
148 CoMet 1

B Terminology 406

B.1 Term Table of Contents

A . . . . . . . . . . . . . . . . . . 148

B . . . . . . . . . . . . . . . . . . 155

C . . . . . . . . . . . . . . . . . . 158

D . . . . . . . . . . . . . . . . . . 167

E . . . . . . . . . . . . . . . . . . 174

F . . . . . . . . . . . . . . . . . . .177

G . . . . . . . . . . . . . . . . . . 181

H . . . . . . . . . . . . . . . . . . 182

I . . . . . . . . . . . . . . . . . . . 185

K . . . . . . . . . . . . . . . . . . 191

L . . . . . . . . . . . . . . . . . . .191

M . . . . . . . . . . . . . . . . . . 194

N . . . . . . . . . . . . . . . . . . 199

O . . . . . . . . . . . . . . . . . . 200

P . . . . . . . . . . . . . . . . . . 202

Q . . . . . . . . . . . . . . . . . . 211

R . . . . . . . . . . . . . . . . . . 211

S . . . . . . . . . . . . . . . . . . .218

T . . . . . . . . . . . . . . . . . . 228

U . . . . . . . . . . . . . . . . . . 234

V . . . . . . . . . . . . . . . . . . 235

W . . . . . . . . . . . . . . . . . .236

In any development project it is important to define the terms before their first use, to
maintain, including adjust, update and extend, such a glossary of term definitions, and to
adhere to the definitions.

B.2 Terms
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1. Abstract: Something which focuses on essential properties. Abstract is a relation:
something is abstract with respect to something else (which possesses — what is
considered — inessential properties).

2. Abstract algebra: An abstract [1] algebra[26] is an algebra whose carrier elements
and whose functions are defined by postulates (axiom[75]s, laws) which specify general
properties, rather than values, of functions. (Abstract algebras are also referred to
as postulational, or axiom[75]atic algebras. The axiomatic approach to the study of
algebras forms the cornerstone of so-called modern algebra [159].)

3. Abstraction: ‘The art of abstracting. The act of separating in thought; a mere
idea; something visionary.’

4. Abstract data type: An abstract [1] data[193] type [782] is a set of values for which no
external world or computer (i.e., data) representation is being defined, together with
a set of abstractly defined functions over these data values.

5. Abstraction function: An abstraction[3] function[310] is a function which applies to
value [802]s of a concrete type [157] and yields values of — what is said to be a corre-
sponding — abstract type [7]. (Same as retrieve function[624].)

6. Abstract syntax: An abstract [1] syntax [733] is a set of rules, often in the form of an
axiom system[77], or in the form of a set of sort definition[695]s, which defines a set of
structures without prescribing a precise external world, or a computer (i.e., data)
representation of those structures.
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7. Abstract type: An abstract [1] type [782] is the same as an abstract data type [4], except
that no functions over the data values have been specified.

8. Accessibility: We say that a resource [620] is accessible by another resource, if that
other resource can make use of the former resource. (Accessibility is a dependability

requirement [218]. Usually accessibility is considered a machine [436] property. As such,
accessibility is (to be) expressed in a machine requirements [438] document.)

9. Acceptor: An acceptor is a device, like a finite state automaton[289] of a pushdown

automaton[564], which, when given (i.e., presented with) character strings (or, in gen-
eral, finite structures), purported to belong to a language, can recognise, i.e., can
decide, whether these character strings belong to that language.

10. Acquirer: The legal entity, a person, an institution or a firm which orders some
development [228] to take place. (Synonymous terms are client [116] and customer [192].)

11. Acquisition: The common term means purchase. Here we mean the collection of
knowledge [407] (about a domain[239], about some requirements [605], or about some soft-

ware [685]). This collection takes place in an interaction between the developer [227]s and
representatives of the client [116] (user [796]s, etc.). (A synonym term is elicitation[265].)

12. Action: By an action we shall understand something which potentially changes a
state [705], that is, value [802]s of dynamic [260] attribute [69]s of simple entities [681]. We con-
sider action[12]s to be one of the four kinds of entities [272] that the Triptych “repeat-
edly” considers. The other three are: simple entities [681], event [281]s and behaviour [79]s.
Consideration of these are included in the specification of all domain facet [250]s and
all requirements facet [614]s.

13. Activation stack: See the Comment field of the function activation[311] entry.

14. Active: By active is understood a phenomenon[524] which, over time [761], changes
value [802], and does so either by itself, autonomous [73]ly, or also because it is “in-
structed” (i.e., is “bid” (see biddable [85]), or “programmed” (see programmable [546]) to
do so). (Contrast to inert [367] and reactive [578].)

15. Actor: By an actor we shall understand someone which carries out an action[12]. (A
synonymous term for actor is agent [24].)

16. Actual argument: When a function is invoked it is usually applied to a list of
values, the actual argument [52]s. (See also formal parameter [302].)

17. Actuator: By an actuator we shall understand an electronic, a mechanical, or an
electromechanical device which carries out an action[12] that influences some physi-
cal value [802]. (Usually actuators, together with sensor [659]s, are placed in reactive [578]

systems, and are linked to controller [183]s. Cf. sensor [659].)
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18. Acyclic: Acyclicity is normally thought of as a property of graphs. (Hence see next
entry: acyclic graph[19].)

19. Acyclic graph: An acyclic graph is usually thought of as a directed graph[232] in which
there is no nonempty path[517], in the direction of the arrow [54]s, from any node [479] to
itself. (Often acyclic graphs are called directed acyclic graphs, DAG s. An undirected
graph which is acyclic is a tree [777].)

20. Adaptive: By adaptive we mean some thing that can adapt or arrange itself to a
changing context [172], a changing environment [275].

21. Adaptive maintenance: By adaptive maintenance we mean an update, as here,
of software, to fit (to adapt) to a changing environment. (Adaptive maintenance is
required when new input/output media are attached to the existing software, or when
a new, underlying database management system is to be used (instead of an older
such), etc. We also refer to corrective maintenance [187], perfective maintenance [519], and
preventive maintenance [541].)

22. Address: An address is the same as a link [425], a pointer [528] or a reference [587]: Some-
thing which refers to, i.e., designates something (typically something else). (By an
address we shall here, in a narrow sense, understand the location[431], the place, or
position in some storage [715] at which some data[193] is store [714]d or kept.)

23. Ad hoc polymorphism: See Comment field of polymorphic [529].

24. Agent: By an agent we mean the same as an actor [15] — a human or a machine (i.e.,
robot). (The two terms actor [15] and agent [24] are here considered to be synonymous.)

25. AI: Abbreviation for artificial intelligence. (We shall refrain from positing (including
risking) a definition of the term AI. Instead we refer to John McCarthy’s home page
[169].)

26. Algebra: An algebra is here taken to just mean: A set of value [802]s, A, the carrier of
the algebra, and a set of function[310]s, Φ, on these values such that the result values
are within the set of values: Φ = A∗ → A. (We make the distinction between uni-

versal algebra[790]s, abstract algebra[2]s and concrete algebra[155]s. See also heterogeneous

algebra[336]s, partial algebra[515]s and total algebra[765]s.)

27. Algebraic semantics: By an algebraic semantics we understand a semantics [655]

which denotes one, or a (finite or infinite) set of zero, one or more algebra[26]s. (Usually
an algebraic semantics is expressed in terms of (i) sort [694] definitions, (ii) function

signature [318]s and (iii) axiom[75]s.)

28. Algebraic systems: An algebraic system is an algebra[26]. (We use the term sys-

tem[736] as an entity with two clearly separable parts: the carrier [106] of the algebra and
the function[310]s of the algebra. We distinguish between concrete algebra[155]s, abstract

algebra[2]s and universal algebra[790]s — here listed in order of increasing abstraction[3].)
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29. Algebraic type: An algebraic type is here considered the same as a sort [694]. (That
is, algebraic types are specified as are algebraic systems [28].)

30. Algol: Algol stands for Algorithmic Language. (Algol 60 designed in the period
1958–1960 [12]. It became a reference standard for future language designs (Algol W
[233], Algol 68 [224], Pascal [230, 129, 141] and others.)

31. Algorithm: The notion of an algorithm is so important that we will give a number
of not necessarily complementary definitions, and will then discuss these.

• By an algorithm we shall understand a precise prescription for carrying out
an orderly, finite set of operation[493]s on a set of data[193] in order to calculate
(compute [148]) a result. (This is a version of the classical definition. It is
compatible with computability in the sense of Turing machine [781]s and Lambda-

calculus [412]. Other terms for algorithm are: effective procedure, and abstract
program.)

• Let there be given a possibly infinite set of state [705]s, S, let there be given a
possibly infinite set of initial states, I, where I ⊆ S, and let there be given
a next state function f : S → S. (C, where C = (Q, I, f) is an initialised,
deterministic [226] transition[772] system.) A sequence s0, s1, . . . , si−1, si, . . . , sm such
that f(si−1) = si is a computation[144]. An algorithm, A, is a C with final states
O, i.e.: A = (Q, I, f, O), where O ⊆ S, such that each computation ends with a
state sm in O. (This is basically Don Knuth’s definition [144]. In that definition
a state is a collection of identified data, i.e., a formalised representation of
information, i.e., of computable data. Thus Knuth’s definition is still Turing
and Lambda-calculus “compatible”.)

• There is given the same definition as just above with the generalisation that
a state is any association of variables to phenomena, whether the latter are
representable “inside” the computer or not. (This is basically Yuri Gurevitch’s
definition of an algorithm [117, 198, 199]. As such this definition goes beyond
Turing machine and Lambda-calculus “compatibility”. That is, captures more!)

32. Algorithmic: Adjective form of algorithm[31].

33. Allocate: To apportion for a specific purpose or to particular persons or things,
to distribute tasks among human and automated components. (We shall here use
the term generally for the allocation of resources (see also resource allocation[621]),
specifically for storage [715] to assignable variable [59]s. In the general sense, allocation, as
the name implies, has some spatial qualities about it: allocation to spatial positions.
In the special sense we can indeed talk of storage space.)

34. Alphabet: A finite collection of script symbols called the letters of the alphabet.

35. Alpha-renaming: By alpha-renaming (α-renaming) we mean the substitution of a
binding [88] identifier [351], with another, the “new”, identifier, in some Lambda-expression[414]
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(statement or clause), such that all free occurrences of that binding identifier in that
expression (statement or clause) are replaced by the new identifier, and such that
that new identifier is not already bound in that expression (statement or clause).
(Alpha-renaming is a concept of the Lambda-calculus [412].)

36. Ambiguous: A sentence [660] is ambiguous if it is open to more than one interpreta-

tion[397], i.e., has more than one model [460] and these models are not isomorphic [403].

37. Analogic: Equivalency or likeness of relations. Resemblance of relations or at-
tributes as a ground of reasoning. Also: Presumptive reasoning based on the as-
sumption that if things have some similar attributes, their other attributes will be
similar [160].

38. Analogue: A representative in another class or group [160]. (Used in this technical
note in the sense above, not in the sense of electrical engineering or control theory.)

39. Analysis: The resolution of anything complex into simple elements. A determina-
tion of proper components. The tracing of things to their sources; the discovery of
general principles underlying concrete phenomena [160]. (In conventional mathemat-
ics analysis pertains to continuous phenomena, e.g. differential and integral calculi.
Our analysis is more related to hybrid systems of both discrete and continuous phe-
nomena, or often to just discrete ones.)

40. Analytic: Of, or pertaining to, or in accordance with analysis [39].

41. Analytic grammar: A grammar [325], i.e., a syntax [733] whose designated sentences (in
general: Structures) can be subject to analysis [39], i.e., where the syntactic composition
can be revealed through analysis [39].

42. Anomaly: Deviation from the normal.

43. Anthropomorphic: Attributing a human personality to anything impersonal or
irrational [160]. (See anthropomorphism[44]. It seems to be a “disease” of programmers
to attribute their programs with human properties: “The program does so-and-
so; and after that, it then goes on to do such-and-such,” etcetera. Programs, to
recall, are, as are any description is, a mere syntactic, i.e., static text. As such they
certainly can “do nothing”. But they may prescribe that certain actions are effected
by machine — when a machine interprets (“executes”) the program text!)

44. Anthropomorphism: Ascription of a human form and attributes to the Deity, or
of a human attribute or personality to anything impersonal or irrational [160]. (See
anthropomorphic [43].)

45. Application: By an application we shall understand either of two rather different
things: (i) the application of a function to an argument [52], and (ii) the use of software
for some specific purpose (i.e., the application). (See next entry for variant (ii).)
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46. Application domain: An area of activity which some software [685] is to support (or
supports) or partially or fully automate (resp. automates). (We normally omit the
prefix ‘application’ and just use the term domain[239].)

47. Applicative: The term applicative is used in connection with applicative program-
ming. It is hence understood as programming where applying functions to argu-

ment [52]s is a main form of expression, and hence designates function application as a
main form of operation. (Thus the terms applicative and functional [312] are here used
synonymously.)

48. Applicative programming: See the term applicative [47] just above. (Thus the
terms applicative programming and functional programming [313] are here used synony-
mously.)

49. Applicative programming language: Same as functional programming language [314].

50. Arc: Same as an edge [262]. (Used normally in connection with graph[327]s.)

51. Architecture: The structure and content of software [685] as perceived by their user [796]s
and in the context of the application domain[46]. (The term architecture is here used
in a rather narrow sense when compared with the more common use in civil engi-
neering.)

52. Argument: A value [802] provided (possibly as part of an argument list) when invoking
a function.

53. Arity: By the arity of a function[310] (i.e., an operation[493]) we understand the number
(0, 1, or more) of argument [52]s that the function applies to. (Usually a function
applies to an argument list, and the arity is therefore the length of this list.)

54. Arrow: A directed edge [262]. (Branches are arrows.)

55. Artefact: An artificial product [160]. (Anything designed or constructed by humans
or machines, which is made by humans.)

56. Artifact: Same term as artefact [55].

57. Artificial intelligence: See AI [25].

58. Assertion: By an assertion we mean the act of stating positively usually in antici-
pation of denial or objection. (In the context of specification[698]s and program[545]s an
assertion is usually in the form of a pair of predicate [536]s “attached” to the specifi-
cation text, to the program text, and expressing properties that are believed to hold
before any interpretation of the text; that is, “a before” and “an after”, or, as we
shall also call it: a pre- and a post-condition.)

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



154 CoMet 1

59. Assignable variable: By an assignable variable we understand an entity of a pro-
gram text which denote [216]s a storage [715] location[431] whose associated value [802] can be
changed by an assignment [60]. (Usually, in the context of specifications and programs,
assignable variables are declared.)

60. Assignment: By an assignment we mean an update to, a change of a storage [715]

location[431]. (Usually, in the context of specifications and programs, assignments are
prescribed by assignment statements.)

61. Associative: Property of a binary operator o: If for all values a, b and c, (a o b) o c =
a o (b o c), then o is said to be an associative operator. (Addition (+) and multipli-
cation (*) of natural numbers are associative operators.)

62. Asynchronous: Not synchronous [731]. (In the context of computing we say that
two or more process [544]es — some of which may represent the world external to
the computing device — are asynchronous if occurrences of the event [281]s of these
processes are not (a priori) coordinated.)

63. Atomic: In the context of software engineering [693] atomic means: A phenomenon[524]

(a concept [152], a simple entity [681], a value [802]) which consists of no proper subparts,
i.e., no proper subphenomena[524], subconcept [152]s, subentities [272] or subvalue [802]s other
than itself. When we consider a phenomenon[524], a concept [152], a simple entity [681], a
value [802], to be atomic, then it is often a matter of choice, with the choice reflecting
a level of abstraction[3].

64. Atomic action:

65. Atomic behaviour:

66. Atomic entity: Either an atomic action[64], an atomic behaviour [65], an atomic event [67]

or an atomic simple entity [68]

67. Atomic event:

68. Atomic simple entity:

69. Attribute: We use the term attribute only in connection with values of composite
type. An attribute is now whether a composite value possesses a certain property,
or what value it has for a certain component part. (An example is that of database
(e.g., SQL) relations (i.e., tabular data structures): Columns of a table (i.e., a relation)
are usually labelled with a name designating the attribute (type) for values of that
column. Another example is that, say, of a Cartesian: A = B×C×D. A can be said to
have the attributes B, C, and D. Yet other examples are M = A →m B, S = A-set and L
= A∗. M is said to have attributes A and B. S is said to have attribute A. L is said to
have attribute A. In general we make the distinction between an entity consisting of
subentities (being decomposable into proper parts, cf. subentity [721]), and the entities
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having attributes. A person, like me, has a height attribute, but my height cannot
be “composed away from me”!)

70. Attribute grammar: A grammar, usually expressed as a BNF Grammar [92], where,
to each rule [638], and to each nonterminal, of the left-hand side or of the right-hand
side of the rule, there is associated one or more (attribute) assignable variable [59]s
together with a set of single assignments to some of these variables — such that the
assignment expression variables are those of the attribute variables of the rule.

71. Automaton: An automaton is a device with state [705]s, input [382]s, some states des-
ignated as final states, and with a next state transition[772] function which to every
state and input designates a next state. (There may be a finite, or there may be an
infinite number of states. The next state transition function may be deterministic [226]

or nondeterministic [481].)

72. Automorphism: An isomorphism[404] that maps an algebra into itself is an automor-
phism. ( See also endomorphism[268], epimorphism[276], homomorphism[343], monomor-

phism[467].)

73. Autonomous: A phenomenon[524] (a concept [152], an entity [272]) is said to be au-
tonomous if it changes value [802] at its own discretion or without influence from an
environment [275]. (Rephrasing the above we get: (i) A phenomenon is said to be of,
or possess, the autonomous active dynamic attribute if it changes value only on its
own volition — that is, it cannot also change value as a result of external stimuli;
(ii) or when its actions cannot be controlled in any way: That is, they are a “law
onto themselves and their surroundings”. We speak of such phenomena as being
dynamic [260]. Other dynamic active [14] phenomena may be active [14] or reactive [578].)

74. Availability: We say that a resource [620] is available for use by other resources, if
within a reasonable time interval these other resources can make use of the former
resource. (Availability is a dependability requirement [218]. Usually availability is con-
sidered a machine [436] property. As such availability is (to be) expressed in a machine

requirements [438] document.)

75. Axiom: An established rule or principle or a self-evident truth.

76. Axiomatic specification: A specification[698] presented, i.e., given, in terms of a set
of axiom[75]s. (Usually an axiomatic specification also includes definitions of sort [694]s
and function signature [318]s.)

77. Axiom system: Same as axiomatic specification[76].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B

78. B: B stands for Bourbaki, pseudonym for a group of mostly French mathematicians
which began meeting in the 1930s, aiming to write a thorough unified set-theoretic
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account of all mathematics. They had tremendous influence on the way mathe-
matics has been done since. (The founding of the Bourbaki group is described in
André Weil’s autobiography, titled something like “memoir of an apprenticeship”
(orig. Souvenirs D’apprentissage). There is a usable book on Bourbaki by J. Fang.
Liliane Beaulieu has a book forthcoming, which you can sample in “A Parisian Cafe
and Ten Proto-Bourbaki Meetings 1934–1935” in the Mathematical Intelligencer 15
no. 1 (1993) 27–35. From http://www.faqs.org/faqs/sci-math-faq/bourbaki/

(2004). Founding members were: Henri Cartan, Claude Chevalley, Jean Coulomb,
Jean Delsarte, Jean Dieudonné, Charles Ehresmann, René de Possel, Szolem Man-
delbrojt, André Weil. From: http://www.bourbaki.ens.fr/ (2004). B also stands
for a model-oriented specification language [2].)

79. Behaviour: A sequence of action[12]s and event [281]s is a behaviour. A set of be-
haviours is a behaviour.

By behaviour we shall understand the way in which something functions or operates.

In the context of domain engineering behaviour is a concept associated with phenom-

ena[524], in particular manifest simple entities [681]. And then behaviour is that which
can be observed about the value [802] of that simple entity [681] and its interaction[392] with
its environment [275].

80. Behaviour, Communicating: A concurrent behaviour where actions of one be-
haviour synchronise and communicate with actions of other behaviours.

81. Behaviour, Concurrent: A set of behaviours.

82. Behaviour, Parallel: A set of behaviours.

83. Behaviour, Sequential: A sequence of actions and events.

84. Beta-reduction: By Beta-reduction we understand the substitution whereby all
free [305] occurrences of a designated variable [803] in a Lambda-expression[414] are replaced
by Lambda-expression[414] (in which some Alpha-renamings may have to be made first).

85. Biddable: A phenomenon[524] is biddable if it can be advised (through a “contrac-
tual arrangement”) on which action[12]s are expected of it in various state [705]s. (A
biddable phenomenon does not have to take these actions, but then the “contractual
arrangement” need no longer be honoured by other phenomena (other [sub]domains)
with which it interact [391]s (i.e., shares phenomena).)

86. Bijection: See bijective function[87].

87. Bijective function: A total surjective function[727] which maps all value [802]s of its
postulated definition set [211] into all distinct values of its postulated range [576]set is
called bijective. (See also injective function[380] and surjective function[727].)
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88. Binding: By binding we mean a pairing of, usually, an identifier [351], a name [474],
with some resource [620]. (In the context of software engineering we find such bindings
as: (i) of an assignable variable [59] to a storage [715] location[431], (ii) of a procedure [543]

name [474] to a procedure denotation[213], etc.)

89. Block: By a block we shall here understand a textual entity, one that is suitably
delineated. (In the context of software engineering a block is normally some partial
specification[698] which locally introduces some (applicative [47], i.e., expression) constant
definitions (i.e., let .. in .. end), or some (imperative [352], i.e., statement) local
variable declarations (i.e., begin dcl .. ; .. end).)

90. Block-structured programming language: A programming language [551] is said
to be block-structured if it permits such program constructs (incl. procedures) whose
semantics [655] amount to the creation of a local identifier scope [649], and where such
can be nested, zero, one or more within another.

91. BNF: Abbreviation for Backus–Naur Form (Grammar). (See BNF Grammar [92].)

92. BNF Grammar: By BNF Grammar we mean a concrete, linear textual represen-
tation of a grammar [325], i.e., a syntax [733], one that designate [222]s a set of strings. (A
BNF Grammar usually is represented in the form of a set of rule [638]s. Each rule
has a nonterminal [484] left-hand-side symbol [728] and a finite set of zero, one or more
alternative right-hand-side strings of terminal [750] and nonterminal symbols.)

93. Boolean: By Boolean we mean a data type of logical values (true and false),
and a set of connectives: ∼, ∧, ∨, and ⇒. (Boolean derives from the name of the
mathematician George Boole.)

94. Boolean connective: By a Boolean[93] connective [167] we mean either of the Boolean
operators: ∧, ∨, ⇒ (or ⊃), ∼ (or ¬).

95. Bound: The concept of being bound is associated with (i) identifier [351]s (i.e., name [474]s)
and expression[282]s, and (ii) with name [474]s (i.e., identifier [351]s) and resource [620]s. An
identifier is said to be either free [305] or bound in an expression based on certain
rules being satisfied or not. If an identifier is bound in an expression then bound
occurrences of that identifier are bound to the same resource. If a name is bound to
some resource then all bound occurrences of that name denote [216] that resource. (Cf.
free [305].)

96. BPR: See business process reengineering [101]

97. Branch: Almost the same as an edge [262], except that branches are directed, i.e., are
(like) arrow [54]s. (Used usually in connection with tree [777]s.)

98. Brief: By a brief is understood a document [237], or a part of a document which
informs about a phase [523] , or a stage [702] , or a step[711] of development [228]. (A brief
thus contains information[373].)
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99. Business process: By a business process we shall understand a behaviour [79] of an
enterprise, a business, an institution, a factory. (Thus a business process reflects the
ways in which a business conducts its affairs, and is a facet [285] of the domain[239]. Other
facets of an enterprise are those of its intrinsics [399], management and organisation[445]

(a facet closely related, of course, to business processes), support technology [725], rules

and regulations [640], and human behaviour [345].)

100. Business process engineering: By business process engineering [100] we shall under-
stand the design[221], the determination, of business process [99]es. (In doing business
process engineering one is basically designing, i.e., prescribing entirely new business
processes.)

101. Business process reengineering: By business process reengineering [101] we shall
understand the redesign[221], the change, of business process [99]es. (In doing business
process reengineering one is basically carrying out change management [109].)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C

102. Calculate: Given an expression and an applicable rule [638] of a calculus [104], to change
the former expression into a resulting expression. (Same as compute [148].)

103. Calculation: A sequence of steps which, from an initial expression, following rules
of a calculus [104], calculate [102]s another, perhaps the same, expression. (Same as com-

putation[144].)

104. Calculus: A method of computation[144] or calculation[103] in a special notation. (From
mathematics we know the differential and the integral calculi, and also the Laplace
calculus. From metamathematics we have learned of the λ-calculus. From logic we
know of the Boolean (propositional) calculus.)

105. Capture: The term capture is used in connection with domain knowledge [254] (i.e.,
domain capture [242]) and with requirements acquisition[606]. It shall indicate the act of
acquiring, of obtaining, of writing down, domain knowledge, respectively require-
ments.

106. Carrier: By a carrier is understood a, or the set of entities of an algebra[26] — the
former in the case of a heterogeneous algebra[336].

