
top of the network tier, to store and interpret the 
streaming healthcare sensing data (i.e., from wearable 
sensors, mobile devices, and sensors on board vehicles) 
and dynamic traffic data collected from the network 
tier. This tier is built on the S-Aframe [14] and mobile 
SOA framework [15] developed in our former works 
according to the specifications and methodologies of 
RESTful Web Services [16]. As shown in Figure 1, the 
built-in healthcare application services that support 
functions at the M-VSN design time could be deployed 
in the service layer, while the user-defined application 
services could be deployed at run-time to support new 
applications via the cloud tier. Also, we design two 
novel services in this tier to achieve real-time data 
storage and interpretation on the mobile devices:
sensing data storage service and distributed knowledge 
reasoning service, which will be introduced in Section 
3.2. 

Cloud tier: The cloud tier works in parallel with the 
mobile device tier. The cloud tier could be built based
on the Vita cloud platform [17] introduced in our 
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earlier work, which is also based on the RESTful web 
service architecture. The applications services in the 
mobile tier and the cloud tier can be independent to 
support different healthcare applications. For 
applications using both mobile tier and cloud tier, the 
two types of application services (built in and user-
defined) can be co-designed. Also, the cloud tier works 
as a central coordinating platform to: i) aggregate the 
healthcare sensing data (i.e., the real-time mood and 
medical conditions of the drivers), traffic data (i.e., 
road traffic monitoring through crowdsensing [18]), 
and Internet services (i.e., weather and geographic 
information, social activities) from multiple sources; ii) 
interpret the data, and composite and deliver the 
personalized m-health services to different vehicle 
users dynamically. One of the aims of the cloud tier is 
to extract and provide contextual information in 
heterogeneous healthcare environments.  

3.1. Network tier

The network tier of M-VSN connects heterogeneous 
smart devices, including wireless sensors, mobile 
devices, vehicles, and roadside objects to the Internet, 
which enables real-time data collection in a worldwide 
network. It is powerful to leverage various forms of 
wireless technology to build an Internet of 

interconnected vehicles and roadside infrastructures to 
collect sensing data from the drivers, vehicles, and 
roadside units. Instead of connecting the vehicles 
directly to the Internet, exploring different kind of 
wireless communication patterns and technology can 
effectively decrease the message delay and 
communication overhead. For example, direct wireless 
communication between nearby vehicles does not 
require the message to go through the network core of 
the Internet, which can significantly reduce the 
communication delay. It also avoids unnecessary 
forwarding of messages through the routers in the 
network core when short-range wireless 
communication is available.

3.1.1. Communication patterns and standards 
In vehicular networks, it is critical to support real-

time communication to meet the application needs and 
provide quick responses on emergency events. For 
example, a vehicle that witnesses a traffic accident can 
quickly spread the alert message to its surrounding 
vehicles, so that vehicles behind can slow down in time 
and avoid chain-accidents. Thus, in the network tier, 
we propose a heterogeneous network infrastructure to 
support real-time data streaming. We explore different 
kinds of communication patterns to enable real-time 

Pedestrian
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Figure 1. M-VSN architecture of Health Drive
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communications between vehicles and other objects in 
the network infrastructure. 

V2P (Vehicle-to-Personal device) communication 
supports communication between personal body 
sensors and the vehicles. It supports the collection of 
healthcare data from the drivers and gives real-time 
signals to the vehicles in emergency situation for 
proficient and safe operation. V2P communication is 
considered to be reliable with low data delay and data 
loss rate, given that the body sensors are located inside 
the vehicles. This communication is usually supported 
by short-range communication such as Bluetooth or 
WiFi inside the vehicle, so that the communication 
channel is relatively stable.  

V2V (Vehicle-to-Vehicle) communication supports 
real-time communication and dynamic wireless 
exchange of data between nearby vehicles that offers 
the opportunity for significant safety improvement. It 
enables a vehicle to sense threats and hazards, calculate 
risk, issue driver warnings, or take pre-emptive actions 
to avoid and mitigate crashes. DSRC technologies have 
been suggested for active safety for both V2V and V2R 
applications. V2V communication is limited to 
vehicles in each other’s vicinity and constrained by the 
moving speed and the contact time of the vehicles.  

