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Abstract— Existing publish/subscribe architectures for wireless
sensors networks only support stationary sensors interconnected
with each other. They cannot handle mobile sensors or remote
sensors that are sparsely deployed. In this paper, we propose a
novel ubiquitous publish/subscribe system that supports data ac-
cess from both mobile sensors and stationary sensors. Our system
utilizes mobile phones as data mules to relay subscriptions and
published data between broker and remote sensors. It provides
content-based publish/subscribe services from sensors deployed
anywhere without depending on any network infrastructure. We
implement our publish/subscribe platform on real hardwares
and test it in a hiking trail application. The application allows
users to subscribe for sensing data from both stationary sensors
and mobile sensors along hiking trails. Extensive experiments
are conducted in an outdoor testbed to evaluate the system
performances such data delay, number of data received and
communication overhead.

I. INTRODUCTION

During the last decade, wireless sensor networks (WSNs)
[3] have attracted much attention from the research commu-
nity. They are usually formed by a number of wireless sensors,
which are utilized to collect sensing data from the environment
[25], [16]. With the advanced mobile technology, smart phones
become incredibly popular as new kind of sensing devices with
their equipped camera, GPS, and accelerometer, etc. Mobile
phones have stronger computation power, network connectiv-
ities, memory and batteries, which are ideal counterparts of
stationary sensors for ubiquitous sensing.

Publish/subscribe paradigm has been recognized to foster
decoupling of distributed objects in large-scale distributed
systems. It can support large amount of information shar-
ing among asynchronous devices like WSNs. In many pub-
lish/subscribe architectures, subscribers such as Internet users
register their subscriptions with a broker in the network.
Publishers such as sensors post their collected sensing data
to the same broker. The broker, which acts as both server
and database, performs filtering and distributes the subscribed
data from the publishers to the subscribers. Although various
publish/subscribe systems have been proposed for WSNs,
existing architectures only target for WSNs with stationary
and interconnected wireless sensors. Most of them rely on
multi-hop routing to forward data to the brokers, which are
not applicable for sparsely deployed wireless sensors. The
situations become even worse in outdoor or remote areas,
where network infrastructures are hardly available. Providing
ubiquitous access to sensing data remains a challenge due

to the constraints of network connectivities, availability of
sensors, limited sensing coverage and capabilities, etc. The
complexity of heterogeneous mobile sensing devices such as
smart phones can further complicate the problem.

In this paper, we propose a novel publish/subscribe system
which supports ubiquitous data access from both wireless
sensors and mobile phones. It can provide content-based
publish/subscribe with high level of abstraction from the
underlying sensors and network infrastructures. Users can
subscribe for sensing data by simply specifying the target area,
sensing types and data ranges of interest without knowing
the addresses or locations of the sensors. To enable data
access from remote sensors, we suggest mobile phones to be
utilized as mobile mules to relay subscriptions and published
data between the broker and the wireless sensors. Mobile
users can perform sensing using their phones and collect
sensing data from the wireless sensors that they pass by. The
deployment of WSNs becomes more flexible without relying
on any additional network infrastructure. We implement the
proposed platform on real hardwares and demonstrate suc-
cessful ubiquitous publish/subscribe services for both wireless
sensors and mobile phones.

We summarize the key contributions of this work here. (1)
To the best of our knowledge, we are the first to propose
and implement a ubiquitous publish/subscribe platform that
supports heterogeneous sensing devices, including remotely
deployed wireless sensors and mobile phones. (2) We suggest
mobile phones to be utilized as both mobile sensors and mobile
mules to relay subscriptions and published data between the
broker and the wireless sensors. Adaptive location updates are
proposed to reduce the communication overhead of mobile
phones without degrading the publish/subscribe services. (3)
We implement and experiment our platform in an outdoor
sensor network testbed. A hiking trail application has been
developed successfully on top of our publish/subscribe plat-
form, which can provide subscribers with sensing data such
as temperature, humidity, light intensity and hiking speeds
measured by both wireless sensors and mobile phones. Ex-
tensive evaluations have been conducted to evaluate network
performances including data delivery delay, number of data
received and communication overhead.

The remaining of the paper is organized as follows. Section
II discusses the related work on publish/subscribe for WSNs.
Section III describes the network models and our design goals.

