
From Domains to Requirements 1

Lecture Notes in Software Engineering
Budapest, 11–22 October 2010

Dines Bjørner

Fredsvej 11, DK-2840 Holte, Denmark
bjorner@gmail.com – www.imm.dtu.dk/~db

Begun: Tuesday June 22, 2010. Compiled: November 12, 2010: 11:28

Abstract
2

We present “standard” domain description and requirements prescription examples
using the RAISE [112] Specification Language, RSL [110]. The illustrated example is
that of transportation networks.

These notes shalll serve as lecture notes for my lectures at Uppsala, Nov.8-19,
2010. The present document is the ordinary “book-form”-like notes. A separate
document, compiled from the same files, present 11 sets of lecture slides. The “funny”
small numbers you see in the present document, in margins and at almost end of
display lines refer to slide page numbers of the slides document.

1

2 From Domains to Requirements

Lecture Notes 3

A Tentative Lecture Schedule

Lecture 1: Introduction Mo.8.11.2010 8–12

Lecture 2: Specification Ontology Mo.8.11.2010 13–26

Entities: Simple Entities, Actions, Events, Behaviours

Lecture 3: Domain Facets I Tu.9.11.2010 27–41

Intrinsics, Support Technologies, Rules & Regulations

Lecture 4: Domain Facets II We.10.11.2010 41–57

Scripts, Management & Organisation, Human Behaviour

Lecture 5: Requirements Facets I Th.11.11.2010 58–66

Domain Requirements I: Projection, Instantiation, Determiniation

Lecture 6: Requirements Facets II Fr.12.11.2010 66–74

Domain Requirements II: Extension, Fitting
Interface Requirements
Machine Requirements4

Lecture 7: RSL I Mo.15.11.2010 90–98

Types

Lecture 8: RSL II Tu.16.11.2010 98–113

Values and Operations

Lecture 9: RSL III We.17.11.2010 113–129

Logic, Λ-Calculus, Other Applicative Constructs

Lecture 10: RSL IV Th.18.11.2010 129–142

Imperative Constructs, Process Constructs, Specifications

Lecture 11: Conclusion Fr.19.11.2010 75–77

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 3

Contents

1 Introduction 8
1.1 The Problem . 8
1.2 General Remarks . 8

1.2.1 What are Domains . 8
1.2.2 What is a Domain Description . 9

Description Languages . 9
1.2.3 Contributions of These Lecture Notes . 9
1.2.4 Relation to Other Engineering Disciplines . 10

1.3 The Triptych Approach . 10
1.4 On The Structure of These Lecture Notes . 11
1.5 The Comparative Methodology Endeavour . 11
1.6 Caveat . 12

2 An Ontology of Specification Entities 13
2.1 Simple Entities . 13

2.1.1 Net, Hubs and Links . 13
2.1.2 Unique Hub and Link Identifiers . 13
2.1.3 Observability of Hub and Link Identifiers . 14
2.1.4 A Theorem . 15

Links implies Hubs . 15
2.1.5 Hub and Link Attributes . 15
2.1.6 Hub and Link Generators . 15

2.2 States . 17
2.3 Actions . 17

2.3.1 Insert Hubs . 17
2.3.2 Remove Hubs . 18
2.3.3 Insert Links . 18
2.3.4 Remove Links . 20
2.3.5 Two Theorems . 21

Idempotency . 21
Reachability . 21

2.4 Events . 21
2.5 Behaviours . 23

2.5.1 Behaviour Prescriptions . 23
Construction Plans . 23
Wellformedness of Construction Plans . 23

2.5.2 Augmented Construction Plans . 24
2.5.3 Sequential Construction Behaviours . 25

3 An Ontology of Domain Facets 27
3.0.4 Definitions . 27
3.0.5 What Can Be Observed . 27
3.0.6 Business Processes . 27

A Characterisation . 27
An Example . 27

3.1 Intrinsics . 28
3.1.1 Net Topology Descriptors . 28
3.1.2 Link States and Link State Spaces . 29
3.1.3 Hub States and Hub State Spaces . 30
3.1.4 State and State Space Wellformedness . 30

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

4 From Domains to Requirements

3.1.5 Concrete Types for Simple Entities . 31
3.1.6 Example Hub Crossings . 32
3.1.7 Actions Continued . 32

3.2 Support Technologies . 34
3.2.1 Traffic Signals . 34
3.2.2 Traffic “Control” . 35

3.3 Rules and Regulations . 36
3.3.1 Vehicles . 36
3.3.2 Traffic . 37

Wellformedness of Traffic . 37
• Static Wellformedness . 37
• Dynamic Wellformedness . 38

3.3.3 Traffic Rules (I of II) . 40
3.3.4 Another Traffic Regulator . 40
3.3.5 Traffic Rules (II of II) . 41

3.4 Scripts . 41
3.4.1 Routes as Scripts . 41

Paths . 41
Routes . 43

3.4.2 Bus Timetables as Scripts . 44
Buses . 44
Bus Stops . 44
Bus Routes . 44
Bus Schedule . 45
Timetable . 46

3.4.3 Route and Bus Timetable Denotations . 47
3.4.4 Licenses and Contracts . 47

Contracts . 48
Contractual Actions . 49
Wellformedness of Contractual Actions . 51

3.5 Management and Organisation . 52
3.5.1 Transport System Examples . 53

3.6 Human Behaviour . 54
3.7 Towards Theories of Domain Facets . 54

3.7.1 A Theory of Intrinsics . 54
3.7.2 Theories of Support Technologies . 54

An Example . 54
General . 55

3.7.3 A Theory of Rules & Regulations . 55
3.7.4 A Theory of Management & Organisation . 57
3.7.5 A Theory of Human Behaviour . 57

4 An Ontology of Requirements Constructions 58
4.1 Business Process Re-engineering . 58

4.1.1 The Kinds of Requirements . 58
4.1.2 Goals Versus Requirements . 59

Goals of a Toll Road System . 59
Goals of Toll Road System Software . 59
Arguing Goal-satisfaction of a Toll Road System 59
Arguing Goal-satisfaction of Toll Road System Software 60

4.1.3 Re-engineered Nets . 60

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 5

4.2 Domain Requirements . 62

4.2.1 Projection . 62

4.2.2 Instantiation . 63

Example . 63

Abstraction: From Concrete Toll Road Nets to Abstract Nets 64

Theorem . 65

4.2.3 Determination . 65

Example . 65

4.2.4 Extension . 66

Intuition . 66

Descriptions . 67

• A RAISE/CSP Model . 67

Toll Booth Plazas . 67

Cars . 68

Entry Booths . 68

Gates . 68

The Entry Plaza System . 69

• A Duration Calculus Model . 70

• A Timed Automata Model . 71

4.2.5 Fitting . 71

Examples . 72

4.3 Interface Requirements . 72

4.3.1 But First: On Shared Phenomena and Concepts 73

4.3.2 Shared Simple Entities . 73

Example . 73

4.3.3 Shared Actions . 73

Example . 73

4.3.4 Shared Events . 73

Examples . 73

4.3.5 Shared Behaviours . 74

Example . 74

4.4 Machine Requirements . 74

4.4.1 An Enumeration of Classes of Machine Requirements 74

5 Conclusion 75

5.1 What Have We Omitted . 75

5.2 Domain Descriptions Are Not Normative . 75

5.3 “Requirements Always Change” . 75

5.4 What Can Be Described and Prescribed . 75

5.5 What Have We Achieved – and What Not . 76

5.6 Relation to Other Work . 76

5.7 “Ideal” Versus Real Developments . 76

5.8 Description Languages . 76

5.9 Entailments . 76

5.10 Domain Versus Ontology Engineering . 77

6 Bibliographical Notes 77

6.1 Description Languages . 77

6.2 References . 77

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

6 From Domains to Requirements

A An RSL Primer 90
A.1 Types . 90

A.1.1 Type Expressions . 90
Atomic Types . 90

Example 1: Basic Net Attributes . 90
Composite Types . 91

Example 2: Composite Net Type Expressions 91
A.1.2 Type Definitions . 92

Concrete Types . 92
Example 3: Composite Net Types . 92
Example 4: Net Record Types: Insert Links . 94

Subtypes . 96
Example 5: Net Subtypes . 97

Sorts — Abstract Types . 98
Example 6: Net Sorts . 98

A.2 Concrete RSL Types: Values and Operations . 98
A.2.1 Arithmetic . 98
A.2.2 Set Expressions . 99

Set Enumerations . 99
Example 7: Set Expressions over Nets . 99

Set Comprehension . 100
Example 8: Set Comprehensions . 100

A.2.3 Cartesian Expressions . 101
Cartesian Enumerations . 101

Example 9: Cartesian Net Types . 101
A.2.4 List Expressions . 102

List Enumerations . 102
List Comprehension . 102

Example 10: Routes in Nets . 102
A.2.5 Map Expressions . 104

Map Enumerations . 104
Map Comprehension . 104

Example 11: Concrete Net Type Construction 105
A.2.6 Set Operations . 106

Set Operator Signatures . 106
Set Examples . 106
Informal Explication . 107
Set Operator Definitions . 107

A.2.7 Cartesian Operations . 108
A.2.8 List Operations . 108

List Operator Signatures . 108
List Operation Examples . 108
Informal Explication . 109
List Operator “Definitions” . 109

A.2.9 Map Operations . 110
Map Operator Signatures and Map Operation Examples 110
Map Operation Explication . 111

Example 12: Miscellaneous Net Expressions: Maps 112
Map Operation “Redefinitions” . 112

A.3 The RSL Predicate Calculus . 113
A.3.1 Propositional Expressions . 113

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 7

A.3.2 Simple Predicate Expressions . 113
A.3.3 Quantified Expressions . 114

Example 13: Predicates Over Net Quantities 114
A.4 λ-Calculus + Functions . 115

A.4.1 The λ-Calculus Syntax . 115
A.4.2 Free and Bound Variables . 115
A.4.3 Substitution . 116
A.4.4 α-Renaming and β-Reduction . 116

Example 14: Network Traffic . 116
A.4.5 Function Signatures . 119

Example 15: Hub and Link Observers . 119
A.4.6 Function Definitions . 120

Example 16: Axioms over Hubs, Links and Their Observers 121
A.5 Other Applicative Expressions . 121

A.5.1 Simple let Expressions . 121
A.5.2 Recursive let Expressions . 121
A.5.3 Non-deterministic let Clause . 121
A.5.4 Pattern and “Wild Card” let Expressions . 122
A.5.5 Conditionals . 122

Example 17: Choice Pattern Case Expressions: Insert Links 123
A.5.6 Operator/Operand Expressions . 129

A.6 Imperative Constructs . 129
A.6.1 Statements and State Changes . 129
A.6.2 Variables and Assignment . 130
A.6.3 Statement Sequences and skip . 130
A.6.4 Imperative Conditionals . 130
A.6.5 Iterative Conditionals . 131
A.6.6 Iterative Sequencing . 131

A.7 Process Constructs . 131
A.7.1 Process Channels . 131

Example 18: Modelling Connected Links and Hubs 131
A.7.2 Process Definitions . 133

Example 19: Communicating Hubs, Links and Vehicles 133
A.7.3 Process Composition . 134

Example 20: Modelling Transport Nets . 134
A.7.4 Input/Output Events . 136

Example 21: Modelling Vehicle Movements . 136
A.8 Simple RSL Specifications . 138

Example 22: A Neat Little “System” . 140

B Terminology 143
B.1 Term Table of Contents . 143
B.2 Terms . 143
Last page . 232

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

8 From Domains to Requirements

1 Introduction 5

1.1 The Problem

The problem to be solved by this technical note is to present in one specific formal specifi-
cation language, RSL [112], a domain description and a requirements prescription developed
according to the “triptych approach” [34].

1.2 General Remarks

Before we can design software we must have a robust understanding of its requirements. And
before we can prescribe requirements we must have a robust understanding of the environment,
or, as we shall call it, the domain in which the software is to serve – and as it is at the time
such software is first being contemplated.

In consequence we suggest that software, “ideally”1, be developed in three phases.
First a phase of domain engineering. In this phase a reasonably comprehensive

description is constructed from an analysis of the domain. That description, as it evolves,
is analysed with respect to inconsistencies, conflicts and completeness on one hand, and,
on the other hand, in order to achieve pleasing concepts in terms of which to abstractly
model the domain (Sect. 3).

