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Abstract—Location based services are getting increasingly
popular in participatory sensing systems. They make use of
location information on the mobile devices to support applications
that improve personal health, object search, and entertainment.
However, GPS positioning consumes a lot of energy, which can
drain a mobile device’s battery. Although WiFi localization and
cell tower localization have been suggested as alternatives, they
have lower localization accuracy and limited coverage. In this
paper, we suggest a novel solution for multiple mobile devices to
perform collaborative localization to reduce energy consumption
and provide accurate localization. We divide the mobile devices
into two groups, the aggregator group and the collector group.
The aggregator group turns on their GPS periodically, while
the collector group uses the locations of the aggregators to
estimate their own locations. We formulate the aggregator set
selection problem and propose two novel algorithms to minimize
the energy consumption in collaborative localization. Simulations
with real traces showed that our proposed solution can save up
to 88% of the energy of the entire network.

I. INTRODUCTION

Participatory sensing system [1] supports a large number
of mobile users to collect sensor data and share information
about their environment. The data of the environment and the
services provided are usually location oriented. For example,
a drive may want to know the gas price from nearby gas
stations, and information of traffic jam in the area. Potential
applications of location-based services in participatory sensing
range from personal healthcare, object search to entertainment.
However, obtaining location information could be very energy
consuming, which threatens many mobile participants. As the
mobile devices have limited batteries, it is crucial to minimize
the energy consumption in localization.

GPS localization is known as a major source of energy
consumption in mobile devices. It can easily drain the battery
of a mobile device in five to six hours [2]. Unfortunately, many
participatory sensing applications require the mobile devices
to turn on their GPS all the time in order to collect sensor
data with corresponding locations. Even though alternative
localization methods, such as cell-tower based localization
and WiFi-based localization, have been suggested, they fail
to provide satisfactory accuracy in localization.

Recently, device-to-device localization method [3] has been
proposed to reduce energy consumption and improve accuracy
in localization. The key idea is to use only small number
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Fig. 1. System overview

of mobile devices to collect real-time location and motion
information, and allow other devices to calculate their relative
locations based on this information. Such approach requires
only small number of mobile devices to turn on their GPS
and motion sensors, which can save a lot of energy. In this
paper, we extend the idea of device-to-device localization for
collaboration localization in participatory sensing system. We
address an important problem on how to select mobile devices
to provide GPS readings for the others, so that the overall
energy consumption of all devices is minimized. This work
makes collaborative localization feasible to be implemented
for participatory sensing systems. The mobile devices are
coordinated adaptively according to their mobility in the
dynamic environment.

Our research is motivated by the application scenario shown
in Fig.1, which is derived from the setting of a common
participatory sensing system [4]. The figure shows a popu-
lation of mobile users collecting location-based sensor data
collaboratively for a certain task. In this paper, we focus
on minimizing the overall energy consumption of all mobile
devices on localization. First, we build an energy consumption
model to measure the total energy consumption from GPS
and communication for the aggregators and the collectors.
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Then, we formulate an optimization problem for aggregator set
selection using this energy model and propose two heuristic
algorithms to solve the problem.

The contribution of this paper is summarized as follows:

• We derive a mathematical model to measure the total
energy consumption on localization for the aggregators
and the collectors, which enables flexible adjustment on
the localization accuracy according to the application
requirement.

• We formulate the Aggregator Set Selection Problem (AS-
SP), which aims at minimizing the energy consumption
of the entire network.

• We propose two novel algorithms to solve ASSP, which
is a NP-hard problem.

• The performance of the proposed solution has been
evaluated thoroughly by simulations using real mobility
traces. The results showed that our proposed algorithms
can save up to 88% of the total energy in localization.

The rest of the paper is organized as follows. Section
II presents the related work. Section III shows the energy
model and formulates the Aggregator Set Selection Problem
(ASSP). Section IV describes our proposed aggregator set
selection algorithms. Section V evaluates the performance of
our proposed algorithms by simulations using real mobility
traces. Finally, Section VI concludes the paper.