2012 8th IEEE International Conference on Distributed Computing in Sensor Systems

978-0-7695-4707-7/12 $26.00 © 2012 IEEE

DOI 10.1109/DCOSS.2012.65

99



We introduce our ubiquitous publish/subscribe platform for
WSNs with mobile mules in Section IV. We describe the
implementation of our proposed system on real hardwares in
Section V. Section VI presents the experiment settings and
evaluates the performance of our platform in a hiking trail
application. Section VII concludes the paper and gives the
future work.

II. RELATED WORK

Publish/subscribe paradigms have been widely studied in
peer-to-peer networks and wireless sensor networks. MQTT-
S [14] is a publish/subscribe protocol, which employs a
topic-based scheme for making subscriptions in WSNs. Its
goals is to enable queries to sensor nodes directly from the
Internet. Mires [23] is another publish/subscribe middleware
for sensor networks, but it adopts a content-based approach by
incorporating characteristics of message-oriented middleware.
Shi et al. also proposed a content-based publish/subscribe
middleware called TinyMQ [22]. In TinyMQ, an overlay
network is constructed on top of the underlying WSN, in
which sensor nodes can be logically connected independent
of their geographical locations. However, all of the above
architectures are designed only for stationary WSNs, which
do not support mobile sensors and mobile mules.

Different implementations of publish/subscribe have been
proposed for WSNs. Albano et al. [4] studied pub-
lish/subscribe in WSNs based on Data Centric Storage system.
It supports sensing data storage and retrieval over a network
layer providing simple unicast and broadcast primitives. Hauer
et al. [12] further designed a content-based publish/subscribe
framework applying a component-based architecture to sim-
plify application developments. Developers are free to specify
communication protocols, data attributes, and service exten-
sion components according to their needs. Virtual brokers
have been proposed to support implementation of large-scale
publish/subscribe for WSNs [17]. The idea is to distribute the
functionalities of centralized brokers into a group of ordinary
sensors by partitioning the connected network graph of the
WSN. Different from the above work, we do not assume
sensors nodes to be interconnected in our platform. Our
platform can tackle limited network connectivity of remote
sensors by utilizing mobile phones as data mules to relay the
subscriptions and the published data. Moreover, it can support
heterogeneous sensor networks with both stationary sensors
and mobile phones.

By extending WSN services to the Internet, diverse sensing
data could be accessed from users anytime and anywhere.
SenseWeb [15] is a system aiming at facilitating data access
from all the shared sensors across the entire Internet. With
a tasking module in the coordinator component, this system
optimizes sensor selection for different applications based on
their requirements. Priyantha et al. [19] attempted to solve the
scalability problem for WSNs by employing web services. It
adopts TCP/IP stack and HTTP in sensor nodes to implement
web services. Sensor nodes are accessible directly from the
Internet through web services. Similarly, Aberer et al. [1]

proposed a middleware called Global Sensor Networks (GSN),
which provides a high level abstraction that eases the intercon-
nection with WSNs. Although both SenseWeb and GSN used
proxies for connecting WSNs to the Internet, their proxies
are stationary and constantly connected to the WSNs, which
are fundamentally different from our design. In our platform,
mobile phones can act as data mules to relay subscriptions and
sensing data from remote sensors in a delay tolerant fashion.

Apart from stationary networks, publish/subscribe for mo-
bile environments have been explored. Huang et al. [13]
described how to distribute the system across multiple com-
puters or mobile devices to distribute load and cope with
failures, message loss and disconnections. Fiege et al. [10]
sketched how physical mobility and logical mobility can be
implemented within the existing REBECA [6] event-based
system. Publish/subscribe architectures have also been widely
investigated in mobile ad hoc networks (MANETs) [20], [26].
Frey et al. [11] proposed a publish-subscribe paradigm that can
manage and exploit context information when matching events
against subscriptions. This allows publishers and subscribers
to control their diffusion and to restrict the identities of their
communication parties. Costa et al. proposed SocialCast [7]
as a routing framework for publish-subscribe that exploits
social interaction and mobility pattern of human beings to
identify the best information carriers. Although mobility in
publish/subscribe has been widely studied, publish/subscribe
for mobile sensing environment has not been fully inves-
tigated. In particular, the sensing context, heterogeneity of
sensing devices, mobility of nodes and limited connectivity
of wireless sensors remain to be further explored.

III. PRELIMINARIES

A. Network Models

In the rest of this paper, the stationary sensors in our
system are referred as SSensors, while the mobile sensors on
smart phones are referred as MSensors. Our platform intends
to provide publish/subscribe services for Internet users to
access data from both MSensors and SSensors. We present
the SSensors, MSensors, mobile proxy, and consumers in our
system from a network perspective in Figure 1.