V2R (Vehicle-to-Roadside unit) communication is 
similar to V2V communication, which is commonly 
supported by DSRC technologies. It is relatively more 
stable than V2V communication, though it is still 
limited by the moving speed and the contact time 
between vehicles and the roadside units.

V2C (Vehicle-to-Cloud) communication enables 
data exchanges between the vehicles and the cloud 
servers. It is important for passing global geographic 
data to drivers and vehicles from the Internet. Since 
cloud computing has long been recognized as a 
paradigm for large-scale data storage and processing, 
the combination of cloud computing and VSNs enables 
ubiquitous sensing services and real-time data 
streaming, which are expected to stimulate innovations 
for healthcare and intelligent transportation 
applications. Moreover, cloud-based real-time data 
processing can improve data quality and assist 
decision-making. V2C communication is usually 
supported by 3G/LTE, WiFi, or WiMax technologies. 

3.1.2. Real-time communication and QoS 
Collecting massive data requires reliable 

communication with heterogeneous devices in 
vehicular networks. Thus, the M-VSN network 
infrastructure supports real-time communication based 
on the QoS requirements of different kinds of services. 
The integration of V2P communications for healthcare, 
V2V and V2R communications for real-time traffic 
data, and V2C communications for cloud-based data 

streaming and processing enables smart mobility and 
advanced services for safe driving. The above 
communication patterns have different characteristics 
in terms of reliability, delay, and cloud support. 
Reliability considers whether the communication 
channel can deliver the messages to the destination 
successfully without data loss or corruption). Delay 
concerns about the time taken for delivering the 
messages. Cloud support is essential for services that 
require the aggregation of global geographic data from 
different online sources or multiple entities.  

Table 1 shows the reliability, delay and cloud 
support of the four communication patterns. V2P 
provides reliable communication with low delay. On 
the other hand, V2V and V2R communications are less 
reliable, since they are opportunistic and based on the 
availability of the vehicles and the roadside units. Their 
communication delay is low due to short-range 
communication, but the communication time is short 
and subjected to packet loss. All the V2P, V2V, and 
V2R communication patterns can be carried out 
without the support of the cloud. It means that no data 
processing by the cloud is provided by default. In 
contrast, V2C communication always involves the 
cloud servers, which support data streaming and 
processing. Although V2C communication is relatively 
reliable, its delay is high due to network traffic through 
the Internet. 

Table 1. Communication patterns and characteristics 
Communication 
pattern

Reliability Delay Cloud 
support

V2P High Low No
V2V Low Low No
V2R Low Low No
V2C High High Yes

Different types of m-health services could be 
supported by suitable communication patterns 
according to the QoS requirement and the necessity of 
cloud support. For example, healthcare services may 
raise alerts to the drivers and vehicles for safety 
awareness. This kind of applications needs real-time 
support (low delay) and high priority in data 
transmission. Cloud support is optional for reducing 
the data delay. Similarly, it is preferably to report 
traffic accident information in real-time with high 
priority. V2V communication is ideal for spreading 
local traffic information to surrounding vehicles with 
short delay. Cloud support is optional for data 
dissemination in small area, though cloud-based 
services could be implemented for data processing and 
data streaming to vehicles in larger area. On the other 
hand, global geographical data such as map and 
weather data have to be collected from different online 
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sources and be processed by the cloud servers 
potentially. Thus, cloud support will be needed for data 
aggregation. Nevertheless, the QoS requirement of 
global geographical data is relatively low as the data 
change slowly. 

3.2. Mobile device tier 

The mobile device tier not only supports the flexible 
deployment of different web services based mobile 
healthcare applications, but also performs local storage 
and computation. Different from traditional mobile 
healthcare solutions [3, 4, 19] which mainly use the 
mobile devices as data mules and finish the computing 
tasks by the backside servers, in Health Drive we 
design the novel sensing data storage service (SDSS),
and distributed knowledge reasoning service (DKRS). 
These services enable the mobile device to store and 
interpret the healthcare sensing data and traffic data 
dynamically with the cloud platform, so as to achieve 
better efficiency in real-time data interpretation for 
meeting the time-sensitive requirements of vehicular 
safety applications. 