107. Cartesian: By a Cartesian is understood an ordered product, a fixed grouping,
a fixed composition, of entities. (Cartesian derives from the name of the French
mathematician René Descartes.)

108. C.C.I.T.T: Abbreviation for Comité Consultative Internationale de Telegraphie et
Telephonie. (CCITT is an alternative form of reference.)

109. Change management: Same as business process reengineering [101].
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110. Channel: By a channel is understood a means of interaction[392], i.e., of communica-

tion[122] and possibly of synchronisation[729] between behaviour [79]s. (In the context of
computing we can think of channels as being either input, or output, or both input
and output channels.)

111. Chaos: By chaos we understand the totally undefined behaviour [79]: Anything may
happen! (In the context of computing chaos may, for example, be the designation[223]

for the never-ending, the never-terminating process [544].)

112. CHI: Abbreviation for Computer Human Interface. (Same as HCI [334].)

113. CHILL: Abbreviation for CCITT’s High Level Language. (See [62, 118].)

114. Class: By a class we mean either of two things: a class clause [115], as in RSL, or a
set of entities defined by some specification[698], typically a predicate [536].

115. Clause: By a clause is meant an expression[282], designating a value [802], or a state-

ment [707], designating a state [705] change, or a sentential form, which designates both
a value and a state change. (When we use the term clause we mean it mostly in the
latter sense of both designating a value and a side effect.)

116. Client: By a client we mean any of three things: (i) The legal body (a person or a
company) which orders the development of some software, or (ii) a process [544] or a
behaviour [79] which interact [391]s with another process or behaviour (i.e., the server [663]),
in order to have that server perform some action[12]s on behalf of the client, or (iii)
a user of some software (i.e., computing system). (We shall normally use the term
customer in the first or in the second sense (i, ii).)

117. Closure: By a closure is usually meant some transitive closure of a relation ℜ: If
aℜb and bℜc then aℜc, and so forth. To this we shall add another meaning, used
in connection with implementation of (for example) procedures: Denotationally a
procedure, when invoked, in some calling environment, is to be interpreted in the
defining environment. Hence a procedure closure is a pair: The procedure text and
the defining environment.

118. Code: By code we mean a program[545] which is expressed in the machine language
of a computer.

119. Coding: By coding we shall here, simply, mean the act of programming in a ma-
chine, i.e., in a computer-close language. (Thus we do not, except where explicitly
so mentioned, mean the encoding of one string of characters into another, say for
communication[122] over a possibly faulty communication channel [110] (usually with the
decoding of the encoded string “back” into the original, or a similar string).)

120. Cohesion: Cohesion expresses a measure of “closeness”, of “dependency”, of “stick-
ing together” among a set of entities. (In the context of software engineering cohesion
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is, as it is here, a term used to express a dependency relation between module [464]s of
a specification[698] or a program[545]. Two modules have a higher cohesion the larger the
number of cross-references (to types and values, including, in particular functions)
there are among them.)

121. Collision: Collision, as used here, means that two (or more) occurrences of the
same identifier, of which at least one is free, and which at some stage occurred in
different text parts, are brought together, say by function application (i.e., macro-
expansion) and thereby become bound. (Collision is a concept introduced in the
Lambda-calculus, see . Collision is an undesirable effect. See also confusion[162].)

122. Communication: A process [544] by which information[373] is exchanged between in-
dividuals (behaviour [79]s, process [544]es) through a common system[736] of symbol [728]s,
sign[679]s, or protocol [561]s.

123. Commutative: Property of a binary operator o: If for all values a and b, a o b =
b o a, then o is said to be a commutative operator. (Addition (+) and multiplication
(*) of natural numbers are commutative operators.)

124. Compilation: By a compilation we shall mean the conversion, the translation[775], of
one formal text to another, usually a high-level program text to a low-level machine
code text.

125. Compiler: By a compiler we understand a device (usually a software package) which
given sentence [660]s (i.e., source program[696]s) in one language, generates sentences
(i.e., target program[743]s) in another language. (Usually the source and the target
languages are related as follows: The source language is normally a so-called “higher-
order” language, like Java, and the target language is normally a “lower (abstraction)
level” language, like Java Byte Code (or a computer machine language) for which an
interpreter is readily available.)

126. Compiler dictionary: By a compiler dictionary we shall understand a composite
data structure (with a varying number of entries) and a fixed number of operations.
The data structure values reflect properties of a program text being compiled. These
properties could be: types of some program text variable, type structure of some
program text type name, program point of definition of some (goto) label, etc. The
possibly hierarchical, i.e., recursively nested, structure of the compiler dictionary fur-
ther reflects a similarly hierarchical structure of the program text being compiled.
The operations include those that insert, update, and search for entries in the com-
piler dictionary.

127. Compile time: By compile time we understand that time interval during which a
source program[696] is being compiled and during which certain analyses, and hence
decisions, can be made about, and actions taken with respect to the source program
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(to be, i.e., being, compiled) — such as type check [783]ing, name scope check [650]ing,
etc. (Contrast to run time [641].)

128. Compiling algorithm: By a compiling algorithm we shall understand a speci-
fication which, for every rule in a syntax (of a source program[696]ming language),
prescribes which target program[743]ming language data structure to generate. (We
refer to (Sects. 16.8–16.10) for “our story” on compiling algorithms.)

129. Complete: We say that a proof system[557] is complete if all true sentences are
provable.

130. Completeness: Noun form of the complete [129] adjective.

131. Component: By a component we shall here understand a set of type definitions and
component local variable declarations, i.e., a component local state, this together with
a (usually complete) set of modules, such that these modules together implement a
set of concepts and facilities, i.e., functions, that are judged to relate to one another.

132. Component design: By a component design we shall understand the design[221]

of (one or more) component [131]s. (We shall refer to for “our story” on component
design.)

133. Composite: We say that a phenomenon[524] or a concept [152], is composite when it is
possible and meaningful to consider that phenomenon or concept as analysable into
two or more subphenomena or subconcepts.

134. Composite action:

135. Composite behaviour:

136. Composite entity: Either a composite action[134], a composite behaviour [135], a com-

posite event [137] or a composite simple entity [138].

137. Composite event:

138. Composite simple entity:

139. Composite type:

140. Composition: By composition we mean the way in which a phenomenon[524], a
concept [152], is “put together” (i.e., composed) into a composite [133] phenomenon[524],
resp. concept [152].

141. Compositional: We say that two or more phenomena or concepts are composi-
tional if it is meaningful to compose these phenomena and/or concepts. (Typically a
denotational semantics [215] is expressed compositionally: By composing the semantics
of sentence parts into the semantics of the composition of the sentence parts.)
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142. Compositional documentation: By compositional documentation we mean a de-
velopment, or a presentation (of that development), of, as here, some description[220]

(prescription[540] or specification[698]), in which some notion of “smallest”, i.e., atomic
phenomena and concepts are developed (resp. presented) first, then their composi-
tions, etc., until some notion of full, complete development (etc.) has been achieved.
(See also composition[140], compositional [141] and hierarchical documentation[340].)

143. Comprehension: By comprehension we shall here mean set [664], list [428] or map[449]

comprehension, that is, the expression, of a set, a list, respectively a map, by a
predicate over the elements of the set, list or pairings of the map, that belong to the
set, list, respectively the map.

144. Computation: See calculation[103].

145. Computational linguistics: The study and knowledge of the syntax [733] and se-

mantics [655] of language [417] based on notions of computer science [149] and computing

science [150]. (Thus computational linguistics emphasises those aspects of language
whose analysis (recognition), or synthesis (generation), can be mechanised.)

146. Computational data+control requirements: By a computational data + con-
trol requirements we mean a requirements which express how the dynamics of compu-
tations or data (may) warrant interaction between the machine and its environment,
hence is an interface requirements [394] facet [285]. (See also shared data initialisation re-

quirements [671], shared data refreshment requirements [673], man-machine dialogue require-

ments [447], man-machine physiological requirements [448], and machine-machine dialogue

requirements [437].)

147. Computational semantics: By a computational semantics we mean a specification
of the semantics of a language which emphasises run-time computations, i.e., state-
to-next-state transitions, as effected when following the prescriptions of programs.
(Terms similar in meaning to computational semantics are operational semantics [496]

and structural operational semantics [720].)

148. Compute: Given an expression and an applicable rule [638] of a calculus [104], to change
the former expression into a resulting expression. (Same as calculate [102].)

149. Computer Science: The study and knowledge of the phenomena that can exist
inside computers.

150. Computing Science: The study and knowledge of how to construct those phenom-
ena that can exist inside computers.

151. Computing system: A combination of hardware [331] and software [685] that together
make meaningful computation[144]s possible.
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152. Concept: An abstract or generic idea generalised from phenomena or concepts. (A
working definition of a concept has it comprising two components: The extension[283]

and the intension[389]. A word of warning: Whenever we describe something claimed
to be a “real instance”, i.e., a physical phenomenon[524], then even the description
becomes that of a concept, not of “that real thing”!)

153. Concept formation: The forming, the enunciation, the analysis [39], and definition
of concepts (on the basis, as here, of analysis [39] of the universe of discourse [793] (be it
a domain[239] or some requirements [605])). (Domain and requirements concept forma-
tion(s) is treated in Vol. 3, Chaps. 13 (Domain Analysis and Concept Formation)
and 21 (Requirements Analysis and Concept Formation).)

154. Concrete: By concrete we understand a phenomenon[524] or, even, a concept [152],
whose explication, as far as is possible, considers all that can be observed about the
phenomenon, respectively the concept. (We shall, however, use the term concrete
more loosely: To characterise that something, being specified, is “more concrete”
(possessing more properties) than something else, which has been specified, and
which is thus considered “more abstract” (possessing fewer properties [considered
more relevant]).)

155. Concrete algebra: A concrete [154] algebra[26] is an algebra whose carrier is some
known set of mathematical elements and whose functions are known, i.e., well-defined.
That is, the model [460]s of both the carrier and all the functions are pre-established.
(Concrete algebras are the level of the empirical (actual) world of mathematics and
its applications, where one deals with specific sets of elements (integers, Booleans,
reals, etc.), and where operations on these sets that are defined by rules or algorithms
or combinations. In general one “knows” a concrete algebra when one knows what
the elements of the carrier A are and how to evaluate [279] the functions φi : Φ over A

[159].)

156. Concrete syntax: A concrete [154] syntax [733] is a syntax which prescribes actual,
computer representable data structure [199]s. (Typically a BNF Grammar [92] is a concrete
syntax.)

157. Concrete type: A concrete [154] type [782] is a type which prescribes actual, computer
representable data[193] structure [719]s. (Typically the type definitions of programming
languages designate concrete types.)

158. Concurrency: By concurrency we mean the simultaneous existence of two or more
behaviour [79]s, i.e., two or more process [544]es. (That is, a phenomenon[524] is said to
exhibit concurrency when one can analyse the phenomenon into two or more concur-

rent [159] phenomena.)

159. Concurrent: Two (or more) event [281]s can be said to occur concurrently, i.e., be con-
current, when one cannot meaningfully describe any one of these events to (“always”)
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“occur” before any other of these events. (Thus concurrent systems are systems of
two or more processes (behaviours) where the simultaneous happening of “things”
(i.e., events) is deemed beneficial, or useful, or, at least, to take place!)

160. Configuration: By a configuration we shall here understand the composition[140]

of two or more semantic value [802]s. (Usually we shall decompose a configuration
into parts such that each part enjoys a temporal [747] relationship with respect to the
other parts: being “more dynamic [260]”, being “more static [708]”, etc. More specifically,
we shall typically model the semantics of imperative [352] programming languages in
terms of semantic function[656]s over configurations composed from environment [275]s
and storage [715]s.)

161. Conformance: Conformance is a relation between two document [237]s (A and B).
B is said to conform to A, if everything A specifies is satisfied by B. (Conformance
is thus, here, taken to be the same as correct [185]ness, i.e., congruence [163]. Usually
conformance is used in standardisation documents: Any system claiming to follow
this standard must show conformance to it.)

162. Confusion: Confusion, as used here, means that two (or more) occurrences of the
same identifier, bound to possibly different values, may be confused in that it is
difficult from a smaller context of the text in which they occur to discern, to decide,
which meanings, which values, the various occurrences are bound to. (Confusion
is a concept introduced in the Lambda-calculus, see . Confusion is an OK, albeit
annoying, effect! See also collision[121].)

163. Congruence: An algebra[26], A, is said to be congruent with another algebra, B, if,
for every operation, oB, and suitable set of arguments, b1, b2, . . . , bn, to that opera-
tion, in B, there corresponds an operation, oA, and a suitable set of arguments, a1, a2,

. . . , an, in A such that oA(a1, a2, . . . ,an) = oB(b1, b2, . . . , bn). (Compare this defini-
tion to that of conformance [161]. The difference is one between a precise, mathematical
meaning of congruence, as contrasted to an informal meaning of conformance.)

164. Conjunction: Being combined, being conjoined, composed. (We shall mostly think
of conjunction as the (meaning of the) logical connective “and”: ∧.)

165. Connection: Connection is a topological notion, and, as such, is also an ontological
concept related to “parts and wholes”, where parts may be, or may not be connected,
i.e., “so close” to one another, that there can be no other parts “inserted in between”.

166. Connector: We shall here, by a connector, mean a hardware, or some software
device that “connects” two like devices, hardware+hardware, or software+software.
(Typically, in software engineering, when “connecting” two independently developed
component [131]s, one deploys a connector in order to connect them.)

167. Connective: By a connective is here meant one of the Boolean “operators”: “and”
∧, “or” ∨, “imply” ⇒, and “negation” ∼.
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168. Consistent: A set of axiom[75]s is said to be consistent if, by means of these, and
some deduction rule [206]s, one cannot prove a property and its negation.

169. Consistency: Being consistent [168] (throughout).

170. Constraint: By a constraint we shall here, in a somewhat narrow sense, understand
a property that must be satisfied by certain values of a given type. (That is: The
type may define more values than are to be satisfied by the constraint. We also use
the terms data invariant [196], or well-formedness [812]. The term constraint has taken on
a larger meaning than propagated in this book. We refer to constraint programming,
constraint satisfaction problems, etc. For a seminal text book we refer to [8]. In
constraint programming a constraint, as expressed in a problem model, and hence in
a constraint program, is a relation on a sequence of values of (a sequence of) variables
of that program.
As you see, the difference, in the two meanings of ‘constraint’, really, is minor.)

171. Constructor: By a constructor we mean either of two, albeit related, things, a type
constructor, or a value constructor. By a type constructor we mean an operator on
types which when applied to types, say A, constructs another type, say B. By a
value constructor we mean a sometimes distributed fix operator which when applied
to one or more values constructs a value of a different type. (Examples of type
constructors are -set, ×, ∗, ω, →m , →,

∼

→ (sets, Cartesians, finite lists, finite and
infinite lists, maps, total functions, partial functions), and mk B. Examples of value
constructors are: {•,•,...,•}, (•,•,...,•), 〈•,•,...,•〉, [ •7→•,• 7→•,...,• 7→• ] and mk B(•,•,...,•),
etc., (sets, Cartesians, lists, maps, and variant records).)

172. Context: There are two related meanings: (i) the parts of a discourse that surround
some text and (ii) the interrelated conditions in which something is understood. (The
former meaning emphasises syntactical properties, i.e., speaks of a syntactic context;
the latter, we claim, semantical properties (i.e., semantic context). We shall often,
by a syntactic context speak of the scope [649] of an identifier [351]: the text (parts)
over which the identifier is defined, i.e., is bound [95]. And by a semantic context we
then speak of the environment [275] in which an identifier [351] is bound [95] to its semantic
meaning. As such semantic contexts go, hand-in-hand, in configuration[160]s, with
state [705]s.)

173. Context-Free: By context-free we mean that something is defined free of any consid-
erations of the context [172] in which that “something” (otherwise) occurs. (We shall
use the context-free concept extensively: context-free grammar [175] and context-free

syntax [176], etc. The type definition[785] rule [638]s of RSL have a context-free interpreta-
tion.)

174. Context-Free language: By a context-free language we mean a language [417] which
can be generated by a context-free syntax [176]. (See generator [322].)
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175. Context-Free Grammar: See context-free syntax .

176. Context-Free Syntax: By a context-free syntax we shall understand a type system
consisting of type definitions in which right-hand-side occurrences of defined type

name [787]s can be freely substituted for any of a variety of their definitions. (Typically
a BNF Grammar [92] specifies a context-free syntax.)

177. Context-Sensitive Grammar: See context-sensitive syntax .

178. Context-Sensitive Syntax: By a context-sensitive syntax we may understand a
type system consisting of ordinary type definitions in which right-hand-side occur-
rences of defined type name [787]s cannot be freely substituted for any of a variety of
their definitions, but may only be substituted provided these right-hand-side type
names (i.e., nonterminal [484]s) occur in specified contexts (of other type names or lit-

eral [429]s). (Usually a context-sensitive syntax can be specified by a set of rules where
both left-hand and right-hand sides are composite type expressions. The left-hand-
side composite expression then specifies the contexts in which the right-hand side
may be substituted.)

179. Continuation: By a continuation we shall, rather technically, understand a state-
to-state transformation function, specifically one that is the denotation of a program

point [548], that is, of any computation as from that program point (i.e., label [410])
onwards — until program termination[751].

180. Continuous: Of a mathematical curve, i.e., function: ‘Having the property that the
absolute value of the numerical difference between the value at a given point and the
value at any point in a neighborhood of the given point can be made as close to zero
as desired by choosing the neighborhood small enough’ [214].

181. Contract: A contract is a script [651] specifically expressing a legally binding agree-
ment between two or more parties — hence a document describing the conditions of
the contract; a contract is business arrangement for the supply of goods or services
at fixed prices, times and locations. In software development a contract specifies
what is to be developed (a domain description[243], a requirements prescription[615], or
a software design[688]), how it might, or must be developed, criteria for acceptance of
what has been developed, delivery dates for the developed items, who the “parties”
to the contract are: the client [116] and the developer [227], etc.

A legally binding agreement between two or more parties — hence a document de-
scribing the conditions of the contract.

In domains a contract is a set of rule [638]s and regulation[595]s.

182. Control: To control has two meanings: to check, test or verify by evidence or
experiments, and to exercise restraining or directing influence over, to regulate. (We
shall mostly mean the second form. And we shall often use the term ‘control’ in
conjunction with the term ‘monitor [466]ing’.)
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183. Controller: By a controller we here mean a computing system[151], which interfaces
with some physical environment, a reactive [578] system, i.e., a plant, and which, by
temporally sensing (i.e., sampling) characteristic values of that plant, and by similarly
regularly activating actuator [17]s in the plant, can make the plant behave according
to desired prescriptions. (We stress the reactive system nature of the plant to be
controlled. See also sensor [659].)

184. Conversion: By conversion we shall here, in a rather limiting sense, with a base in
the Lambda-calculus [412], understand either an Alpha-renaming [35] or a Beta-reduction[84]

of some Lambda-expression[414]. (We refer to Chap. 7.)

185. Correct: See next entry: correctness [186].

186. Correctness: Correctness is a relation between two specifications A and B: B is
correct with respect to A if every property of what is specified in A is a property of
B. (Compare to conformance [161] and congruence [163].)

187. Corrective maintenance: By corrective maintenance we understand a change,
predicated by a specification A, to a specification, B′, resulting in a specification,
B′′, such that B′′ satisfies more properties of A than does B′. (That is: Specification
B′ is in error in that it is not correct [185] with respect to A. But B′′ is an improvement
over B′. Hopefully B′′ is then correct wrt. A. We also refer to adaptive maintenance [21],
perfective maintenance [519], and preventive maintenance [541].)

188. CSP: Abbreviation for Communicating Sequential Processes. (See [130, 203] and
Chap. 21. Also, but not in this book, a term that covers constraint satisfaction
problem (or programming).)

189. Curry: Name of American mathematician: Haskell B. Curry. Also a verb: to Curry
— see Currying [191].

190. Curried: A function invocation[317], commonly written f(a1, a2, ..., an), is said to be
Curried when instead written: f(a1)(a2)...(an). (The act of rewriting a function
invocation into Curried form is called Currying [191].)

191. Currying: A function signature [318], normally written, f: A×B×...×C→D can be
Curried into being written f: A→B→...→C→D. The act of doing so is called Currying.

192. Customer: By a customer we mean either of three things: (i) the client [116], a person,
or a company, which orders the development of some software, or (ii) a client [116]

process [544] or a behaviour [79] which interact [391]s with another process or behaviour
(i.e., the server [663]), in order to have that server perform some action[12]s on behalf
of the client, or (iii) a user of some software (i.e., computing system). (We shall
normally use the term customer in the third sense (iii).)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D
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193. Data: Data is formalised representation of information. (In our context information
is what we may know, informally, and even express, in words, or informal text or
diagrams, etc. Data is correspondingly the internal computer, including database
representation of such information.)

194. Data abstraction: Data abstraction takes place when we abstract from the partic-
ular formal representation of data.

195. Database: By a database we shall generally understand a large collection of data.
More specifically we shall, by a database, imply that the data are organised according
to certain data structuring and data query [571] and update [794] principles. (Classically,
three forms of (data structured) databases can be identified: The hierarchical [339], the
network [478], and the relation[599]al database forms. We refer to [75, 76] for seminal
coverage, and to [29, 28, 54, 55] for formalisation, of these database forms.)

196. Data invariant: By a data[193] invariant is understood some property that is expected
to hold for all instances of the data. (We use the term ‘data’ colloquially, and really
should say type invariance, or variable content invariance. Then ‘instances’ can be
equated with values. See also constraint [170].)

197. Data refinement: Data refinement is a relation. It holds between a pair of data if
one can be said to be a “more concrete” implementation of the other. (The whole
point of data abstraction[194], in earlier phase [523]s, stage [702]s and step[711]s of develop-

ment [228], is that we can later concretise, i.e., data refine.)

198. Data reification: Same as data refinement [197]. (To reify is to render something
abstract as a material or concrete thing.)

199. Data structure: By a data structure we shall normally understand a composition
of data[193] value [802]s, for example, in the “believed” form of a linked list [428], a tree [777],
a graph[327] or the like. (As in contrast to an information structure [374], a data structure
(by our using the term data[193]) is bound to some computer representation.)

200. Data type: By a data[193] type [782] is understood a set of value [802]s and a set of
function[310]s over these values — whether abstract [1] or concrete [154].

201. Declaration: A declaration prescribes the allocation of a resource of the kind de-
clared: (i) A variable, i.e., a location in some storage; (ii) a channel between active
processes; (iii) an object, i.e., a process possessing a local state; etc.

202. Decidable: A formal logic system is decidable if there is an algorithm[31] which
prescribes computation[144]s that can determine whether any given sentence in the
system is a theorem.

203. Decomposition: By a decomposition is meant the presentation of the parts of a
composite [133] “thing”.
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204. Deduce: To perform a deduction[205], see next. (Cf. infer [368].)

205. Deduction: A form of reasoning where a conclusion about particulars follows from
general premises. (Thus deduction goes from the general (case) to the specific (case).
See contrast to induction[364]: inferring from specific cases to general cases.)

206. Deduction rule: A rule [638] for performing deduction[205]s.

207. Definiendum: The left-hand side of a definition[210], that which is to be defined.

208. Definiens: The right-hand side of a definition[210], that which is defining “something”.

209. Definite: Something which has specified limits. (Watch out for the four terms:
finite [288], infinite [370], definite [209] and indefinite [361].)

210. Definition: A definition defines something, makes it conceptually “manifest”. A
definition consists of two parts: a definiendum[207], normally considered the left-hand
part of a definition, and a definiens [208], normally considered the right-hand part (the
body) of a definition.

211. Definition set: By a definition set we mean, given a function[310], the set of value [802]s
for which the function is defined, i.e., for which, when it is applied to a member of
the definition set yields a proper value. (Cf., range set [577].)

212. Delimiter: A delimiter delimits something: marks the start, and/or end of that
thing. (A delimiter thus is a syntactic notion.)

213. Denotation: A direct specific meaning as distinct from an implied or associated idea
[214]. (By a denotation we shall, in our context, associate the idea of mathematical
functions: That is, of the denotational semantics [215] standing for functions.)

214. Denotational: Being a denotation[213].

215. Denotational semantics: By a denotational semantics we mean a semantics [655]

which to atomic [63] syntactical notions associate simple mathematical structures (usu-
ally function[310]s, or set [664]s of trace [766]s, or algebra[26]s), and which to composite [133]

syntactical notions prescribe a semantics which is the functional [312] composition[140] of
the denotational semantics of the composition[140] parts.

216. Denote: Designates a mathematical meaning according to the principles of denota-

tional semantics [215]. (Sometimes we use the looser term designate.)

217. Dependability: Dependability is defined as the property of a machine [436] such that
reliance can justifiably be placed on the service it delivers [197]. (See definition of the
related terms: error [278], failure [286], fault [287] and machine service [439].)
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218. Dependability requirements: By requirements [605] concerning dependability we
mean any such requirements which deal with either accessibility [8] requirements, or
availability [74] requirements, or integrity [388] requirements, or reliability [601] requirements,
or robustness [631] requirements, or safety [642] requirements, or security requirements.