Fig. 1. Overview of our publish/subscribe system.

Platform server is responsible for relaying messages (e.g.
subscriptions and published sensing data) between consumers
and mobile proxies on the Internet. Similar to the platform
server but in a lower level, mobile proxies relay messages
between the platform server and the connected sensors. They
are usually mobile phones that are utilized as data mules to

100



collect data from different devices, including sparse sensor
networks (SSNs). The mobile phones can communication
with SSensors through short-range communication, such as
bluetooth or IEEE 802.15.4. Other that that, they can connect
to the platform server through 3G or WiFi connectivity.

B. Design Goals

Our system aims at providing publish/subscribe services
for both stationary sensors and mobile phones. It has to
provide two basic functions to achieve this goal. The first
function is to forward subscriptions from Internet users to
the capable sensors (both SSensors and MSensors). Another
function is to deliver the published sensing data from the
sensors to the subscribers. Users should be able to subscribe
for sensing data of interests without knowing the locations
of the underlying sensors and the implementation details. The
mobility and availability of the sensors should be transparent to
the users. Since mobile sensors and stationary sensors usually
have distinct sensing functions, users can obtain more diverse
types of sensing data.

The platform is designed to support publish/subscribe ser-
vices even for remotely or sparsely deployed wireless sensors,
given that mobile users can move around and communicate
with the SSensors opportunistically. This design greatly in-
creases the flexibility of sensor deployment without relying on
any existing network infrastructures. The mobile phones can
provide intermittent connection between the platform server
and the SSensors in a delay tolerant manner. For this reason,
the communication between different devices in this system
should be implemented as asynchronous as possible. For
instance, when the platform server receives an subscription,
it can be no mobile proxy available in the subscribed area
at the moment. The subscription then has to be stored in the
server for a period of time before successfully delivered to the
sensors. Similarly, when the data are published by the sensors,
they have to be cached at the sensors before any mobile proxy
approaches to pick them up.

IV. PUBLISH/SUBSCRIBE PLATFORM DESIGN

We outline the design of our publish/subscribe system
in Figure 2. The system is developed based on a pub-
lish/subscribe architecture due to its advantage of fully de-
coupling in time, space and synchronization among differ-
ent components in a distributed system. Since users may
have diverse interests on the content of sensing data (e.g.
temperatures above 20 degrees), our platform should have
enough expressiveness to reflect their requests. As a result,
the content-based publish/subscribe is adopted in this platform.
Subscribers are the Internet or mobile phone users who request
for sensing data of interest. Sensing data are collected by
both the stationary and mobile sensors when events of interest
are detected. In a publish/subscribe context, consumers in our
platform are referred as subscribers, while the SSensors and
MSensors are referred as publishers. The platform server is
named as broker, which caches and relays messages between
the subscribers and the publishers. Mobile phones are utilized

as mobile brokers (MB) to relay data from stationary sensors
to the broker.

Fig. 2. Operations in our publish/subscribe platform.

A. Subscriber Registration

Internet or mobile users can subscribe to the sensor data
through the broker. Each subscription is represented by a
“SbSubscription” message including the “targetArea”, “tem-
poralRange” and “Constraints” fields (see Figure 3). The
“targetArea” field indicates the geographical area of interest
in the format of targetArea = {point, radius}, where “point”
and ‘radius” are the geographic coordinates of the center and
radius of the area. Subscribers, who are interested in sensing
events from a special area (e.g. temperatures in area A), can
subscribe for their sensing data easily with the above format.
The message also defines the starting time and ending time,
as well as other specific constraints to the publish/subscribe
services.

Fig. 3. Format of subscription message from subscriber to broker.

Fig. 4. Subscriber registration and association to the broker.

Before starting to use the platform, each subscriber registers
itself to the platform server. This is performed by sending
a “SbRegister” message to the broker as shown in Figure
4. Once receiving the message, the broker will allocate an
unique “SbID” to the subscriber. At the same time, a blank
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profile will be created for the subscriber. The subscriber can
then associate itself to the broker by sending an “Associate”
message. The parameters “SbID” and “IP” of the subscriber
from the “Associate” message will be stored in the profile at
the broker. The broker will use this information to maintain
the Internet connection to the subscriber. The detected events
in the sensing field will be published to the subscriber as soon
as possible. If the subscriber is temporarily disconnected, all
these events will be cached and delivered to the subscriber
when he is connected again.

