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Abstract—This paper proposes a novel power management
solution for resource-constrained devices in the context of In-
ternet of Things (IoT). We focus on smartphones in the IoT,
as they are getting increasingly popular and equipped with
strong sensing capabilities. Smartphones have complex and
asynchronous power consumption incurred by heterogeneous
components including their on-board sensors. Their interaction
with the cloud allows them to offload computation tasks and
access remote data storage. In this work, we aim at monitoring
the power consumption behaviours of the smartphones, profiling
both individual applications and the system as a whole, to
make better decisions in power management. We design a cloud
orchestration architecture as an epic predictor of behaviours of
smart devices by extracting their application characteristics and
resource utilization. We design and implement this architecture
to perform energy profiling and data analysis on massive data
logs. This cloud orchestration architecture coordinates a number
of cloud-based services and supports dynamic workflows between
service components, which can reduce energy consumption in the
energy profiling process itself. Experimental results showed that
small portion of applications dominate the energy consumption
of smartphones. Heuristic profiling can effectively reduce energy
consumption in data logging and communications without scar-
ifying the accuracy of power monitoring.

Index Terms—IoT, Data Communications, Mobile Cloud Com-
puting, Energy Efficiency, Orchestration

I. INTRODUCTION

IoT is a convergence of number of technologies such as

sensors, IPv6, wireless communication and the Internet. Any

real-world objects become smart just by satisfying a few condi-

tions but are not limited to: 1) uniquely identifiable; 2) being

able to sense or actuate; and 3) being able to communicate

[1]. The growth of smart objects are posing challenges to the

research community in energy management, data analytic and

security [2]. Among these challenges, security and privacy

issues affect not only the technical system design level, but

also in the ethical, behavioural and policy levels. We have

powerful analytical tools available with advanced data analysis

algorithms [3]. On the other hand, energy management is more

complex and chaotic, which is our focus in this paper.

Berkeley National Laboratory defined energy efficiency as

using less energy to provide the same service. The need for

energy efficiency highly inevitable in almost every type of

industries, companies and organizations including Information

and Communications Technology (ICT). Energy management

in Internet of Things(IoT) aims at reducing the electricity,

which is beneficial for many industries to reduce their electri-

city bills. As the smart objects becoming smaller in size, their

small sized batteries provide limited power for operations.

Even the smart appliances are idle, they could indirectly waste

huge amount of energy in long term and eventually increase

the electricity bills too. Although ICT can enable energy

efficiency across all sectors, at present there is little market

incentive to ensure that network-enabled devices themselves

are energy efficient. In fact, up to 80% of their electricity

consumption is used just to maintain a network connection.

Even though the quantity of electricity used by each device is

small, the anticipated massive deployment and widespread use

makes the cumulative consumption considerable, as reported

by International Energy Agency in [4].

Hereafter we narrow our focus on smartphones, which are

smart devices that increasing in exponential order over the

last ten years. Modern smartphones provide heterogeneous

functionalities including a number of sensors. They are one of

the most representative and popular smart objects in the IoT.

Nevertheless, smartphones are resource constraint with respect

to battery, memory and computation. It is common for them

to offload computation and access remote data storage on the

cloud servers via network. Cloud computing in the IoT leads

to thousands of cloud supported applications and is growing

steeply. As a consequence, smartphones are consuming a lot

of energy for communication with the cloud. Due to the size

limitation, effort of making powerful batteries is not able to

withstand the energy hungriness persisted in the smartphones.

It is important to reduce energy consumption when developing

new kind of applications.

Smartphones are usually running multiple applications with

different operations at a time. It is very difficult to understand

and identify the cause of high energy consumption in this

asynchronous power consuming environment. It is necessary to

provide profiling of power consumption from different levels,

including system level as a whole, individual applications, and

system calls in operation level. In this paper, we propose

the first iterative novel solution using Cloud Orchestration
for power management on smartphones. Cloud orchestration

aggregates power profiling data from the smartphones and

coordinates data storage, data analysis, learning and deci-

sion making. From the profiling data, the orchestrator learns

the power consumption behaviours and the usage pattern of

the participating smartphones. It can answer questions like:
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which applications are the most energy consuming on the

smartphone? What are the characteristics of applications that

consume most of the energy? These findings can be used

to further optimize the energy monitoring framework. For

example, the energy profiler can predict and collect only the

most important power consumption data logs on the smart-

phones. Our cloud orchestrator framework supports dynamic

workflow of processes and adaptive services fitting the needs

of different users. It aims for providing overall system power

management rather than making part of the system efficient.