219. Describe: To describe something is to create, in the mind of the reader, a model [460]

of that something. The thing, to be describable, must be either a physically man-
ifest phenomenon[524], or a concept derived from such phenomena. Furthermore, to
be describable it must be possible to create, to formulate a mathematical, i.e., a
formal description of that something. (This delineation of description is narrow. It is
too narrow for, for example, philosophical or literary, or historical, or psychological
discourse. But it is probably too wide for a software engineering [693], or a computing

science [150] discourse. See also description[220].)

220. Description: By a description is, in our context, meant some text which designates
something, i.e., for which, eventually, a mathematical model [460] can be established.
(We readily accept that our characterisation of the term ‘description’ is narrow.
That is: We take as a guiding principle, as a dogma, that an informal text, a rough

sketch[634], a narrative [476], is not a description unless one can eventually demonstrate
a mathematical model that somehow relates to, i.e., “models” that informal text.
To further paraphrase our concern about “describability”, we now state that a de-
scription is a description of the entities, function[310]s, event [281]s and behaviour [79]s of
a further designated universe of discourse: That is, a description of a domain[239], a
prescription[540] of requirements [605], or a specification[698] of a software design[688].)

221. Design: By a design we mean the specification[698] of a concrete [154] artefact [55], some-
thing that can either be physically manifested, like a chair, or conceptually demon-
strated, like a software program.

222. Designate: To designate is to present a reference to, to point out, something. (See
also denote [216] and designation[223].)

223. Designation: The relation between a syntactic marker and the semantic thing sig-
nified. (See also denote [216] and designate [222].)

224. Destructor: By a destructor we shall here understand a function[310] which applies
to a composite [133] value [802] and yields a further specified part (i.e., a subpart) of that
value. (Examples of destructors in RSL are the list indexing function, and the selector
functions of a variant record. They do not destroy anything, however.)

225. Determinate: ()

226. Deterministic: In a narrow sense we shall say that a behaviour, a process, a set of
actions, is deterministic if the outcome of the behaviour, etc., can be predicted: Is
always the same given the same “starting conditions”, i.e., the same initial configu-

ration[160] (from which the behaviour, etc., proceeds). (See also nondeterministic [481].)
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227. Developer: The person, or the company, which constructs an artefact [55], as here, a
domain description[243], or a requirements prescription[615], or a software design[688].

228. Development: The set of actions that are carried out in order to construct an
artefact [55].

229. Diagram: A usually two-dimensional drawing, a figure. (Sometimes a diagram is
annotated with informal and formal [296] text.)

230. Dialogue: A “conversation” between two agent [24]s (men or machines). (We thus
speak of man-machine dialogues as carried out over CHI [112]s (HCI [334]s).)

231. Didactics: Systematic instruction based on a clear conceptualisation of the bases,
of the foundations, upon which what is being instructed rests. (One may speak of
the didactics of a field of knowledge, such as, for example, software engineering. We
believe that the present three volume book represents such a clearly conceptualised
didactics, i.e., a foundationally consistent and complete basis.)

232. Directed graph: A directed graph is a graph[327] all of whose edge [262]s are directed,
i.e., are arrow [54]s.

233. Directory: A collection of directions. (We shall here take the more limited view of
a directory as being a list of names of, i.e., references to resource [620]s.)

234. Discharge: We use the term discharge in a very narrow sense, namely that of
discharging a proof obligation, i.e., by carrying out a proof.

235. Discrete: As opposed to continuous [180]: consisting of distinct or unconnected ele-
ments [214].

236. Disjunction: Being separated, being disjoined, decomposed. (We shall mostly think
of disjunction as the (meaning of the) logical connective “or”: ∨.)

237. Document: By a document is meant any text, whether informal or formal [296],
whether informative, descriptive (or prescriptive) or analytic [40]. (Descriptive docu-
ments may be rough sketch[634]es, terminologies, narrative [476]s, or formal [296]. Informa-
tive documents are not descriptive. Analytic documents “describe” relations between
documents, verification[807] and validation[800], or describe properties of a document.)

238. Documentation requirements: By documentation requirements we mean require-
ments which state which kinds of documents shall make up the deliverable, what these
documents shall contain and how they express what they contain.

239. Domain: Same as application domain[46]; hence see that term for a characterisation.
(The term domain is the preferred term.)
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240. Domain acquisition: The act of acquiring, of gathering, domain knowledge [254], and
of analysing and recording this knowledge.

241. Domain analysis: The act of analysing recorded domain knowledge [254] in search
of (common) properties of phenomena, or relating what may be considered separate
phenomena.

242. Domain capture: The act of gathering domain knowledge [254], of collecting it —
usually from domain stakeholder [703]s.

243. Domain description: A textual, informal or formal document which describes a
domain as it is. (Usually a domain description is a set of documents with many
parts recording many facets of the domain: The intrinsics [399], business process [99]es,
support technology [725], management and organisation[445], rules and regulations [640], and
the human behaviour [345]s.)

244. Domain description unit: By a domain description unit we understand a short,
“one- or two-liner”, possibly rough-sketch[633] description[220] of some property of a
domain[239] phenomenon[524], i.e., some property of an entity [272], some property of a
function[310], of an event [281], or some property of a behaviour [79]. (Usually domain
description units are the smallest textual, sentential fragments elicited from domain
stakeholder [703]s.)

245. Domain determination: Domain determination is a domain requirements facet [259].
It is an operation performed on a domain description[243] cum requirements prescrip-

tion[615]. Any nondeterminism[482] expressed by either of these specifications which is
not desirable for some required software design must be made deterministic (by this
requirements engineer [612] performed operation). Other domain requirements facets
are: domain projection[255], domain instantiation[253], domain extension[249] and domain

fitting [251].

246. Domain development: By domain development we shall understand the develop-

ment [228] of a domain description[243]. (All aspects are included in development: domain

acquisition[240], domain analysis [39], domain model [460]ling, domain validation[800] and do-
main verification[807].)

247. Domain engineer: A domain engineer is a software engineer [692] who performs do-

main engineering [248]. (Other forms of software engineer [692]s are: requirements engi-

neer [612]s and software design[688]ers (cum programmer [547]s).)

248. Domain engineering: The engineering of the development of a domain descrip-

tion[243], from identification of domain[239] stakeholder [703]s, via domain acquisition[240],
domain analysis [241] and domain description[243] to domain validation[256] and domain ver-

ification[257].
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249. Domain extension: Domain extension is a domain requirements facet [259]. It is
an operation performed on a domain description[243] or a requirements prescription[615].
It effectively extends a domain description[243] by entities, functions, events and/or
behaviours conceptually possible, but not necessarily humanly or technologically fea-
sible in the domain (as it was). Other domain requirements facets are: domain

projection[255], domain determination[245], domain instantiation[253] and domain fitting [251].

250. Domain facet: By a domain facet we understand one amongst a finite set of generic
ways of analysing a domain: A view of the domain, such that the different facets cover
conceptually different views, and such that these views together cover the domain.
(We consider here the following domain facets: business process [99], intrinsics [399], sup-

port technology [725], management and organisation[445], rules and regulations [640], and
human behaviour [345].)

251. Domain fitting: By domain requirements fitting we understand an operation which
takes n domain requirements prescriptions, dri

, that are claimed to share m indepen-
dent sets of tightly related sets of simple entities, actions, events and/or behaviours
and map these into n+m domain requirements prescriptions, δrj

, where m of these,
δrn+k

capture the shared phenomena and concepts and the other n prescriptions, δrℓ
,

are like the n “input” domain requirements prescriptions, dri
, except that they now,

instead of the “more-or-less” shared prescriptions, that are now consolidated in δrn+k
,

prescribe interfaces between δri
and δrn+k

for i : {1..n}. Other domain requirements
facets are: domain projection[255], domain determination[245], domain instantiation[253] and
domain extension[249].

252. Domain initialisation: Domain initialisation is an interface requirements facet [395].
It is an operation performed on a requirements prescription[615]. For an explanation see
shared data initialisation[670] (its ‘equivalent’). Other interface requirements facet [395]s
are: shared data refreshment [672], computational data+control [146], man-machine dia-

logue [446], man-machine physiological [448] and machine-machine dialogue [437] requirements [605].

253. Domain instantiation: Domain instantiation is a domain requirements facet [259].
It is an operation performed on a domain description[243] (cum requirements prescrip-

tion[615]). Where, in a domain description certain entities and function[310]s are left
undefined, domain instantiation means that these entities or functions are now instan-
tiated into constant value [802]s. Other requirements facets are: domain projection[255],
domain determination[245], domain extension[249] and domain fitting [251].

254. Domain knowledge: By domain knowledge we mean that which a particular group
of people, all basically engaged in the “same kind of activities”, know about that
domain of activity, and what they believe that other people know and believe about
the same domain. (We shall, in our context, strictly limit ourselves to “knowledge”,
staying short of “beliefs”, and we shall similarly strictly limit ourselves to assume
just one “actual” world, not any number of “possible” worlds. More specifically, we
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shall strictly limit our treatment of domain knowledge to stay clear of the (albeit very
exciting) area of reasoning about knowledge and belief between people (and agents)
[127, 106].)

255. Domain projection: Domain projection is a domain requirements facet [259]. It is
an operation performed on a domain description[243] cum requirements prescription[615].
The operation basically “removes” from a description definitions of those entities

(including their type definition[785]s), functions, events and behaviours that are not to
be considered in the requirements [605]. The removed phenomena and concepts are thus
projected “away”. Other domain requirements facets are: domain determination[245],
domain instantiation[253], domain extension[249] and domain fitting [251].

256. Domain validation: By domain validation we rather mean: ‘validation[800] of a
domain description’, and by that we mean the informal assurance that a description
purported to cover the entities, function[310]s, event [281]s and behaviour [79]s of a further
designated domain indeed does cover that domain in a reasonably representative
manner. (Domain validation is, necessarily, an informal activity: It basically involves
a guided reading of a domain description (being validated) by stakeholder [703]s of the
domain, and ends in an evaluation report written by these domain stakeholder [703]

readers.)

257. Domain verification: By domain verification we mean verification[807] of claimed
properties of a domain description, and by that we mean the formal assurance that
a description indeed does possess those claimed properties. (The usual principles,
techniques and tools of verification apply here.)

258. Domain requirements: By domain requirements [605] we understand such require-
ments — save those of business process reengineering [101] — which can be expressed
sôlely by using professional terms of the domain[239]. (Domain requirements constitute
one requirements facet [285]. Others requirements facets are: business process reengi-

neering [101], interface requirements [394] and machine requirements [438].)

259. Domain requirements facet: By domain requirements [258] facets we understand
such domain requirements that basically arise from either of the following operations
on domain description[243]s (cum requirements prescription[615]s): domain projection[255],
domain determination[245], domain extension[249], domain instantiation[253] and domain fit-

ting [251].

260. Dynamic: An entity [272] is said to be dynamic if its value changes over time, i.e., it
is subjected, somehow, to actions. (We distinguish three kinds of dynamic entities:
inert [367], active [14] and reactive [578]. This is in contrast to static [708].)

261. Dynamic typing: Enforcement of type checking at run time [641]. (A language is said
to be dynamically typed if it is not statically typed .)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E
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262. Edge: A line, a connection, between two node [479]s of a graph[327] or a tree [777]. (Other
terms for the same idea are: arc [50] and branch[97].)

263. Elaborate: See next: elaboration[264].

264. Elaboration: The three terms elaboration, evaluation[280] and interpretation[397] es-
sentially cover the same idea: that of obtaining the meaning of a syntactical item in
some configuration[160], or as a function from configurations to value [802]s. Given that
configuration typically consists of static [708] environment [275]s and dynamic [260] state [705]s
(or storage [715]s), we use the term elaboration in the more narrow sense of designating,
or yielding functions from syntactical items to functions from configurations to pairs
of states and values.

265. Elicitation: To elicit, to extract. (See also: acquisition[11]. We consider elicitation
to be part of acquisition. Acquisition is more than elicitation. Elicitation, to us, is
primarily the act of extracting information, i.e., knowledge. Acquisition is that plus
more: Namely the preparation of what and how to elicit and the postprocessing of
that which has been elicited — in preparation of proper analysis. Elicitation applies
both to domain and to requirements elicitation.)

266. Embedded: Being an integral part of something else. (When something is embedded
in something else, then that something else is said to surround the embedded thing.)

267. Embedded system: A system[736] which is an integral part of a larger system.
(We shall use the term embedded system primarily in the context of the larger,
‘surrounding’ system being reactive [578] and/or hard real time [330].)

268. Endomorphism: A homomorphism[343] that maps an algebra into itself is an endo-
morphism. ( See also automorphism[72], epimorphism[276], isomorphism[404], monomor-

phism[467].)

269. Engineer: An engineer is a person who “walks the bridge” between science and
technology: (i) Constructing, i.e., designing, technology [746] based on scientific insight,
and (ii) analysing technology for its possible scientific content.

270. Engineering: Engineering is the design of technology [746] based on scientific insight,
and the analysis of technology for its possible scientific content. (In the context
of this glossary we single out three forms of engineering: domain engineering [248],
requirements engineering [613] and software design[688]; together we call them software

engineering [693]. The technology constructed by the domain engineer [247] is a domain

description[243]. The technology constructed by the requirements engineer [612] is a re-

quirements prescription[615]. The technology constructed by the software design[688]er is
software [685].)

271. Enrichment: The addition of a property to something already existing. (We shall
use the term enrich in connection with a collection (i.e., a RSL scheme or a RSL
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class) — of definitions, declaration and axioms — being ‘extended with’ further
such definitions, declaration and axioms.)

272. Entity: By an entity we shall understand either a simple entity [681], an action[12], an
event [281] or a behaviour [79].

273. Enumerable: By enumerable we mean that a set of elements satisfies a proposi-

tion[560], i.e., can be logically characterised.

274. Enumeration: To list, one after another. (We shall use the term enumeration
in connection with the syntactic expression of a “small”, i.e., definite, number of
elements of a(n enumerated) set [664], list [428] or map[449].)

275. Environment: A context, that is, in our case (i.e., usage), the (“more static”)
part of a configuration[160] in which some syntactic entity is elaborated, evaluated, or
interpreted. (In our “metacontext”, i.e., that of software engineering, environments,
when deployed in the elaboration (etc.) of, typically, specifications or programs,
record, i.e., list, associate, identifiers of the specification or program text with their
meaning.)

276. Epimorphism: If a homomorphism[343] φ is a surjective function[727] then φ is an epi-
morphism. ( See also automorphism[72], endomorphism[268], isomorphism[404], monomor-

phism[467].)

277. Epistemology: The study of knowledge. (Contrast, please, to ontology [492].)

278. Error: An error is an action that produces an incorrect result. An error is that
part of a machine [436] state [705] which is “liable to lead to subsequent failure”. An
error affecting the machine service [439] is an indication that a failure [286] occurs or has
occurred [197]. (An error is caused by a fault [287].)

279. Evaluate: See next: evaluation[280].

280. Evaluation: The three terms elaboration, evaluation[280] and interpretation[397] essen-
tially cover the same idea: that of obtaining the meaning of a syntactical item in
some configuration[160], or as a function from configurations to value [802]s. Given that
configuration typically consists of static [708] environment [275]s and dynamic [260] state [705]s
(or storage [715]s), we use the term evaluation in the more narrow sense of designat-
ing, or yielding functions from syntactical items to functions from configurations to
values.

281. Event: Something that occurs instantaneously. (We shall, in our context, take events
as being manifested by certain state [705] changes, and by certain interaction[392]s be-
tween behaviour [79]s or process [544]es. The occurrence of events may “trigger” actions.
How the triggering, i.e., the invocation[402] of functions are brought about is usually
left implied, or unspecified. We consider event [281]s to be one of the four kinds of
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entities [272] that the Triptych “repeatedly” considers. The other three are: simple

entities [681], action[12]s and behaviour [79]s. Consideration of these are included in the
specification of all domain facet [250]s and all requirements facet [614]s.)

282. Expression: An expression, in our context (i.e., that of software engineering), is a
syntactical entity which, through evaluation[280], designates a value [802].

283. Extension: We shall here take extension to be the same as enrichment [271]. In
domain requirements [258], when we ‘perform’ extension, we introduce entities [272] (simple

entities [681], action[12]s, event [281]s and behaviour [79]s) that were not [originally] in the
domain [but will now become entities of the domain resulting from implementing the
requirements].

284. Extensional: Concerned with objective reality [214]. (Please observe a shift here:
We do not understand the term extensional as ‘relating to, or marked by extension
in the above sense, but in contrast to intensional [390].)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .F

285. Facet: By a facet we understand one amongst a finite set of generic ways of analysing
and presenting a domain[239], a requirements [605] or a software design[688]: a view of the
universe of discourse, such that the different facets cover conceptually different views,
and such that these views together cover that universe of discourse. (Examples of
domain facets are intrinsics [399], business process [99]es, support technology [725], manage-

ment and organisation[445], rules and regulations [640] and human behaviour [345]. Examples
of requirements facets are business process reengineering [101], domain requirements [258],
interface requirements [394] and machine requirements [438]. Examples of software design
facets are software architecture [687], component design[132], module design[465], etc.)

286. Failure: A fault [287] may result in a failure. A machine [436] failure occurs when the
delivered machine service [439] deviates from fulfilling the machine function, the latter
being what the machine is aimed at [197]. (A failure is thus something relative to a
specification[698], and is due to a fault [287]. Failures are concerned with such things as
accessibility [8], availability [74], reliability [601], safety [642] and security .)

287. Fault: The adjudged (i.e., the ‘so judged’) or hypothesised cause of an error [278]

[197]. (An error [278] is caused by a fault, i.e., faults cause errors. A software fault is
the consequence of a human error [278] in the development of that software.)

288. Finite: Of a fixed number less than infinity, or of a fixed structure that does not
“flow” into perpetuity as would any information structure [374] that just goes on and
on. (Watch out for the four terms: finite [288], infinite [370], definite [209] and indefinite [361].)

289. Finite state automaton: By a finite state automaton we understand an automa-

ton[71] whose state set is finite. (We shall usually consider only what is known as
Moore automata: that is, automata which have some final states.)

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



178 CoMet 1

290. Finite state machine: By a finite state machine we understand an extended finite

state automaton[289]. The extension amounts simply to the following: Every transition
(caused by an input, in a state, to another state) also yields an output. (We shall
thus consider only what is known as Mealy machines. The output is intended to
designate some action, or some signal, to be considered by an environment of the
machine.)

291. Finite state transducer: By a finite state transducer we simply mean the same as
a finite state machine. (The machine in question is said to transduce, to “translate”
any sequence of inputs to some corresponding sequence of outputs.)

292. First-order: We say that a predicate logic [537] is first order when quantified variables
are not allowed to range over functions. (If they range over functions we call the logic
a higher-order [341] logic [191, 180]. Similar remarks can be made for general first-order
functions, respectively higher-order functions.)

293. Fix point: The fix point of a function, F , is any value, f , for which Ff = f . A
function may have any number of fixed points from none (e.g., Fx = x+1) to infinitely
many (e.g., Fx = x). The fixed point combinator, written as either “fix” or “Y”
will return the fixed point of a function. (The fix point identity is YF = F (YF ).)

294. Fitting: Fitting in the context of requirements engineering is an operation that
applies to n (where n is 2 or more) domain requirements descriptions (d1, d2, . . . , dn)
and yields n + 1 domain requirements descriptions (d′

1
, d′

2
, . . . , d′

n and d“shared”)
where n of these each, d′

i, cover major parts of respective di and where d“shared”
covers what is “somehow” common to d1, d2, . . . , dn.

295. Flowchart: A diagram (a chart), for example of circles (input, output), annotated
(square) boxes, annotated diamonds and infixed arrows, that shows step by step flow
through an algorithm.

296. Formal: By formal we shall, in our context (i.e., that of software engineering), mean
a language, a system, an argument (a way of reasoning), a program or a specifi-
cation whose syntax and semantics is based on (rules of) mathematics (including
mathematical logic).

297. Formal definition: Same as formal description[299], formal prescription[303] or formal

specification[304].

298. Formal development: Same as the standard meaning of the composition of for-

mal [296] and development [228]. (We usually speak of a spectrum of development modes:
systematic development [737], rigorous development [629], and formal development. For-
mal software development, to us, is at the “formalistic” extreme of the three modes
of development: Complete formal specification[304]s are always constructed, for all
(phases and) stages of development; all proof obligation[555]s are expressed; and all are
discharged (i.e., proved to hold).)
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299. Formal description: A formal [296] description[220] of something. (Usually we use the
term formal description only in connection with formalisation[300] of domain[239]s.)

300. Formalisation: The act of making a formal specification of something elsewhere
informally specified; or the document which results therefrom.

301. Formal method: By a formal method we mean a method [456] whose techniques and
tools14 are formal [296]ly based. (It is common to hear that some notation is claimed
to be that of a formal method — where it then turns out that few, if any, of the
building blocks of that notation have any formal foundation. This is especially true
of many diagrammatic notations. UML is a case in point — much is presently being
done to formalise subsets of UML [181].)

302. Formal parameter: By a formal parameter we mean an identification (say a naming
and a typing), in a function definition[316]’s function signature [318], of an argument of
the function, a place-holder for actual argument [16]s.

303. Formal prescription: Same as formal definition[297] or formal specification[304]. (Usu-
ally we use the term formal prescription only in connection with formalisation[300] of
requirements [605].)

304. Formal specification: A formalisation[300] of something. (Same as formal defini-

tion[297], formal description[299] or formal prescription[303]. Usually we use the term formal
specification only in connection with formalisation[300] of software design[688]s.)

305. Free: The concept of being free is associated with (i) identifier [351]s (i.e., name [474]s)
and expression[282]s, and (ii) with name [474]s (i.e., identifier [351]s) and resource [620]s. An
identifier is said to be either bound [95] or free in an expression based on certain rules
being satisfied or not. If an identifier is free in an expression then nothing is said
about what free occurrences of that identifier are bound to. (Cf. bound [95].)

306. Freeing: The removal of storage [715] location[431]s, or of stack activation[701]s.

307. Frontier: The concept of frontier is here associated with tree [777]s. Visualise that
tree as represented as a flat diagram with no crosses (i.e., intersecting) branch[97]es.
A frontier of a tree is a reading of the leaves (cf. leaf [419]) of the tree in one of the
two possible directions, say left to right or right to left. (See tree traversal [778].)

308. FUNARG: A specification or a programming language is said to enjoy, i.e. possess,
the FUNARG property if value [802]s of function invocation[317]s may be function[310]s
defined locally to the invoked function. (LISP has the FUNARG property. So does
SAL, a simple applicative language defined in .)

14Tools include specification and programming languages as such, as well as all the software tools relating
to these languages (editors, syntax checkers, theorem provers, proof assistants, model checkers, specification
and program (flow) analysers, interpreters, compilers, etc.).
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309. Full algebra: A full algebra is a total algebra[765].

310. Function: By a function we understand something which when applied to a value [802],
called an argument, yields a value called a result. (Functions can be modelled as sets
of (argument, result) pair — in which case applying a function to an argument
amounts to “searching” for an appropriate pair. If several such pairs have the same
argument (value), the function is said to be nondeterministic [481]. If a function is
applied to an argument for which there is no appropriate pair, then the function is
said to be partial; otherwise it is a total function.)

311. Function activation: When, in an operational, i.e., computational (“mechanical”)
sense, a function is being applied, then some resources have to be set aside in order to
carry out, to handle, the application. This is what we shall call a function activation.
(Typically a function activation, for conventional block-structured [90] languages (like
C#, Java, Standard ML [125, 208, 119]), is implemented by means (also) of a stack-
like data structure: Function invocation then implies the stacking (pushing) of a stack
activation on that stack, i.e., the activation stack [13] (a circular reference!). Elabo-
ration of the function definition body means that intermediate values are pushed
and popped from the topmost activation element, etc., and that completion of the
function application means that the top stack activation is popped.)

312. Functional: A function whose arguments are allowed themselves to be functions is
called a functional. (The fix point [293] (finding) function is a functional.)

313. Functional programming: By functional programming we mean the same as ap-

plicative programming [48]: In its barest rendition functional programming involves just
three things: definition of functions, functions as ordinary value [802]s, and function ap-

plication[315] (i.e., function invocation[317]). (Most current functional programming lan-
guages (Haskell, Miranda, Standard ML) go well beyond just providing the three
basic building blocks of functional programming [220, 221, 176].)

314. Functional programming language: By a functional programming language we
mean a programming language [551] whose principal values are functions and whose
principal operations on these values are their creation (i.e., definition), their applica-
tion (i.e., invocation) and their composition. (Functional programming languages of
interest today, 2005, are (alphabetically listed): CAML [69, 63, 64, 227, 157], Haskell
[220], Miranda [221], Scheme [1, 115, 97] and SML (Standard ML) [176, 119]. LISP

1.5 was a first functional programming language [170].)

315. Function application: The act of applying a function to an argument is called a
function application. (See ‘comment’ field of function activation[311] just above.)

316. Function definition: A function[310] definition[210], as does any definition, consists of
a definiens [208] and a definiendum[207]. The definiens is a function signature [318] and the
definiendum is a clause, typically an expression. (Cf. Lambda-function[415]s.)
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317. Function invocation: Same as function application[315]. (See parenthesized remark
of entry 311 (function activation[311]).)

318. Function signature: By a function signature we mean a text which presents the
name of the function, the types of its argument values and the type(s) of its result
value(s).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G

319. Garbage: By garbage we shall here understand those (computing) resource [620]s
which can no longer be referenced. (Usually we restrict our ‘garbage’ concern to
that of storage [715] location[431]s that can no longer be accessed because there are no
references to them.)