II. RELATED WORK

Energy efficiency has been widely explored in participatory
sensing systems from different perspectives. A number of
approaches have been proposed to reduce the sampling rates
of sensors to save energy [5], [6]. The techniques can be
applied for reducing sampling rate of the GPS, but it may
lead to lower accuracy and granularity in localization. Other
approaches utilized additional sensors such as accelerometers
and orientation sensors to determine when to turn on the GPS
[7]. Nevertheless, the existing methods have rarely explored
the possibility of sharing location information with neighbor-
ing devices.

Other than GPS, some mobile networks have suggested
to use location beacons as localization references [8], which
require either fixed or mobile beacons to estimate their own
locations. Similarly, Zhang and Yu [9] have proposed a beacon
selection method that selects equilateral triangle nodes to be
beacons. Unfortunately, the location beacons may constrain
the energy saving performance and increase the deployment
and maintenance cost.

Johnson and Seeling [10] have proposed a scheme based on
Bluetooth friendly device names to enable power-optimized
ad-hoc localization of mobile devices. However, this work
has focused on the naming scheme, while the potential of
collaborative localization among mobile devices remains to
be further investigated. In this paper, we suggests coordination
among the mobile users to minimize the energy consumption
for localization without deploying any beacons nodes.

TABLE I
LIST OF NOTATIONS

Notation Explanation
M The set of all the participants.
A The set of aggregators.
C∗ The set of data collectors.
di The distance between aggregator B

and collector C at time i.
ri The RSSI between aggregator B

and collector C at time i.
~mi The movement of collector C from ti to ti+1.
ai Boolean to indicate aggregators.
bij Boolean to indicate connection

between Ai and Mj .
cij Energy consumption for Mj to

communicate with Mi.
C The cost matrix of cij .
dij The distance between Mi and Mj .
pij The physical connectivity between Mi and Mj .
gi Boolean to indicate whether participant

Mi need to turn on GPS.
rij The RSSI Mj received from Mi.
R The RSSI Matrix of rij .
E The total energy consumption.
M The number of all paticipates.
A The number of aggregators.
ea Energy consumption of data aggregator.
eg , Energy consumption of GPS.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Motivating Scenario for Collaborative Localization
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Fig. 2. Device-to-Device localization

We consider a participatory sensing system in Fig.1. It
consists of a central server and a set of M smartphone users
M , {1, 2, ...,M} moving in the region. Among the partici-
pants inM, a subset of A smartphone users A are selected as
data aggregators, while the remaining participants C∗ work as
data collectors. Both the data collectors and data aggregators
collect sensor data periodically and upload them to the server
through cellular network, but only the data aggregators turn
on their GPS. Besides, the data aggregators also broadcast
their locations and movement information to their surrounding
data collectors. The surrounding data collectors can calculate



their locations using the device-to-device localization method
proposed in our previous work [3]. If a data collector can not
communicate with any data aggregator, it has to turn on its
GPS to obtain its location. Nevertheless, it will consume more
energy.

Fig. 2 shows an example of device-to-device localization.
Let di be the distance between an aggregator B and a data
collecor C, and ri be the RSSI that B receives at time ti.
The movement is measured based on a step detection method,
which is commonly used in pedestrian localization [11]. The
movement of C from ti to ti+1 is denoted by a vector ~mi.

According to the free space radio propagation model [12],
the ratio between di and dj can be calculated by:

di

dj = 10
rj−ri

10n (1)

Then, we can obtain the distance between B and C at time t1
using the following equations:

arccos
(kt2

2−1)(dt1 )2+m1
2

2kt2
dt1m1

+ θ =

arccos
(kt2

2−kt3
2)(dt1 )2+m2

2

2kt2
dt1m2

+ 2π
(2)

where kti = 10
r1−ri

10n .
Based on above equation, we can obtain the relative angle,

α, between B and C using the following equations:

α = arccos
(dt1 )2+m1

2−k2
t2
×(dt1 )

2

2(dt1 )m1
+ θ1 − π (3)

B. Energy Consumption Model

We consider that the communication range of WiFi can be
adjusted to different levels according to the distance between
the aggregators and the collectors. This feature has been
implemented in many existing WiFi routers and devices, which
is beneficial for energy saving.