The cloud orchestration services can be selected and config-

ured dynamically depending on the application characteristics,

usage pattern, time and location context. Both offline and real-

time services can be supported to provide long-term and large

data analytic, or to give real-time alert on unusual events.

II. RELATED WORK

Many efforts have been made to enable energy efficiency in

smartphones and IoT in general. There are a range of solutions

tried out in the Hardware Architecture level [5], [6], Data
communication level [7], [8], Network infrastructure level [9]
and in Protocols optimization [10]. Different tools have been
developed to measure energy consumption on smart devices

and smartphones. For example, power monitor meter has been

used to provide the current with constant voltage 3.7V to the

smartphone instead of using the battery [11]. This hardware

setup can provide accurate power consumption measurements,

but it is a bulky solution not suitable for ordinary users in their

daily life.

As Intel summed up in [15], Software Energy Efficiency has
the significance towards achieving Computational Efficiency,
Data Efficiency, Context Awareness and Idle Efficiency in

broader sense. Nevertheless, current solutions which try to

characterize power consumption on the smartphones usually

focus on specific operations, such as communications [7] or

interactions with certain hardware components, such as LCD

or GPS. There are several common problems in most of the

existing solutions, including: 1) system as a whole was not

considered; 2) trade-off between components was not properly

considered; 3) interdependences of the components was not

properly studied; 4) the existing solutions are suboptimal. In

order to address the above problems, we need a comprehensive

approach to understand the energy consumption of individual

applications as well as their interdependency and significance

in the whole system. A comprehensive analysis can help the

users to identify the most power consuming applications or

operations on their smartphones. This can also make the power

monitoring process more adaptive to the user behaviour and

more energy-efficient in a long run.

Many existing solutions for power monitoring are run on

the smartphones nowadays [12], [13]. They can monitor the

percentage of battery consumed by different applications.

The advantage of these solutions is simple to use, but the

limited memory and computation capability of smart devices

make it hard to support more advanced data analysis. It is

then difficult to support large-scale and long-term analyse

of energy consumption data for both personalized or crowd-

based monitoring. Regarding measuring energy consumption,

solid background has been provided in [16]. Internet-of-Things

Architecture is a consortium rigorously developing architec-

tural reference models. These models serve as initial guidance

potentially towards concrete architecture for the problem of

interest and eventually towards the actual system architecture

[17]. In [18], devices orchestration is explained from the

business process point of view.

Carat [14] has presented a crowdsourcing approach for

collection energy consumption data on smartphones and di-

agnosing energy anomalies from a community of clients. We

share a similar concept of running the analysis on the cloud

and further explore the opportunity of cloud orchestration ser-

vices for smartphones. Instead of taking a black-box process-

based approach, we propose a cloud orchestration approach

for energy efficiency of smart devices. Cloud orchestration has

the capabilities of coordinating different cloud services, such

as data storage, analysis, and processing, in a comprehensive

framework. Appropriate services can be selected according

to the need of individual users. Heuristic profiling can be

implemented to reduce the among the log data for energy

profiling. This approach is useful in reducing the energy con-

sumption in the energy profiling process itself. Our framework

can be extended easily to include new data mining techniques

and new services contributed by other users. It supports both

individual profiling for personalized services and community

analysis using crowdsourced data.

III. CLOUD ORCHESTRATION FOR ENERGY EFFICIENCY

IoT initially have two visions, one is the Things oriented
vision and the other is the Internet oriented vision. The

Things vision emphasizes on the sensing and communication

capability of different types of smart devices, which can

be standalone or embedded into different real-world objects.

The Internet vision focuses on the connectivity of the smart

devices and their interaction with the Internet. Connecting

smart devices to the Internet enables large data storage and

analysis that are not feasible on the resource-limited devices.

The Internet vision has driven cloud computing for the IoT

to provide advanced data processing and data management

capabilities.

Later, when new challenges introduced such as unique

addressing and storing information, Semantic oriented vision
had arisen [19]. According to this new vision, the participating

devices are categorised and the orchestration is configured

to support scalable and controlled integrated solutions. In

this work, we develop the idea of cloud orchestration to

provide energy efficiency services for the IoT devices. A cloud

orchestrator is a software system that manages the intercon-

nections and interactions of different cloud-based services and

processes. It supports dynamic workflows to connect various

automated processes and associated resources according to the

needs of users and the context environment.
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A. Cloud orchestration design goals
The main goal of our system design is to provide energy-

efficient decision(s) back to the service enabled smartphones

which are participating in the Orchestration. Orchestration, the

concept existing in the music world was adopted in process

automation of business world by automating, coordinating and

managing complex systems, middlewares and services. En-

ergy profiling may impose vulnerability in energy efficiency.