Then a phase of requirements engineering. This phase is strongly based, as we shall
see (in Sect. 4), on an available, necessary and sufficient domain description. Guided by the
domain and requirements engineers the requirements stakeholders point out which domain
description parts are to be left (projected) out of the domain requirements, and of those
left what forms of instantiations, determinations and extensions are required. Similarly
the requirements stakeholders, guided by the domain and requirements engineers, inform
as to which domain entities, actions, events and behaviours are shared between the domain
and the machine, that is, the hardware and the software being required. In these notes we
shall only very briefly cover aspects of machine requirements.

And finally a phase of software design. We shall not cover this phase in these notes.

Methodology
These notes focus on methodology – where a method is seen as a set of principles (applied
by engineers, not machines) for selecting and applying (often with some tool support)
techniques (and tools) for the efficient construction of some artifact – here software.

1.2.1 What are Domains

By a domain we shall thus understand a universe of discourse, an area of nature subject
to laws of physics and studies by physicists, or an area of human activity (subject to its
interfaces with nature). There are other domains which we shall ignore. We shall focus
on the human-made domains. “Large scale” examples are the financial service industry:

1Section 5.7 will discuss practical renditions of “idealism”!

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 9

banking, insurance, securities trading, portfolio management, etc., health care: hospitals,
clinics, patients, medical staff, etc., transportation: road, rail/train, sea, and air transport
(vehicles, transport nets, etc.); oil and gas systems: pumps, pipes, valves, refineries, distri-
bution, etc. “Intermediate scale” examples are automobiles: manufacturing or monitoring
and control, etc.; and heating systems.

The above explication was “randomised”: for some domains, to wit, the financial service
industry, we mentioned major functionalities, for others, to wit, health care, we mentioned
major entities. An objection can be raised, namely that the above characterisation – of
what a domain is – is not sufficiently precise. We shall try, in the next section, to partially
meet this objection.

1.2.2 What is a Domain Description

By a domain description we understand a description of the entities, the actions, the
events and the behaviours of the domain, including its interfaces to other domains. A
domain description describes the domain as it is. A domain description does not contain
requirements let alone references to any software. Michael Jackson, in [138], refers to
domain descriptions as indicative (stating objective fact), requirements prescriptions as
optative (expressing wish or hope) and software specifications as imperative (“do it!”). A
description is syntax. The meaning (semantics) of a domain description is usually a set of
domain models. We shall take domain models to be mathematical structures (theories).
The form of domain descriptions that we shall advocate “come in pairs”: precise, say,
English, i.e., narrated text (narratives) alternates with clearly related formula text.

Description Languages Besides using as precise a subset of a national language, as here
English, as possible, and in enumerated expressions and statements, we “pair” such nar-
rative elements with corresponding enumerated clauses of a formal specification language.
We shall be using the RAISE Specification Language, RSL, [112], in our formal texts. But
any of the model-oriented approaches and languages offered by Alloy [137], Event B [3],
VDM [107] and Z [233], should work as well. No single one of the above-mentioned formal
specification languages, however, suffices. Often one has to carefully combine the above
with elements of Petri Nets [199], CSP: Communicating Sequential Processes [128],
MSC: Message Sequence Charts [136], Statecharts [120], and some temporal logic, for
example either DC: Duration Calculus [235] or TLA+ [147]. Research into how such di-
verse textual and diagrammatic languages can be meaningfully and proof-theoretically
combined is ongoing [9].

1.2.3 Contributions of These Lecture Notes

We claim that the major contributions of the triptych approach to software engineering
as presented in these notes are the following: (1) the clear identification of domain engi-
neering, or, for some, its clear separation from requirements engineering (Sects. 3 and 4);
(2) the identification and ‘elaboration’ of the pragmatically determined domain facets of

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

10 From Domains to Requirements

(a) intrinsics, (b) support technologies, (c) rules and regulations, (d) scripts (licenses and
contracts), (e) management and organisation, and (f) human behaviour whereby ‘elabora-
tion’ we mean that we provide principles and techniques for the construction of these facet
description parts (Sects. 3.1–3.6); (3) the re-identification and ‘elaboration’ of the concept
of business process reengineering (Sect. 4.1); (4) the identification and ‘elaboration’ of the
technically determined domain requirements facets of (g) projection, (h) instantiation, (i)
determination, (j) extension and (k) fitting requirements principles and techniques – and,
in particular the “discovery” that these requirements engineering stages are strongly de-
pendent on necessary and sufficient domain descriptions (Sects. 4.2.1–4.2.5); and (5) the
identification and ‘elaboration’ of the technically determined interface requirements facets
of (l) shared simple entity, (m) shared action, (n) shared event and (o) shared behaviour
requirements principles and techniques (Sects. 4.3.2–4.3.5). We claim that the facets of (2,
3, 4) and (5) are all relatively new.

1.2.4 Relation to Other Engineering Disciplines

An aeronautics engineer – to be hired by Boeing to their design team for a next genera-
tion aircraft – must be pretty well versed in applied mathematics and in aerodynamics. A
radio communications engineer – to be hired by Ericsson to their design team for a next
generation mobile telephony antennas – must be likewise pretty well versed in applied math-
ematics and in the physics of electromagnetic wave propagation in matter. And so forth.
Software engineers hired for the development of software for hospitals, or for railways,
know little, if anything, about health care, respectively rail transportation (schedulimg,
rostering, etc.). The Ericsson radio communications engineer can be expected to un-
derstand Maxwell’s Equations, and to base the design of antenna characteristics on the
transformation and instantiation of these equations. It is therefore quite reasonable to ex-
pect the domain-specific software engineer to understand formalisation of their domains, to
wit: railways: www.railwaydomain.org, and pipelines: pipelines.pdf, logistics: logi-

stics.pdf, transport nets: comet1.pdf, stock exchanges: tse-2.pdf and container lines:
container-paper.pdf – these latter five at www.imm.dtu.dk/~db/.

1.3 The Triptych Approach 6

The “triptych approach” calls for a thorough description (cum analysis) of the domain
before one attempts prescribing requirements for specific software.

As part of the triptych approach to domain engineering one starts by exploring the de-
scription ontology of specification entities: simple entities, actions, events and behaviours
(Sect. 2) before delving into the description ontology of facets: intrinsics, support tech-7

nologies, rules & regulations, scripts (licenses and contracts), management & organisation
and human behaviour (Sect. 3).8

And, as part of the triptych approach to requirements engineering one starts by ex-
ploring the reengineering of business processes before delving into domain requirements
concepts of projection, instantiation, determination, extension and fitting – followed by

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 11

a number of interface requirements stages. The terms in slanted script are defined in
Appendix B.

For a more pedagogic and didactical introduction to these terms we refer to either of
[36, 50, 49, 45, 46, 47] or to [34, 39, 44].

1.4 On The Structure of These Lecture Notes

The presentation (i.e., structuring) of the technical material of these lecture nptes is not
meant to suggest that all domain descriptions and requirements prescriptions follow this
mold. As mentioned just above our presentation follows the structure of simple entity,
action, event, and behaviour specification ontology (Sect. 2), then the structure of the do-
main facets: intrinsics, support technology, rules & regulations, scripts (licenses, contracts),
management & organisation and human behaviour (Sect. 3), and finally the structure of
the business re-engineering (Sect. 4.1.3), the domain requirements concepts of projection,
instantiation, determination, extension and fitting (Sect. 4.2), and a number of interface
requirements facets (Sect. 4.3).

I expect such students who might be pursuing specifications based on the example of
this document to do so, either, as here, in RSL [110], or according to approaches embodied
in Alloy [137], CafeOBJ [109], Event B [3], VDM [107] and Z [233]. But I do not expect
them to follow exactly the order used in this document – although it migt well be a good
idea, pedagogically and didactically.

Two remarks are in order:

• Rather I expect Alloy, CafeOBJ, Event B, VDM-SL and Z specifications to follow
a “most natural order” appropriate for their approaches.

• The order in which I have chosen to present the current material reflects a both
pedagogic and didactic views.2 In a commercial project I might very well choose
another decomposition of the material — being guided, however, by the need to
cover all the footnoted (Footnote 2) facets.

1.5 The Comparative Methodology Endeavour

These notes are intended to replace:

• http://www.imm.dtu.dk/˜db/bjorner-8jan2010.pdf

• http://www.complang.tuwien.ac.at/bjorner/book.pdf

which were first suggested as a basis for the Comparative Methodology endeavour, cf.

2The sequence of the simple entity, action, event, behaviour, domain facets: intrinsics, support tech-
nology, rules & regulations, scripts (licenses, contracts), management & organisation, human behaviour,
domain requirements: projection, instantiation, determination, extension, fitting and the interface require-
ments facets reflect these views.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

12 From Domains to Requirements

• http://www2.imm.dtu.dk/˜db/comet/

• http://formalmethods.wikia.com/wiki/CoMet .

Rewriting the above referenced earlier notes into the present notes were begun after Kokichi
Futatsugi’s CafeOBJ lectures. I am happy to acknowledge being thus challenged.

1.6 Caveat

The many examples of Sect. A, the RSL Primer, stem from an earlier version of this attempt
to give a ‘model’ presentation of domains and requirements. They have yet to coordinated
with the the present rewrite of Sects. 2–4.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 13

2 An Ontology of Specification Entities 9

Definition: Ontology. In philosophy: A systematic account of Existence. To us: An
explicit formal specification of how to represent the phenomena and concepts that are
assumed to exist in some area of interest (some universe of discourse) and the relationships
that hold among them. Further clarification: An ontology is a catalogue of concept[152]s and
their relationships — including properties as relationships to other concepts. 10

Definition: Specification. We use the term ‘specification’ to cover the concepts of do-
main description[243]s, requirements prescription[615]s and software design[688]s. More specifically
a specification is a definition[210], usually consisting of many definitions.
Definition: Entity. By an entity we shall understand either a simple entity[681]3, an
action[12], an event[281] or a behaviour[79].

2.1 Simple Entities 11

Definition: Simple Entity. By a simple entity we shall loosely understand an individual,
static[708] or inert[367] dynamic[260] and that simple entities “roughly correspond” to what we
shall think of as value[802]s. We shall further allow simple entities to be either atomic[63] or
composite[133], i.e., in the latter case having decomposable sub-entities. Simple entities have 12

attribute[69]s. Composite entities have attribute[69]s, sub-entities and a mereology[451], the latter
explains how the sub-entities are formed into the simple entity.

2.1.1 Net, Hubs and Links 13

1. There are nets, hubs and links.

2. A net contains zero, one or more hubs.

3. A net contains zero, one or more links.

type

1. N, H, L
value

2. obs Hs: N → H-set

3. obs Ls: N → L-set

2.1.2 Unique Hub and Link Identifiers 14

4. There are hub identifiers and there are link identifiers.

5. From a hub one can observe its hub identifier.

6. From a link one can observe its link identifier.

3The superscript [bracketed numbers] refer to Sect. B’s Item 681 on page 217.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

14 From Domains to Requirements

7. Hubs of a net have unique hub identifiers.

8. Links of a net have unique hub identifiers.

type

4. HI, LI
value

5. obs HI: H → HI
6. obs LI: L → LI

axiom

7. ∀ n:N, h,h′:H • {h,h′}⊆obs Hs(n) ∧ h6=h′ ⇒ obs HI(h) 6=obs HI(h′)
8. ∀ n:N, l,l′:L • {l,l′}⊆obs Ls(n) ∧ l6=l′ ⇒ obs LI(l) 6=obs LI(l′)

2.1.3 Observability of Hub and Link Identifiers 15

9. From every hub (of a net) we can observe the identifiers of the zero, one or more
distinct links (of that net) that the hub is connected to.

value

9. obs LIs: H → LI-set
axiom

9. ∀ n:N,h:H•h ∈ obs Hs(n) ⇒ ∀ li:LI•li ∈ obs LIs(h) ⇒ L exists(li)(n)
value

L exists: LI → N → Bool

L exists(li)(n) ≡ ∃ l:L•l ∈ obs Ls(n)∧obs LI(l)=li

16

10. From every link (of a net) we can observe the identifiers of the exactly two (distinct)
hubs (of that net) that the link is connected to.

value

10. obs HIs: L → HI-set
axiom

10. ∀ n:N,l:L•l ∈ obs Ls(n) ⇒
10. card obs HIs(l)=2 ∧ ∀ hi:HI•hi ∈ obs HIs(l) ⇒ H exists(hi)(n)

value

H exists: HI → N → Bool

H exists(hi)(n) ≡ ∃ h:H•h ∈ obs Hs(n)∧obs HI(h)=hi

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 15

2.1.4 A Theorem 17

Links implies Hubs

11. It follows from the above that if a net has at least one link then it has at least two
hubs.

theorem:

11. ∀ n:N • card obs Ls(n)≥1 ⇒ card obs Hs(n)≥2

2.1.5 Hub and Link Attributes 18

In preparation for later descriptions, narrative and formal, we make a slight detour to deal
with hub and link attributes – but we omit, at present, from describing these attributes.