3.2.1. Sensing data storage service 
As a significant amount of vehicular data will be 

collected during driving by the mobile healthcare 
applications deployed on Health Drive, a local storage 
medium is needed to store such data. Also, due to the 
number of different tabs and activities within such 
applications, the storage medium also needs to be 
accessible throughout the entire application. 
Considering the capacity of mobile devices, we design 
SDSS. SDSS adopts a SQLite database for the data 
storage of mobile healthcare applications and enables 
developers to perform database and Google Maps-
oriented interactions efficiently. 

Figure 2. Sensing data table - C

To create and manage a local database, we 
implement our own version of a SQLiteOpenHelper
object. The onCreate function of the 
SQLiteOpenHelper class must be overridden in order 
to include the SQL query that is needed to create the 
database. There exist various kinds of sensing data 
originating from multiple information sources for each 
mobile device on the VSNs, such as wearable health 
sensors, vehicular onboard diagnostic (OBD) data. It is 
hard to enumerate all the sensing data completely, but it is 
feasible to classify the core data into several main 
categories based on their key elements: vehicle (Cv), 
environment (Ce), person-being (Cp), mobile device (Cm)
and network (Cn). Thus, the core sensing data C can be 
defined as a set C = {Cv, Ce, Cp, Cm, Cn}, which can be 
constructed in the shape of an information tree, as 
shown in Figure 2. 

In SDSS, we adopt two main tables for storing the 
collected sensing data: the C table and the Details table.
The primary function of the C table is to store the raw 
data collected from multiple sources upon network tier of 
M-VSN, and the Detail table describes each 
corresponding concept in C table. For instance, for a code 
snippets to create a new instance of the ContentValues
variable in order to insert or update values of the database. 
Sets of values can be stored in ContentValues. The insert 
function of the SQLiteDatabase class is then called, 
processing the contents of the ContentValues variable and 
inserting or updating the processed values into the 
application’s local database. Moreover, whenever a 

database access is required, an instance of the 
DatabaseHelper object is created first. Using the 
functions of the DatabaseHelper object, the data entries 
of the database can be added, modified, or removed. 

3.2.2. Distributed knowledge reasoning service 
In the open and dynamically changing environments 

of vehicular networks, it is challenging for the key-
word based matching traditionally used in mobile 
computing to interpret the integrated sensing data (i.e., 
traffic and healthcare) and infer the degree of safe 
driving. For example, the semantics of health status of 
individuals may be different even when they have the 
same descriptions but in different contexts (e.g., a
driver with the same heart rate and blood pressure, he 
may react fast enough in a specific range of speed and 
road conditions, while not in other road conditions).
Also, while biomedical ontologies provide a promising 
approach to interpret the integrated and heterogeneous 
data by providing common vocabulary [20], no single 
ontology is sufficient and multiple ontologies must be 
combined in practice to achieve meaningful 
interpretation of sensing data [21]. Thus, in DKRS, we 
adopt a lightweight and scalable similarity computing 
method which can make use of different ontologies to 

C 

CP_statusChar

CP_socialtrip

CP_heartrate

CP_mood

CP_bloodpressure

CP_gender

CP_socialactivity

CP_departureposition

CP_preference

CPCC _bloodpre
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calculate the similarities between two profiles. One 
profile consists of the concepts of safe driving which 
could be predefined by the developers when they 
deploy each specific mobile healthcare applications on 
Health Drive, and another profile consists of real-time 
sensing data of each driver when they are driving. 
DKRS dynamically calculates both the semantic 
similarity and context similarity between these two 
profiles, and once their similarities are lower than the 
threshold, it will inform the drivers and/or the backside 
traffic managers. 