Let us give an illustrative example. Even a single and

careless piece of code (while(battery.percentage)
println(battery.percentage)) may cause the sys-
tem running into an infinite loop and drain all the battery. This

small mistake can make any effort of power saving become

vain. Hence, there is a need for intelligent system, which

is capable of coordinating different components, finding and

categorizing the energy errors. The system should have access

to powerful dynamic control system engine for fixing such
errors. To assist bug fixing we may need a strong insights

from the big data of crowdsourced logs/operations over long

period of time. Orchestration has the capabilities of integrating
different types of clouds, processes and services for power

management, which is an ideal solution.

B. EEaaS orchestration architecture

Figure 1: EEaaS orchestration for power management

We propose a cloud orchestration architecture, called

EEaaS, for power management of IoT devices in Figure 1. The

design is open and flexible which makes it easy to add, remove

and merge with new models and services at any granular level

in the orchestrator. The orchestrator coordinates the following

components, including Participating Devices, Data Processor,
Big data storage, Knowledge graph, Wisdom box, Control box
and Decision Enhancer.

1) Participating devices and smart profiler: These are the
smart devices in the IoT that interested in minimizing their

energy consumption. Upon registration with the orchestrator,

a fully customizable and lower energy consuming background

service application is enabled in the smart devices. This

service application sends low level system-call logs period-

ically and reports abnormal system behaviours spontaneously.

These abnormal events may include accidental system crash

or unusual battery drain by specific application. To avoid

security and privacy issues, logs are collected anonymously

with unique device profile. This application is not only a logs

collector, it also acts as a local self-controller attempting to
catch energy errors in time and optimize energy profiling in

a long run. Its functionalities are regularly updated by the

orchestrator. The participating devices report unusual events to

the orchestrator in real-time. Since the unusual events contain

only small amount of data, the communication overhead is not

so much. On the other hand, the large volume of logged data

on resource utilization are reported only when the smartphones

are connected to the computer or WiFi network. This is

to avoid the continuous data communication through mobile

cellular networks. Data filtering and heuristic profiling can be

performed to reduce the amount of data samples in order to

save energy.

2) Data processor: Data processor is a collection of APIs
for various data processing methods accessible to orchestrator.

According to the context and needs of user, appropriate data

processing methods will be chosen by the orchestrator. The

data processor supports both big data analysis and tempo-

ral data analysis. Advanced data mining techniques can be

implemented in the data processor to perform data filtering

and data aggregation. For example, it can characterize the

energy consumption behaviour of different applications on the

smartphones and identify the most power hungry applications.

3) Big data storage and modern tools: The data produced
by the smartphones would be in massive scale over time. In

order to handle these data-intensive operations, we need big

data storage and modern cloud programming paradigms such

as Hadoop and Apache flink. For deep analysis of sample
data, powerful computing languages such as Python and R
are required.

4) Knowledge graph: When interpreting large volumes of
data logs, dynamic knowledge graph is built and keep on

updated. Knowledge graph is a knowledge base originally

used by Google to enhance its search engine’s search results

with semantic-search information gathered from a wide variety

of sources. Nodes are qualified classes and subclasses with

attribute-value pairs, so that it provides a clear and structured

view of data. Using the knowledge graph, it is then easy to

get specific resource utilization and energy consumption data

for analysis with respect to location, device model, internet

service provider and various specifications.

5) Wisdom box: Wisdom box contains a set of learning

algorithms with primary focus on building location specific

context information (in the spatial domain). It can capture

the location of the device and correlate the location with

various usage and communication patterns. The wisdom box

act as a predictor of trends in data, usage patterns, and

system behaviour anomalies. It uses combination of statistical

algorithms and machine learning algorithms to make energy

efficient decisions. The decisions that are independent of

device, platform and applications are stored in the Decision
Enhancer in the orchestration. Device, platform and applica-
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Figure 2: EEaaS orchestration inside the box

tions specific decisions are fused with the knowledge graph

and the reference graph in the orchestration.