12. hub and link attributes, HAtrs and LAtrs, include the hub and link identifiers that
can be observed from hubs and links, respecively.

13. These can be observed from hubs and links of nets.

14. And these can be provided as arguments when construction hubs and links.

type

12. HAtrs, LAtrs
value

13. obs HAtrs: H → HAtrs
14. obs LAtrs: L → LAtrs
13. obs HI: HAtrs → HI
13. obs LIs: HAtrs → LI-set
14. obs LI: LAtrs → LI
14. obs HIs: LAtrs → HI-set

2.1.6 Hub and Link Generators 19

15. From [a (full) set of] hub attributes

a) including an empty set of observable link identifiers

one can generate a hub with

a) the hub identifier being that of the argument hub attributes,

b) the link identifiers of the hub being argument the empty set of link identifiers
of the hub attributes and

c) the argument hub attributes being those of the resulting hub,

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

16 From Domains to Requirements

15. genH: HAtrs → H
15. genH(hatrs) as h
15a. pre obs LIs(hatrs)={}
15a. post obs HI(h)=obs HI(hatrs)
15b. ∧ obs LIs(h)={}
15c. ∧ obs HAtrs(h)=hatrs

20

16. From the set of hub attributes and a net one can “similarly” generate a hub which
is not a hub of the net.

17. From the set of link attributes one can “similarly” generate a link.

18. From the set of link attributes and a net one can “similarly” generate a link which
is not a link of the net.

where the reader is to narrate and formalise the “similarities”!21

16. genH: HAtrs → N → H
16. genH(hatrs)(n) as h
16. pre obs LIs(hatrs)={}
16. ∧ ∼∃ h′:H•h′ ∈ obs Hs(n) ∧ obs HI(h′)=obs HI(hatrs)
16. post h 6∈ obs Hs(n)
16. ∧ obs HI(h)=obs HI(hatrs)
16. ∧ obs LIs(h)={}
16. ∧ obs HAtrs(h)=hatrs

17. genL: LAtrs → L
17. genL(latrs) as l
17. pre card obs HIs(latrs)=2
17. post obs LI(l)=obs LI(latrs)
17. ∧ obs LI(l)=obs LI(latrs)
17. ∧ obs HIs(l)=obs HIs(latrs)

18. genL: LAtrs → N → L
18. genL(latrs)(n) as l
18. pre card obs LIs(latrs)=2
18. ∧ obs LIs(latrs)⊆xtr LIs(n)
18. post l 6∈ obs Ls(n)
18. ∧ obs LI(l)=obs LI(latrs)
18. ∧ obs HIs(l)⊆obs HIs(latrs)
18. ∧ obs LAtrs(l)=latrs

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 17

2.2 States 22

Definition: State. By a state we shall understand a collection of one or more simple
entities.

2.3 Actions

Definition: Action. By an action we shall understand something which potentially
changes a state[705], that is, a function application to a state which potentially changes that
state.

2.3.1 Insert Hubs 23

19. One can insert a hub, h, into a net, n.

The hub to be inserted

20. must not be a hub of the net and

21. h cannot already be connected to any links.

That is, we can only insert “isolated” hubs.

The result of inserting a hub, h, into a net, n, is a new net, n′,

22. which is like n except that it now also has the hub h.

24

value

19. insertH: HAtrs → N
∼

→ N
19. insertH(hatrs)(n) as n′

19. let h = genH(hatrs)(n) in

20. pre h 6∈ obs Hs(n)
21. ∧ obs LIs(h) = {}
22. post obs Ls(n)=obsLs(n′)
22. ∧ obs Hs(n′)=obs Hs(n)∪{h}
22. ∧ obs HAtrs(h)=hatrs
19. end

Theorem: Inserting a proper hub in a well-formed net that is, a net satisfying all relevant
axioms, results in a likewise well-formed net.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

18 From Domains to Requirements

2.3.2 Remove Hubs 25

23. One can remove a hub, h, from a net, n.

The hub to be removed

24. must be a hub of the net and

25. h cannot be connected to any links.

That is, the hub, h, may earlier – in is membership of the net – have been connected
to links, but these must already, at the time of hub removal, have been removed, see
below.

That is, we can only remove “isolated” hubs.

26. The result of removing a hub, h, from a net, n, is a new net, n′,

27. which is like n

28. except that it now no longer has hub h.

26

value

23. removeH: H → N
∼

→ N
26. removeH(h)(n) as n′

24. pre h ∈ obs Hs(n)
25. ∧ obs LIs(h) = {}
27. post obs Ls(n)=obsLs(n′)
28. ∧ obs Hs(n′)=obs Hs(n)\{h}

Please note the almost line-by-line similarity of the insert and remove hub descriptions and
that the only difference between these descriptions are the membership, union, respectively
set difference operations (6∈, ∈, ∪ respectively \).

2.3.3 Insert Links 27

29. One can insert a link, ℓ, into a net, n.

The link to be inserted must

30. not be a link of the net,

31. but the observable hub identifiers must be those of hubs of the net.
28

The result of inserting a link, ℓ, into a net,

32. n, is a new net, n′,

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 19

33. in which ℓ is now a member.

34. Let hji
, hki

be the two (distinct) hub identifiers of ℓ and

35. let hj, hk be the two (distinct) hubs of n which are identified by hji
, hki

.

36. All hubs of net n except hj, hk are the same as in n and are unchanged in n′.

37. The two hubs hj, hk of n become hubs h′

j , h
′

k of n′

38. such that only the observable identifiers of connected links have changed to now also
include the identifier of link ℓ,

39. and such that the observed attributes are those of the argument.

29

value

29. insertL: L × LAtrs → N
∼

→ N
32. insertL(l,latrs)(n) as n′

30. pre l 6∈ obs Ls(n)
31. ∧ obs HIs(l)⊆xtrHIs(n)
33. post obs Ls(n′) = obs Ls(n) ∪ {l}
34. ∧ let {hji,hki}=obs HIs(l) in

35. let (hj,hk) = (getH(hji)(n),getH(hki)(n)) in

31. {hj,hk}⊆obs Hs(n)
36. ∧ obs Hs(n)\{hj,hk} = obs Hs(n′)\{hj,hk}
37. ∧ let (hj′,hk′) = (getH(hji)(n′),getH(hki)(n′)) in

38. obs LIs(hk′) = obs LIs(hk′) ∪ {obs LI(l)}
38. ∧ obs LIs(hj′) = obs LIs(hj′) ∪ {obs LI(l)} end end end

39. ∧ obs LAtrs(l) = latrs

30

xtrHIs: N → HI-set
xtrHIs(n) ≡ {obs HI(h)|h:H•h ∈ obs Hs(n)}

getH: HI → N
∼

→ H
getH(hi)(n) ≡ let h:H • h ∈ obs Hs(n) ∧ obs HI(h)=hi in h end

pre ∃ h:H • h ∈ obs Hs(n) ∧ obs HI(h)=hi

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

20 From Domains to Requirements

2.3.4 Remove Links 31

40. One can remove a link, ℓ, from a net, n.

The link to be removed must

41. be a link of the net.
32

The result of removing a link, ℓ, from a net,

42. n, is a new net, n′,

43. in which ℓ is no longer a member.

44. Let hji
, hki

be the two (distinct) hub identifiers of ℓ and

45. let hj, hk be the two (distinct) hubs of n which are identified by hji
, hki

.

46. hj , hk are in n′.

47. All hubs of net n except hj, hk are the same as in n and are unchanged in n′.

48. The two hubs hj, hk of n become hubs h′

j , h
′

k of n′

49. such that only the observable identifiers of connected links have changed to now no
longer include the identifier of link ℓ.

33

value

40. removeL: L → N
∼

→ N
42. removeL(l)(n) as n′

41. pre l ∈ obs Ls(n)
43. post obs Ls(n′) = obs Ls(n) \ {l}
44. ∧ let {hji,hki}=obs HIs(l) in

45. let (hj,hk) = (getH(hji)(n),getH(hki)(n)) in

46. {hj,hk}⊆obs Hs(n)
47. ∧ obs Hs(n)\{hj,hk} = obs Hs(n′)\{hj,hk}
48. ∧ let (hj′,hk′) = (getH(hji)(n′),getH(hki)(n′)) in

49. obs LIs(hk′) = obs LIs(hk′) \ {obs LI(l)}
49. ∧ obs LIs(hj′) = obs LIs(hj′) \ {obs LI(l)} end end end

Please note the almost line-by-line similarity of the insert and remove link descriptions and
that the only difference between these descriptions are the union, respectively set difference
operations (∪ respectively \).

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 21

2.3.5 Two Theorems 34

Idempotency With the preconditions satisfied by the insert and remove actions one can
prove that first inserting a hub (link) into a net and then removing that hub (link) from
the resulting net restores the original net:

theorem

∀ n,n′:N,h:H,l:L •

pre insertH(h)(n) ∧ removeH(h)(n′) ∧ insertL(l)(n) ∧ removeL(l)(n′) ⇒
removeH(h)(insertH(h)(n)) = n ∧ removeL(l)(insertL(l)(n))

Reachability 35 Any net that satisfies the axioms above can be constructed by
sequences of insert hub and link actions.

theorem

let n nil:N • obs Hs(n nil)=obs Ls(n nil)={} in

∀ n:N ⊢ axioms 7. and 8 on page 14.; 9 on page 14. 10 on page 14. •

∃ hl:H∗, ll:L∗ • let n′ = insertHs(hl)(n nil) in insertHs(ll)(n′)=n end

end

insertHs: H∗ → N
∼

→ N

insertLs: L∗ → N
∼

→ N

insertHs(hl)(n) ≡ case hl of 〈〉 → n, 〈h〉̂hl′ → insertHs(hl′)(insertH(h)(n)) end

insertLs(ll)(n) ≡ case ll of 〈〉 → n, 〈l〉̂ll′ → insertLs(ll′)(insertL(l)(n)) end

36

Informal proof: An informal proof goes like this: Take a net. For every hub, h, in that
net, let h′ be a version of h which has the same hub identifier, an empty set of observable
link identifiers (of connected links), and otherwise all other attributes of h, let h′ be a
member of the list of hubs – and only such hubs. Let every and only such links in n
be members of the list of links. Performing first the insertion of all hubs and then the
insertions of all links will “turn the trick” ! end of informal proof.

2.4 Events 37

Definition: Event. An event is something that occurs instantaneously. Events are man-
ifested by certain state[705] changes, and by certain interaction[392]s between behaviour[79]s or
process[544]es. The occurrence of events may “trigger” [further] actions. How the triggering,
i.e., the invocation[402] of functions are brought about is usually left implied, or unspecified. 38

A mudslide across a railway track or a road segment (i.e., a link) represents an event
that effectively “removes” the link, or at least a segment of a link. Similarly if a train
and/or automobile bridge collapses or a tunnel gets flooded or catches fire.

How are we to model such, and other events? 39

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

22 From Domains to Requirements

50. We choose to model the event” “disappearance” of a segment of a link identified by
li:LI as the composition of the following actions:

a) the removal of link l:L being affected, where li:LI identifies the link in the
network;

b) the insertion of two hubs, h′,h′′:H , corresponding to “points” (on link l:L) on
either side of the mudslide or bridge – or other; and

c) the insertion of two links, l′,l′′:L, between the hubs of the original link and the
new hubs.

d) li:LI must identify a link l:L of net n:N .

50b. newH: N → H-set → H
50b. newH(n)(hs) ≡ let h:H • h 6∈ hs ∧ obs LIs(h)={} in h end

50c. newL: N → L-set → (HI×HI) → L
50c. newL(n)(ls)(hi′,hi′′) ≡ let l:L • l 6∈ ls ∧ obs HIs(l)={hi′,hi′′} in l end

40

value

50. event link disappearance: LI → N
∼

→ N
50a. let l = xtrL(li)(n) in

50a. let {hi′,hi′′} = obs HIs(l) in

50a. let n′ = removeL(l)(n) in

50b. let h′= newH(n)(obs Hs(n)) in

50b. let h′′ = newH(n)(obs Hs(n)∪{h′}) in

50b. let n′′ = insertH(h′)(insertH(h′′)(n)) in

50c. let l′ = newL(n)(obs Ls(n))(obs HI(h′),hi′) in

50c. let l′′ = newL(n)(obs Ls(n)∪{l′})(obs HI(h′′),hi′′) in

50c. insertL(l′)(insertL(l′′)(n′′)) end end end end end end end end

50d. pre li ∈ xtrLIs(n)

The newH and newL generator (or constructor) functions are simplified versions of more
realistic such functions. Hubs and links, as we shall see, have attributes beyond those
obs HI, obs LI, obs LIs and obs HIs. Proper newH and newL generator definitions must
express that initial values be ascribed to these other attributes. Examples of further hub
and link attributes are: spatial location, name4, mode5, length for links, etcetera. So,
eventually, the definitions of the newH and newL constructors will have to be redefined.