In DKRS, the semantic similarity of two concepts 
(words) is mainly decided by the impact of the 
following three aspects: the distance between two 
words; the depth of two words and the depth of their 
most specific common parent; and whether the 
direction of the path between the two words is changed. 

1 2

1 2
( )

_

( , )

2 ( )
se

k p d
common ancestor I I

Sim I I

c depth depth depth� �� �

where common_ancestor is the most specific common 
parent item; depth represents the depth of an item in 
the ontology; k defines the length difference of the two 
paths between the most specific common parent item 
and the two items; p defines the path length between 
two items; d defines the changes of the directions over 
the path; and c is a constant between 0 and 1. 
Functionalities realizing values for these parameters 
are built on top of the main inference services such as 
consistency checking, entailment, and subsumption. 
For example, the concept subsumption inference 
service is iteratively called in the function of finding 
the depth of an item. That is, ontological reasoning is 
used for creating semantic similarity in DKRS. We can 
see that the range for the semantic similarity is [0, 1]. 
For example, when two items are irrelevant, there is no 
common parent, then depth (common_ancestor) is 0 
and thus their similarity is 0. When two items are 
identical or synonym, we have k=p=d=0 
and

1 2_ =common ancestor I Idepth depth depth� , thus the 
semantic similarity is 1. 

Each concept in an ontology usually has some other 
descriptive objects, such as properties and related 
concepts, their interpretation of the concept plays an 
important role in the context of each concept. Thus, 
context similarity should be included in evaluating 
similarity. The context similarity is given as: 

2
1

1 2

1 2 1[1, 1][1, 1]

( , )

max ( ( , )) 1
co

se i j xij ni n

Sim I I
Sim I I weight n

� �
� �

� � ��
where n1-1 is the number of items as the context for the 
key concept in profile P1 and n2-1 is the number of 
context items in profile P2. Note that the maximum 
function is employed for the reason that only the most 

similar pair of items is highly relevant in reality and 
can significantly reduce the space and time complexity 
in similarity computation. 

Then the overall similarity integrates the semantic 
similarity and the context similarity as: 

1 2

1 2 1 2

( , )
( , ) ( , )se se co co

Sim P P
Sim I I weight Sim I I weight� � � �

where weightco is the weight for the context similarity,
weightse is the weight for the semantic similarity and 
weightco + weightse =1. The real value of these two 
weights can be dynamically switched accordingly to 
different specific scenarios of healthcare in vehicular 
safe applications, e.g., the computation capacity of 
mobile devices, the computation-communication 
tradeoff between mobile devices and cloud platform. In 
fact, semantic similarity represents similarity in a 
shallow level and context similarity represents 
similarity in depth. In particular, if only the shallow 
match is needed, weightse =1; if only the deep match is 
needed, weightco =1. 

For the implementation of DKRS, ontology-based 
conceptual graphs that can be easily described in 
various formats, such as RDF [22] and OWL [23]. 
Although in M-VSN, it assumes that domain experts or 
mobile healthcare application developers design and 
provide such ontologies, they can turn to numerous 
existing ontologies, such as openGALEN [24]. Our 
current implementation of semantic and context 
interpretation procedure employs RDF for ontology 
representation and Jena2 [25] is integrated for parsing 
RDF. In addition, as discussed above, both the mobile 
device tier and the cloud tier are built on the RESTful 
web service. Depending on the size of the ontologies 
used in each application, we can design specific 
schemes to enable dynamic switching between mobile 
device and cloud platform to perform the ontologies 
based data interpretation, so as to achieve better time 
efficiency. 

3.3. Cloud tier 
The cloud tier works as a central coordinating 

platform to aggregate data from multiple sources and 
interpret those data, to deliver personalized healthcare 
services to drivers for safe driving.  