6) Control box: Control box is a builder of real-time and
dynamic self-controller for the participating devices. It can

also raise alerts and give time-sensitive feedbacks (temporal

domain) to the users. The self-controller is implemented as

a service as explained in III-B1. To make the self-controller

even more intelligent, context related decisions in the spatial

domain are used. Feedbacks are received from the participating

devices to evaluate the performance of data log collection.

C. Energy-efficient data profiling and communication

Given that data communication is one of the biggest

challenges for energy efficiency, cloud-assisted data profiling

would seem counter intuitive. Our system design takes smart

logging with minimal data communications to reduce the

overhead. It provides an alternative solution to fine-grained

and real-time profiling, which is both data and computation

intensive. We study existing profiling techniques and identify

the most important energy features to design a heuristic

profiler. This heuristic profiler collects data intelligently and

maintains minimal communications with cloud. Our approach

can effectively reduce the overhead and energy consumption

in the energy profiling process itself.

Key Energy Indicators: Managing and analysing big data is
not major cause of energy consumption. The real bottle-neck is

collecting data through frequent and intensive communications

from the participating devices. Instead of sending all the data

logs to the orchestration for analysing, we classify certain

system calls and utilization as primary, called them Key
Energy Indicators (KEI), such as CPU and memory usage. We
further categorise the KEI into Secondary Key Energy Indica-
tors(SKEI) and Relative Key Energy Indicators(RKEI). SKEI
are not so frequently used but are important when they are

active, such as GPS and Bluetooth. RKEI are active only when

specific applications are running or occur in certain context.

Examples of RKEI include camera and activity sensors.

Potential Cause Indicators: KEI capture the energy con-
sumption behaviours and identify the causes of energy con-

sumption. Here comes the Potential Cause Indicators(PCI),
which can be learned by the orchestration over time. When

the system becomes matured enough, the participatory devices

collect and report less amount of data. Crowdsourcing further

makes it easy to distribute the workload of data collection. In a

long run, less logs and less communication from participatory

devices are required. More sophisticated context-aware models

in the orchestration are resulted. The workflows in the orches-

tration then become more energy-efficient, as it can adapt to

the usage pattern and context dynamically (see figure 2).

In figure 2, the cloud-based smart profiler (top-left), sends

the logged data or control messages from the participating

devices to the cloud. The logged data are sent together with

the context header, which is used by the orchestration to
indicate the message type. For example, if the context header

is control, then the orchestrator knows that there is no data
logs in the message but events (issues) being reported from the

participating devices. In this case, the events are forwarded to

control box in order to address the issues. Otherwise, the other
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messages (data logs) are forwarded to the big data module

supported by the spatial data processing unit for classification,

prediction and context generation. The data processing unit

helps the orchestration to learn what are the KEI, so that less

significant data can be identified and removed in the future.

When the system becomes mature enough, the participatory

devices will collect mainly the KEI, so that they can report less

amount of data logs to save energy. Through iterative learning,

the orchestration can build more sophisticated context-aware

energy models for making better prediction in energy profiling.

IV. EXPERIMENTAL RESULTS

Smartphone is a system-on-chip architecture with three key

components, Application processor to handle user applica-
tions, Modem processor to handle transmission, and reception
and Peripheral devices (I/O) to interact with users. In smart-
phones, the power consumption of any I/O component is often

higher than the power consumption of the CPU or at the least

comparable. In [21], the drawbacks of power models derived

from external power meters and software modelling are well

explained. Software power modelling does not address the tail

power states, which occur when the components remain power

on and consume energy even though the CPU is idle. This

problem can be addressed by system call tracing to check

each component’s power state, though it may consume more

energy. Nevertheless, energy profiling is a very important first

step to characterize the power consumption on smartphones.

A. Power states and data logging

The Advanced Configuration and Power Interface (ACPI)

specification has been evolving as a common hardware inter-

faces in Operating System directed configuration and Power

Management (OSPM) for both the end devices and the entire

systems. When profiling an individual application or entire

platform, it is useful to fetch information about the states of

system, device and processors (as shown in table I), so that

better decision can be made to achieve energy efficiency. We

are currently using Qualcomm’s Trepn Profiler [22]. We study

the behaviours of the system and resources that applications

consumed in the system including CPUs usage, memory usage,

and data usage.