320. Garbage collector: To speak of garbage collection we must first introduce the
notions of allocatable storage [715], i.e., storage — what shall be known as free, i.e.,
unallocated — location[431]s (including those that can be considered garbage [319]). By a
garbage collector we shall here understand a device, a software program or a hardware
mechanism which “returns” to a set of free locations that can subsequently be made
available for allocation[33].

321. Generate: By generate we shall understand that which can be associated both
with a grammar [325] and with an automaton[71]: namely a language [417], i.e., a set of
strings. Either accepted as input [382] to a finite state automaton[289], or denote [216]d by a
grammar [325]. (Acceptance by an automaton means that the automaton is started in
an initial state and upon completion of reading the input is in a final state. Generation
by a grammar means the recursive (i.e., repeated) substitution[722] of nonterminal [484]s
of a grammar rule [638] left-hand side with the left-hand sides of the rules whose right-
hand side is the substituted nonterminal.)

322. Generator: A generator is a concept: It can be thought of as a device, i.e., a software
program or a machine mechanism, which outputs typically sequences of structures
— typically symbols. (A BNF Grammar [92] can thus be said to generate the (usually
infinite) set of strings, i.e., of sentence of the designated language. A finite state

machine [290] can likewise be said to be a generator: Upon being presented with any
input string it generates an output string (a transduction).)

323. Generator function: To speak of a generator function we need first introduce the
concept of a sort [694] “of interest”. A generator function is a function which when
applied to arguments of some kind, i.e., types, yields a value of the type of the sort
“of interest”. (Typically the sort “of interest” can be thought of as the state (a stack,
a queue, etc.).)

324. Glossary: According to [160] a gloss is “a word inserted between the lines or in
the margin as an explanatory rendering of a word in the text; hence a similar ren-
dering in a glossary or dictionary. Also, a comment, explanation, interpretation.”
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Furthermore according to [160] a glossary is therefore “a collection of glosses, a list
with explanations of abstruse, antiquated, dialectical, or technical terms; a partial
dictionary.”

325. Grammar: See syntax , in general, or regular syntax , context-free syntax , context-

sensitive syntax and BNF in specific.

326. Grand state: “Grand state” is a colloquial term. It is meant to have the same
meaning as configuration[160]. (The colloquialism is used in the context of, for example,
praising a software engineer as “being one who really knows how to design the grand
state for some universe of discourse” being specified.)

327. Graph: By a graph we shall here mean the term as usually used in the discrete
mathematics discipline of graph theory: as a (usually, but not necessarily finite) set
of node [479]s (vertexes), some of which may be connected by (one or more) arc [50]s
(edge [262]s, lines). (A graph edge defines a path[517] of length one. If there is a path
from one node to another, and from that other node to yet a third node, then the
graph, by transitivity, defines a path from the first to the third node, etc. A graph
can be either an acyclic graph[19] (no path “cycles back”) or a cyclic graph, a directed

graph[232] (edges are one-directional arrows) or an undirected graph [20, 21, 183, 122].)

328. Ground term: A ground term is either an identifier [351] or a value [802] literal [429]. (The
identifier is then assumed to be bound to a value. The value literal typically is an
alphanumeric string designating, for example, an integer, a real, a truth value, a
character, etc.)

329. Grouping: By grouping we mean the ordered, finite collection, into a Cartesian[107],
of mathematical structures (i.e., value [802]s).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .H

330. Hard real time: By hard real time we mean a real time [580] property where the
exact, i.e., absolute timing, or time interval, is of essence. (Thus, if a system is said
to enjoy, or must possess, a certain real time property, for example, (i) the system
must emit a certain signal on the 11th of December 2015 at 17:20:30 hours15, or (ii)
that a response signal must be issued after an interval of exactly 1234 days, 5 hours,
6 minutes, and 7 seconds plus/minus 8 microseconds (from when an initiating signal
was received), then it is hard real time. Cf. soft real time [684].)

331. Hardware: By hardware is meant the physical embodiment of a computer: its
electronics, its boards, the racks, cables, button, lamps, etc.

332. Hazard: A hazard is a source of danger.

15That time is when the current author hopes to celebrate the exact hour of his anniversary of 50 years
of marriage to Kari Skallerud!
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333. Hazard analysis: Hazard analysis is a process used to determine how a device can
cause hazards to occur and then reducing the risks to an acceptable level. (The
process consists of: (1) the developer of the system determining what could go wrong
with the device, (2) determining how the effects of the failure can be mitigated, and
(3) implementing and testing mitigations.)

334. HCI: Abbreviation for human computer interface. (Same as CHI [112], and same as
man-machine [446] interface.)

335. Heap: By a heap is here meant an unordered, finite collection, i.e., a set, of storage [715]

location[431]s, such that each of these locations can be said to be allocated (for some
purpose), and such that a freeing, i.e., deallocation, of these locations usually does
not follow the inverse order of their allocation. (Thus a heap works in contrast to an
activation stack [13] — complementary, so to speak! Typically a garbage collector [320] is
involved in helping to secure locations on the heap available for allocation.)

336. Heterogeneous algebra: A heterogeneous algebra is an algebra whose carrier A is
an indexed set of carriers: A1, A2,. . . , Am, and whose functions, φin : Φ, or arity n,
are of type [782]: Ai1×Ai2× · · ·×Ain → Aj where ik, for all k ∈ {1, . . . , n}, are in the
set {1, 2, . . . , m}.

337. Hiding: Hiding is a concept related to module [464]s. In fact, it is a main purpose of
syntactically providing the module mechanism. You have, somewhat mechanistically,
to imagine a group of (developers of) modules. One module mentions (i.e., uses),
say, functions defined in other modules. But those other modules, besides, in order
to define those “exported” functions, define auxiliary functions (types, etc.) that
“reveal” details of implementation which it is not necessary to divulge. (One may
wish, later, in “the life of that module”, to change those implementation decisions.)
Hence, by syntactic means, such as, for example, export, import and hide clauses, the
developer requests the module compiling system to statically (or otherwise) secure
that other modules cannot “inspect” those auxiliary functions, types, etc. (We refer
to [187, 186, 190, 189, 188]. Parnas must be credited, among others, for having
skillfully propagated the hiding concept.)

338. Hierarchy: By a hierarchy we understand a conceptual decomposition of resources
into what can be “pictured” as a tree [777]-like structure (and where the emphasis is
on the root of the structure).

339. Hierarchical: By something being hierarchical we mean that that something forms
a hierarchy [338]. (See also compositional [141].)

340. Hierarchical documentation: By hierarchical documentation we mean a devel-
opment, or a presentation (of that development), of, as here, some description[220]

(prescription[540] or specification[698]), in which a notion of “largest”, overall, phenom-
ena and concepts are developed (resp. presented) first, then their decompositions into
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component phenomena and concepts, etc., until some notion of atomic, i.e., “small-
est” development (etc.) has been achieved. (See also hierarchy [338] (just above) and
compositional documentation[142].)

341. Higher-order: A functional [312] or a value [802] whose definition set [211] or range set [577]

values are function[310]s. (See, in contrast, first-order [292].)

342. Homeomorphism: A function that is a one-to-one mapping between sets such
that both the function and its inverse are continuous. (Not to be confused with
homomorphism[343].)

343. Homomorphism: A function[310], φ : A → A′, from values of the carrier A of one
algebra[26] (A, Ω) to values of the carrier A′ of another algebra (A′, Ω′) is said to be
a homomorphism (same as a morphism) from (A, Ω) to (A′, Ω′), if for any ω : Ω
and for any ai : A, there is a corresponding ω′ : Ω′ such that: φ(ω(a1, a2, ..., an)) =
ω′(φ(a1), φ(a2), ..., φ(an)). ( See also automorphism[72], endomorphism[268], epimorphism[276],
isomorphism[404] and monomorphism[467].)

344. Homomorphic principle: The homomorphic principle advises the software engi-
neer to formulate function definition[316]s such that they express a homomorphism[343].
(It is a basic tenet of a denotational semantics [215] definition[210] that it is expressed as
a homomorphism[343].)

345. Human behaviour: By human behaviour we shall here understand the way a
human follows the enterprise rules and regulations [640] as well as interacts with a ma-

chine [436]: dutifully honouring specified (machine dialogue [230]) protocol [561]s, or neg-
ligently so, or sloppily not quite so, or even criminally not so! (Human behaviour
is a facet [285] of the domain[239] (of the enterprise). We shall thus model human be-
haviour also in terms of it failing to react properly, i.e., humans as nondeterminis-

tic [481] agent [24]s! Other facets of an enterprise are those of its intrinsics [399], business

process [99]es, support technology [725], management and organisation[445], and rules and

regulations [640].)

346. Hybrid: Something heterogeneous, something (as a computing device) that has
two different types of components (software [685], respectively hardware, the latter in-
cluding, besides the digital computer, also controller [183]s (sensor [659]s, actuator [17]s))
performing essentially the same function by cooperating on computing “that same”
function. (Typically we speak of, i.e., deploy hybridicity when monitor [466]ing and
control [182]ling reactive system[579]s — but then hybridicity additionally, to us, means
a combination in which the controller [183] handles analog matters of continuity, and
the software [685] plus computer handles discrete matters. Finally, for a conventional
analogue controller [183] there is usually but one “decision mode”. With the software-
directed computing system there is now the possibility of multiple discrete + contin-
uous controller [183] “regimes”.)
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347. Hypothesis: An assumption made for the sake of argument.
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348. Icon: A pictorial representation, an image, a sign whose form (shape, etc.) suggests
its meaning. (A graphic symbol on a computer display screen which suggests the
purpose of an available function[310] or value [802] which designate [222]s that entity [272].)

349. Iconic: Adjective form of icon[348].

350. Identification: The pointing out of a relation, an association, between an identi-

fier [351] and that “thing”, that phenomenon[524], it designate [222]s, i.e., it stands for or
identifies.

351. Identifier: A name. (Usually represented by a string of alphanumeric characters,
sometimes with properly infixed “-”s or “ ”s.)

352. Imperative: Expressive of a command [214]. (We take imperative to more specifi-
cally be a reflection of do this, then do that. That is, of the use of a state [705]-based
programming approach, i.e., of the use of an imperative programming language [354].
See also indicative [362], optative [499], and putative [566].)

353. Imperative programming: Programming, imperative [352]ly, “with” references to
storage [715] location[431]s and the updates of those, i.e., of state [705]s. (Imperative pro-
gramming seems to be the classical, first way of programming digital computers.)

354. Imperative programming language: A programming language which, signifi-
cantly, offers language constructs for the creation and manipulation of variables,
i.e., storage [715]s and their location[431]s. (Typical imperative programming languages
were, in “ye olde days”, Fortran, Cobol, Algol 60, PL/I, Pascal, C, etc. [167,
165, 12, 166, 12, 143]. Today programming languages like C++, Java, C#, etc.
[216, 208, 125] additionally offer module [464] cum object [487] “features”.)

355. Implementation: By an implementation we understand a computer program that
is made suitable for compilation[124] or interpretation[397] by a machine [436]. (See next
entry: implementation relation[356].)

356. Implementation relation: By an implementation[355] relation we understand a log-
ical relation of correctness [186] between a software design specification[689] and an imple-

mentation[355] (i.e., a computer program made suitable for compilation[124] or interpre-

tation[397] by a machine [436]).

357. Incarnation: A particular instance of a value, usually a state. (We shall here use the
term incarnation to designate any one activation on an activation stack [13] — where
such an incarnation, i.e., activation, represents a program block [89] or function[310] (or
procedure, or subroutine [723]) invocation[402].)
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358. Incomplete: We say that a proof system[557] is incomplete if not all true sentences
are provable.

359. Incompleteness: Noun form of the incomplete [358] adjective.

360. Inconsistent: A set of axiom[75]s is said to be inconsistent if, by means of these, and
some deduction rule [206]s, one can prove a property and its negation.

361. Indefinite: Not definite, i.e., of a fixed number or a specific property, but it is not
known, at the point of uttering the term ‘indefinite’, what that number or property
is. (Watch out for the four terms: finite [288], infinite [370], definite [209] and indefinite [361].)

362. Indicative: Stating an objective fact. (See also imperative [352], optative [499] and puta-

tive [566].)

363. Induce: The use of induction[364]. (To conclude a general property from special
cases.)

364. Induction: Inference of a general property from particular instances. (On the basis
of several, “similar” cases one may infer a general, say, principle or property. In
contrast to deduction[205]: from general (e.g., from laws) to specific instances.)

365. Inductive: The use of induction[364].

366. In extension: A concept of logic. In extension is a correlative word that indicates
the reference of a term or concept. (When we speak of functions in extension, we
shall therefore mean it in the sense of presenting “all details”, the “inner workings”
of that function. Contrast to in intension[378].)

367. Inert: A dynamic [260] phenomenon[524] is said to be inert if it cannot change value [802]

of its own volition, i.e., by itself, but only through the interaction[392] between that
phenomenon[524] and a change-instigating environment [275]. An inert phenomenon only
changes value as the result of external stimuli. These stimuli prescribe exactly which
new value they are to change to. (Contrast to active [14] and reactive [578].)

368. Infer: Common term for deduce [204] or induce [363].

369. Inference rule: Same as deduction rule [206].

370. Infinite: As you would think of it: not finite! (Watch out for the four terms:
finite [288], infinite [370], definite [209] and indefinite [361].)

371. Informal: Not formal! (We normally, by an informal specification mean one which
may be precise (i.e., unambiguous, and even concise), but which, for example is
expressed in natural, yet (domain specific) professional language — i.e., a language
which does not have a precise semantics let alone a formal proof system[557]. The UML

notation is an example of an informal language [181].)
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372. Informatics: The confluence of (i) applications, (ii) computer science, (iii) computing

science [i.e., the art [144, 145, 146] (1968–1973), craft [201] (1981), discipline [82]
(1976), logic [123] (1984), practice [124] (1993–2004), and science [114] (1981) of
programming], (iv) software engineering and (v) mathematics.

373. Information: The communication or reception of knowledge. (By information we
thus mean something which, in contrast to data[193], informs us. No computer rep-
resentation is, let alone any efficiency criteria are, assumed. Data as such does, i.e.,
bit patterns do, not ‘inform’ us.)

374. Information structure: By an information structure we shall normally understand
a composition of more “formally” represented (i.e., structured) information[373], for
example, in the “believed” form of table [739], a tree [777], a graph[327], etc. (In contrast
to data structure [199], an information structure does not necessarily have a computer
representation, let alone an “efficient” such.)

375. Informative documentation: By informative documentation we understand texts
which inform, but which do not (essentially) describe that which a development [228]

is to develop. (Informative documentation is balanced by descriptive and analytic [40]

documentation to make up the full documentation of a development [228].)

376. Infrastructure: According to the World Bank: ‘Infrastructure’ is an umbrella term
for many activities referred to as ‘social overhead capital’ by some development
economists, and encompasses activities that share technical and economic features
(such as economies of scale and spillovers from users to nonusers). We shall use
the term as follows: Infrastructures are concerned with supporting other systems or
activities. Computing systems for infrastructures are thus likely to be distributed
and concerned in particular with supporting communication of information, control,
people and materials. Issues of (for example) openness, timeliness, security, lack of
corruption, and resilience are often important. (Winston Churchill is quoted to have
said, during a debate in the House of Commons, in 1946: . . . The young Labourite
speaker that we have just listened to, clearly wishes to impress upon his constituency
the fact that he has gone to Eton and Oxford since he now uses such fashionable
terms as ‘infra-structures’.)

377. Inheritance: The act of inheriting’ a ‘property. (The term inheritance, in software
engineering, is deployed in connection with a relationship between two pieces (i.e.,
module [464]s) of specification and/or program texts A and B. B may be said to inherit

some type [782], or variable [803], or value [802] definitions from A.)

378. In intension: A concept of logic: In intension is a correlative word that indicates the
internal content of a term or concept that constitutes its formal definition. (When we
speak of functions in intension, we shall therefore mean it in the sense of presenting
only the “input/output” relation of the function. Contrast to in extension[366].)
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379. Injection: A mathematical function, f , that is a one-to-one mapping from definition

set [211] A to range set [577] B. (That is, if for some a in A, f(a) yields a b, then for all
a : A all b : B are yielded and there is a unique a for each b, or, which is the same,
there is an inverse function[401], f−1, such that f−1(f(a)) = a for all a : A. See also
bijection[86] and surjection[726].)

380. Injective function: A function[310] which maps value [802]s of its postulated definition

set [211] into some, but not all, of its postulated range set [577] is called injective. (See
also bijective function[87] and surjective function[727] .)

381. In-order: A special order of tree traversal [778] in which visits are made to nodes of
trees and subtrees as follows: First the tree root is visited and “marked” as having
been in-order visited. Then for each subtree a subtree in-order traversal is made,
in the order left to right (or right to left). When a tree, whose number of subtrees
is zero, is in-order traversed, then just that tree’s root is visited (and that tree has
then been in-order traversed) and (the leaf) is “marked” as having been visited.
After each subtree visit the root (of the tree of which the subtree is a subtree) is
revisited, i.e., again “marked” as having been in-order visited. (Cf. Fig. 13: a left
to right in-order traversal of that tree yields the following sequence of “markings”:
AQCQALXLFLAKUKJKZMZKA. Cf. also Fig. 10).

A

C X F U J

M

Q L K

Z

Figure 10: A left-to-right in-order tree traversal

382. Input: By input we mean the communication[122] of information[373] (data[193]) from an
outside, an environment [275], to a phenomenon[524] “within” our universe of discourse.
(More colloquially, and more generally: Input can be thought of as value [802](s) trans-
ferred over channel [110](s) to, or between process [544]es. Cf. output [502]. In a narrow
sense we talk of input to an automaton[71] (i.e., a finite state automaton[289] or a push-

down automaton[564]) and a machine [436] (here in the sense of, for example, a finite state

machine [290] (or a pushdown machine [565])).)
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383. Input alphabet: The set of symbol [728]s input [382] to an automaton[71] or a machine [436]

in the sense of, for example, a finite state machine [290] or a pushdown machine [565].

384. Instance: An individual, a thing, an entity [272]. (We shall usually think of an ‘in-
stance’ as a value [802].)

385. Instantiation: ‘To represent (an abstraction) by a concrete instance [384]’ [214]. (We
shall sometimes be using the term ‘instantiation’ in lieu of a function invocation[317]

on an activation stack [13].)

386. Installation manual: A document [237] which describes how a computing system[151]

is to be installed. (A special case of ‘installation’ is the downloading of software [685]

onto a computing system[151]. See also training manual [767] and user manual [798].)

387. Intangible: Not tangible [742].

388. Integrity: By a machine [436] having integrity we mean that that machine remains
unimpaired, i.e., has no faults, errors and failures, and remains so even in the situa-
tions where the environment of the machine has faults, errors and failures. (Integrity
is a dependability requirement [218].)

389. Intension: Intension indicates the internal content of a term. (See also in inten-

sion[378]. The intension of a concept [152] is the collection of the properties possessed
jointly by all conceivable individuals falling under the concept [179]. The intension
determines the extension[283] [179].)

390. Intensional: Adjective form of intension[389].

391. Interact: The term interact here addresses the phenomenon of one behaviour [79]

acting in unison, simultaneously, concurrent [159]ly, with another behaviour, including
one behaviour influencing another behaviour. (See also interaction[392].)

392. Interaction: Two-way reciprocal action.

393. Interface: Boundary between two disjoint sets of communicating phenomena or con-
cepts. (We shall think of the systems as behaviour [79]s or process [544]es, the boundary
as being channel [110]s, and the communications as input [382]s and output [502]s.)

394. Interface requirements: Interface requirements are those requirements [605] which
can on be expressed using professional, i.e., technical terms from both the domain[239]

and the machine [436]. Thus, by interface requirements we understand the expression of
expectations as to which software-software, or software-hardware interface [393] places
(i.e., channel [110]s), input [382]s and output [502]s (including the semiotics [658] of these in-
put/outputs) there shall be in some contemplated computing system[151]. (Interface
requirements can often, usefully, be classified in terms of shared data initialisation

requirements [671], shared data refreshment requirements [673], computational data+control
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requirements [146], man-machine dialogue requirements [447], man-machine physiological re-

quirements [448] and machine-machine dialogue requirements [437]. Interface requirements
constitute one requirements facet [285]. Other requirements facets are: business process

reengineering [101], domain requirements [258] and machine requirements [438].)

395. Interface requirements facet: See interface requirements [394] for a list of facets:
shared data initialisation[670], shared data refreshment [672], computational data+control [146],
man-machine dialogue [446], man-machine physiological [448] and machine-machine dialogue [437]

requirements [605].

396. Interpret: See next: interpretation[397].

397. Interpretation: The three terms elaboration, evaluation[280] and interpretation[397] es-
sentially cover the same idea: that of obtaining the meaning of a syntactical item in
some configuration[160], or as a function from configurations to value [802]s. Given that
configuration typically consists of static [708] environment [275]s and dynamic [260] state [705]s
(or storage [715]s), we use the term interpretation in the more narrow sense of desig-
nating, or yielding functions from syntactical items to functions from configurations
to states.

398. Interpreter: An interpreter is an agent [24], a machine [436], which performs interpreta-

tion[397]s.

399. Intrinsics: By the intrinsics of a domain[239] we shall understand those phenomena
and concepts of a domain which are basic to any of the other facets, with such a
domain intrinsics initially covering at least one specific, hence named, stakeholder [703]

view. (Intrinsics is thus one of several domain facet [250]s. Others include: business

process [99]es, support technology [725], rules and regulations [640], scripts [651], management

and organisation[445], and human behaviour [345].)

400. Invariant: By an invariant we mean a property that holds of a phenomenon[524] or
a concept [152], both before and after any action[12] involving that phenomenon or a
concept. (A case in point is usually an information[373] or a data structure [199]: Assume
an action, say a repeated one (e.g., a while loop). We say that the action (i.e., the
while loop) preserves an invariant, i.e., usually a proposition[560], if the proposition
holds true of the state [705] before and the state after any interpretation[397] of the while
loop. Invariance is here seen separate from the well-formedness [812] of an information[373]

or a data structure [199]. We refer to the explication of well-formedness [812]!)

401. Inverse function: See injection[379].

402. Invocation: See function invocation[317].

403. Isomorphic: One to one. (See isomorphism[404].)
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404. Isomorphism: If a homomorphism[343] φ is a bijective function[87] then φ is an isomor-
phism. (See also automorphism[72], endomorphism[268], epimorphism[276] and monomor-

phism[467].)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J

405. J: The J operator (J for Jump) was introduced (before 1965) by Peter Landin as a
functional [312] used to explain the creation and use of program closure [117]s, and these
again are used to model the denotation[213] of label [410]s. (We refer to [151, 153, 152,
150, 74]. Cf. www.dcs.qmw.ac.uk/~peterl/danvy/.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .K

406. Keyword: A significant word from a title or document.

407. Knowledge: What is, or what can be known. The body of truth, information, and
principles acquired by mankind [214]. (See epistemology [277] and ontology [492]. A priori
knowledge: Knowledge that is independent of all particular experiences. A posteriori
knowledge: Knowledge, which derives from experience alone.)

408. Knowledge engineering: The representation and modelling of knowledge. (The
construction of ontological and epistemological knowledge and its manipulation. In-
volves such subdisciplines as modal logic [459]s (promise and commitment, knowledge
and belief), speech act theories, agent [24] theories, etc. Knowledge engineering usually
is concerned with the knowledge that one agent may have about another agent.)

409. KWIC: Abbreviation for keyword-in-context (A classical software application. )

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .L

410. Label: Same as named program point [548].

411. Lambda-application: Within the confines of the Lambda-calculus [412], Lambda-

application[411] is the same as function application[315]. (Subject, however, to simple
term-rewriting [753] using (say just) Alpha-renaming [35] and Beta-reduction[84].)

412. Lambda-calculus: A calculus [104] for expressing and “manipulating” functions. The
Lambda-calculus (λ-calculus) is a de facto “standard” for “what is computable”.
See Lambda-expression[414]s. As a calculus [104] it prescribes a language, the language
of Lambda-expression[414]s, a set of conversion[184] rules — these apply to Lambda-

expression[414]s and result in Lambda-expression[414]s. They “mimic” function defini-

tion[316] and function application[315]. The seminal texts on the Lambda-calculi are
[66, 13, 14, 15].

413. Lambda-combination: See Lambda-application[411].
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414. Lambda-expression: The language of the “pure” (i.e., simple, but fully power-
ful) Lambda-calculus [412] has three kinds of Lambda-expressions: Lambda-variable [416]s,
Lambda-function[415]s and Lambda-application[411]s.

415. Lambda-function: By a Lambda-function we understand a Lambda-expression[414]

of the form λx•e, where x is a binding variable and e is a Lambda-expression. (It is
usually the case that e contains free [305] occurrences of x — these being bound by the
binding variable in λx•e.)

416. Lambda-variable: The x in the Lambda-function[415] expression λx•e: both the
formal parameter, the first x you see in λx•e, and all the free [305] occurrences of x in
the block [89] (i.e., body) expression e.

417. Language: By a language we shall understand a possibly infinite set of sentence [660]s
which follow some syntax [733], express some semantics [655] and are uttered, or written
down, due to some pragmatics [534].