In a typical mobile healthcare platform, the 
contextual data uploaded from multiple sources, 
including healthcare sensing data (from healthcare 
mobile sensors), traffic data (from traffic monitoring 
sensors), and other open data (from Internet services, 
like weather and geographic services). Data from those 
independent sources often have disparate assumptions 
of interpretation. The key challenge is that in most 
cases the assumptions would be implicit and not 
specified in a way that the data could be automatically 
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interpreted. Let us take a simple example of the unit of 
speed. Data about driving speed collected from a 
mobile device in the US is implicitly assumed to be in 
the unit of miles per hour. But when the same concept 
of data comes from Europe, it assumes the unit is
kilometers per hour.  In many cases sensors would just 
report the data as a numeric form without explicitly 
specifying the units. Such implicit assumptions of data 
interpretation have to be addressed before the services 
can be dynamically composed and analyzed. To deliver 
appropriate m-health services to drivers, we need to 
make the raw data from different sources context-
aware, and thus the implicit assumptions of data 
interpretation need to be explicitly specified and 
registered to the cloud tier. One possible way is to 
require service providers to pre-specify the context 
definition for their mobile devices and register them to 
the cloud [18]. For instance, service providers can 
indicate the context of the mobile devices based on the 
locations, e.g., US or Europe. Accordingly, the data 
can be interpreted contextually according to the source 
location. By doing so, the cloud can understand and 
interpret the data, facilitating the dynamic composition 
and delivery of personalized m-health services to 
different drivers. 

The cloud tier contains a lightweight ontology 
serving as the common vocabulary for the aggregation 
of contextual data from different sources. The unique 
feature of the lightweight ontology is the addition of 
modifiers. As introduced in our prior work [26], a 
modifier is used to capture additional information that 
affects the interpretations of generic concepts. A 
generic concept (e.g., driving speed) in the ontology 
can have multiple modifiers, each of which indicates 

an orthogonal dimension of the variations in the data 
interpretation. In a certain context each modifier is 
assigned by a specific modifier value. For example, the 
concept of driving speed can have a modifier called 
distance. The value assigned to the modifier of 
distance can be ML when the data of driving speed is 
annotated with US-related context, while the value can 
be KM when it is annotated with the European context. 
Therefore, when the cloud knows where the data come 
from (e.g., the location of the mobile services), the 
cloud can understand the context of the data of driving 
speed and know how to interpret and analyze the data 
based on the values of the modifiers associated with 
the corresponding contexts. 

Given the lightweight ontology with the augmented 
contexts, the cloud can automatically process the 
context information and convert the data by using the 
context of the mobile devices. To fulfill the data 
conversion, the cloud can select the appropriate 
conversion rules from a pre-specified conversion 
library based on the contexts of the source and receiver 
[25].

In addition, the cloud tier also provides a module of 
data analysis and virtualization for driving statistics. 
After collecting and aggregating data from healthcare 
mobile sensors, real traffic monitoring sensors and 
other services, the cloud tier communicates with the 
data storage about the users’ historical behaviors and
computes certain statistics.  

4. Application example  

Based on the proposed Health Drive, we develop 
and deploy a prototype mobile healthcare application 

Figure 3. Screen-shots of the mobile healthcare application deployed on Health Drive
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to demonstrate the functionalities of context-aware 
services provided by Health Drive for safe driving 
applications. Also, considering that the m-health 
service of Health Drive deployed on mobile devices 
are intended to run in the vehicular environments, and 
the healthcare application needs to be autonomous and 
minimize the operations of drivers, we adopt a simple 
tab-based interface that can be observed and controlled 
by the drivers. As shown in Figure 3, the user 
interfaces (UIs) of this mobile application mainly 
consists of three fragments: (i) Friend Activities, (ii) 
Personal Status, and (iii) Cloud Service. 

As shown in Figure 3(a) and Figure 3(b), supported 
by the backside communication schemes, SDSS and 
DKRS introduced in Section 3.1 and Section 3.2, the 
mobile devices on board vehicles can perform the local 
storage and computation for safe driving in real-time. 
For example, Figure 3(a) shows the detailed driving 
and health information of drivers after driving in a 
short period. The drivers can check the information 
when they are available. Figure 3(b) shows the simply 
driving and health information of drivers, once their 
safe degree (i.e., continues driving time is too long and 
blood pressure becomes high, while driving speed is 
higher than normal) is lower than the threshold, the 
mobile devices will automatically alert the drivers to 
take an action, such as stop driving immediately and 
take a rest.   