There will be very many other kinds of events in connection with transportation.

More to come

4Names of hubs and links must not be confused with hub and link identifiers: Two or more hubs
and/or links may have the same name. Hub and link identifiers may be thought of as abstractions of
some composition of locations and names in that no two hubs and/or links can “occupy” “overlapping”
locations, that is, locations are unique.

5whether road, railway, shipping or air traffic hubs and links, or, even combinations of these

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 23

2.5 Behaviours 41

Definition: Behaviour. By behaviour we shall understand the way in which something
functions or operates. In the context of domain engineering[248] behaviour is a concept
associated with phenomena, in particular manifest entities[272]. And then behaviour is that
which can be observed about the value[802] of the entity[272] and its interaction[392] with an
environment[275]. A simple, sequential behaviour is a sequence of zero, one or more actions
and events.

2.5.1 Behaviour Prescriptions 42

Usually behaviours follow a prescription.
In the case of net construction we refer to the prescription as a construction plan.

Construction Plans

51. The plan for constructing a net can be abstracted as

a) a map, PLAN, which to each hub identifier associates

b) a link-to-hub identifier map, LHIM, from the identifiers of links emanating from
the hub to identifiers of connected hubs.

type

51a. PLAN = HI →m LHIM
51b. LHIM = LI →m HI

The hub identifiers of the definition set of construction plans are called the defining occur-
rences of hub identifiers.

The hub identifiers of the ranges of link-to-hub identifier map are called the using
occurrences of hub identifiers.

Wellformedness of Construction Plans 43

52. Wellformed net construction plans satisfy three conditions:

a) All Links are Two-way Links:

i. Let hk be any hub identifier of the construction plan.

ii. For all link identifiers, lj , of the LIHM, lhimk, mapped into by hk,

iii. let hℓ be the hub identifier mapped into by lj in lhimk,

iv. then lj is in the link-to-hub-identifier map, lhimℓ, mapped into by hℓ,
44

b) Using Hub Identifier Occurrences are Defined:

i. Let lhim be any link-to-hub-identifier map of a construction plan.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

24 From Domains to Requirements

ii. For every hub identifier, hi, mapped to by a link identifier, lj, in lhim

iii. there exists a hub identifier, hk, that maps into lj ; and
45

c) No Junk: To secure consistency between hub and link identifiers of a construc-
tion plan we impose: all the defined hub identifiers of a construction plan are
in the range of some link to hub identifier map of that plan; and each of the
hub identifiers of some link to hub identifier map are defined in the construction
plan are in the range of some link to hub identifier map of that plan.

value

52. wf PLAN: PLAN → Bool

52. wf PLAN(plan) ≡
52a. all links are two way links(plan) ∧
52b. hub identifier occurrences are defined(plan) ∧
52c. no junk(plan)

46

52a. all links are two way links: PLAN → Bool

52a. all links are two way links(plan) ≡
52(a)i. ∀ hk:HI • hk ∈ dom plan ⇒
52(a)ii. ∀ lj:LI • lj ∈ dom plan(hk) ⇒
52(a)iii. let hl = (plan(hk))(lj) in

52(a)iv. lj ∈ dom plan(hl) end

52b. hub identifier occurrences are defined: PLAN → Bool

52b. hub identifier occurrences are defined(plan) ≡
52(b)i. ∀ hlim:HLIM•hlim ∈ rng plan
52(b)ii. ∀ lj:LI • lj ∈ dom lhim ⇒
52(b)iii. ∃ hk:HI • hk ∈ dom plan ∧ lj ∈ dom plan(hk)

52c. no junk: PLAN → Bool

52c. no junk(plan) ≡ dom plan = ∪{rng(plan(hi))|hi:HI•hi ∈ dom plan}

2.5.2 Augmented Construction Plans 47

Hubs and links in nets possess attributes (cf. Item 4 on page 13.). Some attributes have
already been dealt with: the identifiers of hubs and links that can be observed from hubs,
respectively links (cf. Items 4. and 5 on page 13.) and the identifiers of hubs that can be
observed from links and the identifiers of links that can be observed from hubs (cf. Items 9.
and 10 on page 14.).

In addition hubs and links in nets possess further attributes:

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 25

• spatial location of hubs and links,

• (locally ascribed) names of hubs and links,

• lengths of links,

• etcetera.
48

We therefore augment construction plans to also reveal these attributes.

type

APLAN = PLAN × HInfo × LInfo
HInfo = HI →m HAtrs
LInfo = LI →m LAtrs

49

53. The wellformedness of an augmented plan secures that

a) all hubs identifiers defined in the construction plan are “detailed” in the hub
information component, and that

b) all links identifiers used in the construction plan are “detailed” in the in the link
information component.

value

53. wf APLAN: APLAN → Bool

53. wf APLAN(plan,hinfo,linfo) ≡
53a. dom plan = dom hinfo ∧
53b. ∪{dom lhim|lhim:LHIM•lhim ∈ rang plan}=dom linfo

2.5.3 Sequential Construction Behaviours 50

54. From an augmented construction plan one can “extract” initial information about

a) all hubs and

b) all links.

value

54a. xtrH: HI → APLAN → HI × HAtrs, xtrH(hi)(,hinfo,) ≡ hinfo(hi)
54b. xtrL: LI → APLAN → LAtrs, xtrL(li)(, ,linfo) ≡ linfo(li)

51

55. A net construction behaviour can be (functionally and non-deterministically) mod-
elled as

a) a sequence of hub insertions followed by

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

26 From Domains to Requirements

b) a sequence of link insertions.

value

55. net construction: HInfo×LInfo → (HI-set×LI-set) → N → N
55. net construction(hinfo,linfo)(his,lis)(n) ≡
55. case (his,lis) of

55a. ({hi}∪ his′,) →
55a. net construction(hinfo,linfo)(his′,lis)(insertH(hinfo(hi))(n)),
55b. ({},{li}∪ lis′) →
55b. net construction(hinfo,linfo)({},lis′)(insertL(linfo(li))(n)),
55. ({},{}) → n
55. end

52

The net construction function is initialised with the full sets of hub and link identifiers and
with an empty net:

net construction(hinfo,linfo)(dom hinfo,dom linfo)(n nil)
value

n nil:N • obs Hs(n nil) = {} = obs Ls(n nil)

The net construction behaviour shown above defines only a subset of all the valid be-
haviours that will construct a net according to the augmented plan (plan,hinfo,linfo). Other
valid behaviours would start with constructing at least two hubs but could then go onto
construct some of the (zero, one or more) links that connect some of the already con-
structed hubs, etcetera. We challenge the reader to precise narrate and formally define
such net construction behaviours.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 27

3 An Ontology of Domain Facets 53

3.0.4 Definitions

Definition: Domain. An area of activity which some software[685] is to support (or sup-
ports) or partially or fully automate (resp. automates).

The term ‘application domain’ is considered synonymous with the term ‘domain’.

Definition: Domain Description. A textual, informal or formal document which de-
scribes a domain as it is. 54

Usually a domain description is a set of documents with many parts recording many facets
of the domain: The business process [99]es, intrinsics [399], support technology [725], rules and
regulations [640], management and organisation[445], and the human behaviour [345]s. 55

Definition: Domain Engineering. The engineering of the development of a domain
description[243], from identification of domain[239] stakeholder[703]s, via domain acquisition[240],
domain analysis[241], terminologisation, and domain description[243] to domain validation[256] and
domain verification[257]. 56

Definition: Domain Facet. By a domain facet we understand one amongst a finite set
of generic ways of analysing a domain: A view of the domain, such that the different facets
cover conceptually different views, and such that these views together cover the domain.

We consider here the following domain facets: business process [99]es, intrinsics [399], sup-
port technology [725], rules and regulations [640], management and organisation[445], and human
behaviour [345].

3.0.5 What Can Be Observed 57

• “Whether you can observe a thing or not depends on the theory which you use. It is the
theory which decides what can be observed.”

• Albert Einstein objecting to the placing of observables at the heart of the new
quantum mechanics, during Heisenberg’s 1926 lecture at Berlin; related by Heisen-
berg, quoted in Unification of Fundamental Forces (1990) by Abdus Salam ISBN
0521371406.

3.0.6 Business Processes 58

A Characterisation By a business process we shall understand a behaviour [79] of an en-
terprise, a business, an institution, a factory.

An Example The business processes of transportation evolves around freights or passen-
gers being transported along routes by a vehicle (car, train, aircraft, ship) “propelled” by
some locomotive force.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

28 From Domains to Requirements

3.1 Intrinsics 59

Definition: Intrinsics. By the intrinsics of a domain[239] we shall understand those phe-
nomena and concepts of a domain which are basic to any of the other facets, with such a
domain intrinsics initially covering at least one stakeholder[703] view.

3.1.1 Net Topology Descriptors 60

Instead of dealing with the entire phenomenon of a net, that is, the real, physical, geo-
graphic “thing”, we can describe essentials of a net, for example how its hub and links are
connected.

56. One way of abstractly modelling a net descriptor is as a map, nd, from hub identifiers
to simple maps, lihis, from link identifiers to hub identifiers,

57. such that

a) for all hi in (the definition set of) nd it is the case that

b) if hi maps to lihi,

c) and in that link identifier to hub identifier map, li maps to hi′,

d) then hi′ is different from hi and

e) hi′ maps to an lihi′ in which li is defined and maps to hi.

f) And there are only such pairings.

61

type

56. ND′ = HI →m (LI →m HI)
56. ND = {|nd′:ND•wf ND(nd′)|}
value

57. wf ND: ND′ → Bool

57. wf ND(nd) ≡
57a. ∀ hi:HI•hi ∈ dom nd ⇒
57b. let lihi = nd(hi) in

57c. ∀ li:LI • li ∈ dom lihi ⇒
57c. let hi′ = (nd(hi))(li) in

57d. hi 6= hi′ ∧
57e. hi′ ∈ dom nd ∧ li ∈ dom(nd(hi′)) ∧ hi=(nd(hi′))(li)
57f. end end

62

From a net one can construct its net descriptor:

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 29

value

conND: N → ND
conND(n) ≡

[hi7→[li7→hi′|li:LI,hi′:HI•li ∈ obs LIs(getH(hi,n))∧{hi,hi′}=obs HIs(getL(li,n))]|
hi:HI•hi ∈ xtrHIs(n)]

3.1.2 Link States and Link State Spaces 63

Links are (one of the) means of transport6. Hubs allow movement along one (hub-
connected) link to be diverted onto another (hub-connected) link.

We introduce the notions of the state of a link, the state of a hub, the state space of a
link and the state space of a hub. States abstract directions of movement.

Links are, by our previous definitions, bi-directional: from one of the connected hubs
to the other, and vice versa. And hubs are multi-directional: from potentially any link via
the hub to potentially any link. 64

Let the observed hub identifiers of a link ℓ be {hj , hk}, then link ℓ can potentially be in
any one of the four link states: {{(hj, hk), (hk, hj)}, {(hj, hk)}, {(hk, hj)} and {{}}}. Any
one particular link may always remain in one and the same state, or it may from time to
time undergo transitions between any subset of the potential link state space. 65

58. Link states, lσ:LΣ, are set of pairs of hub identifiers.

59. Link state spaces are set of link states.

60. From a link one can generate the link state space of all potential link states.

61. From a link one can observe the current link state lσ:LΣ.

62. From a link one can observe the link state space lω:LΩ.

66

type

58. LΣ = (HI×HI)-set
59. LΩ = LΣ-set

value

60. generate full LΣ: L → LΣ
60. generate full LΣ(l) ≡
60. {}∪{(hi′,hi′′)|hi′,hi′′:HI•hi′6=hi′′∧{hi′,hi′′}=obs HIs(l)}

60. generate LΩ: L → LΩ
60. let fullLσ = generate full LΣ(l) in

6Other means are vehicles moving along links and crossing hubs and the locomotive force that drives
the vehicles. Freight, including people, are what is being transported.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

30 From Domains to Requirements

60. {{},∪{σ|σ:LΣ•σ⊆fullLσ}} end

61. obs LΣ: L → LΣ
62. obs LΩ: L → LΣ-set

3.1.3 Hub States and Hub State Spaces 67

63. Hub states, hσ:HΣ, are sets of pairs of link identifiers ((li, lk)), designating that
if (li, lk) is in the current hub state then movement can take place from the link
designated by li (via hub h) to the link designated by lk.