418. Law: A law is a rule of conduct prescribed as binding or enforced by a controlling
authority. (We shall take the term law in the specific sense of law of Nature (cf.,
Ampére’s Law, Boyle’s Law, the conservation laws (of mass-energy, electric charge,
linear and angular momentum), Newton’s Laws, Ohm’s Law, etc.), and laws of Math-
ematics (cf. “law of the excluded middle” (as in logic: a proposition must either be
true, or false, not both, and not none)).)

419. Leaf: A leaf is a node [479] in a tree [777] for which there are no subtree [777]s of that node.
(Thus a leaf is a concept of tree [777]s. Cf. Fig. 13 on page 233.)

420. Lemma: An auxiliary proposition[560] used in the demonstration of another proposi-
tion. (Instead of proposition we could use the term theorem[756].)

421. Lexical analysis: The analysis of a sentence [660] into its constituent word [814]s. (Sen-
tences also are usually “decorated” with such signs as for example punctuation marks
(, . : ;), delimiters (( ) [ ], etc.), and other symbols (? !, etc.). Lexical analysis there-
fore is a process which serves to recognise which character sequences are words and
which are not (i.e., which are delimiters, etc.).)

422. Lexicographic: The principles and practices of establishing, maintaining and using
a dictionary. (We shall, in software engineering, mostly be using the term ‘lexi-
cographic’ in connection with compilers and, more rarely, database schemas — al-
though, as the definition implies, it is of relevance in any context where a computing
system builds, maintains and uses a dictionary.)

423. Lexicographical order: The order, i.e., sequence, in which entries of a dictionary
appear. (More specifically, the lexicographical ordering of entries in a compiler dictio-

nary [126] is, for a block-structured programming language [90], determined by the nesting
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structure of block [89]s. The dictionary itself, generally “mimics” the nesting structure
of the language.)

424. License: A license is a script [651] specifically expressing a permission to act; is freedom
of action; is a permission granted by competent authority to engage in a business or
occupation or in an activity otherwise unlawful; a document, plate, or tag evidencing
a license granted; a grant by the holder of a copyright or patent to another of any of
the rights embodied in the copyright or patent short of an assignment of all rights.
Licenses appear more to have morally than legally binding poser.

425. Link: A link is the same as a pointer [528], an address [22] or a reference [587]: something
which refers to, i.e., designates something (typically something else).

426. Lifted function: A lifted function, say of type A → B → C, has been created from
a function of type B → C by ‘lifting’ it, i.e., by abstracting it in a variable, say a of
type A. (Assume λb : B·E(b) to be a function of type B → C. Now λa : A·λb : B·E(b)
is a lifted version of λb : B · E(b). An example is and: λb1, b2 : Bool · b1 ∧ b2, Boolean
conjunction. We lift and to be a function, ∧T , over time: λt : T · b1(t)∧ b2(t), where
the variables b1, b2 typically could be (e.g., assignable) variables whose values change
over time.)

427. Linguistics: The study and knowledge of the syntax [733], semantics [655] and pragmat-

ics [534] of language [417](s).

428. List: A list is an ordered sequence of zero, one or more not necessarily distinct
entities.

429. Literal: A term whose use in software engineering, i.e., programming, shall mean:
an identifier which denotes a constant, or is a keyword. (Usually that identifier is
emphasised. Examples of RSL literals are: Bool, true, false, chaos, if, then, else,

end, let, in, and the numerals 0, 1, 2., ..., 1234.5678, etc.)

430. Live Sequence Chart: The Live Sequence Chart language is a special graphic nota-
tion for expressing communication between and coordination and timing of processes.
(See [121].)

431. Location: By a location is meant an area of storage [715].

432. Logic: The principles and criteria of validity of inference and deduction, that is, the
mathematics of the formal principles of reasoning. (We refer to Vol. 1, Chap. 9 for
our survey treatment of mathematical logic.)

433. Logic programming: Logic programming is programming based on an interpreter
which either performs deductions or inductions, or both. (In logic programming the
chief values are those of the Booleans, and the chief forms of expressions are those of
propositions and predicates.)
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434. Logic programming language: By a logic programming [433] language is meant
a language which allows one to express, to prescribe, logic programming [433]. (The
classical logic programming language is Prolog [161, 133].)

435. Loose specification: By a loose specification is understood a specification which
either underspecifies a problem, or specifies this problem nondeterministically .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .M

436. Machine: By the machine we understand the hardware [331] plus software [685] that
implements some requirements [605], i.e., a computing system[151]. (This definition follows
that of M.A. Jackson [139].)

437. Machine-Machine dialogue requirements:By machine-machine dialogue require-
ments we understand the syntax [733] (incl. sequential structure), and semantics [655]

(i.e., meaning) of the communications (i.e., messages) transferred in either direction
over the automated interface between machine [436]s (including supporting technolo-
gies). (See also computational data+control requirements [146], shared data initialisation

requirements [671], shared data refreshment requirements [673], man-machine dialogue re-

quirements [447], and man-machine physiological requirements [448].)

438. Machine requirements: Machine requirements are those requirements [605] which, in
principle, can be expressed without using professional (i.e., technical) terms from the
domain[239] (for which these requirements are established). Thus, by machine [436] re-

quirements [605] we understand requirements [605] put specifically to, i.e., expected specif-
ically from, the machine [436]. (We normally analyse machine requirements into perfor-

mance requirements [521], dependability requirements [218], maintenance requirements [443],
platform requirements [527] and documentation requirements [238].)

439. Machine service: The service delivered by a machine is its behaviour [79] as it is
perceptible by its user(s), where a user is a human, another machine, or a(nother)
system which interact [391]s with it [197].

440. Macro: Macros have the same syntax as procedures, that is, a pair of a signature [680]

(i.e., a macro name followed by a formal argument list of distinct identifiers (i.e., the
formal parameter [302]s)) and a macro body, a text. Syntactically we can distinguish
between macro definitions and macro invocation[402]s. Semantically, invocations, in
some text, of the macro name and an actual argument [16] list are then to be thought
of as an expansion of that part of the text with the macro (definition) body and such
that formal parameters are replaced (macro substitution[441]) by actual arguments.
Semantically a macro is different from a procedure [543] in that a macro expansion
takes place in a context [172], i.e., an environment [275], where free [305] identifiers of the
macro body are replaced by their value as defined at the place of the occurrence of the
macro invocation. Whereas, for a procedure, the free identifiers of a procedure body
are bound to their value at the point where the procedure was defined. (Thus the
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difference between a macro and a procedure is the difference between evaluation[280]

in a calling, versus in a defining environment.)

441. Macro substitution: See under macro [440]s.

442. Maintenance: By maintenance we shall here, for software, mean change to soft-

ware [685], i.e., its various document [237]s, due to needs for (i) adapting that software to
new platform[526]s, (ii) correcting that software due to observed software errors, (iii)
improving certain performance properties of the machine [436] of which the software is
part, or (iv) avoiding potential problems with that machine. (We refer to subcate-
gories of maintenance: adaptive maintenance [21], corrective maintenance [187], perfective

maintenance [519] and preventive maintenance [541].)

443. Maintenance requirements: By maintenance [442] requirements [605] we understand
requirements which express expectations on how the machine [436] being desired (i.e.,
required) is expected to be maintained. (We also refer to adaptive maintenance [21],
corrective maintenance [187], perfective maintenance [519] and preventive maintenance [541].)

444. Management: Management is about resources: their acquisition, scheduling (over
time), allocation (over locations), deployment (in performing actions) and disposal
(“retirement”). (We distinguish between board-directed, strategic, tactical and op-
erational actions: board-directed actions target mainly financial resources: obtaining
new funds through conversion of goodwill into financial resources, acquiring and sell-
ing “competing” or “supplementary” business units; strategic actions convert finan-
cial resources into production, service supplies and resources and vice-versa — and in
this these actions schedule availability of such resources; tactical actions mainly al-
locate resources; and operational actions order, monitor and control the deployment
of resources in the performance of actions.)

445. Management and organisation: The composite term management and organi-
sation applies in connection with management [444] as outlined just above and with
organisation[500]. The term then emphasises the relations between the organisation
and management of an enterprise. ( Other facets of an enterprise are those of its
intrinsics [399], business process [99]es, support technology [725], rules and regulations [640] and
human behaviour [345].)

446. Man-machine dialogue: By man-machinedialogues we understand actual instanti-
ations of user [796] interactions with machine [436]s, and machine interactions with users:
what input the users provide, what output the machine initiates, the interdepen-
dencies of these inputs/outputs, their temporal and spatial constraints, including
response times, input/output media (locations), etc. (

447. Man-machine dialogue requirements: By man-machine dialogue requirements
we understand those interface requirements [394] which express expectations on, i.e.,
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mandates the protocol [561] according to which user [796]s are to interact with the ma-

chine [436], and the machine with the users. (See man-machine dialogue [446]. For other
interface requirements [394] see computational data+control requirements [146], shared data

initialisation requirements [671], shared data refreshment requirements [673], man-machine

physiological requirements [448] and machine-machine dialogue requirements [437].))

448. Man-machine physiological requirements: By man-machine physiological re-
quirements we understand those interface requirements [394] which express expecta-
tions on, i.e., mandates, the form and appearance of ways in which the man-machine

dialogue [446] utilises such physiological devices as visual display screens, keyboards,
“mouses” (and other tactile instruments), audio microphones and loudspeakers, tele-
vision cameras, etc. (See also computational data+control requirements [146], shared data

initialisation requirements [671], shared data refreshment requirements [673], man-machine

dialogue requirements [447] and machine-machine dialogue requirements [437].)

449. Map: A map is like a function[310], but is here thought of as an enumerable [273] set
of pairs of argument/result values. (Thus the definition set [211] of a map is usually
decidable, i.e., whether an entity is a member of a definition set of a map or not can
usually be decided.)

450. Mechanical semantics: By a mechanical semantics we understand the same as
an operational semantics [496] (which is again basically the same as a computational

semantics [147]), i.e., a semantics of a language specified using concrete constructs (like
stacks, program pointers, etc.), and otherwise as defined in operational semantics [496]

and computational semantics [147].

451. Mereology: The theory of parthood relations: of the relations of part to whole
and the relations of part to part within a whole. (Mereology is often considered
a branch of ontology [492]. Leading investigators of mereology were Franz Brentano,
Edmund Husserl, Stanislaw Lesniewski [209, 164, 175, 212, 213, 217] and Leonard
and Goodman [156].)

452. Meta-IV: Meta-IV stands for the fourth metalanguage (for programing language def-
inition conceived at the IBM Vienna Laboratory in the 1960s and 1970s). (Meta-IV
is pronounced meta-four.)

453. Metalanguage: By a metalanguage is understood a language [417] which is used to ex-
plain another language, either its syntax [733], or its semantics [655], or its pragmatics [534],
or two or all of these! (One cannot explain any language using itself. That would
lead to any interpretation of what is explained being a valid solution, in other words:
Nonsense. RSL thus cannot be used to explain RSL. Typically formal specification
languages are metalanguages: being used to explain, for example, the semantics of
ordinary programming languages.)
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454. Metalinguistic: We say that a language is used in a metalinguistic manner when
it is being deployed to explain some other language. (And we also say that when we
examine a language, like we could, for example, examine RSL, and when we use a
subset of RSL to make that analysis, then that subset of RSL is used metalinguistically
(wrt. all of RSL).)

455. Metaphysics: We quote from: http://mally.stanford.edu/: “Whereas physics is the
attempt to discover the laws that govern fundamental concrete objects, metaphysics
is the attempt to discover the laws that systematize the fundamental abstract objects
presupposed by physical science, such as natural numbers, real numbers, functions,
sets and properties, physically possible objects and events, to name just a few. The
goal of metaphysics, therefore, is to develop a formal ontology, i.e., a formally precise
systematization of these abstract objects. Such a theory will be compatible with
the world view of natural science if the abstract objects postulated by the theory are
conceived as patterns of the natural world.” (Metaphysics may, to other scientists and
philosophers, mean more or other, but for software engineering the characterisation
just given suffices.)

456. Method: By a method we shall here understand a set of principle [542]s for selecting
and using a number of technique [745]s and tool [763]s in order to construct some arte-

fact [55]. (This is our leading definition — one that sets out our methodological quest:
to identify, enumerate and explain the principles, the techniques and, in cases, the
tools — notably where the latter are specification and programming languages. (Yes,
languages are tools.))

457. Methodology: By methodology we understand the study and knowledge of method [456]s,
one, but usually two or more. (In some dialects of English, methodology is confused
with method.)

458. Mixed computation: By a mixed computation we understand the same as by a
partial evaluation[516]. (The term mixed computation was used notably by Andrei
Petrovich Ershov [99, 104, 105, 98, 100, 101, 102, 103], in my mind the “father” of
Russian computing science.)

459. Modal logic: A modal is an expression (like “necessarily” or “possibly”) that is
used to qualify the truth of a judgment. Modal logic is, strictly speaking, the study
of the deductive behavior of the expressions “it is necessary that” and “it is possible
that”. (The term “modal logic” may be used more broadly for a family of related
systems. These include logics for belief, for tense and other temporal expressions,
for the deontic (moral) expressions such as “it is obligatory that”, “it is permitted
that” and many others. An understanding of modal logic is particularly valuable
in the formal analysis of philosophical argument, where expressions from the modal
family are both common and confusing. Modal logic also has important applications
in computer science [235].)
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460. Model: A model is the mathematical meaning of a description (of a domain), or a
prescription (of requirements), or a specification (of software), i.e., is the meaning
of a specification of some universe of discourse. (The meaning can be understood
either as a mathematical function, as for a denotational semantics [215] meaning, or an
algebra[26] as for an algebraic semantics [27] or a denotational semantics [215] meaning, etc.
The essence is that the model is some mathematical structure.)

461. Model-oriented: A specification (description, prescription) is said to be model-
oriented if the specification (etc.) denote [216]s a model [460]. (Contrast to property-

oriented [559].)

462. Model-oriented type: A type is said to be model-oriented if its specification des-

ignate [222]s a model [460]. (Contrast to property-oriented [559] type [782].)

463. Modularisation: The act of structuring a text using module [464]s.

464. Module: By a module we shall understand a clearly delineated text which denotes
either a single complex quantity, as does, usually, an object [487], or a possibly empty,
possibly infinite set of model [460]s of objects. (The RSL module concept is manifested
in the use of one or more of the RSL class [114] (class ... end), object [487] (object

identifier class ... end, etc.), and scheme [648] (scheme identifier class ... end), etc.,
constructs. We refer to [73, 72, 23] and to [187, 186] for original, early papers on
modules.)

465. Module design: By module design we shall understand the design[221] of (one or
more) module [464]s.

466. Monitor: Syntactically a monitor is “a programming language construct which
encapsulates variables, access procedures and initialisation code within an abstract
data type. The monitor’s variable may only be accessed via its access procedures
and only one process may be actively accessing the monitor at any one time. The
access procedures are critical sections.” Semantically “a monitor may have a queue
of processes which are waiting to access it” [108].

467. Monomorphism: If a homomorphism[343] φ is an injective function[380] then φ is
an isomorphism. (See also automorphism[72], endomorphism[268], epimorphism[276], and
monomorphism[467].)

468. Monotonic: A function, f : A → B, is monotonic, if for all a, a′ in the definition
set A of f , and some ordering relations, ⊑, on a and B, we have that if a ⊑ a′ then
f(a) ⊑ f(a′).

469. Mood: A conscious state of mind, as here, of a specification. (We can thus express
an indicative [362] mood, an optative [499] mood, a putative [566] mood or an imperative [352]

mood. Our use of these various forms of moods is due to Michael Jackson [139].)
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470. Morphism: Same as homomorphism[343].

471. Morphology: (i) A study and description of word formation (as inflection, deriva-
tion, and compounding) in language; (ii) the system of word-forming elements and
processes in a language; (iii) a study of structure or form [214].

472. Multi-dimensional: A composite (i.e., a nonatomic [63]) entity [272] is a multi-dimensional
entity [272] if some relations between properly contained (i.e., constituent) subentities
(cf. subentity [721]) can only be described by both forward and backward references,
and/or with recursive references. (This is in contrast to one-dimensional [491] entities.)

473. Multimedia: The use of various forms of input/output media in the man-machine
interface: Text, two-dimensional graphics, voice (audio), video, and tactile instru-
ments (like “mouse”).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

474. Name: A name is syntactically (generally an expression, but usually it is) a simple
alphanumeric identifier. Semantically a name denotes (i.e., designates) “something”.
Pragmatically a name is used to uniquely identify that “something”. (Shakespeare:
Romeo: “What’s in a name?” Juliet to Romeo: “That which we call a rose by any
other name would smell as sweet.”)

475. Naming: The action of allocating a unique name to a value.

476. Narrative: By a narrative we shall understand a document text which, in precise,
unambiguous language, introduces and describes (prescribes, specifies) all relevant
properties of entities, functions, events and behaviours, of a set of phenomena and
concepts, in such a way that two or more readers will basically obtain the same idea
as to what is being described (prescribed, specified). (More commonly: Something
that is narrated, a story.)

477. Natural language: By a natural language we shall understand a language like
Arabic, Chinese, English, French, Russian, Spanish, etc. — one that is spoken today,
2005, by people, has a body of literature, etc. (In contrast to natural languages we
have (i) professional languages, like the languages of medical doctors, or lawyers,
or skilled craftsmen like carpenters, etc.; and we have (ii) formal languages like
software specification languages, programming languages, and the languages of first-
order predicate logics, etc.)

478. Network: By a network we shall understand the same as a directed, but not nec-
essarily acyclic graph[19]. (Our only use of it here is in connection with network
databases.)

479. Node: A point in some graph[327] or tree [777].
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480. Nondeterminate: Same as nondeterministic [481].

481. Nondeterministic: A property of a specification: May, on purpose, i.e., deliberately
have more than one meaning. (A specification which is ambiguous also has more than
one meaning, but its ambiguity is of overriding concern: It is not ‘nondeterministic’
(and certainly not ‘deterministic’ !).)

482. Nondeterminism: A nondeterministic [481] specification models nondeterminism.

483. Nonstrict: Nonstrictness is a property associated with functions. A function is
nonstrict, in certain or all arguments, if, for undefined values of these it may still
yield a defined value. (See also strict function[717]s.)

484. Nonterminal: The concept of a nonterminal (together with the concept of a termi-

nal [750]) is a concept associated with the rule of grammar [639]s. (See that term: rule of

grammar [639] for a full explanation.)

485. Notation: By a notation we shall usually understand a reasonably precisely de-
lineated language. (Some notations are textual, as are programming notations or
specification languages; some are diagrammatic, as are, for example, Petri net [522]s,
Statechart [706]s, Live Sequence Chart [430]s, etc.)

486. Noun: Something, a name, that refers to an entity [272], a quality, a state [705], an
action[12], or a concept [152]. Something that may serve as the subject of a verb[806].
(But beware: In English many nouns can be “verbed”, and many verbs can be
“nouned”!)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O

487. Object: An instance of the data structure [199] and behaviour [79] defined by the ob-
ject’s class [114]. Each object has its own value [802]s for the instance variable [803]s of its
class and can respond to the function[310]s defined by its class. (Various specification

language [699]s, object Z [61, 95, 96], RSL, etc., each have their own, further refined,
meaning for the term ‘object’, and so do object-oriented [488] programming language [551]

(viz., C++ [216], Java [10, 113, 158, 225, 6, 208], C# [192, 174, 173, 125] and so on).)

488. Object-oriented: We say that a program is object-oriented [488] if its main structure
is determined by a modularisation[463] into a class [114], that is, a cluster of type [782]s,
variable [803]s and procedure [543]s, each such set acting as a separate abstract data type [4].
Similarly we say that a programming language [551] is object-oriented if it specifically
offers language constructs to express the appropriate modularisation[463]. (Object-
orientedness became a mantra of the 1990s: Everything had to be object-oriented.
And many programming problems are indeed well served by being structured around
some object-oriented notion. The first object-oriented [488] programming language [551]

was Simula 67 [23].)
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489. Observer: By an observer we mean basically the same as an observer function[490].

490. Observer function: An observer function is a function[310] which when “applied”
to an entity [272] (a phenomenon[524] or a concept [152]) yields subentities or attributes
of that entity (without “destroying” that entity). (Thus we do not make a distinc-
tion between functions that observe subentities (cf. subentity [721]) and functions that
observe attribute [69]s. You may wish to make distinctions between the two kinds of
observer function. You can do so by some simple naming [475] convention: assign names
the prefix obs when you mean to observe subentities, and attr when you mean to
observe attributes. Vol. 3 Chap. 5 introduces these concepts.)

491. One-dimensional: A composite entity [272] is a one-dimensional entity [272] if all rela-
tions between properly contained (i.e., constituent) subentities can be described by
either no references to other subentities, or only by backward or only by forward ref-
erences. (This is in contrast to multi-dimensional [472] entities. Thus arrays of arbitrary
order (vectors, matrices, tensors) are usually one-dimensional.)

492. Ontology: In philosophy: A systematic account of Existence. To us: An explicit
formal specification of how to represent the phenomena, concepts and other entities
that are assumed to exist in some area of interest (some universe of discourse) and
the relationships that hold among them. (Further clarification: An ontology is a cat-
alogue of concept [152]s and their relationships — including properties as relationships
to other concepts.)

493. Operation: By an operation we shall mean a function[310], or an action[12] (i.e., the
effect of function invocation[402]). (The context determines which of these two strongly
related meanings are being referred to.)

494. Operational: We say that a specification[698] (a description[220], a prescription[540]),
say of a function[310], is operational if what it explains is explained in terms of how
that thing, how that phenomenon, or concept, operates (rather than by what it
achieves). (Usually operational definitions are model oriented [461] (in contrast to prop-

erty oriented [559]).)

495. Operational abstraction: Although a definition (a specification[698], a descrip-

tion[220], or a prescription[540]) may be said, or claimed, to be operational [494], it may
still provide abstraction[3] in that the model-oriented [461] concepts of the definition
are not themselves directly representable or performable by humans or computers.
(This is in contrast to denotational [214] abstraction[3]s or algebra[26]ic (or axiom[75]atic)
abstraction[3]s.)

496. Operational semantics: A definition[210] of a language [417] semantics [655] that is op-

erational [494]. (See also structural operational semantics [720].)

497. Operation reification: To speak of operation[493] reification[597] one must first be able
to refer to an abstract, usually property-oriented [559], specification of the operation.
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Then, by operation reification[597] we mean a specification[698] which indicates how the
operation might be (possibly efficiently) implemented. (Cf. data reification[198] and
operation transformation[498].)

498. Operation transformation: To speak of operation[493] reification[597] one must first
be able to refer to an abstract, usually property-oriented [559], specification of the op-
eration. Then, by operation transformation[771] we mean a specification[698] which is,
somehow, calculate [102]d from the abstract specification. (Three nice books on such
calculi are: [177, 22, 11].)

499. Optative: Expressive of wish or desire. (See also imperative [352], indicative [362], and
putative [566].)

500. Organisation: Organisation is about the “grand scale”, executive and strategic
national, continental or global (world wide) (i) allocation of major resource (e.g.,
business) units, whether in a hierarchical, in a matrix, or in some other organigram-
specified structure, (ii) as well as the clearly defined relations (which information,
decisions and actions are transferred) between these units, and (iii) organisational
dynamics.

501. Organisation and management: The composite term organisation and manage-
ment applies in connection with organisation[500] as outlined just above and with man-

agement [444]s (cf. Item 444 on page 195). The term then emphasises the relations
between the organisation and management of an enterprise. (Other facets of an en-
terprise are those of its intrinsics [399], business process [99]es, support technology [725], rules

and regulations [640] and human behaviour [345].)

502. Output: By output we mean the communication[122] of information[373] (data[193]) to an
outside, an environment [275], from a phenomenon[524] “within” our universe of discourse.
(More colloquially, and more generally: output can be thought of as value [802](s)
transferred over channel [110](s) from, or between, process [544]es. Cf. input [382]. In a
narrow sense we talk of output from a machine [436] (e.g., a finite state machine [290] or
a pushdown machine [565]).)

503. Output alphabet: The set of symbol [728]s output [502] from a machine [436] in the sense
of, for example, a finite state machine [290] or a pushdown machine [565].

504. Overloaded: The concept of ‘overloaded’ is a concept related to function[310] sym-

bol [728]s, i.e., function[310] name [474]s. A function name is said to be overloaded if
there exists two or more distinct signature [680]s for that function name. (Typically
overloaded function symbols are ‘+’, which applies, possibly, in some notation, to
addition of integers, addition of reals, etc., and ‘=’, which applies, possibly, in some
notation, to comparison of any pair of value [802]s of the same type [782].)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .P
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505. Paradigm: A philosophical and theoretical framework of a scientific school or disci-
pline within which theories, laws and generalizations and the experiments performed
in support of them are formulated; a philosophical or theoretical framework of any
kind. (Software engineering is full of paradigms: Object-orientedness is one.)

506. Paradox: A statement that is seemingly contradictory or opposed to common sense
and yet is perhaps true. An apparently sound argument leading to a contradic-
tion. (Some famous examples are Russell’s Paradox16 and the Liar Paradox.17 Most
paradoxes stem from some kind of self-reference.)