Similar to the subscribers, each MB has to register to the
broker through a “MbRegister” message. Once this message
is received, the broker will assign and return a temporary
identifier, TID, to the MB. At the same time, a profile
“mProfile” will be created in the local memory of the broker
for each registered MB. The MBs are usually mobile phones
which can relay the subscriptions to the sensors similar to
data mules. Hence, each “mProfile” also includes the current
location of the MB.

B. Adaptive Location Updates

Fig. 5. Situation when MB is outside any target area.

The MBs can relay subscriptions to the remotely deployed
wireless sensors when they are within the communication
range. Since the broker delivers subscriptions to suitable MBs
based on the their locations, the MBs have to update their
latest locations to the broker periodically. The time interval for
location updates can be configured by a parameter ∆Cupdate

in each MB. The location update message “LUpdate” is in a
format of LUpdate[TID,Location], where “TID” is the ID
of the MB and “Location” includes the latitude and longitude
of its current place. The location of a MB is sampled regularly
by the GPS in the mobile phone. Since both sampling and loca-
tion updates to the broker lead to additional computation and
communication overhead, we attempt to reduce unnecessary
location updates.

As we can see in Figure 5, a MB may be far from
any subscribed target area in its walk. During that time, no
subscriptions can be relayed to the wireless sensors by the MB.
If we measure the distance ∆L between a MB and its closest
target area, then we can estimate the best time for the next

location update by ∆Tupdate = ∆L/Smax, where Smax is the
maximum moving speed of the MB. The calculation implies
that MB will take at least ∆Tupdate time before it could
enter any target area. This mechanism can avoid unnecessary
location updates when the MB is far from any target areas.

We divide the moving speeds of the MBs into different
ranges. Users who are walking or running usually have their
speeds in the range of [0m/s, 8m/s] [18], while their speeds are
at most 15m/s when biking [2]. Since the MBs communicate
with the SSensors through short-range radio, the MBs that
are moving very fast such as driving are not suitable for
delivering subscriptions. The broker only selects the MBs from
the walking range [0m/s, 8m/s] and the biking range (8m/s,
15m/s]. Whenever ∆Tupdate needs to be updated, the current
speed of the MB will be checked against the two ranges. If the
current speed belongs to the walking range, Smax will be set
to 8m/s. Otherwise, Smax will be set to 15m/s for calculation.

C. Best-effort Subscription Delivery

Since the subscriptions in our platform specify only the
target area, the broker tries its best to deliver subscriptions
to all the relevant sensors in that target area. This design
supports the joining and removal of stationary and mobile
sensors without explicit notifications. A subscription is fully
installed when it is delivered to all the sensors of interest in
the target area. Consider Figure 6, if all of the SSensors are
providing the sensing services requested by the subscriber, the
subscription will be delivered to all of the nodes A, B and C.

Fig. 6. MB traverses through a subscribed target area.

Figure 7 shows the subscription delivery protocol from a
subscriber to the broker. The subscriber first requests sensing
data by sending a “SbSUB” message to the broker. The
broker then stores the subscription in its memory. In order to
distinguish different subscriptions, a unique ID “SpID” will be
assigned to each received subscription. Whenever a location
update message is received from a MB, the broker will deliver
the subscriptions accordingly. Only if the MB is close to the
subscribed target areas will receive the subscriptions. In order
to maximize the chance of fully installing the subscriptions,
the broker will cache all the received subscriptions in its local
memory until they are expired.

Best-effort subscription delivery is preferred because the
number of MSensors in a target area is higher dynamic. The
best-effort approach allows the subscriptions to be installed
to as many MSensors as possible. Even though the SSensors
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Fig. 7. Subscriptions delivery from subscriber to mobile broker.

are not mobile, it is still hard to fully deliver the subscription
to them due to their limited communication range. With best-
effort subscription delivery, all MBs entering the target area
can contribute to relaying the subscriptions to the relevant
sensors.

D. Event Data Collection

Once subscriptions are successfully delivered to the sensors,
the sensing events are detected and stored. Since SSensors and
MSensors have different network connectivities, their event
collection mechanisms are different. MSensors such as smart
phones are usually equipped with 3G and WiFi connectivities,
so that they can report sensing events to the broker on the
Internet. Whenever an event is detected by a MSensor, it
triggers a “MnEvents” message to its MB module. The MB
module then encapsulates the detected event with an “Event”
message and sends this message to the broker immediately.