64. Hub state spaces are set of hub states.

65. From a hub one can generate the hub state space of all potential hub states.

66. From a hub one can observe the current hub state hσ:HΣ.

67. From a hub one can observe the hub state space hω:HΩ.

68

type

63. HΣ = (LI×LI)-set
64. HΩ = HΣ-set

value

65. generate full HΣ: H → HΣ
65. generate full HΣ(h) ≡
65. {}∪{(li′,li′′)|li′,li′′:LI•{li′,li′′}⊆obs LIs(h)}

60. generate HΩ: H → HΩ
60. let fullHσ = generate full HΣ(h) in

60. {{}∪{σ|σ:HΣ•σ⊆fullHσ}} end

66. obs HΣ: H → HΣ
66. obs HΩ: H → HΣ-set

3.1.4 State and State Space Wellformedness 69

68. States must be in appropriate state spaces.

69. State spaces must be subsets of all potential appropriate states.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 31

axiom

∀ n:N,l:L,h:H • l ∈ obs Ls(n) ∧ h ∈ obs Hs(n) ⇒
58. obs LΣ(l) ∈ obs LΩ(l) ∧
59. obs LΩ(l) ⊆ generate full LΣ(l) ∧
58. obs HΣ(h) ∈ obs HΩ(h) ∧
59. obs HΩ(h) ⊆ generate full HΣ(h)

theorems:

∀ n:N,l:L,h:H • l ∈ obs Ls(n) ∧ h ∈ obs Hs(n) ⇒
obs LΣ(l) ⊆ {(hi′,hi′′)|hi′,hi′′:H•{hi′,hi′′}⊆obs HIs(l)} ∧
obs HΣ(h) ⊆ {(li′,li′′)|li′,li′′:L•{li′,li′′}⊆obs LIs(h)}

3.1.5 Concrete Types for Simple Entities 70

As an alternative for, or as a step of refinement from the earlier sorts of nets, hubs and
links one can simplify matters by concrete types for these simple entities.

70. Nets are Cartesians of sets of hubs and links.

71. A link is a Cartesian of a link identifier, a set of exactly two hub identifiers, a link
state, a link state space, and a number of presently further unspecified link attributes.

72. A hub is a Cartesian of a hub identifier, a set of zero, one or more link identifiers,
a hub state, a hub state space, and a number of presently further unspecified hub
attributes.

71

type

70. N = H-set × L-set

71. L :: obs LI:LI × obs HIs:HI-set × LΣ × LΩ × LAtrs
72. H :: obs HI:HI × obs LIs:LI-set × HΣ × HΩ × HAtrs

72

We leave it to the reader to narrate the wellformedness constraints.

axiom

∀ (hs,ls):N • ls6={} ⇒ card hs ≥ 2 ∧
∀ l′,l′′:L • {l′,l′′}⊆ls ∧ l′6=l′′ ⇒ obs LI(l′) 6=obs LI(l′′) ∧
∀ h′,h′′:H • {h′,h′′}⊆hs ∧ h′ 6=h′′ ⇒ obs HI(h′) 6=obs HI(h′′) ∧
∀ l:(li,his,lσ,lω,latrs):L • l ∈ ls ⇒

card his=2 ∧ his⊆{obs HI(h′′)|h′′′:H • h′′′ ∈ hs} ∧
lσ ∈ generate full LΣ(l) ∧
lσ ∈ lω ⊆ generate full LΣ(l) ∧

∀ h:(hi,lis,hσ,hω,hatrs):H • h ∈ hs ⇒
lis⊆{obs LI(l′′′)|l′′′:L • l′′′ ∈ ls} ∧
hσ ∈ generate full HΣ(h) ∧
hσ ∈ hω ⊆ generate full HΣ(h)

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

32 From Domains to Requirements

3.1.6 Example Hub Crossings 73

Figure 1 shows four hub/partial link corner diagrams (1.–4.). These are intended to show
four distinct hub states. Let the center diagram (5.) of Fig. 1 indicate the link identifiers
of the four partial links of each of the four hub/partial link diagrams.

1. 2.

5.

A

B

C

D

Partial Link

Hub

Link Identifier

3. 4.

Figure 1: Four “Safe” Flows
74

The top left hub/link diagram (1.) thus can be claimed to depict hub state {(A, B),
(A, C), (A, D), (B, C), (C, D), (D, A)}.

Photo 2 on the facing page shows a semaphore which seems to be able to display all
kinds of states.
The point of this example is to show that a hub may take on many states, that not all hub
states may be desirable (viz., lead to crossing traffic if so interpreted), and that to reach
from one hub state to another one must change the state.

3.1.7 Actions Continued 75

73. The action change HΣ takes a hub, h, in some state, and a desired next state, hσ′,
and results in a hub, h′, which

a) has the same hub identifier as h,

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 33

Figure 2: A General Purpose Traffic Light

is connected to the same links as h,

has the same hub state space as h,

has the same attributes (names and values) as h,

b) but whose state may have changed.

73b. The new state of h′ ought be hσ′, but electro-mechanical or other failures in setting
the state may set the new state to any state of the potential states of h (i.e., h′), not
just to any state in the hub state space of h.

76

value

73. change HΣ: H × HΣ → H
73. change HΣ((hi,lis,hσ,hω,hatrs),hσ′) ≡
73b. let hσ′′′ ∈ generate full HΣs in

73a. (hi,lis,hσ′′′,hω,hatrs) end

Had we specified that the resulting state must be hσ′ then we had prescribed a requirements
to a change operation. As it is now we have described a domain phenomenon, namely that
operations may fail.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

34 From Domains to Requirements

3.2 Support Technologies 77

Definition: Support Technology. By a support technology we understand a facet[285] of
a domain[239], one which reflects its (current) dependency on human, mechanical, electro-
mechanical, electronic and/or other technologies (i.e., tools) in order to carry out its
business process[99]es.

3.2.1 Traffic Signals 78

A traffic signal represents a technology in support of visualising hub states and in effecting
state changes.

74. A hub state is now modelled as a triple: the link identifier li (“coming from”), a
colour (red, yellow, and green), and another the link identifier lj (“going to”).

75. Signalling is now a sequence of one or more pairs of next hub states and time intervals:

< (hσ1, ti1), (hσ2, ti2), ..., (hσn−1, tin−1), (hσn, tin) >, n > 0
79

The idea of a signalling is to first change the designated hub to state hσ1, then wait
ti1 time units, then set the designated hub to state hσ2, then wait ti2 time units,
etcetera, ending with final state σn and a (supposedly) long time interval tin before
any decisions are to be made as to another signalling.

The set of hub states {hσ1, hσ2, ..., hσn−1} of

< (hσ1, ti1), (hσ2, ti2), ..., (hσn−1, tin−1), (hσn, tin) >, n > 0

are called intermediate states.

Their purpose is to secure an orderly phase out of green via yellow to red and phase
in of red via yellow to green in some order for the various directions.

We leave it to the reader to devise proper wellformedness conditions for signaling
sequences as they depend on the hub topology.80

76. A street signal (a semaphore) is now abstracted as a map from pairs of hub states to
signalling sequences.

The idea is that given a hub one can observe its semaphore, and given the state, hσ
(not in the above set), of the hub “to be signalled” and the state hσn into which that
hub is to be signalled “one looks up” under that pair in the semaphore and obtains
the desired signalling.

type

74. HΣ = LI × Colour × LI
74. Colour == red | yellow | green

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 35

75. Signalling = (HΣ × TI)∗

75. TI
76. Sempahore = (HΣ×HΣ) →m Signalling
value

76. obs Semaphore: H → Sempahore
81

77. A hub semaphore, sema, contains only such hub states as are observed in the hub
state space.

a) Let hsps be the set of “from/to” hub state pairs in semaphore sema.

b) Then hs is the set of all hub states mentioned in hsps.

c) To hs join all the hub states mentioned in any signalling, sg, of sema.

77. hub state space: Sempahore → HΣ-set

77. hub state space(sema) ≡
77a. let hsps={hsp|hsp:(HΣ×HΣ)•hsp ∈ dom sema} in

77b. let hs={hσ′,hσ′′|hσ′,hσ′′:HΣ•(hσ′,hσ′′)∈ hsps} in

77c. hs ∪ ∪{{hσ|(hσ,ti):(HΣ×TI)•(hσ,ti)∈ elems sg}|sg:Signalling•sg ∈ rng sema}
77. end end

axiom

77. ∀ h:H • ∪ obs HΩ(h) = hub state space(obs Semaphore(h))

3.2.2 Traffic “Control” 82

78. Given two hub states, hσinit and hσend, where hσinit designates a present hub state
and hσend designates a desired next hub state after signalling.

79. Now signalling is a sequence of one or more successful hub state changes.

value

78. signalling: HΣ × HΣ → H → H
79. signalling(hσinit,hσend)(h) ≡
79. let sema = obs Semaphore(h) in

79. let sg = sema(hσinit,hσend) in

79. signal sequence(sg)(h) end end

79. pre (hσinit,hσend) ∈ dom obs Semaphore(h)
83

79. signal sequence(〈〉)(h) ≡ h
79. signal sequence(〈(hσ,ti)〉̂sg)(h) ≡
79. let hσ′ = change HΣ(h)(hσ) in

79. if hσ′ 6= hσ then chaos

79. else wait(ti); signal sequence(sg)(h) end end

If a desired hub state change fails (chaos) then we do not define the outcome of signalling.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

36 From Domains to Requirements

3.3 Rules and Regulations 84

Definition: Rule. A rule stipulates a regulating principle. In the context of modelling
domain rules we shall understand a domain rule as some text whose meaning is a predicate[536]

over a pair of suitably chosen domain state[705]s. We may assume that a domain action[12] or
a domain event[281] takes place in the first of these states and results in the second of these
states. If the predicate is true then we say that the rule has been obeyed, otherwise that it
has been violated.85

Usually a domain rule is paired with a possibly remedying regulation.
Definition: Regulation. A regulation stipulates that an action[12] be taken in order to
remedy a previous action which violated a rule[638]. That is, a regulation is some text which
designates a possibly composite action[12], that is, a state-to-state change which ostensibly
results in a state in which the rule, “attached” to the regulation, now holds.

3.3.1 Vehicles 86

In preparation for examples of transportation rules and regulations we introduce vehicles.

80. Vehicles are further undefined quantities except that

a) vehicles have unique identifiers,

b) vehicles are either positioned

i. at/in hubs

ii. or on links, in some fractional (non-zero) distance from a hub toward the
connecting hub.

81. From a net (sort) one can observe all the vehicles of the net.7

82. No two vehicles so observed have the same identifier.
87

type

80. V
80a. VI
80b. VP = HP | LP
80(b)i. HP == atH(hi:HI)
80(b)ii. LP == onL(li:LI,fhi:HI,f:F,thi:HI)
80(b)ii. F = {|f:F•0<f<1|}
value

80a. obs VI: V → VI
80b. obs VP: V → VP
81. obs Vs: N → V-set

axiom

7Thus a concrete net type, in addition to hubs and links (now) also contains vehicles.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 37

82. ∀ v:V • v ∈ obs Vs(n) ⇒
82. ∃ onL(li,fhi,f,thi):VP • onL(li,fhi,f,thi)=obs VP(v) ⇒
82. ∃ l:L•l ∈ obs Ls(n)∧li=obs LI(l)∧{fhi,thi}=obs HIs(l) ∨
82. ∃ atH(hi):VP • atH(hi)=obs VP(v) ⇒
82. ∃ h:H•h ∈ obs Hs(n)∧hi=obs HI(h)

more to come

3.3.2 Traffic 88

83. By traffic we understand a continuous function from time to a pair of nets and
position of vehicles.

84. By time we understand a dense set of points with dense and points being mathemat-
ical concepts [57, 221].

type

83. TF = T → (sel net:N × sel veh pos:(V →m VP))
84. T

Wellformedness of Traffic
Expressing the wellformedness of traffic is not a simple matter. We shall approach this
task in a number of “small steps”.

89

• Static Wellformedness

85. We define a predicate over vehicle positions.

a) Every vehicle in the traffic has a proper position on the net, either at a hub or
along a link.

b) No two vehicles of the traffic can occupy exactly the same link position. (That is,
the link positions onL(li,hi,f,hi′) and onL(li,hi,f’,hi′) must have the two fractions
(f, f ′) differ – be it ever so “minutely”).