507. Parallel programming language: A programming language [551] whose major kinds
of concepts are process [544]es, process composition[140] [putting processes in parallel and
nondeterministic [481] {internal or external} choice of process elaboration[264]], and syn-
chronisation and communication between processes. (A main example of a practical
parallel programming language is occam [135], and of a specificational ‘programming’
language is CSP [130, 203, 207]. Most recent imperative programming language [354]s
(Java, C#, etc.) provide for programming constructs (e.g., threads) that somehow
mimic parallel programming.)

508. Parameter: Same as formal parameter [302].

509. Parametric polymorphism: See the parenthesised part of the polymorphic [529] en-
try.

510. Parameterised: We say that a definition[210], of a class [114] (or of a function[310])
is parameterised if an instantiation[385] of an object [487] of the class (respectively an
invocation[402] of the function) allows an actual argument [16] to be substituted (cf.
substitution[722]) into the class definition (function body) for every occurrence of the
[formal] parameter [508].

511. Parser: A parser is an algorithm[31], say embodied as a software [685] program[545], which
accepts text strings, and, if the text string is generated by a suitable grammar [325],
then it will yield a parse tree [512] of that string. (See generator [322].)

512. Parse tree: To speak of a parse tree we assume the presence of a string of termi-

nal [750]s and nonterminal [484]s, and of a grammar [325]. A parse tree is a tree [777] such that
each subtree (of a root [632] and its immediate descendants, whether terminal [750]s or
nonterminal [484]s) corresponds to a rule [638] of the grammar, and hence such that the
frontier [307] of the tree is the given string.

513. Parsing: The act of attempting to construct a parse tree [512] from a grammar [325] and
a text string.

16If R is the set of all sets which do not contain themselves, does R contain itself? If it does then it
doesn’t and vice versa.

17“This sentence is false” or “I am lying”.
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514. Part: To speak of parts we must be able to speak of “parts and wholes”. That is:
We assume some mereology [451], i.e., a theory of parthood relations: of the relations
of part to whole and the relations of part to part within a whole.

515. Partial algebra: A partial algebra is an algebra whose functions are not defined for
all combinations of arguments over the carrier.

516. Partial evaluation: To speak of partial evaluation we must first speak of evalua-

tion[280]. Normally evaluation is a process [544], as well as the result of that process,
whereby an expression[282] in some language is evaluated in some context [172] which
binds every free identifier [305] of the expression to some value [802]. A partial evaluation
is an evaluation in whose context not all free identifiers are bound to (hence, defined)
values. The result of a partial evaluation is therefore a symbolic evaluation, one in
which the resulting value is expressed in terms of actual values and the undefined
free identifiers. (We refer to [51, 142].)

517. Path: The concept of paths is usually associated with graph[327]s and tree [777]s (i.e.,
networks). A path is then a sequence of one or more graph edges or tree branches
such that two consecutive edges (branches) share a node of the graph (or [root] of a
tree). (We shall also use the term route [635] synonymously with paths.)

518. Pattern: We shall take a pattern, p, (as in RSL) to mean an expression with identi-
fiers, a, and constants, k, as follows. Basis clauses: Any identifier a is a pattern, and
any constant, k, is a pattern. Inductive clause: If p1, p2, . . . , pm are patterns, then so
are (p1, p2, . . . , pm), < p1, p2, . . . , pm >, {p1, p2,. . . , pm}, [pd1 7→ pr1 , pd2 7→pr2 , . . . ,
pdm

7→ prm
], and so are: < p > ̂a, â < p >, {p} ∪ a, and [pd1 7→ pr1 ] ∪ a. (The

idea is that a pattern, p, is “held up against” a value, v, “of the same kind” and then
we attempt to ”match” the pattern, p, with the value, v, and if a matching can be
made, then the free identifiers of p are bound to respective component values of v.)

519. Perfective maintenance: By perfective maintenance we mean an update, as here,
of software, to achieve a more desirable use of resources: time, storage space, equip-
ment. (We also refer to adaptive maintenance [21], corrective maintenance [187] and pre-

ventive maintenance [541].)

520. Performance: By performance we, here, in the context of computing, mean quan-
titative figures for the use of computing resources: time, storage space, equipment.

521. Performance requirements: By performance requirements we mean requirements [605]

which express performance [520] properties (desiderata).

522. Petri net: The Petri net language is a special graphic notation for expressing con-
currency of actions, and simultaneity of events, of processes. (See [200].)
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523. Phase: By a phase we shall here, in the context of software development, under-
stand either the domain[239] development [228] phase, the requirements [605] development [228]

phase, or the software design[688] phase.

524. Phenomenon: By a phenomenon we shall mean a physically manifest “thing”.
(Something that can be sensed by humans (seen, heard, touched, smelled or tasted),
or can be measured by physical apparatus: Electricity (voltage, current, etc.), me-
chanics (length, time and hence velocity, acceleration, etc.), chemistry, etc.)

525. Phenomenology: Phenomenology is the study of structures of consciousness as
experienced from the first-person point of view [235].

526. Platform: By a platform, we shall, in the context of computing, understand a
machine [436]: Some computer (i.e., hardware) equipment and some software sys-
tems. (Typical examples of platforms are: Microsoft Windows running on an IBM

ThinkPad Series T model, or Trusted Solaris operating system with an Oracle

Database 10g running on a Sun Fire E25K Server.)

527. Platform requirements: By platform requirements we mean requirements [605] which
express platform[526] properties (desiderata). (There can be several platform require-
ments: One set for the platform on which software shall be developed. Another set
for the platform(s) on which software shall be utilised. A third set for the platform
on which software shall be demonstrated. And a fourth set for the platform on which
software shall be maintained. These platforms need not always be the same.)

528. Pointer: A pointer is the same as an address [22], a link [425], or a reference [587]: some-
thing which refers to, i.e., designates something (typically something else).

529. Polymorphic: Polymorphy is a concept associated with functions and the type of
the values to which the function applies. If, as for the length of a list function, len,
that function applies to lists of elements of any type, then we say the length function
is polymorphic. So, in general, the ability to appear in many forms; the quality or
state of being able to assume different forms. From Wikipedia, the Free Enclycopedia
[228]:

In computer science, polymorphism is the idea of allowing the same code
to be used with different types, resulting in more general and abstract
implementations. The concept of polymorphism applies to functions as
well as types: A function that can evaluate to and be applied to values
of different types is known as a polymorphic function. A data type that
contains elements of an unspecified type is known as a polymorphic data
type. There are two fundamentally different kinds of polymorphism: If the
range of actual types that can be used is finite and the combinations must
be specified individually prior to use, it is called ad hoc polymorphism[23].
If all code is written without mention of any specific type and thus can
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be used transparently with any number of new types, it is called para-
metric polymorphism. Programming using the latter kind is called generic
programming, particularly in the object-oriented community. However,
in many statically typed functional programming languages the notion of
parametric polymorphism is so deeply ingrained that most programmers

simply take it for granted.

530. Portability: Portability is a concept associated with software [685], more specifically
with the program[545]s (or data[193]). Software is (or files, including database [195] records,
are) said to be portable if it (they), with ease, can be “ported” to, i.e., made to “run”
on, a new platform[526] and/or compile with a different compiler, respectively different
database management system.

531. Post-condition: The concept of post-condition is associated with function applica-
tion. The post-condition of a function f is a predicate pof

which expresses the relation
between argument a and result r values that the function f defines. If a represent
argument values, r corresponding result values and f the function, then f(a) = r can
be expressed by the post-condition predicate pof

, namely, for all applicable a and r

the predicate pof
expresses the truth of pof

(a, r). (See also pre-condition[535].)

532. Postfix: The concept of postfix is basically a syntactic one, and is associated with
operator/operand expressions. It is one about the displayed position of a unary (i.e.,
a monadic) operator with respect to its operand (expression). An expression is said
to be in postfix form if a monadic operator is shown, is displayed, after the expression
to which it applies. (Typically the factorial operator, say !, is shown after its operand
expression, viz. 7!.)

533. Post-order: A special order of tree traversal [778] in which visits are made to nodes of
trees and subtrees as follows: First, for each subtree, a subtree post-order traversal
is made, in the order left to right (or right to left). When a tree, whose number of
subtrees is zero, is post-order traversed, then just that tree’s root is visited (and that
tree has then been post-order traversed) and (the leaf) is “marked” as having been
post-order visited. After each subtree visit the root of the tree of which the subtree
is a subtree is revisited and now it is “marked” as having been visited. (Cf. Fig. 13
on page 233: A left to right post-order traversal of that tree yields the following
sequence of “markings”: CQXFLUJMZKA; cf. also Fig. 11).

534. Pragmatics: Pragmatics is the (i) study and (ii) practice of the factors that govern
our choice of language in social interaction and the effects of our choice on others. (We
use the term pragmatics in connection with the use of language, as complemented
by the semantics [655] and syntax [733] of language.)

535. Pre-condition: The concept of pre-condition is associated with function application
where the function being applied is a partial function. That is: for some arguments
of its definition set the function yields chaos, that is, does not terminate. The
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Figure 11: A left to right post-order tree traversal

pre-consition of the function is then a predicate which expresses those values of the
arguments for which the function application terminates, that is, yields a result value.
(See weakest pre-condition[811].)

536. Predicate: A predicate is a truth-valued expression involving terms over arbitrary
values, well-formed formula relating terms and with Boolean[93] connective [167]s and
quantifier [569]s.

537. Predicate logic: A predicate logic is a language of predicate [536]s (given by some
formal [296] syntax [733]) and a proof system[557].

538. Pre-order: A special order of tree traversal [778] in which visits are made to nodes of
trees and subtrees as follows: First to the root of the tree with that root now being
“marked” as having been pre-order visited. Then for each subtree a subtree pre-order
traversal is made, in the order left to right (or right to left). When a tree, whose
number of subtrees is zero, is pre-order traversed, then just that tree’s root is visited
(and that tree has then been pre-order traversed) and the leaf is then “marked” as
having been pre-order visited. (Cf. Fig. 13 on page 233: A right-to-left pre-order
traversal of that tree yields the following sequence of “markings”: AKZMJULFXQC.
Cf. also Fig. 12 on the following page).

539. Presentation: By presentation we mean the syntactic document [237]ation of the
results of some development [228].

540. Prescription: A prescription is a specification which prescribes something desig-
natable, i.e., which states what shall be achieved. (Usually the term ‘prescription’ is
used only in connection with requirements [605] prescriptions.)

541. Preventive maintenance: By preventive maintenance — of a machine [436] — we
mean that a set of special tests are performed on that machine [436] in order to ascer-
tain whether the machine [436] needs adaptive maintenance [21], and/or corrective main-
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Figure 12: A right-to-left pre-order tree traversal

tenance [187], and/or perfective maintenance [519]. (If so, then an update, as here, of
software, has to be made in order to achieve suitable integrity [388] or robustness [631] of
the machine [436].)

542. Principle: An accepted or professed rule of action or conduct, . . . , a fundamental
doctrine, right rules of conduct, . . . [215]. (The concept of principle, as we bring
it forth, relates strongly to that of method [456]. The concept of principle is “fluid”.
Usually, by a method, some people understand an orderliness. Our definition puts
the orderliness as part of overall principles. Also, one usually expects analysis and
construction to be efficient and to result in efficient artifacts. Also this we relegate
to be implied by some principles, techniques and tools.)

543. Procedure: By a procedure we mean the same as a function[310]. (Same as routine [636]

or subroutine [723].)

544. Process: By a process we understand a sequence of actions and events. The events
designate interaction with some environment of the process.

545. Program: A program, in some programming language [551], is a formal text which can
be subject to interpretation[397] by a computer. (Sometimes we use the term code [118]

instead of program, namely when the program is expressed in the machine language
of a computer.)

546. Programmable: An active [14] dynamic [260] phenomenon[524] has the programmable
(active dynamic) attribute if its action[12]s (hence state [705] changes) over a future
time interval can be accurately prescribed. (Cf. autonomous [73] and biddable [85].)

547. Programmer: A person who does software design[688].

548. Program point: By a program point we shall here understand any point in a
program text (whether of an applicative programming language [49] (i.e., functional pro-
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gramming language [314]), an imperative programming language [354], or a logic program-

ming language [434]) between any two textually neighbouring token[762]s. (The idea of
a program point is the following: Assume an interpreter [398] of programs of the desig-
nated kind. Such an interpreter, at any step of its interpretation[397] process [544], can
be thought of as interpreting a special token, or a sequence of neighbouring tokens,
in both cases: “between two program points”.)

549. Program organisation: By program organisation we loosely mean how a pro-

gram[545] (i.e., its text) is structured into, for example, module [464]s (eg., class [114]es),
procedure [543]s, etc.

550. Programming: The act of constructing program[545]s. From [108]:

1: The art of debugging a blank sheet of paper (or, in these days of on-
line editing, the art of debugging an empty file). 2: A pastime similar to
banging one’s head against a wall, but with fewer opportunities for reward.
3: The most fun you can have with your clothes on (although clothes are
not mandatory).

551. Programming language: A language for expressing program[545]s, i.e., a language
with a precise syntax [733], a semantics [655] and some textbooks which provides remnants
of the pragmatics [534] that was originally intended for that programming language.
(See next entry: programming language type [552].)

552. Programming language type: With a programming language [551] one can asso-
ciate a type [782]. Typically the name of that type intends to reveal the type of a
main paradigm, or a main data type of the language. (Examples are: functional pro-

gramming language [314] (major data type is functions, major operations are definition
of functions, application of functions and composition of functions), logic program-

ming language [434] (major kinds of expressions are ground terms in a Boolean algebra,
propositions and predicates), imperative programming language [354] (major kinds of
language constructs are declaration of assignable variables, and assignment to vari-
ables, and a more or less indispensable kind of data type is references [locations,
addresses, pointers]), and parallel programming language [507].)

553. Projection: By projection we shall here, in a somewhat narrow sense, mean a tech-
nique that applies to domain description[243]s and yields requirements prescription[615]s.
Basically projection “reduces” a domain description by “removing” (or, but rarely,
hiding [337]) entities [272], function[310]s, event [281]s and behaviour [79]s from the domain de-
scription. (If the domain description is an informal one, say in English, it may
have expressed that certain entities, functions, events and behaviours might be in
(some instantiations of) the domain. If not “projected away” the similar, i.e., in-
formal requirements prescription will express that these entities, functions, events
and behaviours shall be in the domain and hence will be in the environment of the
machine [436] being requirements prescribed.)
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554. Proof: A proof of a theorem, φ, from a set, Γ, of sentences of some formal [296]

proposition[560]al or predicate [536] language, L, is a finite sequence of sentences, φ1, φ2,

. . . , φn, where φ = φ1, where φn = true, and in which each φi is either an axiom[75]

of L, or a member of Γ, or follows from earlier φj ’s by an inference rule [369] of L.

555. Proof obligation: A clause of a program may only be (dynamically) well-defined
if the values of clause parts lie in certain ranges (viz. no division by zero). We
say that such clauses raise proof obligations, i.e., an obligation to prove a property.
(Classically it may not be statically (i.e., compile time) checkable that certain ex-
pression values lie within certain subtype [724]s. Discharging a proof may help ensure
such constraints.)

556. Proof rule: Same as inference rule [369] or axiom[75].

557. Proof system: A consistent [168] and (relative) complete [129] set of proof rule [556]s.

558. Property: A quality belonging and especially peculiar to an individual or thing; an
attribute [69] common to all members of a class. (Hence: “Not a property owned by
someone, but a property possessed by something”.)

559. Property-oriented: A specification (description, prescription) is said to be property-
oriented if the specification (etc.) expresses attribute [69]s. (Contrast to model ori-

ented [461].)

560. Proposition: An expression in language which has a truth value.

561. Protocol: A set of formal rules describing how to exchange messages, between a
human user and a machine [436], or, more classically, across a network. (Low-level
protocols define the electrical and physical standards to be observed, bit and byte
ordering, and the transmission and error detection and correction of the bit stream.
High-level protocols deal with the data formatting, including the syntax of messages,
the terminal-to-computer dialogue, character sets, sequencing of messages, etc.)

562. Pure functional programming language: A functional programming language [314]

is said to be pure if none of its constructs designates side-effects.

563. Pushdown stack: A pushdown stack is a simple stack [700]. (Usually a simple stack
has just the following operations: push an element onto the stack, pop the top element
from the stack, and observe the top element of the stack.)

564. Pushdown automaton: A pushdown automaton is an automaton[71] with the ad-
dition of a pushdown stack [563] such that (i) the pushdown automaton input [382] is
provided both from an environment external to the pushdown automaton and from
the top of the pushdown stack, (ii) the pushdown automaton output [502] is provided
to the pushdown stack by being pushed onto the top of that stack, and (iii) such
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that the pushdown automaton may direct an element to be popped from the push-
down stack. (The pushdown automaton still has the notion of the final states of the
automaton[71].)

565. Pushdown machine: A pushdown (stack) machine is like a pushdown automaton[564]

with the addition that now the pushdown machine also provides output [502] to the
environment of the pushdown machine.

566. Putative: Commonly accepted or supposed, that is, assumed to exist or to have
existed. (See also imperative [352], indicative [362] and optative [499].)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Q

567. Quality: Specific and essential character. (Quality is an attribute [69], a property [558],
a characteristic (something has character).)

568. Quantification: The operation of quantifying. (See quantifier [569]. The x (the y) is
quantifying expression ∀x:X·P (x) (respectively ∃y:Y ·Q(y)).)

569. Quantifier: A marker that quantifies. It is a prefixed operator that binds the vari-
ables in a logical formula by specifying their possible range of value [802]s. (Colloquially
we speak of the universal and the existential quantifiers, ∀, respectively ∃. Typi-
cally a quantified expression is then of either of the forms ∀x:X·P (x) and ∃y:Y ·Q(y).
They ‘read’: For all quantities x of type X it is the case that the predicate P (x) holds;
respectively: There exists a quantity y of type Y such that the predicate Q(y) holds.)

570. Quantity: An indefinite value [802]. (See the quantifier [569] entry: The quantities in
P (x) (respectively Q(y)) are of type X (respectively Y ). y is indefinite in that it is
one of the quantities of Y , but which one is not said.)

571. Query: A request for information, generally as a formal request to a database [195].

572. Query language: A formal [296] language [417] for expressing queries (cf. query [571]).
(The most well-known query language, today, 2005, is SQL [77].)

573. Queue: A queue is an abstract data type [4] with a queue data structure and, typically,
the following operations: enqueue (insert into one end of the queue), dequeue (remove
from the other end of the queue). Axioms then determine specific queue properties.
()

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .R

574. Radix: In a positional representation of numbers, that integer by which the signifi-
cance of one digit place must be multiplied to give the significance of the next higher
digit place. (Conventional decimal numbers are radix ten, binary numbers are radix
two.)
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575. RAISE: RAISE stands for Rigorous Approach to Industrial Software Engineering.
(RAISE refers to a method, The RAISE Method [112, 31, 33, 34], a specification lan-
guage, RSL [110], and “comes” with a set of tools. )

576. Range: The concept of range is here used in connection with functions. Same as
range set [577]. See next entry.

577. Range set: Given a function[310], its range set is that set of value [802]s which is yielded
when the function is applied to each member of its definition set [211].

578. Reactive: A phenomenon[524] is said to be reactive if the phenomenon performs
action[12]s in response to external stimuli. Thus three properties must be satisfied
for a system to be of reactive dynamic attribute: (i) An interface must be definable
in terms of (ii) provision of input stimuli and (iii) observation of (state) reaction.
(Contrast to inert [367] and active [14].)

579. Reactive system: A system[736] whose main phenomena are chiefly reactive [578]. (See
the reactive [578] entry just above.)

580. Real time: We say that a phenomenon[524] is real time if its behaviour somehow must
guarantee a response to an external event within a given time. (Cf. hard real time [330]

and soft real time [684].)

581. Reasoning: Reasoning is the ability to infer [368], i.e., to make deduction[205]s or induc-

tion[364]s. (Automated reasoning is concerned with the building and use of computing
systems that automate this process. The overall goal is to mechanise different forms
of reasoning.)

582. Recogniser: A recogniser is an algorithm[31] which can decide whether a string can
be generate [321]d by a given grammar [325] of a language [417]. (Typically a recogniser can
be abstractly formulated as a finite state automaton[289] for a regular language [594], and
as a pushdown automaton[564] for a context-free language [174].)

583. Recognition rule: A recognition rule is a text which describes some phenomenon[524],
that is, a possibly singleton class [114] of such (i.e., their embodied concept [152], i.e.,
type [782]), such that it is uniquely decidable, by a human, whether a phenomenon
satisfies the rule or not, i.e., is a member of the class, or not. (The recognition rule
concept used here is due to Michael A. Jackson [139].)

584. Recursion: Recursion is a concept associated both with the function definition[316]s
and with data[193] type definition[785]s. A function definition [a data type] is said to
possess recursion if it is defined in terms of itself. (Cf. with the slightly different
concept of recursive [585].)

585. Recursive: Recursive is a concept associated with function[310]s. A function is said
to be recursive if, in the course of the evaluation of an invocation of the function,
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that function is repeatedly invoked. (Cf. with the slightly different concept of recur-

sion[584].)

586. Reengineering: By reengineering we shall, in a narrow sense, only consider the
reengineering of business processes. Thus, to us, reengineering is the same as business

process reengineering [101]. (Reengineering is also used in the wider sense of a major
change to some already existing engineering artefact [55].)

587. Reference: A reference is the same as an address [22], a link [425], or a pointer [528]:
something which refers to, i.e., designates something (typically something else).

588. Referential transparency: A concept which is associated with certain kinds of
programming [550] or specification language [699] constructs, namely those whose interpre-

tation[397] does not entail side effects. (A pure functional programming language [562] is
said to be referentially transparent.)

589. Refinement: Refinement is a relation[599] between two specification[698]s: One specifi-
cation, D, is said to be a refinement of another specification, S, if all the properties
that can be observed of S can be observed in D. Usually this is expressed as D ⊑ S.
(Set-theoretically it works the other way around: in D ⊇ S, D allows behaviours not
accounted for in S.)

590. Refutable assertion: A refutable assertion is an assertion that might be refuted
(i.e., convincingly shown to be false). (Einstein’s theory of relativity, in a sense,
refuted Newton’s laws of mechanics. Both theories amount to assertions.)

591. Refutation: A refutation is a statement that (convincingly) refutes an assertion.
(Lakatos [147] drew a distinction between refutation (evidence that counts against a
theory) and rejection (deciding that the original theory has to be replaced by another
theory). We can still use Newton’s theory provided we stay within certain boundaries,
within which that theory is much easier to handle than Einstein’s theory.)

592. Regular expression: To introduce the notion of regular expression we assume an
alphabet [34], A, say finite. Basis clause: For any a in the alphabet, a is a regular
expression. Inductive clause: If r and r′ are regular expressions, then so are rr′,
(r), r | r′, and r⋆. (The denotation, L(r), of a regular expression r is defined as
follows: (i) If r is of the form a, for a in the alphabet A, then L(a) = {a}; (ii) if
r is of the form r′r′′ then L(r′r′′) = {s′̂s′′ | s′ ∈ L(r′), s′′ ∈ L(r′′)}; (iii) or if r is
of the form (r′) then L((r′)) = {s | s ∈ L(r′)}; (iv) or if r is of the form r′ | r′′

then L(r′ | r′′) = {s | s ∈ L(r′) ∨ s ∈ L(r′′)}; (v) or if r is of the form r′⋆ then
L(r′⋆) = {s | s =<> ∨s ∈ L(r′) ∨ s′ ∈ L(r′r′) ∨ s′ ∈ L(r′r′r′) ∨ . . .} where <> is the
empty string, idempotent under concatenation.)

593. Regular grammar: See regular syntax .
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594. Regular language: By a regular language we understand a language [417] which is
the denotation of a regular expression[592]. (Some simple forms of grammar [325]s, that
is, regular syntax [596]es, also generate regular languages.)

595. Regulation: A regulation stipulates that an action[12] be taken in order to remedy
a previous action which “broke” a rule [638]. That is, a regulation is some text which
designates a possibly composite action[12] which, in turn, denotes a state-to-state
change which ostensibly results in a result state in which the rule now holds. Usually
a domain regulation is paired with domain rule.

596. Regular syntax: A regular syntax is a syntax [733] which denotes (i.e., which gener-

ate [321]s) a regular language [594].

597. Reification: The result of a reify [598] action. (See also data reification[198], operation

reification[497] and refinement [589].)

598. Reify: To regard (something abstract [1]) as a material or concrete [154] thing. (Our
use of the term is more operational [494]: To take an abstract [1] thing and turn it into a
less abstract, more concrete [154] thing.)

599. Relation: By a relation we usually understand either a mathematical entity [272] or
an information structure [374] consisting of a set of (relation) tuples (like rows in a
table [739]). The mathematical entity, a relation, can be thought of, also, as a pos-
sibly infinite set of n-groupings (i.e., Cartesian[107]s of the same arity [53]), such that
if (a, b, · · · , c, d, · · · , e, f) is such an n-tuple, then we may say that (a, b, · · · , c) (a
relation argument) relates to (d, · · · , e, f) (a relation result). Thus function[310]s are
special kinds of relations, namely where every argument relates to exactly one result.
(Relations, as information structures, are well-known in relational database [600]s.)

600. Relational database: A database [195] whose data[193] types are (i) atomic [63] values,
(ii) tuples of these, and relations seen as sets of tuples. (The relational database
model is due to E.F. Codd [68].)