Different from the MSensors, data collection from SSensors
adopts a pull-based approach. Since SSensors may not have
constant network connectivity, they rely on MBs to collect
event data opportunistically. The event data collected by a
SSensor have to be cached in the SSensor’s local memory
before collecting by any MB. A MB broadcasts polling mes-
sages “eventCollection” to the SSensors regularly to initiate
data collection. Once receiving an “eventCollection” message,
the SSensors will deliver all the cached events to the MB with
“SnEvents” messages. The MB will then upload the events to
the broker as illustrated in Figure 8.

The “eventCollection” messages are unnecessary if no event
data has to be collected. Therefore, an event collection flag
(ECF) is added to inform the MBs whether they need to
perform event collection. When a location update is received
from a MB, the broker will check the “SpStatus” of each
subscription in the relevant area. If the “SpStatus” is set to
“Delivered”, it indicates that the subscription is delivered and
events have to be collected. Otherwise, a “WaitForDelivery”
flag implies that a subscription has never been installed, so
no event needs to be collected. The ECF is set to “Yes” or

Fig. 8. Event collection from the SSensor.

“No” according to the “SpStatus”. If the ECF is “Yes”, the MB
keeps broadcasting “eventCollection” messages. Otherwise, it
stops broadcasting.

V. IMPLEMENTATION

We implement our platform on mobile phones and wireless
sensors. A broker is implemented on a desktop computer
installed with Linux Ubuntu 10.10 and Apache Tomcat 7.0. All
programs in the broker are written in Java language. Repre-
sentational State Transfer (REST) principles are adopted when
developing our web services [21]. The broker communicates
with other devices in our platform using HTTP messages. In
order to manage the subscriptions and the published events,
MySQL Database is employed for storage. We present the
detailed implementation of the mobile brokers and stationary
sensors as follows.

A. Mobile Brokers

We implement the mobile brokers on HTC Hero smart
phones with Android OS 1.5. Same as the broker, all programs
in the MBs are written in Java language. Each of these smart
phones includes a camera, a microphone, an accelerometer
and a GPS sensor. Besides, they also support WiFi, Bluetooth,
and GPRS/EDGE/3G connectivities. For simplicity, only 3G
connection is used in our current implementation. The MBs
communicate with the broker using HTTP. They also commu-
nicate with the SSensors for opportunistic data collection.

Although many wireless sensors are using IEEE 802.15.4
for communication, most of the existing smart phones could
not communicate using this communication standard. We sug-
gest a workaround solution to support communication between
mobile phones and wireless sensors as illustrate in Figure 9. In
this solution, a sensor node equipped with IEEE 802.15.4 radio
is attached to a mobile phone through a USB cable. Since the
USB cable needs 5V power supply to enable data transmission,
a lithium battery is also connected as external power source.
Alternatively, bluetooth sensors could be deployed to support
communication with the mobile phones. We also foresee
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Fig. 9. Attaching a Tmote Sky sensor to a HTC Hero smart phone.

more lightweight communication protocols become available
between mobile phones and wireless sensors, such as the ANT
protocol is already available some of the existing smart phones
[5].

B. Stationary Sensors

In our implementation, all the SSenors are Tmote Sky
nodes running Contiki OS [9]. Both the Contiki OS and our
programs for sensors are written in C language. The Rime
protocol stack [8] in Contiki OS is used for the network
layer communication between the SSensors. The “Discovery”
and the “eventCollection” messages are transmitted using
the broadcast primitive in Rime, while the “MbSUB” and
“InstallStatus” are implemented with the unicast primitive. We
implement a serializing mechanism for transmitting sensing
data from the SSensors to the MBs. An event packet will be
transmitted only when the previous packet is acknowledged.
When a SSensor is transmitting event packets to a MB, it
will not reply event collection requests from other MBs.
From our experiments, the platform server can receive 100%
of the transmitted sensing data using the above serializing
mechanism.

Since the MBs could only collect data from the SSensors
opportunistically, the events detected by the SSensors have to
be cached in their local memories. We implement the caching
of sensing data with the Coffee file system in Contiki [24].
A memory of two megabytes is allocated for caching sensing
data in each SSensor. After reporting the sensing data to the
MBs, the SSensor will free its buffer for storing new data.

VI. EXPERIMENTATION

A. Application Scenario

A hiking trail sensing application is developed based on
our ubiquitous publish/subscribe platform. It enables hikers
to collect sensing data such as temperature, humidity, light
intensity from stationary sensors along the hiking trails as well
as to measure their locations and hiking speeds using their
mobile phones. With our application, users can subscribe for

environmental data (e.g. temperature and humidity) through
the Internet before deciding to go hiking or not. They can also
plan for their routes in advanced according to the weather and
trail condition. Besides, hikers can obtain statistics of their
exercises such as their hiking speeds for training purpose. In
order to better schedule their activities, they may also want to
know the average number of hikers in the trails at different
times.