Global System States Device Power States Processor Power States
G0 Working D0 - Fully-On C0
G1 Sleeping D1 C1
G2/S5 Soft Off D2 C2
G3 Mechanical Off D3hot C3

D3 - Off

Table I: ACPI/OSPM defined power states

As data communication is a major cause of fast energy drain

in the smartphones, we show an interesting example on pro-

filing the data communication patterns of mobile applications.

Figure 3 shows the data communication usage patterns of two

popular applications, Google Maps and YouTube. From the

data logs, we observe that both Google Maps and YouTube

are running two threads in their applications. The data com-

munication of the two threads in each application share similar

patterns, which are indicated by dark and light color in the

figure.

Figure 3a shows a snapshot of data communication profiling

of Google Maps. The y-axis is plotted in log scale, showing

the size of data communication at different time. We observe

that there is a sudden increase of data communication occurred

at time interval [70, 75]. Through careful inspection, we find

that it is due to the action of zooming in the map triggered by

the user.

While profiling YouTube, a video is randomly picked

for playing in the full screen mode. From figure 3b, we

observe initial aggressive data communications due to pre-

fetching. Then, the video is played smoothly with constant data

communication from 285s. We believe that the intermittent

communication pattern is due to the communication protocol

and the reliability of the network.

B. Cloud-based data profiling and analysis

ID Application name Energy consumption (%)
20 Facebook 32.270
0 Android System 11.076
6 Google Contacts Sync 8.238
9 Google App 4.490
1 com.qualcomm.qcrilmsgtunnel 3.464
8 System UI 2.788
17 YouTube 2.006
21 Messenger 1.656
2 Nfc Service 1.204
14 Google Keyboard 1.146
11 CaptivePortalLogin 1.008
5 Media Storage 0.808
19 ES File Explorer 0.804
15 Maps 0.616
18 Google Connectivity Services 0.604
7 Google Dialer 0.602
13 Hangouts 0.410
16 Google+ 0.406
10 Calendar 0.404
3 Calendar Storage 0.402
4 User Dictionary 0.400
12 Fit 0.400

Table II: Ranked energy consumption of applications

1) Energy consumption: In order to understand and visu-
alise the energy consumption pattern, the following experiment

has been conducted. We collected the data from four users over

a three month period from 1 March 2015 to 31 May 2015. The

users have been using Samsung S4 or NEXUS 5 smartphones.

The data has recorded the energy consumption and resource

usage of the smartphones that were idle or running actively

in daily use. We have chosen twenty-two applications that

are run by all the four users in this data analysis. These 22

applications range from social media applications, messaging

applications, navigation applications, to personal management

applications. The data has been cleaned up and processed, so

that every resource utilization of each application has been

summarized as a mean value in an hourly basis. Then, the

summarized data are further aggregated to give an overview

of energy consumption among all the applications.
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(a) Google maps (b) YouTube

Figure 3: Snapshots of profiled data communication patterns

(a) Energy consumption of applications (b) Resource utilization of applications

Figure 4: Energy consumption and resource utilization

We compare the total energy consumption and resource

utilization distribution among different applications in this

experiment. This result helps us to identify the most power

consuming applications and understand what resources have

been utilized to make them so power hungry. Figure 4(a)

compares the energy consumption of the 22 applications. The

y-axis shows the total energy consumption of each application

in percentage (among all applications). The x-axis shows the

application ID from 0 to 21. From the figure, we observe

that there are four to five applications, which consume the

most energy compared with the others. We rank the energy

consumption percentage of these 22 applications in Table II.

It shows that the most power consuming applications are

Facebook, followed by Android Operating System, Google

Contacts Sync, Google App.

We further investigate four key energy indicators (KEI)

in these applications, including CPU load, memory, data

communication, and number of threads. Figure 4(b) shows the

resource utilization of the applications in percentage. From

the figure, we can see that the applications that consume

most energy usually have high utilization in all four kind of

resources. Take Facebook as an example, it has the highest

data communication and CPU usage among others. It also has

relatively high number of threads and memory usage compared

with other applications. We observe similar resource utilization

patterns for applications that have high power consumption.

The shape of the curves in figures 4(a) and 4(b) follow very

similar patterns. It implies that these four selected resources

are very important when profiling energy consumption for the

smartphones.
2) CPU load: We also observe different CPU load patterns

in the applications. Figure 5 shows the CPU load of the

Facebook app. We can see that the Facebook app has high

CPU use when the app is started. After that, the CPU load

is quite random depending on the operations triggered by the

user, such as uploading photos or sending messages. Figure

6 shows the CPU load pattern of Google MAPs, which is

quite periodic due to the regular update of GPS locations.