Let ea be the total energy consumption of a data aggrega-
tor, including GPS localization and communication with its
associated data collectors. Let ew be the energy consumption
of WiFi communication for individual data collector, and eg
be the energy consumption for GPS localization, where ea >
eg > ew. We use ai to indicate whether a mobile participant
Mi is an aggregator and use bij to indicate whether Mj can
communicate with an aggregator Ai. The RSSI Mj received
from Mi is denoted by rij , which can be used to calculate
the physical distance between Mi and Mj denoted by dij .
Based on rij , Mj can select the appropriate communication
range, in which the corresponding energy consumption is cij
(see notations in Table I).

Let R ={R1, R2, ..., RM}= (rij)M×M be the RSSI matrix,
and Rj be the set of RSSI thatMj received from its neighbors,
∀j ∈ {1, 2, ..., |M|}, where

R =


r11 r12 ... r1M
r21 r22
... ...
rM1 rMM

 (4)

and

Rj =


R1j

R2j

...
RMj

 ,∀j ∈ {1, 2, ..., |M|} (5)

The overall energy consumption for localization, E, consists
of three parts: the energy consumption of the aggregators
(EA), the energy consumption of the collectors connected
to any aggregator (EC), and the GPS localization energy
consumption of the collectors without any aggregator (EC′ ).
We calculate these three parts in the following.

Given |A| and ea, the total energy consumption of all the
data aggregators can be calculated by:

EA = |A|ea

=

|M|∑
i=1

aiea (6)

As described before, the communication range between the
data collector and the aggregator is divided into different level-
s. According to the distance with the associated aggregator, the
energy consumption of the data collectors can be calculated
by:

EC =

|M|∑
i=1

|M|∑
j=1

cijbij(1− gi) (7)

For the remaining collectors which do not belong to any

aggregators,
|M|∑
i=1

(gi − ai), their energy consumption can be

calculated by:

EC′ =

|M|∑
i=1

(gi − ai)eg (8)

where eg is the energy consumption for the GPS.
Finally, the overall localization energy consumption E can

be calculated by:

E = EA + EC + EC′

=

|M|∑
i=1

aiea +

|M|∑
i=1

|M|∑
j=1

cijbij(1− gi) +

|M|∑
i=1

(gi − ai)eg

(9)

C. Problem Formulation

The main goal of this work is to find an optimal aggregator
set A that minimizes energy consumption in collaborative
localization. We formulate it as the Aggregator Set Selection
Problem (ASSP) in the following:

minimize: E
subject to:

ai = {0, 1},∀i ∈ {1, 2, ..., |M|} (10)

gi = {0, 1},∀i ∈ {1, 2, ..., |M|} (11)

bij = {0, 1},∀i,∀j ∈ {1, 2, ..., |M|} (12)



pij = {0, 1},∀i,∀j ∈ {1, 2, ..., |M|} (13)

bij ≤ pij ,∀i,∀j ∈ {1, 2, ..., |M|} (14)

h1 ≤
|A|∑
i=1

bij ≤ h2,∀gi = 0,∀j ∈ {1, 2, ..., |M|} (15)

cij = {c1, c2, c3},∀i,∀j ∈ {1, 2, ..., |M|} (16)

dijai ≤ Θ,∀gi = 0,∀j ∈ {1, 2, ..., |M|} (17)

Eq. (10) to Eq. (13) are the integer constraints. Eq. (14)
enforces the connection between Mj and Ai subject to
physical reachability. Eq. (15) enforces that each data col-
lector connects with at least h1 aggregators and at most h2
aggregators. Eq. (16) indicates that the energy consumption of
WiFi communication is divided into three different levels. Eq.
(17) constrains the maximum distance between the aggregator
and the data collector, which is determined by the localization
accuracy and the relaxation parameter Θ.