Figure 10 shows the user interfaces of our application on
a mobile phone. In this application, the MB module runs
on the mobile phone as a background service. Users of this
application can gather their locations and speed data while
hiking. At the same time, the sensing data collected from the
SSensors are also displayed through the user interface.

Fig. 10. The user interface of hiking trail application on a mobile phone.

B. Experimental Settings

Fig. 11. Experimental settings in a hiking trail area.

We deploy a testbed for our hiking trail application along
two walkways outside our laboratory building, namely Trail 1
and Trail 2, as shown in Figure 11. The length of each trail
is 200 meters. Four stationary sensors are deployed along the
two trails. Node 1 and Node 2 are deployed along Trail 1,
while Node 3 and Node 4 are deployed along Trail 2. The
intersection point of Trail 1 and Trail 2 is the center of the
hiking trail area. The area is a circle with radius of 200 meters.
It is also called as the target area in our hiking trail application.
Users can subscribe for sensing services from this area by
specifying the central location, radius and sensing types. The
parameters for experimental settings are listed in Table I.
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Fig. 12. Installation of stationary sensors along the hiking trail.

The SSensors are fixed on the poles or trees along the roads
as shown in Figure 12. If the SSensors are placed too low,
most of the wireless signals will be reflected or absorbed by
the ground. The temperature and humidity sensor nodes are
placed inside plastic boxes with small holes. The light intensity
sensors are put in transparent plastic bags to be exposed in
sunlight. The HTC Hero phones are installed with our sensing
application, so that they can communicate with the SSensors
within the communication range. We installed four different
subscriptions in the server at the beginning of the experiment.
These subscriptions include the temperature, humidity, light
intensity and hiking speed from the target area. We run the
experiment from 11 Apr 2011 7pm to 19 Apr 2011 10pm.

TABLE I
EXPERIMENTAL SETTINGS

Parameters Settings
Length of hiking trail 400m
Number of SSensors 4
Data generation rate at each SSensor 5 samples/hour
Distance between SSensors 100m
Communication power level of SSensors -5dBm
Number of temperature Sensor 1
Number of light intensity sensor 2
Number of humidity sensor 1
Number of hikers 4
Number of initial subscriptions 4
Experiment period 9 days

C. Sensing Data from Stationary Sensors

−10

0

10

20

30

Date

D
e

g
re

e
s
 C

e
ls

iu
s

Temperature Data

12/04 12PM

13/04 12PM

14/04 12PM

15/04 12PM

16/04 12PM

17/04 12PM

18/04 12PM

19/04 12PM

Fig. 13. Temperature data measured by stationary sensor.

The sensing data are collected by the mobile phones from
the SSensors and reported to the broker. We plot the sensing
data obtained by the broker at the end of our experiment.
From Figure 13, the temperature varied from the high of days
to the cool of nights in the hiking trail area. In the first two
days, the highest temperatures were 9 to 10 celsius degrees,
while the lowest temperatures were around 2 to 3 celsius
degrees. Then, the temperature increased continuously up to
22 celsius degrees in the following four days. But at the end
of experiment, it started to decrease again.
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Fig. 14. Humidity data measured by stationary sensor.

From Figure 14, the humidity also fluctuated significantly
during the experimental period. In the hiking trail area, the
humidity was usually the highest in the early morning and
dropped to the minimum in the afternoon. In comparison with
Figure 13, the curve of the humidity data was opposite to that
of the temperature data. The reason could be the air became
drier as the temperature increased.
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Fig. 15. Light intensity data measured by stationary sensors.

Different from the temperature and the humidity, we be-
lieved that the light intensity measured would be affected
significantly by the sensor locations. For example, two nodes
at different locations may receive the maximum sunlight at
different times during the day. We deployed two light intensity
sensors, Node 2 and Node 4, along Trail 1 and Trail 2
respectively. Unfortunately, Node 4 was stolen on the third
day of our experiment. Then, we had to deploy a new light
intensity sensor (Node 5) at a nearby location.

As shown in Figure 15, the light intensity data were col-
lected from three different sensors. Since Node 4 was stolen,
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its data only lasted for two days. Node 5 was installed on the
third day and it lasted for the following six days. During the
daytime, the light intensity measurements from different nodes
were not the same. For instance, the maximum light intensity
received by Node 5 was higher than Node 2, though Node 2
received its maximum humidity earlier than Node 5. On the
contrary, the lowest light intensity from all the three nodes
were nearly the same at nights.