601. Reliability: A system being reliable — in the context of a machine being dependable
— means some measure of continuous correct service, that is: Measure of time to
failure [286]. (Cf. dependability [217] [being dependable].) (Reliability is a dependability

requirement [218]. Usually reliability is considered a machine [436] property. As such,
reliability is (to be) expressed in a machine requirements [438] document.)

602. Renaming: By renaming we mean Alpha-renaming [35]. (Renaming, in this sense, is
a concept of the Lambda-calculus [412].)

603. Rendezvous: Rendezvous is a concept related to parallel processes. It stands for
a way of synchronising a number, usually two, of processes. (In CSP the pairing of
output (!) / input (?) clauses designating the same channel provides a language
construct for rendezvous.)
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604. Representation abstraction: By representation abstraction of [typed] values we
mean a specification which does not hint at a particular data (structure) model, that
is, which is not implementation biased. (Usually a representation abstraction (of
data) is either property oriented [559] or is model oriented [461]. In the latter case it is
then expressed, typically, in terms of mathematical entities such as sets, Cartesians,
lists, maps and functions.)

605. Requirements: A condition or capability needed by a user to solve a problem or
achieve an objective [134].

606. Requirements acquisition: The gathering and enunciation of requirements [605].
(Requirements acquisition comprises the activities of preparation, requirements elici-

tation[265] (i.e. requirements capture [608]) and preliminary requirements evaluation (i.e.,
requirements vetting).)

607. Requirements analysis: By requirements analysis we understand a reading of re-
quirements acquisition rough-sketch[633] prescription units, (i) with the aim of forming
concepts from these requirements prescription units, (ii) as well as with the aim of
discovering inconsistencies, conflicts and incompleteness within these requirements
prescription units, and (iii) with the aim of evaluating whether a requirements can
be objectively shown to hold, and if so what kinds of tests (etc.) ought be devised.

608. Requirements capture: By requirements capture we mean the act of eliciting, of
obtaining, of extracting, requirements from stakeholder [703]s. (For practical purposes
requirements capture is synonymous with requirements elicitation[611].)

609. Requirements definition: Proper definition[210]al part of a requirements prescrip-

tion[615].

610. Requirements development: By requirements development we shall understand
the development [228] of a requirements prescription[615]. (All aspects are included in de-
velopment: requirements acquisition[606], requirements analysis [39], requirements model [460]ling,
requirements validation[800] and requirements verification[807].)

611. Requirements elicitation: By requirements elicitation we mean the actual extrac-
tion of requirements [605] from stakeholder [703]s.

612. Requirements engineer: A requirements engineer is a software engineer [692] who
performs requirements engineering [613]. (Other forms of software engineer [692]s are do-

main engineer [247]s and software design[688]ers (cum programmer [547]).)

613. Requirements engineering: The engineering of the development of a require-

ments prescription[615], from identification of requirements [605] stakeholder [703]s, via re-

quirements acquisition[606], requirements analysis [607], and requirements prescription[615] to
requirements validation[800] and requirements verification[807].
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614. Requirements facet: A requirements facet is a view of the requirements — “seen
from a domain description[243]” — such as domain projection[255], domain determina-

tion[245], domain instantiation[253], domain extension[249], domain fitting [251] or domain ini-

tialisation[252].

615. Requirements prescription: By a requirements [605] prescription[540] we mean just
that: the prescription of some requirements. (Sometimes, by requirements prescrip-
tion, we mean a relatively complete and consistent specification of all requirements,
and sometimes just a requirements prescription unit [616].)

616. Requirements prescription unit: By a requirements [605] prescription[540] unit we
understand a short, “one or two liner”, possibly rough-sketch[633], prescription[540] of
some property of a domain requirements [258], an interface requirements [394], or a machine

requirements [438]. (Usually requirements prescription units are the smallest textual,
sentential fragments elicited from requirements stakeholder [703]s.)

617. Requirements specification: Same as requirements prescription[615] — the preferred
term.

618. Requirements unit: By a requirements unit we mean a single sentence, i.e., a short
expression of a “singular” requirements [605]. (A “full” (or complete) requirements [605]

thus consists of (usually very many) requirements unit [618]s.)

619. Requirements validation: By requirements validation we rather mean the valida-

tion[800] of a requirements prescription[615].

620. Resource: From Old French ressourse relief, resource, from resourdre to relieve, lit-
erally, to rise again, from Latin resurgere . . . an ability to meet and handle a situation
[214] (being resourceful). (In computing we deal with computing resources such as
storage [715], time [761] and further computing equipment. Many computing applications
handle enterprise resources such as enterprise staff, production equipment, building
or land space, production time, etc. In enterprise domains resources include monies,
people, equipment, buildings, time and locations (geographical space).)

621. Resource allocation: The allocation of resource [620]s.

622. Resource scheduling: The scheduling [646] of resource [620]s.

623. Retrieval: Used here in two senses: The general (typically database [195]-oriented)
sense of ‘the retrieval [the fetching] of data (of obtaining information) from a reposi-
tory of such’. And the special sense of ‘the retrieval of an abstraction from a concreti-
sation’, i.e., abstracting a concept from a phenomenon (or another, more operational
concept). (See the next entry for the latter meaning.)

624. Retrieve function: By a retrieve function[310] we shall understand a function that
applies to values of some type [782], the “more concrete, operational” type, and yields
values of some type [782] claimed to be more abstract [1]. (Same as abstraction function[5].)
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625. Rewrite: The replacement of some text or structure by some other text, respectively
structure. (See rewrite rule [626].)

626. Rewrite rule: A rewrite rule is a directed equation: lhs = rhs. The left- and right-
hand sides are patterns. If some text can be decomposed into three parts, i.e., text0 =
text1̂text2̂text3, where text1 and/or text3 may be empty texts, and where text2 =
lhs, then an application of the rewrite rule lhs = rhs to text0 yields text1̂rhŝtext3.
(The equation lhs = rhs is said to be directed in that this rule does not prescribe
that a subtext equal to rhs is to be rewritten into lhs.)

627. Rewrite system: Rewrite systems are sets of rewrite rule [626]s used to compute, by
repeatedly replacing subterms of a given formula with equal terms, until the sim-
plest form possible is obtained [79]. (Rewrite systems form a both theoretically and
practically interesting subject. They abound in instrumenting theorem proving [758],
and the interpretation[397] of notably algebraic semantics [27] specification language [699]s,
cf. CafeOBJ [81, 80] and Maude [67, 172, 59].)

628. Rigorous: Favoring rigor, i.e., being precise.

629. Rigorous development: Same as the composed meaning of the two terms rigor-

ous [628] and development [228]. (We usually speak of a spectrum of development modes:
systematic development [737], rigorous development and formal development [298]. Rigor-
ous software development, to us, “falls” somewhere between the two other modes
of development: (Always) complete formal specification[304]s are constructed, for all
(phases and) stages of development; some, but usually not all proof obligation[555]s are
expressed; and usually only a few are discharged (i.e., proved to hold).)

630. Risk: The Concise Oxford Dictionary [160] defines risk (noun) in terms of a hazard,
chance, bad consequences, loss, etc., exposure to mischance. Other characterisations
of the term risk are: someone or something that creates or suggests a hazard, and
possibility of loss or injury.

631. Robustness: A system[736] is robust — in the context of a machine [436] being depend-

able — if it retains all its dependability [217] attributes (i.e., properties) after failure [286]

and after maintenance [442]. (Robustness is (thus) a dependability requirement [218].)

632. Root: A root is a node [479] of a tree [777] which is not a subtree [777] of a larger, embedding
(embedded [266]) tree.

633. Rough-sketch: See next item.

634. Rough sketch: By a rough sketch — in the context of descriptive software develop-

ment [690] documentation — we shall understand a document [237] text which describes
something which is not yet consistent and complete, and/or which may still be too
concrete, and/or overlapping, and/or repetitive in its descriptions, and/or with which
the describer has yet to be fully satisfied.
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635. Route: Same as path[517].

636. Routine: Same as procedure [543].

637. RSL: RSL stands for the RAISE [112] Specification Language [110, 31, 33, 34]. ()

638. Rule: A regulating principle. In the rules and regulations [640] facet context of mod-
elling domain rules we shall understand a domain rule as some text whose meaning
is a predicate [536] over a pair of suitably chosen domain state [705]s. We may assume
that a domain action[12] or a domain event [281] takes place in the first of these states
and results in the second of these states. If the predicate is true then we say that the
rule has been obeyed, otherwise that it has not been obeyed. Usually a regulation[595]

is attached to the rule. (We use the concept of rules in several different contexts:
rewrite rule [626], rule of grammar [639] and rules and regulations [640].)

639. Rule of grammar: A grammar is made up of one or more rules. A rule has a (left-
hand-side) definiendum[207] and a (right-hand-side) definiens [208]. The definiendum is
usually a single identifier [351]. The definiens is usually a possibly empty string of iden-

tifier [351]s. These identifiers are either terminal [750]s or nonterminal [484]s. A definiendum
identifier is a nonterminal. In a grammar all nonterminals have a defining rule. Those
identifiers which do not appear as a definiendum of a rule are thence considered ter-
minals.

640. Rules and regulations: By rules and regulations we mean guidelines that are in-
tended to be adhered to by the enterprise staff and enterprise customers (i.e., users,
clients) in conducting their “business”, i.e., their actions within, and with, the enter-
prise. (Other facets of an enterprise are those of its intrinsics [399], business process [99]es,
support technology [725], management and organisation[445] and human behaviour [345].)

641. Run time: The time (or time interval) during which a software program[545] is subject
to interpretation[397] by a computer. (The term run time is usually deployed in order
to distinguish between that concept and the concept of compile time [127].)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S

642. Safety: By safety — in the context of a machine [436] being dependable — we mean
some measure of continuous delivery of service of either correct service, or incorrect
service after benign failure [286], that is, measure of time to catastrophic failure. (Safety
is a dependability requirement [218]. Usually safety is considered a machine [436] property.
As such safety is (to be) expressed in a machine requirements [438] document [237].)

643. Safety critical: A system[736] whose failure [286] may cause injury or death to human
beings, or serious loss of property, or serious disruption of services or production, is
said to be safety critical.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25



Terminology 219

644. Satisfiable: A predicate [536] is said to be satisfiable if it is true for at least one
interpretation[397]. (In this context think of an interpretation as a binding [88] of all
free [305] variable [803]s of the predicate expression to value [802]s. Cf. valid [799].)

645. Schedule: A schedule is a syntactic composite [133] concept [152]. A schedule is a pre-

scription[540] for (usually where and) when some resources are to be present, i.e., in-

formation[373] about being spatially and temporally available. (As such a schedule
usually also includes some allocation[33] information[373].)

646. Scheduling: The act of providing, of constructing, a schedule [645].

647. Schema: A structured framework or plan. (We shall also use the term ‘schema’ in
connection with, i.e., as a rewrite rule [626] and some axioms that apply to, for example,
applicative program texts and rewrite into imperative program texts.)

648. Scheme: See schema[647].

649. Scope: We shall use the term scope in two sufficiently different senses: (1) In pro-

gramming [550] the scope of an identifier [351] is the region of a program[545] text within
which it represents a certain thing. This usually extends from the place where it is de-
clared to the end of the smallest enclosing block [89] (begin/end or procedure/function
body). An inner block may contain a redeclaration of the same identifier, in which
case the scope of the outer declaration does not include (is shadowed, occluded,
blocked off or obstructed by) the scope of the inner. (2) We also use the term scope
in the context of the degree to which a project scope and span extends: Scope be-
ing the “larger, wider” delineation of what a project “is all about”, span[697] being the
“narrower”, more precise extent.

650. Scope check: Usually a function performed by a compiler [125] concerning the defini-
tion (declaration) and places of use of identifiers of program[545] texts. (Thus the use
of scope [649] is that of the first (1) sense of item 649.)

651. Script: A plan of action. By a domain script we shall, more specifically, under-
stand the structured, almost, if not outright, formally expressed, wording of rules

and regulations [640] of behaviour. See also license [424] and contract [181].

652. Secure: To properly define the concept of secure, we first assume the concept of an
authorised user. Now, a system[736] is said to be secure if an un-authorised user, when
supposedly making use of that system, (i) is not able to find out what the system
does, (ii) is not able to find out how it does ‘whatever’ it does do, and (iii), after
some such “use”, does not know whether he/she knows! (The above characterisation
represents an unattainable proposition. As a characterisation it is acceptable. But
it does not hint at ways and means of implementing secure systems. Once such a
system is believed implemented the characterisation can, however be used as a guide
in devising tests that may reveal to which extent the system indeed is secure. Secure
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systems usually deploy some forms of authorisation and encryption mechanisms in
guarding access to system functions.)

653. Security: When we say that a system[736] exhibits security we mean that it is se-

cure [652]. (Security is a dependability requirement [218]. Usually security is considered
a machine [436] property. As such security is (to be) expressed in a machine require-

ments [438] document.)

654. Selector: By a selector (a selector function) we understand a function which is
applicable to values of a certain, defined, composed type [782], and which yields a proper
component of that value. The function itself is defined by the type definition[785].

655. Semantics: Semantics is the study and knowledge [incl. specification] of meaning
in language [70]. (We make the distinction between the pragmatics [534], the semantics
and the syntax [733] of languages. Leading textbooks on semantics of programming
languages are [78, 116, 202, 206, 219, 229].)

656. Semantic function: A semantics function is a function which when applied to
syntactic values yields their semantic values.

657. Semantic type: By a semantic type we mean a type [782] that defines semantic values.

658. Semiotics: Semiotics, as used by us, is the study and knowledge of pragmatics [534],
semantics [655] and syntax [733] of language(s).

659. Sensor: A sensor can be thought of as a piece of technology [746] (an electronic, a
mechanical or an electromechanical device) that senses, i.e., measures, a physical
value [802]. (A sensor is in contrast to an actuator [17].)

660. Sentence: (i) A word, clause, or phrase or a group of clauses or phrases forming
a syntactic unit which expresses an assertion, a question, a command, a wish, an
exclamation, or the performance of an action, that in writing usually begins with a
capital letter and concludes with appropriate end punctuation, and that in speaking
is distinguished by characteristic patterns of stress, pitch and pauses; (ii) a mathe-
matical or logical statement (as an equation or a proposition) in words or symbols
[214].

661. Sequential: Arranged in a sequence, following a linear order, one after another.

662. Sequential process: A process is sequential if all its observable actions can be, or
are, ordered in sequence.

663. Server: By a server we mean a process [544] or a behaviour [79] which interact [391]s with
another process or behaviour (i.e., a client [116]) in order for the server to perform some
action[12]s on behalf of the client.
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664. Set: We understand a set as a mathematical entity, something that is not math-
ematically defined, but is a concept that is taken for granted. (Thus by a set we
understand the same as a collection, an aggregation, of distinct entities. Member-
ship (of an entity) of a set is also a mathematical concept which is likewise taken for
granted, i.e., undefined.)

665. Set theoretic: We say that something is set theoretically understood or explained
if its understanding or explanation is based on sets.

666. Shared action: By a shared action we mean an action that can only be partly
computed by the machine [436]. That is, the machine [436], in order to complete an action,
may have to inquire with the domain[239] (in order, say, to extract some measurable,
time-varying simple entity attribute value) in order to proceed in its computation.

667. Shared behaviour: By a shared behaviour we mean a behaviour many of whose
actions and events occur both in the domain[239] and, in some encoded form, and in
the same squence, in the machine [436].

668. Shared concept: See shared phenomenon[676].

669. Shared data: See shared phenomenon[676].

670. Shared data initialisation: By shared data initialisation we understand an oper-

ation[493] that (initially) creates a data structure [199] that reflects, i.e., models, some
shared phenomenon[676] in the machine [436]. (See also shared data refreshment [672].)

671. Shared data initialisation requirements: Requirements for shared data initialisa-

tion[670]. (See also computational data+control requirements [146], shared data refreshment

requirements [673], man-machine dialogue requirements [447], man-machine physiological re-

quirements [448], and machine-machine dialogue requirements [437].)

672. Shared data refreshment: By shared data refreshment we understand a ma-

chine [436] operation[493] which, at prescribed intervals, or in response to prescribed
events updates an (originally initialised) shared data[669] structure. (See also shared

data initialisation[670].)

673. Shared data refreshment requirements: Requirements for shared data refresh-

ment [672]. (See also computational data+control requirements [146], shared data initialisa-

tion requirements [671], man-machine dialogue requirements [447], man-machine physiologi-

cal requirements [448], and machine-machine dialogue requirements [437].)

674. Shared event: By a shared event we mean an event whose occurrence in the do-

main[239] need be communicated to the machine [436] – and, vice-versa, an event whose
occurrence in the machine [436] need be communicated to the domain[239].

675. Shared information: See shared phenomenon[676].
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676. Shared phenomenon or concept: A shared phenomenon (or concept) is a phe-
nomenon (respectively a concept) which is present in some domain[239] (say in the
form of facts, knowledge [407] or information[373]) and which is also represented in the
machine [436] (say in the form of some entity [272], simple, action, evemt or behaviour).
A phenomenon of a domain, when shared, becomes a concept of the machine.

677. Shared simple entity: By a shared simple entity we mean a simple entity which
both occurs in the domain[239] (as a phenomenon or a concept) and in the machine [436].
Simple entities that are shared between the domain and the machine must initially be
input to the machine. Dynamically arising simple entities must likewise be input and
all such machine entities must have their attributes updated, when need arise. Re-
quirements for shared simple entities thus entail requirements for their representation
and for their human/machine and/or machine/machine transfer dialogue.

678. Side effect: A language construct that designates the modification of the state of a
system is said to be a side-effect-producing construct. (Typical side effect constructs
are assignment, input and output. A programming language [551] “without side effects”
is said to be a pure functional programming language [562].)

679. Sign: Same as symbol [728].

680. Signature: See function signature [318].

681. Simple entity: By a simple entity we shall loosely understand an individual,
static [708] or inert [367] dynamic [260] (We shall take the narrow view of a simple entity,
being in contrast to an action[12], an event [281] and a behaviour [79]; that simple enti-
ties “roughly correspond” to what we shall think of as value [802]s. We shall further
allow simple entities to be either atomic [63] or composite [133], i.e., in the latter case
having decomposable subentities [721]. Simple entities have attribute [69]s. Composite
entities have attribute [69]s, subentities [721] and a mereology [451], the latter explains how
the subentities are formed into the simple entity. We consider simple entities [681] to be
one of the four kinds of entities [272] that the Triptych “repeatedly” considers. The
other three are: action[12]s, event [281]s and behaviour [79]s. Consideration of these are
included in the specification of all domain facet [250]s and all requirements facet [614]s.)

682. Simplification: ()

683. Simulation: The imitation of the functioning of one system or process by means of
the functioning of another. (Attempting to predict aspects of the behaviour of some
system by creating an approximate (mathematical) model of it. This can be done by
physical modelling, by writing a special-purpose computer program or using a more
general simulation package, probably still aimed at a particular kind of simulation
[108].)
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684. Soft real time: By soft real time we mean a real time [580] property where the exact,
i.e., absolute timing, or time interval, is only of loose, approximate essence. (Cf.,
hard real time [330].)

685. Software: By software we understand not only the code that when “submitted” to
a computer enables desired computations to take place, but also all the documen-
tation that went into its development (i.e., its domain description[243], requirements

specification[617], its complete software design[688] (all stages and steps of refinement [589]

and transformation[771]), the installation manual [386], training manual [767], and the user

manual [798]).

686. Software component: Same as component [131].

687. Software architecture: By a software architecture we mean a first kind of speci-
fication of software — after requirements — one which indicates how the software
is to handle the given requirements in terms of software components and their inter-
connection — though without detailing (i.e., designing) these software components.

688. Software design: By software design we shall understand the determination of
which components, which modules and which algorithms shall implement the require-

ments [605] — together with all the documents that usually make up properly doc-
umented software [685]. (Software design entails programming [550], but programming
is a “narrower” field of activity than software design in that programming usually
excludes many documentation aspects.)

689. Software design specification: The specification[698] of a software design[688].

690. Software development: To us, software development includes all three phases
of software [685] development [228]: domain development [246], requirements development [610]

and software design[688].

691. Software development project: A software [685] development project is a planning,
research and development project whose aim is to construct software [685].

692. Software engineer: A software engineer is an engineer [269] who performs one or more
of the functions of software engineering [693]. (These functions include domain engineer-

ing [248], requirements engineering [613] and software design[688] (incl. programming [550]).)

693. Software engineering: The confluence of the science, logic, discipline, craft and
art of domain engineering , requirements engineering and software design.

694. Sort: A sort is a collection, a structure, of, at present, further unspecified entities.
(That is, same as an algebraic type. When we say “at present, further unspecified”,
we mean that the (values of the) sort may be subject to constraining axioms. When
we say “a structure”, we mean that “this set” is not necessarily a set [664] in the
simple sense of mathematics, but may be a collection whose members satisfy certain
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interrelations, for example, some partially ordered set, some neighbourhood set or
other.)

695. Sort definition: The definition[210] of a sort [694]. (Usually a sort definition consists of
the (introduction of) a type name, some (typically observer function[490] and generator

function[323]) signatures, and some axioms relating sort values and functions.)

696. Source program: By a source program we mean a program[545] (text) in some pro-

gramming language [551]. (The term source is used in contrast to target: the result of
compiling a source text for some target machine [436].)

697. Span: Span is here used, in contrast to scope [649], more specifically in the context of
the degree to which a project scope and span extend: Scope being the “larger, wider”
delineation of what a project “is all about”, span[697] being the “narrower”, more precise
extent.

698. Specification: We use the term ‘specification’ to cover the concepts of domain de-

scription[243]s, requirements prescription[615]s and software design[688]s. More specifically
a specification is a definition[210], usually consisting of many definitions.

699. Specification language: By a specification language we understand a formal [296]

language [417] capable of expressing formal [296] specifications. (We refer to such formal
specification languages as: Alloy [138], ASM [199], Event B [2, 4, 60], CafeOBJ [80, 81],
RSL [110, 111], VDM-SL [52, 107] and Z [210, 211, 234, 126].)

700. Stack: A stack is an abstract data type [4] with a stack data structure and, typically,
the following operations: push (onto the top of the stack), pop (remove from the top
of the stack). Axioms then determine specific stack properties. ()

701. Stack activation: Generally: The topmost element of a stack. Specifically, when
a stack is used to record the local states of blocks of a block-structured program-
ming language’s blocks or procedure bodies (they are also blocks), then each stack
element, i.e., each stack activation, records such a local state and — what is known
as static and dynamic — pointers chain such activations together which correspond
to the lexicographic scope of the program, respectively the calling invocation of the
blocks. (We refer to Vol. 2, Chap. 16, Sect. 16.6.1 for a thorough treatment of stack
activations.)

702. Stage: (i) By a development stage we shall understand a set of development activi-
ties which either starts from nothing and results in a complete phase documentation,
or which starts from a complete phase documentation of stage kind, and results in
a complete phase documentation of another stage kind. (ii) By a development stage
we shall understand a set of development activities such that some (one or more) ac-
tivities have created new, externally conceivable (i.e., observable) properties of what
is being described, whereas some (zero, one or more) other activities have refined
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previous properties. (Typical development stages are: domain[239] intrinsics [399], do-

main[239] support technologies, domain[239] management and organisation[445], domain[239]

rules and regulations [640], etc., and domain requirements [258], interface requirements [394],
and machine requirements [438], etc.)

703. Stakeholder: By a domain[239] (requirements [605], software design[688])18 stakeholder
we shall understand a person, or a group of persons, “united” somehow in their
common interest in, or dependency on the domain (requirements, software design);
or an institution, an enterprise, or a group of such, (again) characterised (and, again,
loosely) by their common interest in, or dependency on the domain (requirements,
software design). (The three stakeholder groups usually overlap.)

704. Stakeholder perspective: By a stakeholder [703] perspective we shall understand
the, or an, understanding of the universe of discourse [793] shared by the specifically
identified stakeholder group — a view that may differ from one stakeholder group to
another stakeholder group of the same universe of discourse.

705. State: By a state we shall, in the context of computer programs, understand a
summary of past computations, and, in the context of domains, a suitably selected
set of dynamic [260] entities.

706. Statechart: The Statechart language is a special graphic notation for expressing
communication between and coordination and timing of processes. (See [120].)

707. Statement: We shall take the rather narrow view that a statement is a programming

language [551] construct which denotes a state [705]-to-state function. (Pure expressions
are then programming language constructs which denote state-to-value functions (i.e.,
with no side effect [678]), whereas “impure” expressions, also called clauses, denote
state-to-state-and-value functions.)

708. Static: An entity [272] is static if it is not subject to actions that change its value [802].
(In contrast to dynamic [260].)

709. Static semantics: The concept of static semantics is one that applies to syntactic

entities, typically programs or specifications of programming language [551]s, respectively
specification language [699]s. The static semantics of such a language is now a predi-

cate [536] that applies to programs (respectively specifications) and yields true if the
program[545] (specification[698]) is syntactically well formed according to the static se-
mantics criteria, typically that certain relations are satisfied between dispersed parts
of the program[545] (specification[698]) texts.

710. Static typing: Enforcement of type checking at compile time [127]. (A programming

language [551] (or a specification language [699]) is said to be statically typed if its programs

(resp. specifications) can be statically type checked .)