We first define two auxiliary functions:8

value

obs HIs: N → HI-set
obs HIs(n) ≡ {obs HI(h)|h:H•h ∈ obs Hs(n)}
obs LIs: N → LI-set
obs LIs(n) ≡ {obs LI(h)|l:L•l ∈ obs Ls(n)}

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

38 From Domains to Requirements

90

85. proper vehicle positions: TF → Bool

85. proper vehicle positions(tf) ≡
85. ∀ t:T • t ∈ DOMAIN tf •

85. let (n,vps) = tf(t) in

85a. ∀ v:V•v ∈ dom vp•is net position(vps(v))(n)
85b. ∀ v′:V•v′ ∈ dom vp ∧ v6=v′⇒diff net pos(vps(v),vps(v′))
85. end

85a. is net position: VP → N → Bool

85a. is net position(vp)(n) ≡
85a. case vp of

85a. atH(hi) → hi ∈ obs HIs(n),
85a. onL(li,fhi,f,thi) → li ∈ obs LIs(n)∧{fhi,thi}⊆obs HIs(n)
85a. end

85b. diff net pos: VP × VP → Bool

85b. diff net pos(vp,vp′) ≡
85b. case (vp,vp′) of

85b. (atH(hi),atH(hi)) → true,
85b. (onL(li,fhi,f,thi),onL(li,fhi,f′,thi)) → f 6=f′,
85b. → true

85b. end

91

• Dynamic Wellformedness

86. Vehicles, when moving, move monotonically, that is,

a) if a vehicle, at some time, t, is at a link position onL(li,hi,f,hi′) where f is not
infinitesimally close to 1, then that vehicle will, at some later time t′, infinites-
imally close to t, be at link position onL(li,hi,f′,hi′) where f ′ is infinitesimally
close to f ;

b) if the vehicle, at some time, t, is at a link position onL(li,hi,f,hi′) where f is
indeed infinitesimally close to 1, then that vehicle will, at some infinitesimally
later time t′, be at hub position atH(hi′);

c) and if the vehicle, at some time, t, is at a hub position atHP(hi) then the vehicle
will at some infinitesimally later time t′ either be at hub position atHP(hi) or at
some link position onL(li,hi,f,hi′) where f is infinitesimally close to 0.

92

value

86. monotonic: TF → Bool

8They really ought to have been defined much earlier!

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 39

86. monotonic(tf) ≡
86. ∀ t,t′:T • {t,t′}⊆DOMAIN tf •

86. let (n,vps) = tf(t),(n′,vps′)=tf(t′) in

86. INFINITESIMALLY CLOSE (t,t′)∧t<t′⇒
86. ∀ v:V•v ∈ dom vps ∩ dom vps′ •

86. case (vps(v),vps′(v)) of

86a. (onL(li,fhi,f,thi),onL(li,fhi,f′,thi)) →
86a. f<f′ ∧ INFINITESIMALLY CLOSE (f,f′),
86b. (onL(li,fhi,f,thi),atH(thi)) →
86b. INFINITESIMALLY CLOSE (f,1),
86c. (atH(hi),atH(hi)) → true,
86c. (atH(hi),onL(li,hi,f,thi)) →
86c. INFINITESIMALLY CLOSE (0,f),
86. → true

86. end end

93

87. If a vehicle is (has been) moving along a link li and is now,

• at time t, at position onL(li, hj , f, hk), that is, moving from hj to hk,

• then it cannot at a subsequent, infinitesimally close time, t′, be at a position

• onL(li, hk, f
′, hj), that is, moving in the opposite direction, hk to hj .

94

value

87. God does not play dice9: TF → Bool

87. God does not play dice(tf) ≡
87. ∀ t,t′:T • {t,t′}⊆DOMAIN tf ∧ t<t′ ∧ INFINITESIMALLY CLOSE (t,t′)⇒
87. let (n,vps) = tf(t),(n′,vps′)=tf(t′) in

87. ∀ v:V • v ∈ dom vps ∩ dom vps′ ⇒
87. case (vps(v),vps′(v)) of

87. (onL(li,fhi, ,thi),onL(li,thi, ,fhi))→false,
87. → true

87. end end

95

88. If a vehicle is (has been) moving along and has,

• at time t, been at some position p, and

• at time t′, later than t, is at some position p′,

9Albert Einstein: “I, at any rate, am convinced that He does not throw dice.” Letter to Max Born (4
December 1926); The Born-Einstein Letters (translated by Irene Born) (Walker and Company, New York,
1971) ISBN 0-8027-0326-7. Reflects Einstein’s view of Quantum Mechanics at the time.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

40 From Domains to Requirements

• then it must at all times t′′ between t and t′ have been somewhere on the net.

value

88. no ghost vehicles: TF → Bool

88. no ghost vehicles(tf) ≡
88. ∀ t,t′:T • {t,t′}⊆DOMAIN tf ∧ t<t′ ⇒
88. let (n,vps) = tf(t),(n′,vps′)=tf(t′) in

88. ∀ v:V•v ∈ dom vps ∩ dom vps′ ⇒
88. ∀ t′′:T • t<t′′<t′ ⇒
88. let (n′′,vps′′) = tf(t′′) in v ∈ dom vps′′ end

88. end

3.3.3 Traffic Rules (I of II) 96

89. A vehicle must not move from a hub, hi, into a link ℓ (from hub (identified by) hi to
hub (identified by) hj) which is closed in direction (hi, hj), that is, where (hi, hj) is
not in the current state of link.

rule:

89. ∀ tf:TF,t:T • t ∈ DOMAIN(tf) ⇒
89. let (n,tp) = tf(t) in

89. ∀ v:V • v ∈ dom tp ⇒
89. case tp(v) of

89. atH(hi) →
89. let t′:T • t′>t ∧ t′ ∈ DOMAIN(tr′) ∧ INFINITESIMALLY CLOSE(t,t′) in

89. let (n′,tp′) = tf(t′) in

89. ∃ li:LI,hi′:HI,f:F,hi′′:HI •

89. hi′=hi ∧ INFINITIEIMALLY CLOSE(f,0) ∧
89. tp′(v) = onL(li,hi′,f′,hi′′) ∧(hi,hi′′) 6∈ obs LΣ(getL(li,n′))
89. → ...
89. end end end end

We shall give another rule after the next section.

3.3.4 Another Traffic Regulator 97

We present an abstraction of a more conventional traffic signal than modelled in Items 74
on page 34 to 77 on page 35.

90. A traffic signal now simply shows an entry permit: either red, yellow or green at
the hub when “leaving” any link, i.e., at the entry to a hub from any link.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 41

type

90. EP == red | yellow | green
90. HΣ = LI →m EP
axiom

90. ∀ h:H • obs LIs(h)=dom obs HΣ(h)

We leave it to the reader to express a constraint over hub state spaces as to how there
must be hub states such that entry from any link is possible.

3.3.5 Traffic Rules (II of II) 98

91. Vehicles must not enter a hub if entry permission is not green.

rule:

91. ∀ tf:TF,t:T : t ∈ DOMAIN(tf) ⇒
91. let (n,vps) = tf(t) in

91. ∀ v:V • v ∈ dom vps ⇒
91. case vps(v) of

91. onL(li,hi,f,hi′) →
91. INFINITESIMALLY CLOSE(f,1) ∧
91. let hσ = obs HΣ(getH(hi′,n)),
91. t′:T • t′>t ∧ INFINITESIMALLY CLOSE(t,t′) in

91. let (n′,vps′) = vps(t′) in

91. hσ(li) 6= green ∧ vps′(v) 6= atH(hi′) assert: vps′(v) = onL(li,hi,f,hi′)
91. end end

91. → ...
91. end end

3.4 Scripts 99

Definition: Scripts. A script is plan of action. By a domain script we shall, more
specifically, understand the structured, almost, if not outright, formally expressed, wording
of a set of rules and regulations[640].
See also license [424] and contract [181]. Definitions follow.

3.4.1 Routes as Scripts 100

Paths

92. A path is a triple:

a) a hub identifier, hi, a link identifier, lj , and another hub identifier, hk, distinct
from hi,

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

42 From Domains to Requirements

b) such that there is a link ℓ with identifier lj in a net n such that {hi, hk} are the
hub identifiers that can be observed from ℓ.

type

92. Pth = HI × LI × HI
axiom

92a. ∀ (hi,li,hi′):Pth • ∃ n:N,l:L • l ∈ obs Ls(n) ⇒
92b. obs LI(l)=li ∧ obs HIs(l)={hi,hi′}

101

93. From a net one can extract all its paths:

a) if l is a link of the net,

b) lj its identifier,

c) {hi, hk} the identifiers of its connected hubs,

d) then (hi, lj, hk) and (hk, lj, hj) are paths of the net.

value

93. paths: N → Pth-set
93a. paths(n) ≡
93d. {(hi,lj,hk),(hk,lj,hi)|l:L,lj:LI,hi,hk:HI•l ∈ obs Ls(n) ∧
93b. lj=obs LI(l) ∧
93c. {hi,hk}=obs HIs(l)}

102

94. From a net descriptor one can (likewise) extract all its paths:

a) Let hi, hk be any two distinct hub identifiers of the net descriptor (definition
set),

b) such that they both map into a link identifier lj ,

c) then (hi, lj, hk) and (hk, lj, hj) are paths of the net.

value

93. paths: ND → Pth-set
93. paths(nd) ≡
94a. {(hi,lj,hk),(hk,lj,hi)|hi,hk:HI,lj:LI • hi6=hk ∧ {hi,hk}⊆dom nd ⇒
94b. lj ∈ dom nd(hi)∩ dom nd(hk)}

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 43

Routes 103

95. A route of a net is a sequence of zero, one or more paths such that

a) all paths of a route are paths of the net and

b) adjacent paths in the sequence “share” hub identifiers.

type

95. R = Pth∗

axiom

95. ∀ r:R, ∃ n:N •

95a. elems r ⊆ paths(n) ∧
95b. ∀ i:Nat • {i,i+1}⊆inds r ⇒
95b. let (, ,hi)=r(i), (hi′, ,)=r(i+1) in hi=hi′ end

104

96. From a net, n, we can generate the possibly infinite set of finite and possibly infinite
routes:

a) <> is a path (basis clause 1);

b) if p is a path of n then < p > is a path of n (basis clause 2);

c) if r and r′ are non-empty routes of n

i. and the last hi of r is the same as the first hj of r′

ii. then the concatenation of r and r′ is a route

(induction clause).

d) Only such routes which can be formed by a (finite, respectively infinite) appli-
cation of basis clauses Items 96a and 96b and induction clause Item 96c are
routes (extremal clause).

105

value

96. routes: N|ND → R-infset

96. routes(nond) ≡
96a. let rs = {〈〉} ∪
96b. {〈p〉|p:Pth•p ∈ paths(nond)} ∪
96(c)ii. {r̂r′|r,r′:R • r ∈ rs ∧ r′ ∈ rs ∧
96(c)i. ∃ hi,hi′,hi′′,hi′′′:H,li:LI •

96(c)i. r=r′′̂〈(hi,li,hi′)〉∧r′=〈(hi′′,li′,hi′′′)〉̂r′′′ ∧
96(c)i. hi′=hi′′} in

96d. rs end

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

44 From Domains to Requirements

3.4.2 Bus Timetables as Scripts 106

Buses

97. Buses are vehicles,

98. with bus identifiers being the same as vehicle identifiers.

type

97. B
98. BI ⊆ VI

Bus Stops

99. A link bus stop indicates the link (by its identifier), the from and to hub identifiers,
and the fraction “down the link” from the from to the to hub identifiers.

type

99. BS = mkL BS(sel fhi:HI,sel li:LI,sel f:F,sel thi:HI)

Bus Routes 107

100. A bus stop list is a sequence of two or more bus stops, bsl.

101. A bus route, br, is a pair of a net route, r, and a bus stop list , bsl, such that route
r is a route of n and such that bsl is embedded in r. If

a) there exists an index list, il, of ascending indices of the route r and of the length
of bsl

b) such that the ith path of r

c) share from and to hub identifiers and link identifier with the il(i)th bus stop of
bsl

then bsl is embedded in r.

102. We must allow for two or more stops along a bus route to be adjacent on the same
link — in which case the corresponding fractions must likewise be ascending.