D. Sensing Data from Mobile Sensors

Besides the environmental data, the hiking speed of users
were collected once they entered the hiking trail area. The
mobile sensors, such as GPS on the mobile phones, verified
that our platform could support both SSensor and Msensors.
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Fig. 16. Distribution of hiking speeds measured by mobile phones.

The speed data collected from the experiment are presented
in Figures 16 and 17. In our hiking trail application, the
moving speeds of hikers are sampled every two seconds.
Figure 16 shows the cumulative distribution of the hiking
speeds. We find that over 80% of the collected speeds are
below 1.5 m/s. This implies that most hikers are walking most
of the time.
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Fig. 17. Moving speed of hikers during walking and running.

The accuracy of the GPS on mobile phone is around 4 to 6
meters. We selected Hiker 1 to study the mobility of users

in more details. Since hikers may walk or run during the
experiment, we separate the speed data into two categories.
Figure 17 shows the running speed and walking speed of
Hiker 1 along Trail 1. The x-axis indicates the distance from
the entrance of Trail 1 to its exit. The exit of Trail 1 is the
center of the hiking trail area. From the figure, Hiker 1 has
a walking speed around 0.5-1.5 meters/second and a running
speed around 2-4 meters/second. An interesting phenomenon
is that the curves of running and walking share similar trend
along the x-axis. It implies that road conditions may affect the
speed of a hiker. For instance, the speed of hiker may become
slower when it is close to the end of the trail.
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Fig. 18. Visiting frequency of hikers in the sensing area.

We also recorded how many hikers visited the hiking trail
area during the experimental period. Figure 18 shows the
visiting dates and times of the hikers. Each star marked in
the figure represents one visit.

E. Network Performances
We evaluate the data delivery delay, the number of data

received, and the communication overhead of our system.
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Fig. 19. Data delivery delay.

1) Data Delivery Delay: We divide data delivery delay into
two parts. The first part measures the delay from the data
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generation time at SSensors to the pick up time by a MB. The
second part measures the delay for the MB to upload the data
successfully to the broker. We call the first delay as SDelay,
and the second delay as MDelay. In cases that the MSensors
and the MB are on the same device (e.g. the mobile phone),
the data delivery delay only involves the MDelay.

Figure 19 shows the average data delivery delay from the
five SSensors and the mobile phones. The mobile phones are
utilized as mobile sensors to collect speed data form the hikers.
Since the mobile phones have 3G connectivity, the average
packet delay of the speed data is only 22 to 23 seconds.
However, the data delivery delays from SSensors are much
longer. Even the shortest delay from the SSensors is over 3000
seconds, which shows that the SDelay is extremely long for
opportunistic data collection.

Since SDelay depends on how often the hikers or MBs enter
the vicinity of SSensors, we relate Figure 18 and Figure 19
when analyzing the fluctuation of packet delay. We can see
that the delays from SSensors on 12 April and 17 April are
obviously higher than the other days (except 16 April). Figure
18 shows that the number of hikes on 12 April and 17 April
are obviously less than other days. The results infer that the
more frequently the hikers visit the hiking trail area, the shorter
the SDelay. Although the numbers of hikes on 13 April, 16
April and 19 April are all equal to 8, the delay on 16 April
is much higher than the other two days. From Figure 18, it is
easy to observe that the eight hikers on 16 April are clustered
into four groups, while hikers on the other two days are more
uniformly distributed. This illustrates that not only the number
of hikers but also their distribution may affect the SDelay.
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Fig. 20. Number of data received during walking and running.

2) Number of Received Data: Since a MB can only fetch
data when it is in the vicinity of a SSensor, its moving speed
and the communication range will affect the amount of data
received. We study the number of data received when a hiker
is running and walking respectively. As shown in Figure 20,
mobile broker can receive at most 37 pieces of data during
walking, but it can only receive at most 8 packets during
running. If the hiker moves slower, it is likely that he can stay

longer in the vicinity of a SSensor and receive more data.
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Fig. 21. Duplicate data received from stationary sensors.

Reliable unicast is implemented for data transmission in our
system. A data packet is transmitted only when the previous
one has been acknowledged. If the current packet is not
acknowledged until timeout, it will be restored to the cache file
and be retransmitted again. This mechanism ensures that the
data packet is either received by a mobile broker or stored
at the stationary sensor. As we proved in our experiment,
100% of the generated data are received at broker successfully.
However, duplicate packets are also observed as shown in
Figure 21. This is because the acknowledgment may be lost
even though the mobile broker has already received the data.
As a result, duplicate data packets will be transmitted after
timeout.