IV. OUR AGGREGATOR SELECTION ALGORITHMS

It can be proved easily that ASSP is an NP-hard problem
by reduction. Due to the limited space, the detailed proof is
omitted in this paper. We propose two heuristic algorithms to
solve the ASSP. The first one is a Greedy based Aggregator
Selection (GAS) algorithm. Algorithm 1 shows the pseudo-
code of the GAS algorithm. In each round, a node with the
maximum energy saving will be selected as a new aggregator.
The selection of aggregators will continue until the total energy
consumption, E, can not be further improved.

Algorithm 1: GAS Algorithm
Input:
R: the RSSI matrix of rij ;
Accuracy: the required localization accuracy;

Output:
A: the approximate optimal aggregator set;
Emin: the approximate optimal energy consumption;

1 Calculate (cij)M×M ;
2 C∗=M; Init Emin; Init Θ;
3 while M > 0 do
4 C∗ = |C∗|;
5 for (i = 1; i ≤ C∗; i+ +) do
6 if Satisfy all the constraints then
7 Add C∗i to A;
8 Calculate E;
9 if E ≤ Emin then

10 Emin = E;
11 postion = i;
12 Selectionflag = 1;
13 end
14 Remove C∗i from A;
15 end
16 end
17 if Selectionflag == 0 then
18 break;
19 end
20 Add C∗position to A;
21 Selectionflag = 0;
22 M −−;
23 end
24 return(Emin,A)

Algorithm 2: SubSAAS Algorithm
Input:
C: the cost matrix of cij ;
A: the number of data aggregators ;
Θ: the relaxation parameter determined by localization accuracy;

Output:
Emin: the approximate optimal energy consumption;

1 Init temperature T ; Init reduce ratio ξ;
2 Init Emin; Init Max iteration num;
3 Init global vector A;
4 while Max iteration num > 0 do
5 if Satisfy all the constraints then
6 Calculate E;
7 ∆energy = Emin − E;
8 if ∆energy ≥ 0 then
9 Emin = E;

10 T = T ∗ ξ
11 else
12 if rand(0, 1) < exp(−∆energy/T )) then
13 Emin = E;
14 T = T ∗ ξ
15 end
16 end
17 if T ≤ ε then
18 break;
19 end
20 end
21 A = Anext;
22 Max iteration num−−;
23 end
24 return(Emin);

Algorithm 3: SAAS Algorithm
Input:
R: the RSSI matrix of rij ;
Accuracy: the required localization accuracy;

Output:
A: the set of data aggregators ;
Emin: the approximate optimal energy consumption;

1 Calculate (cij)M×M ;
2 AS = 1;AE = |M|; Init Θ;
3 while AE −AS > 1 do
4 if SubSAAS(C, AS , θ) > SubSAAS(C, AE , θ) then
5 ATS = (AE +AS)/2;
6 while SubSAAS(C, ATS , θ) ≤ SubSAAS(C, ATS + 1, θ) do
7 ATS = (ATS +AS)/2;
8 end
9 AS = ATS ;

10 else
11 ATE = (AE +AS)/2;
12 while SubSAAS(C, ATE , θ) ≥ SubSAAS(C, ATE + 1, θ) do
13 ATE = (AE +ATE)/2;
14 end
15 AE = ATE ;
16 end
17 end
18 if SubSAAS(C, AS , θ) ≤ SubSAAS(C, AE , θ) then
19 return(SubSAAS(C, AS , θ),A);
20 else
21 return(SubSAAS(C, AE , θ),A);
22 end

We also propose an improved Simulated Annealing (SA)
[13] based Aggregator Selection (SAAS) algorithm. SA is a
probabilistic algorithm that makes a good approximation to
the global optimal solution of the optimization problem in a
large search space.