At the same time, leveraging the advantages of cloud 
computing, the module of dynamic service 
composition can extract and aggregate health-related 
and driving data from multiple sources (see details in 
Section 3.3). The customized m-health services 
uploaded by developers with driving feedbacks can be 
automatically delivered to the drivers’ mobile devices. 

For instance, Figure 3(c) shows the extended crowd 
sharing service, health monitoring service and driving 
feedback service. The module of data analysis and 
virtualization also computes some statistics and 
produces the driving feedbacks based on the estimation 
of the driver’s behaviors; as shown in Figure 3(d), the 

driver is suggested to decrease the throttle input when 
driving near Francis Road. 

5. Evaluation results 

We evaluate the system performances of Health 
Drive in terms of two parameters: time efficiency and 
networking overhead of mobile devices on board 
vehicles when finishing the interpretation of collected 
sensing data, as these parameters are of particular 
concern for safe driving vehicular applications in the 
real-world. The communications between the cloud tier 
and the mobile device tier of Health Drive use the 
standard web service format based on the HTTP 
protocol and XML data format, and the experimental 
environment is: Hardware: Amazon EC2 M1 Medium 
Instance; 3.75 GB memory; 2 EC2 Compute Unit; 410 
GB instance storage; 32-bit or 64-bit platform; I/O 
Performance: Moderate; EBS-Optimized Available: 
No. Software: operating system: Ubuntu 14.04; 
Servers: Apache Tomcat 8.08; BPEL engine: Apache 
ODE1.3.4. Experimental devices: Vehicle - 2005
Toyota Sienna; ELM327 Bluetooth OBD-II Module; 
Polar H7 heart rate sensor; and Smartphone – Google 
Nexus 4 (Android 4.4.2 version).  

Two Nexus 4 (with LTE module) were used in 
driving 2005 Toyota Sienna for testing. Each test last 
30 minutes, and total of 5 tests were run, and the 
average results were calculated. We adopt the Ɛ£-
GALEN ontology [24] as benchmark, and the 
computation task of data interpretation is to index and 
calculate the similarities of concepts on this ontology 
under the condition of four different size assertions 
(1000, 1500, 2000, 36000), from which we obtained 
four sets of data correspondingly. For each data set, we 
test the time efficiency of the task in two situations: 
perform the task on Nexus 4, and perform the task by 
uploading it to the cloud platform of Vita. The 
distribution of the task according to Poisson 
distribution with a rate of E=5/min. In addition, we 
record the network overhead on Nexus 4 when it 
uploads the task to Vita.  

The experimental results are summarized in Table 2. 
The time delay when performing the task via cloud 
consists of: (i) response and communication time 
between the Vita cloud platform and the mobile 
devices; and (ii) processing time of the task. We find 
that the response time of the four sets of data are 
similar, with all averaging about 4.5s, while the 
process time mostly depends on the size of the data set. 

Table 2. Overall System performance
Parameters Data set 1(1000) Data set 2(1500) Data set 3(2000) Data set 4(36000)

Time delay via cloud - response 
time+process time(msec)

Average: 4683+40=4723 Average: 
4475+461=4936

Average: 
4626+702=5328

Average: 
4395+2483=6878

Network overhead 1.67MB/150 requests 1.69MB/152 requests 1.64MB/147
requests

1.59MB/143
requests

Time delay - local 
computation(msec)

Average: 2234 Average: 4736 Average: 7445 Average: 136073
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From Table 2, we can see that Nexus 4 gets a better 
time efficiency when the size of data set is 1000 and 
1500, while the cloud performs much better when the 
size of data set is larger than 1500. Since Health Drive 
supports dynamically performing the computation task 
across mobile device and cloud platform, thus the 
maximum time delay is lower than 7s even in the quite 
intensive computing situation when the size of data set 
is 36000. Also, considering that in our real-life, the 
recommended safety distance between vehicles is 
about 150m [27], and the speed difference between two 
vehicles travelling in the same direction normally will 
not exceed 60km/h (16.67m/s), which means the time 
distance between two vehicles is more than 9s 
(150/16.67). Thus, our experiments demonstrate that 
the ontology based approaches of Health Drive can 
interpret multiple sensing data in an efficient manner. 
Also, such results verify the feasibility of Health Drive 
for real-world deployment of mobile healthcare 
applications to achieve safety improvement in a 
considerable range of transportation scenarios. 