By observing the CPU patterns, it helps us to understand the

operation characteristics and energy consumption of different

applications.
3) Threads and memory use: Next, we analyse the correla-

tion of threads and memory use in the applications. Figure 7

shows the average number of threads and the average virtual

memory use of the 22 applications. As seen from the figure,
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Figure 5: CPU load pattern of Facebook App

Figure 6: CPU load pattern of Google Maps

there is a positive correlation between the number of threads

and virtual memory use. Most of the applications use less than

50 threads. However, there are several applications using much

more threads than the others. The top application, Google

Contacts Sync, uses 162 threads and more than 12000MB

virtual memory. The following applications with high number

of threads are Android System and Facebook, which use more

than 100 threads. Google App uses almost 100 threads and a

lot of virtual memory as well.

Figure 8 shows the number of applications consuming

different amount of main memory. We divide the memory use

into different ranges and count the number of applications

in each range. The figure shows that most of the applica-

tions consume less than 25MB main memory. However, two

applications, Facebook and Google Contacts Sync, consume

almost 150MB main memory. Google App also has high main

memory use of 100MB.

4) Analysis for energy-efficient profiling: Understanding

the characteristics of applications and energy consumption

patterns on the smartphones are very useful for reducing the

Figure 7: Threads and virtual memory use of applications

Figure 8: Main memory use of applications

energy consumption in the profiling process itself. Through

simple analysis, we can make initial observations on what

applications consume most energy and what applications con-

sume insignificant amount. Our profiler can use this informa-

tion to reduce the amount of data being collected on resource

utilization. If we filter out the data from applications that

consume less than 1% of the total energy in the system, we can

greatly reduce the number of applications that require intense

monitoring. Take the 22 applications in Table II as an example,

we can reduce the number of data samples by 50%, while still

keeping accurate data logs from applications that consume

more than 94% of the total energy in the smartphones. In

another word, it can save half of the energy in profiling without

losing much accuracy in power monitoring. With cloud orches-

tration, we can configure the system dynamically to reduce the

data samples of applications that are less frequently used or

consume little energy.

V. DISCUSSIONS

Orchestrator is in essence the behaviour predictor of the

participating devices with respect to time, location and as
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many as added contexts. The agent application installed in

the smartphones report logs to the orchestrator. It will be

facilitated by the local validator and action triggers which will

be regularly updated by the orchestrator on demand to reduce

energy consumption in data logging, communication and com-

putation. In order to successfully deploy such orchestration

service, we need to study and explore all the components and

their interdependencies in detail. Questions that we plan to

further investigate include 1) How to further reduce the energy

consuming of profiler? 2) How to reduce data logs reporting

and minimize energy consumption in data communication?

3) How to make orchestrator an epic predictor of device

behaviours? 4) How to find optimal responsibilities of local

agent by ensuring minimal computation and resources? 5)

Is the current solution the best fit for mass open source

contribution? 6) What are the most appropriate tools for

energy-efficient cloud orchestration implementation? We plan

to implement advanced features in the Wisdom Box and Big

Data modules, and to test the prototype iteratively. Other than

smartphones, we would like to extend this framework for

testing with different types of IoT devices.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel cloud orchestration

framework for improving energy efficiency for smartphones in

the IoT. The major advantage of this cloud orchestration is that

it supports dynamic workflow and configuration of different

processes and services. We have described the components of

the orchestration and their interactions. Our architecture design

is flexible, so that new components and advanced functions can

be added to the system easily. The big data, knowledge graph,
control box are openly accessible, so that both single user and
mass collaborators can participate and add new methods to the

system. We have conducted experiments using real resource

utilization traces collected by four mobile users in a three

month period. The results demonstrated that our profiler can

successfully characterize the energy consumption of different

applications and identify the most power consumption appli-

cations. It can also give feedbacks to the energy profiler to

reduce energy consumption in data logging. The amount of

data logs can be reduced significantly through learning the key

energy indicators and application characteristics. This iterative

learning process can progressively reduce the communication

and computation overhead in energy profiling. There is great

potential that the big data knowledge can be used for solving

other problems as well, such as energy bug detection, etc.

In the future, we would like to investigate advanced data

mining and data filtering techniques to further reduce energy

consumption in energy profiling. We will explore how data

logging and communication can be optimized considering

the application characteristics, usage pattern and operation

context.
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