18These three areas of concern form three universes of discourse.
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711. Step: By a development step we shall understand a refinement of a domain descrip-
tion (or a requirements prescription, or a software design specification) module, from
a more abstract to a more concrete description (or a more concrete requirements
prescription, or a more concrete software design specification).

712. Stepwise development: By a stepwise development we shall understand a de-

velopment [228] that undergoes phases, stages or steps of development, i.e., can be
characterised by pairs of two adjoining phase [523] steps, a last phase [523] step[711] and a
(first) next phase [523] step[711], or two adjoining stage [702] steps.

713. Stepwise refinement: By a stepwise refinement we understand a pair of adjoining
development [228] steps where the transition from one step[711] to the next step[711] is
characterised by a refinement [589]. (Refinement is thus always stepwise refinement.)

714. Store: Same as storage [715]; see next.

715. Storage: By storage we shall understand a function[310] from locations to values.
(Thus we emphasise the mathematical character of storage rather than any techno-
logical character (such as disk storage, etc.).)

716. Strategy: [214]: (1) The science and art of employing the political, economic, psy-
chological, and military forces of a nation or group of nations to afford the maximum
support to adopted policies in peace or war; (2) an adaptation or complex of adap-
tations (as of behaviour or structure) that serves or appears to serve an important
function in achieving evolutionary success. (Applied to business enterprises the above
“translates” into: the science and art of employing the economic and other resources
of an enterprise to achieve maximum support for adopted enterprise policies: enter-
prise products & service profile, market share, growth, profitability, etc.)

717. Strict function: A strict function is a function which yields chaos (i.e., is undefined)
if any of the function arguments are undefined (i.e., chaos). (In RSL the logical
connectives are not strict. All other functions, built-in or defined, are strict.)

718. Strongest post-condition: See weakest pre-condition[811].

719. Structure: The term ‘structure’ is understood rather loosely. Normally we shall
understand a structure as a mathematical structure, such as an algebra[26], or a pred-

icate logic [537], or a Lambda-calculus [412], or some defined abstraction (a scheme [648] or
a class [114]). (Set theory is a (mathematical) structure. So are RSL’s Cartesian, list
and map data types.)

720. Structural operational semantics: By a structural operational semantics we un-
derstand an operational semantics [496] which is expressed in terms of a number of
transition rule [773]s. (See [196].)
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721. Subentity: A subentity is a proper part of a (thus) non-atomic [63] entity [272]. (Do
not confuse a subentity of an entity with an attribute [69] of that entity (or of that
subentity).)

722. Substitution: By substitution we mean the replacement of a token (viz.: an iden-
tifier) by a structure, usually a text. (The most common form of substitution is that
of Beta-reduction[84] (in the Lambda-calculus [412]). Substitution is a “simpler” form of
rewriting .)

723. Subroutine: Same as routine [636].

724. Subtype: To speak of a subtype we must first be able to speak of a type [782], i.e.,
colloquially, a (suitably structured) set of value [802]s. A subtype of a type is then a
(suitably structured) and proper subset of the values of the type. (Usually we shall,
in RSL, think of a predicate, p, that applies to all members of the type, T , and singles
out a proper subset whose elements satisfy the predicate: {a | a : T · p(a)}.)

725. Support technology: By a support technology we understand a facet [285] of a do-

main[239], one which reflects its (current) dependency on mechanical, electro-mechanical,
electronic and other technologies (i.e., tools) in order to carry out its business pro-

cess [99]es. (Other facets of an enterprise are those of its intrinsics [399], business pro-

cess [99]es, management and organisation[445], rules and regulations [640] and human be-

haviour [345].)

726. Surjection: A surjective function[727] represents surjection. (See also bijection[86] and
injection[379].)

727. Surjective function: A function[310] which maps value [802]s of its postulated definition

set [211] into all of its postulated range set [577] is called surjective. (See also bijective

function[87] and injective function[380].)

728. Symbol: Something that stands for or suggests something else, that is, an arbitrary
or conventional sign used in writing.

729. Synchronisation: By synchronisation we understand the act of ensuring synchro-

nism[730] between occurrence of designated events in two or more processes. (Usually
synchronisation between occurrence of designated events in two or more processes
entails the exchange of information[373], i.e., data[193], between these processes, i.e.,
communication[122].)

730. Synchronism: A chronological arrangement of event [281]s.

731. Synchronous: Happening, existing, or arising at precisely the same time [761] indi-
cating synchronism[730].

732. Synopsis: By a synopsis we shall understand a composition of informative documen-

tation[375] and rough-sketch[633] description[220] of some project.
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733. Syntax: By syntax we mean (i) the ways in which words are arranged to show
meaning (cf. semantics) within and between sentences, and (ii) rules for forming
syntactically correct sentences. (See also regular syntax , context-free syntax , context-

sensitive syntax and BNF for specifics.)

734. Synthesis: The construction of an artefact [55].

735. Synthetic: Result of synthesis [734]: not analytic [40].

736. System: A regularly interacting or interdependent group of phenomena or concepts
forming a whole, that is, a group of devices or artificial objects or an organization
forming a network especially for producing something or serving a common purpose.
(This book will have its own characterisation of the concept of a system (commen-
surate, however, with the above encircling characterisation); cf. Vol. 2, Sect. 9.5’s
treatment of system.)

737. Systematic development: Systematic development of software is formal develop-
ment “lite”! (We usually speak of a spectrum of development modes: systematic
development, rigorous development [629], and formal development [298]. Systems software
development, to us, is at the “informal” extreme of the three modes of development:
formal specification[304]s are constructed, but maybe not for all stages of development;
and usually no proof obligations are expressed, let alone proved. The three volumes of
this series of textbooks in software engineering can thus be said to expound primarily
the systematic approach.)

738. Systems engineering: By systems engineering we shall here understand comput-
ing systems engineering: The confluence of developing hardware [331] and software [685]

solutions to requirements [605].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T

739. Table: By a table we understand an information structure [374] which can be thought
of as an ordered list [428] of rows, each row consisting of an ordered list [428] of entries,
each consisting of some information[373]. (When thought of as a data structure [199], a
table is normally thought of as either a matrix or a relation[599].)

740. Tangibility: Noun of tangible [742].

741. Tactic: [214]: (1) a device for accomplishing an end (2) a method of employing
forces in combat.Applied to business enterprises the above “translates” into: a set of
resource-dependent actions thought to accomplish a strategy.

742. Tangible: Physically manifest. That is, can be humanly sensed: heard, seen,
smelled, tasted, or touched, or physically measured by a physical apparatus: length
(meter, m), mass (kilogram, kg), time (second, s), electric current (Ampere, A),
thermodynamic temperature (Kelvin, K), amount of substance (mole, mol), lumi-
nous intensity (candela, cd).
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743. Target program: The concept of target program stems from the fact that programs

of ordinary programming languages need to be translated into some intermediary lan-
guage or final machine, i.e., computer hardware, language, before their designated
computations (i.e., interpretations) can take place. By a target program we under-
stand such an intermediary or final program. (Besides the final target languages
made up from the repertoire of computer hardware instructions and computer (bit,
byte, half-word, word, double-word and variable field) data formats, special interme-
diary languages have been devised: P-code [94] (into which Pascal programs can be
translated) [230, 129, 231, 141, 232, 136, 7], A-code [93] (into which Ada programs
can be translated) [56, 226], etc.)

744. Taxonomy: By taxonomy is meant [160]: “classification, especially in relation to
its general laws or principles; that department of science, or of a particular science
or subject, which consists in or relates to classification.”.

745. Technique: A procedure, an approach, to accomplish something.

746. Technology: We shall in these volumes be using the term technology to stand for
the results of applying scientific and engineering insight. This, we think, is more in
line with current usage of the term IT, information technology.

747. Temporal: Of or relating to time, including sequence of time, or to time intervals
(i.e., durations).

748. Temporal logic: A(ny) logic [432] over temporal [747] phenomena. (We refer to Vol. 2,
Chap. 15 for our survey treatment of some temporal logics.)

749. Term: From [160]: A word or phrase used in a definite or precise sense in some
particular subject, as a science or art; a technical expression. More widely: any
word or group of words expressing a notion or conception, or denoting an object of
thought. (Thus, in RSL, a term is a clause [115], an expression[282], a statement [707], which
has a value [802] (statements have the Unit value).)

750. Terminal: By a terminal we shall mean a terminal symbol [728] which (in contrast to
a nonterminal [484] symbol) designates something specific.

751. Termination: The concept of termination is associated with that of an algorithm[31].
We say that an algorithm, when subject to interpretation[397] (colloquially: ‘execu-
tion’), may, or may not terminate. That is, may halt, or may “go on forever, forever
looping”. (Whether an algorithm terminates is undecidable [792].)

752. Terminology: By terminology is meant ([160]): The doctrine or scientific study
of terms; the system of terms belonging to a science or subject; technical terms
collectively; nomenclature.

753. Term rewriting: Same as rewriting .
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754. Test: A test is a means to conduct testing [755]. (Typically such a test is a set of data
values provided to a program (or a specification) as values for its free [305] variables.
Testing then evaluates the program (resp., interprets (symbolically) the specification)
to obtain a result (value) which is then compared with what is (believed to be) the,
or a, correct result. See Vol. 3, Sects. 14.3.2, 22.3.2 and 29.5.3 for treatments of the
concept of test.)

755. Testing: Testing is a systematic effort to refute a claim of correctness of one (e.g., a
concrete) specification (for example a program) with respect to another (the abstract)
specification. (See Vol. 3, Sects. 14.3.2, 22.3.2, and 29.5.3 for treatments of the
concept of testing.)

756. Theorem: A theorem is a sentence [660] that is provable without assumptions, that is
“purely” from axioms and inference rules.

757. Theorem prover: A mechanical, i.e., a computerised means for theorem proving [758].
(Well-known theorem provers are: PVS [184, 185] and HOL/Isabelle [180].)

758. Theorem proving: The act of proving theorems.

759. Theory: A formal theory is a formal [296] language [417], a set of axioms and inference

rules for sentences in this language, and is a set of theorems proved about sentences
of this language using the axioms and inference rules. A mathematical theory leaves
out the strict formality (i.e., the proof [554]system) requirements and relies on mathe-
matical proofs that have stood the social test of having been scrutinised by mathe-
maticians.

760. Three-valued logic: Standard logics are two value: true and false. A three-
valued logic is a logic for which the Boolean connectives accept a third value, usually
referred to as the undefined, or chaotic (non-termination[751] of operand expression[282]

evaluation[280]). (There can be, and are, many three-valued logics. RSL has one set of
definitions of the outcome of Boolean ground term evaluation with chaos operands.
LPF is a logic for partial functions sugggested as a logic for VDM [16, 65]. John
McCarthy [168] first broached the topic of three-valued logics in computing.)

761. Time: Time is often a notion that is taken for granted. But one may do well, or
better, in trying to understand time as some point set that satisfies certain axioms.
Time and space are also often related (via [other] physically manifest “things”).
Again their interrelationship needs to be made precise. (In comparative concurrency
semantics one usually distinguishes between linear time and branching time semantic
equivalences [223]. We refer to our treatment of time and space in Vol. 2 Chap. 5,
to Johan van Benthem’s book The Logic of Time [222], and to Wayne D. Blizard’s
paper A Formal Theory of Objects, Space and Time [57].)

762. Token: Something given or shown as an identity. (When, in RSL, we define a sort [694]

with no “constraining” axioms, we basically mean to define a set of tokens.)
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763. Tool: An instrument or apparatus used in performing an operation. (The tools
most relevant to us, in software engineering, are the specification[698] and programming

language [551]s as well as the software [685] packages that aid us in the development of
(other) software.)

764. Topology: (i) A branch of mathematics concerned with those properties of geomet-
ric configurations (as point sets) which are unaltered by elastic deformations (as a
stretching or a twisting) that are homeomorphisms; (ii) the set of all open subsets of
a topological space (i.e., being or involving properties unaltered under a homeomor-
phism [continuity and connectedness are topological properties]) [214].

765. Total algebra: A total algebra is an algebra all of whose functions are total over
the carrier.

766. Trace: The concept of trace is linked to the concept of a behaviour [79]. Trace is then
defined as a sequence of actions and events. ()

767. Training manual: A document [237] which can serve as a basis for a (possibly self-
study) course in how to use a computing system[151]. (See also installation manual [386]

and user manual [798].)

768. Transaction: General: A communicative action or activity involving two agent [24]s
that reciprocally influence each other. (Special: The term transaction has come to
be used, in computing, notably in connection with the use of database management
systems (DBMS, or similar multiuser systems): A transaction is then a unit of in-
teraction with a DBMS (etc.). To further qualify as being a transaction, it must be
handled, by the DBMS (etc.), in a coherent and reliable way independent of other
transactions.)

769. Transduce: To convert (a physical signal, or a message) into another form.

770. Transducer: A device that is actuated by power from one system and supplies power
usually in another form to a second system. (Finite state machines and pushdown stack

machines are considered transducers.)

771. Transformation: The operation of changing one configuration or expression into
another in accordance with a precise rule. (We consider the results of substitution[722],
of translation and of rewriting to be transformations of what the substitution[722], the
translation and the rewriting was applied to.)

772. Transition: Passage from one state, stage, subject or place to another; a movement,
development, or evolution from one form, stage or style to another [214].

773. Transition rule: A rule [638], of such a form that it can specify how any of a well-
defined class of states of a machine [436] may make transitions to another state, possibly
nondeterministically to any one of a well-defined number of other states. (The seminal
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1981 report A Structural Approach to Operational Semantics, by Gordon D. Plotkin
[193], set a de facto standard for formulating transition rules (exploring their theo-
retical properties and uses).)

774. Translate: See translation[775].

775. Translation: An act, process or instance of translating, i.e., of rendering from one
language into another.

776. Translator: Same as a compiler [125].

777. Tree: An acyclic [18] un-directed graph[232]. Thus a tree (i) has a root [632], which is
a node [479], and (ii) zero, one or more, possibly (branch[97] or edge [262]) label [410]led
subtrees. Trees or subtrees with no further subtrees have their roots being equated
with leaves. Nodes may be labelled. (This characterisation allows for trees with no
labels, with only labelled nodes, with only labelled branches, with labelled nodes
and branches, or with only some nodes and some branches being labelled. The
characterisation usually is interpreted as only allowing finite trees, but one could
dispense of the “finite applicability” of the above (i–ii) clauses, to allow infinite trees.
The branch concept, akin to the edge [262] concept, amounts, however, to a directed
edge, i.e., an arrow [54]. We refer specifically to parse tree [512]s. See also a “redefinition”
of trees as found just below, under tree traversal [778], including Fig. 13.)

778. Tree traversal: A way of visiting (all) the node [479]s of a tree [777]. Redefine the notion
of a tree [777] as just given above: Now a tree is a root node and an ordered set (i.e.,
like a list) of zero, one or more subtrees; each subtree is a tree. Roots are labelled.
Hence subtrees are labelled. A tree with an empty set of subtrees is called a leaf.
Their roots are the leaves. A tree traversal is now a way of visiting, in some order,
as indicated by the order of subtrees, (all) the nodes: the root, the branch nodes and
leaves, of a tree. (See the tree of Fig. 13 on the next page. It will be referred to in
entries in-order [381], post-order [533] and pre-order [538].)

779. Triptych: An ancient Roman writing tablet with three waxed leaves hinged to-
gether; a picture (as an altarpiece) or carving in three panels side by side [214]. (The
trilogy of the phases of software development [690], domain engineering [248], requirements

engineering [613] and software design[688] as promulgated by this trilogy of volumes!)

780. Tuple: A grouping of values. (Like 2-tuplets, quintuplets, etc. Used extensively, at
least in the early days, in the field of relational databases — where a tuple was like
a row in a relation (i.e., table).)

781. Turing machine: A hypothetical machine defined in 1935–1936 by Alan Turing
and used for computability theory proofs. It can be understood as consisting of a
finite state machine [290] and an infinitely long “tape” with symbols (chosen from some
finite set) written at regular intervals. A pointer marks the current position and the
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Figure 13: A labelled, ordered tree

machine is in one of states. At each step the machine reads the symbol at the current
position on the tape. For each combination of current state and symbol read, the
finite state machine specifies the new state and either a symbol to write to the tape
or a direction to move the pointer (left or right) or to halt [108]. (Turing machines
are equivalent, in computational power, to the Lambda-calculus [412].)

782. Type: Generally a certain kind of set of values. (See algebraic type, model-oriented

type, programming language type and sort.)

783. Type check: The concept of type check arises from the concepts of function signa-

tures and function arguments. If arguments are not of the appropriate type then a
type check yields an error [278] result. (By appropriate static [708] typing [788] of declara-

tions of variables of a programming language [551] or a specification language [699] one can
perform static type checking (i.e., at compile time [127]).)

784. Type constructor: A type constructor is an operation that applies to types and
yields a type [782]. (The type constructors of RSL include the power set constructors:
-set and -infset, the Cartesian constructor: ×, the list constructors: ∗ and ω, the
map constructor: →m , the total and partial function space constructors: → and

∼

→,
the union type constructor: |, and others.)

785. Type definition: A type definition semantically associates a type name [787] with a
type [782]. Syntactically, as, for example, in RSL, a type definition is either a sort [694]

definition or is a definition[210] whose right-hand side is a type expression[786].

786. Type expression: A type expression semantically denotes a type [782]. Syntactically,
as, for example, in RSL, a type expression is an expression involving type names and
type constructors, and, rarely, terminals.

787. Type name: A type name is usually just a simple identifier [351].
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788. Typing: By typing we mean the association of types with variables. (Usually such
an association is afforded by pairing a variable [803] identifier [351] with a type name [787]

in the variable declaration[201]. See also dynamic typing [261] and static typing [710].)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .U

789. UML: Universal Modelling Language. A hodgepodge of notations for expressing
requirements and designs of computing systems. (Vol. 2, Chaps. 10, and 12–14
outlines our attempt to “UML”-ize formal techniques.)

790. Universal algebra: A universal algebra[26] is an abstract algebra[2] where we leave the
postulates (axioms, laws) unspecified. (The universal level of abstract, the viewpoint
of universal algebras, represents for us [159], the high water mark of abstraction in
the treatment of algebraic systems [28].)

791. Underspecify: By an underspecified expression, typically an identifier, we mean
one which for repeated occurrences in a specification text always yields the same
value, but what the specific value is, is not knowable. (Cf. nondeterministic [481] or
loose specification[435].)

792. Undecidable: A formal logic system is undecidable if there is no algorithm[31] which
prescribes computation[144]s that can determine whether any given sentence in the
system is a theorem.

793. Universe of discourse: That which is being talked about; that which is being dis-
cussed; that which is the subject of our concern. (The four most prevalent universes
of discourse of this book, this series of volumes on software engineering, are: software

development [690] methodology [457], domains, requirements [605] and software design[688].)

794. Update: By an update we shall understand a change of value of a variable, including
also the parts, or all, of a database [195].

795. Update problem: By the update problem we shall understand that data stored
in a database [195] usually reflect some state of a domain, but that changes in the
external state of that domain are not always properly, including timely, reflected in
the database.

796. User: By a user we shall understand a person who uses a computing system[151], or a
machine [436] (i.e., another computing system) which interfaces with the former. (Not
to be confused with client [116] or stakeholder [703].)

797. User-friendly: A “lofty” term that is often used in the following context: “A
computing system, a machine, a software package, is required to be user-friendly” —
without the requestor further prescribing the meaning of that term. Our definition
of the term user-friendly is as follows: A machine [436] (software + hardware) is said
to be user-friendly (i) if the shared phenomena of the application domain[239] (and
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machine [436]) are each implemented in a transparent, one-to-one manner, and such
that no IT jargon, but common application domain[239] terminology [752] is used in their
(i.1) accessing, (i.2) invocation[402] (by a human user [796]), and (i.3) display (by the
machine); i.e., (ii) if the interface requirements [394] have all been carefully expressed
(commensurate, in further detailed ways: ..., with the user psyche) and correctly
implemented; and (iii) if the machine otherwise satisfies a number of performance

and dependability requirements [605] that are commensurate, in further detailed ways:
..., with the user psyche.

798. User manual: A document [237] which a regular user of a computing system[151] refers
to when in doubt concerning the use of some features of that system. (See also
installation manual [386] and training manual [767].)
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799. Valid: A predicate [536] is said to be valid if it is true for all interpretation[397]s. (In
this context think of an interpretation as a binding [88] of all free [305] variable [803]s of the
predicate expression to value [802]s; cf. satisfiable [644].)

800. Validation: (Let, in the following universe of discourse [793] stand consistently for
either domain[239], requirements [605] or software design[688].) By universe of discourse
validation we understand the assurance, with universe of discourse stakeholders, that
the specifications produced as a result of universe of discourse acquisition, universe
of discourse analysis and concept formation[153], and universe of discourse domain
modelling are commensurate with how the stakeholder views the universe of discourse.
(Domain and requirements validation[619] is treated in Vol. 3, Chaps. 14 and 22.)

801. Valuation: Same as evaluation[280].

802. Value: From (assumed) Vulgar Latin valuta, from feminine of valutus, past par-
ticiple of Latin valere to be of worth, be strong [214]. (Commensurate with that
definition, value, to us, in the context of programming (i.e., of software engineering),
is whatever mathematically founded abstraction[3] can be captured by our type [782] and
axiom[75] systems. (Hence numbers, truth values, tokens, sets, Cartesians, lists, maps,
functions, etc., of, or over, these.))

803. Variable: (i) From Latin variabilis, from variare to vary; (ii) able or apt to vary;
(iii) subject to variation or changes [214]. (Commensurate with that definition, a
variable, to us, in the context of programming (i.e., of software engineering), is a
placeholder, for example, a storage [715] location[431] whose contents may change. A
variable, further, to us, has a name, the variable’s identifier, by which it can be
referred.)

804. VDM: VDM stands for the Vienna Development Method [52, 53]. (VDM-SL (SL for
Specification Language) was the first formal specification language to have an inter-
national standard: VDM-SL, ISO/IEC 13817-1: 1996. The author of this book
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coined the name VDM in 1974 while working with Hans Bekič, Cliff B. Jones, Wolf-
gang Henhapl and Peter Lucas, on what became the VDM description of PL/I. The
IBM Vienna Laboratory, in Austria, had, in the 1960s, researched and developed se-
mantics descriptions [17, 18, 19, 163] of PL/I, a programming language of that time.
“JAN” (John A.N.) Lee [154] is believed to have coined the name VDL [155, 162] for
the notation (the Vienna Definition Language) used in those semantics definitions.
So the letter M follows, lexicographically, the letter L, hence VDM.)

805. VDM–SL: VDM-SL stands for the VDM Specification Language. (See entry VDM above.
Between 1974 and the late 1980s VDM-SL was referred to by the acronym Meta-IV:
the fourth metalanguage (for language definition) conceived at the IBM Vienna Lab-
oratory during the 1960s and 1970s.)

806. Verb: A word [814] that characteristically is the grammatical centre of a sentence and
expresses an act, occurrence or mode of being that in various languages is inflected
for agreement with the subject, for tense, for voice, for mood, or for aspect, and
that typically has rather full descriptive meaning and characterizing quality but is
sometimes nearly devoid of these especially when used as an auxiliary or linking verb
[214]. (We shall often find, in modelling, that we model verbs as functions (incl.
predicates).)

807. Verification: By verification we mean the process of determining whether or not a
specification (a description, a prescription) fulfills a stated property. (That stated
property could (i) either be a property of the specification itself, or (ii) that the spec-
ification relates, somehow, i.e., is correct with respect to some other specification.)

808. Verify: Same, for all practical purposes, as verification[807].

809. Vertex: Same as an node [479].
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810. Waterfall diagram: By a waterfall diagram is understood a two-dimensional dia-
gram with a number of boxes placed, say, on a diagonal, from a top left corner of
the diagram to a lower right corner, such that the individual boxes are sufficiently
spaced apart, i.e., do not overlap, and such that arrows (i.e., “the water”) infix ad-
jacent boxes along a perceived diagonal line. (The idea is then that a preceding
box, from which an arrow emanates, designates a software development activity that
must, somehow, be concluded before activity can start on the software development
activity designated by the box upon which the infix arrow is incident.)

811. Weakest pre-condition: The condition that characterizes the set of all initial
states, such that activation will certainly result in a properly terminating happening
leaving the system in a final state satisfying a given post-condition, is called “the
weakest pre-condition corresponding to that post-condition”. (We call it “weakest”,
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because the weaker a condition, the more states satisfy it and we aim here at char-
acterising all possible starting states that are certain to lead to a desired final state.)

812. Well-formedness: By well-formedness we mean a concept related to the way in
which information[373] or data structure [199] definitions may be given. Usually these
are given in terms of type definition[785]s. And sometimes it is not possible, due to
the context-free [173] nature of type definitions. (Well-formedness is here seen separate
from the invariant [400] over an information[373] or a data structure [199]. We refer to the
explication of invariant [400]!)

813. Wildcard: A special symbol that stands for one or more characters. (Many operat-
ing systems and applications support wildcards for identifying files and directories.
This enables you to select multiple files with a single specification. Typical wildcard
designators are * (asterisk) and (underscore).)

814. Word: A speech sound or series of speech sounds or a character or series of juxta-
posed characters that symbolizes and communicates a meaning without being divis-
ible into smaller units capable of independent use [214].
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