108

value

n:N
type

100. BSL = BS∗

101. BR = {|(r,bsl):(R×BSL)•wf BR(r,bsl)|}

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 45

value

101. wf BR: BR → Bool

101. wf BR(r,bsl) ≡ ∃ n:N,r:R•r ∈ routes(n) ∧ is embedded in(r,bsl)

101a. is embedded in: BR → Bool

101a. is embedded in(r,bsl) ≡
101b. ∃ il:Nat∗ • len il=len bsl∧inds il⊆inds r∧ascending(il) ⇒
101c. ∀ i:Nat • i ∈ inds il ⇒
101c. let (hi,lj,hk) = r(il(i)),(hi′,lj′,f,hk′) = bsl(i) in

101c. hi=hi′ ∧ lj=lj′ ∧ hk=hk′ end ∧
102. ∀ i:Nat • {i,i+1}⊆inds il ⇒
102. let (hi,lj,f,hk)=bsl(i),(hi′,lj′,f′,hk′)=bsl(i+1) in

102. hi=hi′ ∧ lj=lj′ ∧ hk=hk′ ⇒ f<f′ end

ascending: Nat∗ → Bool, ascending(il) ≡ ∀ i:Nat•{i,i+1}⊆inds il ⇒ il(i)≤il(i+1)

The ≤ of the ascending predicate allows for more than one stop along the same route

Bus Schedule 109

103. A timed bus stop is a pair of a time and a bus stop.

104. A timed bus stop list is a sequence of timed bus stops.

105. A bus schedule is a pair of a route and a timed bus stop list such that

• there is a net of which the routes is indeed a route,

• the bus stop list of the timed bus stop list is embedded in the route, and

• ‘later” listed bus stops register later times.

106. SimpleBusSchedules remove routes from BusRoutes.
110

type

103. TBS :: sel T:T sel bs:BS
104. TBSL = TBS∗

105. BusSched = {|(r,tbsl):(R×TBSL)•wf BusSched(r,tbsl)|}
value

105. wf BusSched: BusSched → Bool

105. wf BusSched(r,tbsl) ≡
105. ∃ n:N•r ∈ routes(n)
105. ∧ let bsl:SBS = 〈sel BS(tbsl(i))|i:[1..len tbsl]〉 in is embedded in(r,bsl) end

105. ∧ ∀ i:Nat•{i,i+1}⊆inds tbsl ⇒ sel T(tbsl(i))<sel T(tbsl(i+1))
type

106. SBS = {|bsl:BS∗•∃ n:N,r:R•r ∈ routes(n)∧is embedded in(r,bsl)|}

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

46 From Domains to Requirements

Timetable 111

The concept of a bus line captures all those bus schedules which ply the same bus route
but at different times. A timetable is made up from distinctly named bus lines.

107. A bus line has a unique bus line name.

108. We say that two bus schedules are the same if they are based on the same route and
if they differ only in their times.

109. Each of the different bus routes of a bus line has a unique bus number.

110. A route bus schedule pairs a route with simple bus schedules for each of a number of
busses (identified by their bus number).

111. A bus timetable (listing, map) maps bus line names to route bus schedules.

112. A timetable is a pair, a net and a table.

113. A well-formed timetable must satisfy same bus schedules within each bus line

114. All bus numbers are distinct across bus lines.
112

type

107. BLNm
value

108. same bus schedule: BusSched × BusSched → Bool

108. same bus schedule((r1,btl1),(r2,btl2)) ≡
108. r1 = r2 ∧ len btl1 = btl2 ∧
108. 〈sel BS(btl1(i))|i:[1..len btl1]〉=〈sel BS(btl2(i))|i:[1..len btl2]〉
type

109. BNo
110. RBS :: sel R:R sel btbl:(BNo →m SBS)
111. TBL = BLNm →m RBS
112. TT′ = ND × TBL
113. TT = {|tt:TT′

•wf TT(tt)|}
113

value

113. wf TT: TT′ → Bool

113. wf TT(,tbl) ≡
113. ∀ bln:BLNm•bln ∈ dom tbl ⇒
113. ∀ bno,bno′:BNo • {bno,bno′}⊆dom sel btbl(tbl(bln)) ⇒
113. same bus schedule(sel R(tbl(bln)),sel btbl(tbl(bln))(bno),
113. sel R(tbl(bln)),sel btbl(tbl(bln))(bno′)) ∧
114. ∀ bln′,bln′′:BLNm • {bln′,bln′′}⊆dom tbl ∧ bln′6=bln′′ ⇒
114. dom sel btbl(tbl(bln′)) ∩ dom sel btbl(tbl(bln′′)) = {}

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 47

3.4.3 Route and Bus Timetable Denotations 114

What are routes and bus timetables scripting ?

Routes (list of connected link traversal designations) script that one may transport
people or freight along the sequence of designated links.

Bus timetables script (at least) two things: the set of bus traffics on the net which
satisfy the bus timetable, and information that potential and actual bus passengers may,
within some measure of statistics (and probability), rely upon for their bus transport. 115

Here, we shall not develop the idea of bus timetables denoting certain traffics. Instead
we refer to our previously sketched model of traffics (Sect. 3.3.2, Pages 37–40).

Route (designations) and bus timetables script potential and actual route travels, re-
spectively script the dispatch of buses and their travelling.

Bus timetables can also be seen as a form of contracts between the bus operators
offering the bus services and potential and actual passengers, with the contract promising
timely transport. In the next section, Sect. 3.4.4, we shall sketch a language of bus service
contracts and bus service actions implied by such contracts.

3.4.4 Licenses and Contracts 116

Definition: License. A license is a script[651] specifically expressing a permission to act; is
freedom of action; is a permission granted by competent authority to engage in a business
or occupation or in an activity otherwise unlawful; a document, plate, or tag evidencing
a license granted; a grant by the holder of a copyright or patent to another of any of the
rights embodied in the copyright or patent short of an assignment of all rights.

Licenses appear more to have morally than legally binding poser. 117

Definition: Contract. A contract is a special kind of license[424] specifically expressing a
legally binding agreement between two or more parties — hence a document describing the
conditions of the contract; a contract is business arrangement for the supply of goods or
services at fixed prices, times and locations. In software development a contract specifies 118

what is to be developed: (1) a domain description[243], (2) a requirements prescription[615], or (3)
a software design[688]; or a combination of these (1–2, 2–3, 1–3). A contract further specifies 119

how it might, or must be developed; criteria for acceptance of what has been developed;
delivery dates for the developed items; who the “parties” to the contract are: the client[116]

and the developer[227], etc. 120

For a comprehensive treatment of licenses and contracts we refer to [48, Chapter 10,
Sect. 10.6 (Pages 309–326) [84]].

We shall illustrate fragments of a language for bus service contracts.

The background for the bus contract language is the following. In many large cities
around Europe the city or provincial government secures public transport in the form of
bus services operated by many different private companies. Section 3.4.2 illustrated the
concept of bus (service) timetables. The bus services implied by such a timetable, for a city
area — with surrounding suburbs etc. — need not be implemented by just one company,
but can be contracted, by the city government public transport office, to several companies,

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

48 From Domains to Requirements

each taking care of a subset of the timetable. Different bus operators then take care of121

non-overlapping parts and all take care of the full timetable. It may even be that extra
buses need be scheduled, on the fly, in connection with major sports or concert or other
events. Bus operators may experience vehicle breakdowns or bus driver shortages and may
be forced to subcontract other, even otherwise competing bus operators to “step in” and
alleviate the problem.

Contracts 122 Schematically we may represent a bus contract as follows:

Contract cn between contractee ci and contractor cj:
This contract contracts cj in the period [t,t′] to

perform the following services with respect to timetable tt:
operate bus lines {blj1,blj2,...,bljn}
subject to the following occasional exceptions:

cancellation of bus tours:

{(blja,{bnoa1 ,...,bnoam
}),...} subject to conditions cbt

insertion of bus tours on lines

{bljα,bljβ,...,bljγ} subject to conditions ibt
subcontracting bus tours on lines

{bljδ,bljφ,...,bljω} subject to conditions scbt.

123

115. A bus contract has a header with the distinct names of a contractee and a contractor
and a time interval.

116. A bus contract presents a timetable.

117. A bus contract presents a set of bus lines (by their identifiers) such that these are in
the timetable.

118. And a bus contract may list one or more of three kinds of “exceptions”:

a) cancellation of one or more named bus tours on one or more bus lines subject
to certain (specified) conditions;

b) insertion of one or more extra bus tours on one or more bus lines subject to
certain (specified) conditions;

c) subcontracting one or more unspecified bus tours on one or more bus lines
subject to certain (specified) conditions — to further unspecified contractors.

124

We abstract the above quoted “one or more of three kinds of exceptions” as one
possibly empty clause for each of these alternatives.

119. A bus contract now contains a header, a timetable, the subject bus lines and the
exceptions,

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 49

120. such that

a) line names mentioned in the contract are those of the bus lines of the timetable,
and

b) bus (tour) numbers are those of the appropriate bus lines in the timetable.

121. The calendar period is for at least one full day, midnight to midnight.

122. A named contract is a pair of a contract name and a contract.
125

type

115. CNm, CId, D, T, CON
115. CH = CId × CId × (D×D)
116. CT = TT
117. CLs = BLNm-set

118. CE = (CA × IN × SC) × CON
118a. CA = BLNm →m BNo-set
118b. IN = BLNm →m BNo-set
118c. SC = BLNm-set

119. CO′ = CH × CT × CLs × CE
120. CO = {|co:CO′

•wf CO(co)|}
122. NCO = CNm × CO

126

value

120. wf CO: CO′ → Bool

120. wf CO((ce,cr,(d,d′)),(nd,tbl),cls,((blns,blns′,bls),con)) ≡
117. ce 6= cr ∧
120a. cls ⊆ dom tbl ∧
120b. ∀ bli,bli′:BLNm • bli ∈ dom blns ∧ bli′ ∈ dom blns′ ⇒
120a. {bli,bli′} ⊆ dom tbl ∧
120b. blns(bli) ∪ blns′(bli′) ⊆ dom sel btbtl(tbl(bli)) ∧
120a. bls ⊂ dom tbl ∧
121. d < d′

Contractual Actions 127 An bus operator can now perform a number of actions
according to a contract. We schematise these:

For contract cn commence bus tour, line: bli and bus no.: bno

For contract cn cancel bus tour, line: bli and bus no.: bno

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

50 From Domains to Requirements

For contract cn insert extra bus tour, line: bli and bus no.: bno

Subcontract with respect to contract cn the following:

Contract cn′: for the calendar period [d,d′] contractee ci contracts contractor cj
to perform the following services with respect to timetable tt:

operate bus lines {blj1,blj2,...,bljn}
subject to the following occasional exceptions:

cancellation of bus tours:

{(bljc,{bnoc1 ,...,bnocm
}),...} subject to conditions cbt

insertion of bus tours on lines

{(blji,{bnoi1 ,...,bnoin}),...} subject to conditions ibt
subcontracting bus tours on lines

{bljδ,bljφ,...,bljω} subject to conditions scbt.

128

123. A bus operator action is either a commence, a cancellation, an insertion or a subcon-
tracting action. All actions refer to the (name of) the contract with respect to which
the action is contracted.

a) A commence action designator states the bus line concerned and the bus number
of that line.

b) A cancellation action designator states the bus line concerned and the bus num-
ber of that line.

c) An insertion action designator states the bus line concerned and the bus number
of that line — for which an extra bus is to be inserted.10

d) A subcontracting action designator, besides the name of the contract with re-
spect to which the subcontract is a subcontract, state a named contract (whose
contract name is unique).

129

type

123. Act = Com | Can | Ins | Sub
123a. Com == mkCom(sel cn:CNm,sel bli:BLNm,sel bno:BNo)
123b. Can == mkCan(sel cn:CNm,sel bli:BLNm,sel bno:BNo)
123c. Ins == mkIns(sel cn:CNm,sel bli:BLNm,sel bno:BNo)
123d. Sub == mkSub(sel cn:CNm,sel con:NCO)

10The insertion of buses in connection with either unscheduled or extraordinary (sports, concerts, etc.)
events can be handled by special, initial contracts.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 51

Wellformedness of Contractual Actions 130

124. In order to express wellformedness conditions, that is, pre-conditions, for the action
designators we introduce a context which map contract names to contracts.

125. Wellformedness of a contract is now expressed with respect to a context.

type

124. CTX = CNm →m CO
value

125. wf Act: Act → CTX → Bool

131

• Let a defined cnm entry in ctx be a contract: ((ce,cr),(nd,tbl),cls,(blns,bls,bls′),(d,d′)).

126. If cmd is a commence command mkCom(cnm,bln,bno), then

a) contract name cnm must be defined in context ctx;

b) bus line name bln must be defined in the contract, that is, in cls, and

c) bus number bno must be defined in the bus table part of table tbl.

126. wf Act(mkCom(cnm,bln,bno))(ctx) ≡
126a. cnm ∈ dom ctx ∧
126. let ((ce,cr),(nd,tbl),cls,(blns,bls,bls′),(d,d′)) = ctx(cnm) in

126b. bln ∈ cls ∧
126c. bno ∈ dom sel btbl(tbl(bln)) end

132

127. cancellation and insertion commands have the same static wellformedness conditions
as have commence command.