(2250, 1800] (1800, 1350] (1350, 900] (900, 450] (450, 0]
0

1

2

3

4

5

Distance to Target Area (meters)

N
u

m
b

e
r 

o
f 

L
o

c
a

ti
o

n
 U

p
d

a
te

s

Location Update Times

 

 

Adaptive Update

Periodic Update

Fig. 22. Number of location updates performed by mobile phones using
adaptive update and period update respectively.

3) Communication Overhead: Another improvement in our
system is the adaptive algorithm for location updates. The
purpose of location update is to check whether the user arrives
the sensing field of interest. In the experiment, we compare
the adaptive algorithm with the periodic algorithm for location
updates. The time interval for location updates is set to 30
seconds in the periodic algorithm. For the adaptive algorithm,
the maximum speed of biking is set to 15 m/s. We implement
the two algorithms on two different mobile phones. A hiker,
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who is carrying these two phones, then start biking towards the
hiking trail area from a place 2250 meters away. The location
updates are recorded during his ride as shown in Figure 22.

We count the number of location updates when the hiker
is moving within different distance ranges. The target area is
our hiking trail area. In the adaptive approach, the number of
location updates increases when the hiker gets closer to the
hiking trail area. In other words, the location of the hiker is
reported more frequently to the server when he is approaching
the target area. The results show that the adaptive algorithm
can reduce the unnecessary location updates effectively com-
pared with the periodic algorithm.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed and implemented a novel pub-
lish/subscribe platform for ubiquitous data access from both
wireless sensors and mobile phones. Our platform can support
reliable subscriptions and data delivery even for remotely and
sparsely deployed wireless sensors. Mobile phones are utilized
as mobile mules to relay subscriptions and published data be-
tween the Internet users and the remote sensors. Our platform
supports data access from both mobile sensors and wireless
sensors without any network infrastructure. We implemented
our platform on real hardwares and experimented it in a hiking
trail application. Experimental results from our outdoor testbed
demonstrated successful publish/subscribe services for both
stationary and mobile sensors. Network performances such as
the packet delay, number of data received and communication
overhead have been throughly evaluated.

In the future, we plan to extend our testbed to a larger
sensing field that involves more mobile users and wireless
sensors. We are also interested in studying the coordination
among heterogeneous mobile and sensing devices to further
reduce the energy consumption and communication overhead.

ACKNOWLEDGMENTS

This work is supported by VINNOVA VINNMER pro-
gram, VINN Excellence Center for Wireless Sensor Networks
(WISENET), SICS Center for Networked Systems (CNS) and
ProFun project funded by SSF in Sweden.

REFERENCES

[1] K. Aberer, M. Hauswirth, and A. Salehi. Infrastructure for data
processing in large-scale interconnected sensor networks. In Proc. of
International Conference on Mobile Data Managemen, pages 198 –205,
May 2007.

[2] E.-G. Ahmed, J. K. Kevin, and I. Michael. Predicting bicycle travel
speeds along different facilities using GPS data: A proof of concept
model. In Annual Meeting of Transportation Research Board, 2007.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless
sensor networks: a survey. Computer Networks, 38(4):393 – 422, 2002.

[4] M. Albano and S. Chessa. Publish/subscribe in wireless sensor networks
based on data centric storage. In Proc. of International Workshop on
Context-Aware Middleware and Services, pages 37–42, 2009.

[5] ANT. ANT Android API. http://www.thisisant.com/pages/developer-
zone/android-api, 2012.

[6] J. Antollini, M. Antollini, P. E. Guerrero, and M. Cilia. Extending rebeca
to support concept-based addressing. In Proc. of Argentinean Symposium
on Information Systems, Cordoba, Argentina, Sept. 2004.

[7] P. Costa, C. Mascolo, M. Musolesi, and G. Picco. Socially-aware routing
for publish-subscribe in delay-tolerant mobile ad hoc networks. IEEE
Journal on Selected Areas in Communications, 26(5):748 –760, Jun
2008.

[8] A. Dunkels. Rime — a lightweight layered communication stack for
sensor networks. In Proc. of EWSN, Poster/Demo session, Delft, The
Netherlands, Jan. 2007.

[9] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and
flexible operating system for tiny networked sensors. Proc. of IEEE
LCN, pages 455–462, 2004.
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