6. Related works  

To the best of our knowledge, there is no mobile 
healthcare system or architecture specifically designed 
for mobile applications of healthcare safety 
improvement in vehicular networks yet. However, the 
system and architecture level solutions for mobile 
healthcare applications proposed in MoCAsH [28] and 
HealthCloud [29] are similar to our work.   

MoCAsH [28] is an assistive healthcare 
infrastructure based on a mobile cloud platform, which 
aims to facilitate the deployment of cloud computing 
features such as elasticity of resource demands and 
scalability of infrastructure to assist mobile healthcare 
applications. Different from MoCAsH, which is only 
based on the Internet, in the network tier of M-VSN 
architecture, we adopt a heterogeneous network 
infrastructure. This infrastructure exploits different 
kinds of communication patterns (V2P, V2V, V2R, 
and V2C) to enable massive data (i.e., healthcare data) 
to be collected in a more efficient and stable manner in 
vehicular networks.  

Based on the RESTful web service, HealthCloud [29]
provides a prototype implementation of a mobile 
healthcare information management system across a
cloud computing platform and Android devices. 
However, similar to many mobile healthcare platforms 
[3, 4, 19], in the design of HealthCloud, the mobile 
devices only work as mobile clients and need to upload 
all the healthcare data to the cloud for processing, 
which may result in considerable time latency and may 
not be suitable for transportation scenarios. As 
discussed in Section 3.2 and the experimental results 

demonstrated in Section 5, in the M-VSN architecture 
of Health Drive, our solution supports the mobile 
device tier working in parallel with the cloud tier to 
store and interpret the healthcare data simultaneously. 
Thus, the vehicular safety applications deployed on 
Health Drive can achieve a better efficiency in real-
time data reasoning for time-sensitive requirements in 
vehicular networks.  

Moreover, security and privacy are always a 
concern for mobile healthcare applications and services 
in vehicular networks [30]. A number of solutions exist 
that could be adopted to address such concerns. For 
instance, based on e-health system, the authors in [31]
proposed a novel solution that uses an authorization 
paradigm to define access levels for accessing different 
parts of personal data in vehicular networks. Although 
Health Drive does not currently incorporate the 
security and privacy mechanisms mentioned above, 
these different mechanisms can be adapted and 
integrated in Health Drive to achieve different levels of 
security.  

7. Conclusions  

In this paper, we have proposed Health Drive, a 
novel mobile healthcare platform which employs the 
M-VSN architecture to support the deployment of 
different context-aware mobile healthcare applications 
for safe driving in transportations. We have described 
the three tiers: network, mobile device and cloud in our 
architecture, and discussed how they can facilitate the 
deployment of mobile healthcare applications in 
vehicular networks. Based on these tiers, we have 
provided a seamless solution in a generic architectural 
model which can facilitate the efficient collection and 
interpretation of diverse sensing data in real-time over 
heterogeneous environments of vehicular networks, to 
deliver personalized healthcare service to drivers for 
safety improvement in transportations. In addition, we 
have presented a novel mobile healthcare application 
developed and deployed on Health Drive to 
demonstrate its functionalities for healthcare and safety 
improvement in transportation scenarios. Furthermore, 
experimental results have demonstrated the feasibility 
of Health Drive for real-world deployment.   

In further evolution of Health Drive, we plan to 
focus on two aspects. One is to do more 
comprehensive and practical evaluations, such as the 
impact of the mobile healthcare applications deployed 
on Health Drive to drivers’ performance under 
different traffic conditions. Also, as discussed in 
Section 6, security and privacy are always a concern of 
mobile healthcare applications. We plan to investigate 
and integrate different security schemes in Health 
Drive in the future.  
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