Algorithm 2 shows the pseudo-code of the SubSAAS algo-
rithm. Initially, it generates a feasible A as the starting point.
In each iteration, a neighbour set of A is generated, which
is denoted by Anext. If Anext saves more energy than A,
then we accept Anext as the set of aggregators. Otherwise,
we accept Anext based on a probability of acceptance to
avoid falling into a local minimum. The probability of accep-
tance is an exponentially decreasing function with parameter
exp(−∆energy/T )), where T is the current temperature.
After each iteration, the probability of acceptance decreases.
It can compute the optimal E given a specific A. This result
will be used in the SAAS algorithm. Algorithm 3 shows the
pseudo-code of the SAAS algorithm. It varies the number of
aggregators A and computes the optimal E by calling the
SubSAAS algorithm. Even though the optimal A is not known
in advance, the SAAS algorithm can approximate E by calling
the SubSAAS algorithm O(log

|M|
2 ) times.

V. PERFORMANCE EVALUATION

We evaluate the performance of the proposed collaborative
strategy using the (Microsoft Research Asia) GeoLife dataset
[14]. The GeoLife project has collected the trajectories of
volunteers (ordinary citizens) in Beijing for three consecutive
years. Each trajectory is marked by a sequence of GPS
locations with time stamps. We store all the trajectories in
a geographical MySQL database and select two regions with
highest movement density in our simulation (named as dataset
1 and dataset 2). There are 300 and 390 mobile participants
the two datasets, respectively. We set the parameters in our
energy model according to [15], where ea=550(mW) and
eg=500(mW) and ew=50(mW).

Fig. 3 shows the best aggregator set obtained by the SAAS
algorithm in the two datasets. Each dot represents an aggre-
gator with the circle indicating its coverage. Each cross mark
indicates a data collector (or non-aggregator). From the figure,
21 participants are selected as aggregators in dataset 1 and 18
participants are selected in dataset 2.

We evaluate the energy consumption varying the ratio of
aggregators in Fig. 4. We observe that increasing the aggre-
gator ratio reduces the energy consumption initially. However,
the energy consumption increases after reaching an optimal
point, since excessive aggregators consume more energy for
GPS localization.

Fig. 5 compares the energy consumption of our approaches
with traditional GPS sampling. In the traditional approach, all
mobile participants turn on their GPS to perform localization
periodically [16]. We vary the number of participants by
selecting a subset of participants randomly from the two
datasets. We find that our approach can up to 88% of the
energy compared with the traditional approach. We also see
that the SAAS algorithm can save more energy than the GAS.

Next, we evaluate the accuracy on localization in our pro-
posed solution. Table II shows the mean error in localization
considering different distances between the aggregator and
the collector. We further study the relationship between the
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Fig. 3. Optimal aggregator sets resulted from collaborative localization
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required localization accuracy of applications and the energy
consumption.

TABLE II
LOCALIZATION ACCURACY

Distance between devices 20 m 30 m 40 m 50 m 60 m
Localization mean error 9 m 13 m 18 m 20 m 25 m

Fig. 6 shows the energy consumption varying the required
localization accuracy in the two datasets. Even considering
localization accuracy of less than 10 meters (like GPS), our
approach can save 48% and 58% of the energy compared
with the traditional approach in dataset1 and dataset2. For
applications that require lower localization accuracy, our ap-
proach can save far more energy (up to 88%) compared with
the traditional approach. In addition, our solution enables
flexible adjustment on the localization accuracy according to
the application requirement, so as to minimize the energy
consumption for localization.
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VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a mathematical model to
measure the total energy consumption on localization for
the aggregators and the collectors, which enables flexible
adjustment on the localization accuracy according to the

application requirement. We formulated the Aggregator Set
Selection Problem (ASSP) and proposed two novel algorithms
to minimize the energy consumption of the entire network
by coordinating between the data aggregators and the data
collectors. We evaluated the performance of our proposed
SAAS algorithm and GAS algorithm through extensive simu-
lations using real mobility traces. The results showed that our
proposed localization strategy can save up to 88% of the total
energy and achieve high localization accuracy. In the future,
we would like to take trajectory prediction into consideration
to further reduce the energy consumption and enhance the
stability of the system.
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