127. wf Act(mkCan(cnm,bln,bno))(ctx) ≡ wf Act(mkCom(cnm,bln,bno))(ctx)
127. wf Act(mkIns(cnm,bln,bno))(ctx) ≡ wf Act(mkCom(cnm,bln,bno))(ctx)

133

128. If cmd is a subcontract command then

Let the subcontract command and the cnm named contract in ctx be

mkSub(cnm,nco:(cnm′,(ce′,cr′,(d′′,d′′′)),(nd′,tbl′),cls′,(blns′,bls′′,bls′′′)))

respectively ((ce,cr,(d,d′)), (nd,tbl), cls, (blns,bls,bls′)).

a) contract name cnm must be defined in context ctx;

b) contract name cnm′ must not be defined in context ctx;

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

52 From Domains to Requirements

c) the calendar period of the subcontract must be within that of the contract from
which it derives;

d) the net descriptors nd and nd′ must be identical;

e) the tables tbl and tbl′ and must be identical and

f) the set, cls′, of bus line names that are the scope of the subcontracting must be
a subset of bls′.

134

128. wf Act(mkSub(cnm,nco:(cnm′,co:((ce′,cr′,(d′′,d′′′)),(nd′,tbl′),cls′,(blns′,blns′′,bls′′′)))))(ctx)
128a. cnm ∈ dom ctx ∧
128. let co′ = ((ce,cr,(d,d′)),(nd,tbl),cls,(blns,blns′,bls′)) = ctx(cnm) in

128b. cnm′ 6∈ dom tbl ∧
128c. d ≤ d′′ ≤ d′′′ ≤ d′ ∧
128d. nd′ = nd ∧
128e. tbl′ = tbl ∧
128f. cls′ ⊆ bls′ end

Wellformedness of contracts, wf CO(co) and wf CO(co′), secures other constraints.135

We do not here bring any narrated or formalised description of the semantics of con-
tracts and actions. First such a description would be rather lengthy. Secondly a specifica-
tion would be more of a requirements prescription.

3.5 Management and Organisation 136

Definition: Management. Management is about resource[620]s: their acquisition[11], scheduling[646]

(over time), allocation[33] (over locations), deployment (in performing actions) and disposal
(“retirement”). We distinguish between board-directed, strategic, tactical and opera-
tional actions. Board-directed actions target mainly financial resources: obtaining new137

funds through conversion of goodwill into financial resources, acquiring and selling “com-
peting” or “supplementary” business units. Strategic actions (see Item 716 on page 221)
convert financial resources into production, service supplies and resources and vice-versa
— and in this these actions schedule availability of such resources. Tactical actions (see
Item 741 on page 223) mainly allocate resources. Operational actions order, monitor and
control the deployment of resources in the performance of actions.138

Definition: Organisation. Organisation is about the “grand scale”, executive and strate-
gic national, continental or global (world wide) (i) allocation of major resource (e.g., busi-
ness) units, whether in a hierarchical, in a matrix, or in some other organigram-specified
structure, (ii) as well as the clearly defined relations (which information, decisions and
actions are transferred) between these units, and (iii) organisational dynamics.139

Definition: Management & Organisation. The composite term management and
organisation applies in connection with management[444] as outlined just above and with
organisation[500] also outlined above. The term then emphasises the relations between the
organisation and management of an enterprise.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 53

• • •

The borderlines within management actions and across organisation “layouts” are fuzzy.

3.5.1 Transport System Examples 140

We shall only present sketchy examples of management and organsation.11

• Executive actions: Deciding on major re-organisation of a transport net (for example
introduction of toll roads or freeways, road pricing, major bridges across wide waters
[potentially connecting two hitherto unconnected nets], and their management) are
executive actions. So are decisions on merging or splitting transport from or into
several transport services. Reorganising an enterprise from one characterised by a 141

“deep” hierarchy of management layers (a hierarchy which may very well exemplify
highly centralised both administrative and functional monitoring and control) into
a matrix of two “shallow” hierarchies, one which addresses tactical and operational
management and one which addresses executive and strategic management — with
the former (the operations) being replicated across geographical areas while the latter
applies “globally” — such reorganisations reflect executive actions (but are carried
out by strategic and tactical management). 142

• Strategic actions: Adding or removing transport links, or major reorganisation of bus
timetables are strategic actions. Splitting a(n own) contract into what is still to be
operated and subcontracting other parts, for definite, to other bus operators are also
strategic actions.

• Tactical actions: Insertion and cancellation of bus services are tactical actions. Sub-
contracting some parts of a timetable demanded service, for a short while, to other
bus operators could be considered tactical actions.

• Operational actions: Commencing and thus, in general, allocating drivers to and
sending these off on bus services are operational actions. So are announcing insertion
of new (unscheduled) and cancellation of scheduled routes.

11Two remarks: (1) From an albeit superficial study of curricula of a number of business schools it seems,
to this author, that the decomposition in management and organisation and into executive, strategic,
tactical and operational actions is not quite the way the financial, market, sales, product and production
(business administration) aspects of enterprises are looked upon in these schools. (2) We have, in [30],
studied issues of management and organisation, and we shall elsewhere study these from the point of
view of the signatures of Executive, Strategic, T actical and Operational functions as they apply to and
results in one or more of the resource types: Finance, Resource, spatial Location and Temporal notions
of “business environments” (ρ : ENV which binds resource names to SCHEDules) and “business states”
(σ : Σ which binds resource names to resource values) — and where SCHEDules binds resource names to
time intervals and [al]locations.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

54 From Domains to Requirements

3.6 Human Behaviour 143

Definition: Human Behaviour. By human behaviour we shall here understand the
way a human follows the enterprise rules and regulations[640] as well as interacts with a
machine[436]: dutifully honouring specified (machine dialogue[230] or) protocol[561]s, or negligently
so, or sloppily not quite so, or even criminally not so! Human behaviour is a facet[285] of the
domain[239]. We shall thus model human behaviour also in terms of it failing to react
properly, i.e., humans as non-deterministic agent[24]s!144

3.7 Towards Theories of Domain Facets 145

3.7.1 A Theory of Intrinsics 146

3.7.2 Theories of Support Technologies 147

An Example Traffic (tf:TF), intrinsically, is a total function over some time interval, from
time (t:T) to continuously positioned (p:P) vehicles (tn:TN).

Conventional optical sensors sample, at regular intervals, the intrinsic train traffic. The
result is a sampled traffic (stf:sTF). Hence the collection of all optical sensors, for any given
net, is a partial function from intrinsic (itf) to sampled train traffics (stf).

We need to express quality criteria that any optical sensor technology should satisfy —
relative to a necessary and sufficient description of a closeness predicate.148

For all intrinsic traffics, itf, and for all optical sensor technologies, og, the
following must hold: Let stf be the traffic sampled by the optical gates. For
all time points, t, in the sampled traffic, those time points must also be in the
intrinsic traffic, and, for all trains, tn, in the intrinsic traffic at that time, the
train must be observed by the optical gates, and the actual position of the train
and the sampled position must somehow be checkable to be close, or identical
to one another.

Since hubs change state with time, n:N, the net needs to be part of any model of traffic.149

type

T, TN
P = HP | LP
NetTraffic :: net:N × trf:(V →m P)
iTF = T → NetTraffic
sTF = T →m NetTraffic

oG = iTF
∼

→ sTF
value

[close] c: NetTraffic × TN × NetTraffic
∼

→ Bool

axiom

∀ itt:iTF, og:OG • let stt = og(itt) in

∀ t:T • t ∈ dom stt •

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 55

t ∈ DOM itt ∧ ∀ Tn:TN • tn ∈ dom trf(itt(t))
⇒ tn ∈ dom trf(stt(t)) ∧ c(itt(t),tn,stt(t)) end

DOM is not an RSL operator. It is a mathematical way of expressing the definition set of
a general function. Hence it is not a computable function.

Checkability is an issue of testing the optical sensors when delivered for conformance
to the closeness predicate, i.e., to the axiom.

General 150 The formal requirements can be narrated:Let Θi

and Θa designate the spaces of intrinsic and actual-world configurations (contexts and states).
For each intrinsic configuration model — that we know is support technology assisted — there
exists a support technology solution, that is, a total function from all intrinsic configurations
to corresponding actual configurations. If we are not convinced that there is such a function
then there is little hope that we can trust this technology

type

Θi, Θa

ST = Θi → Θa

axiom

∀ sts:ST-set, st:ST • st ∈ sts ⇒ ∀ θi:Θi, ∃ θa:Θa
• st(θi) = θa

3.7.3 A Theory of Rules & Regulations 151

There are, abstractly speaking, usually three kinds of languages involved wrt. (i.e., when
expressing) rules and regulations (respectively when invoking actions that are subject to
rules and regulations). Two languages, Rules and Reg, exist for describing rules, respec-
tively regulations; and one, Stimulus, exists for describing the form of the [always current]
domain action stimuli. 152

A syntactic stimulus, sy sti, denotes a function, se sti:STI: Θ → Θ, from any configura-
tion to a next configuration, where configurations are those of the system being subjected to
stimulations. A syntactic rule, sy rul:Rule, stands for, i.e., has as its semantics, its meaning,
rul:RUL, a predicate over current and next configurations, (Θ × Θ) → Bool, where these
next configurations have been brought about, i.e., caused, by the stimuli. These stimuli
express: If the predicate holds then the stimulus will result in a valid next configuration. 153

type

Stimulus, Rule, Θ
STI = Θ → Θ
RUL = (Θ × Θ) → Bool

value

meaning: Stimulus → STI
meaning: Rule → RUL

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

56 From Domains to Requirements

valid: Stimulus × Rule → Θ → Bool

valid(sy sti,sy rul)(θ) ≡ meaning(sy rul)(θ,(meaning(sy sti))(θ))

valid: Stimulus × RUL → Θ → Bool

valid(sy sti,se rul)(θ) ≡ se rul(θ,(meaning(sy sti))(θ))

154

A syntactic regulation, sy reg:Reg (related to a specific rule), stands for, i.e., has as its
semantics, its meaning, a semantic regulation, se reg:REG, which is a pair. This pair
consists of a predicate, pre reg:Pre REG, where Pre REG = (Θ × Θ) → Bool, and a domain
configuration-changing function, act reg:Act REG, where Act REG = Θ → Θ, that is, both
involving current and next domain configurations. The two kinds of functions express: If155

the predicate holds, then the action can be applied.
The predicate is almost the inverse of the rules functions. The action function serves

to undo the stimulus function.156

type

Reg
Rul and Reg = Rule × Reg
REG = Pre REG × Act REG
Pre REG = Θ × Θ → Bool

Act REG = Θ → Θ
value

interpret: Reg → REG

157

The idea is now the following: Any action of the system, i.e., the application of any
stimulus, may be an action in accordance with the rules, or it may not. Rules therefore
express whether stimuli are valid or not in the current configuration. And regulations
therefore express whether they should be applied, and, if so, with what effort.158

More specifically, there is usually, in any current system configuration, given a set of
pairs of rules and regulations. Let (sy rul,sy reg) be any such pair. Let sy sti be any possible
stimulus. And let θ be the current configuration. Let the stimulus, sy sti, applied in that
configuration result in a next configuration, θ′, where θ′ = (meaning(sy sti))(θ). Let θ′ (=
(meaning(sy sti))(θ)) violate the rule, i.e., ∼valid(sy sti,sy rul)(θ), then if predicate part,
pre reg, of the meaning of the regulation, sy reg, holds in that violating next configuration,
pre reg(θ,θ′ then the action part, act reg, of the meaning of the regulation, sy reg, must be
applied, act reg(θ′), to remedy the situation.159

axiom

∀ (sy rul,sy reg):Rul and Regs •

let se rul = meaning(sy rul),
(pre reg,act reg) = meaning(sy reg) in

∀ sy sti:Stimulus, θ:Θ •

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 57

∼valid(sy sti,se rul)(θ)
⇒ let θ′ = (meaning(sy sti))(θ) in

pre reg(θ,θ′)
⇒ ∃ nθ:Θ • act reg(θ′)=nθ ∧ se rul(θ,nθ)

end end

160

It may be that the regulation predicate fails to detect applicability of regulations actions.
That is, the interpretation of a rule differs, in that respect, from the interpretation of a
regulation. Such is life in the domain, i.e., in actual reality

3.7.4 A Theory of Management & Organisation 161

3.7.5 A Theory of Human Behaviour 162

Commensurate with the above, humans interpret rules and regulations differently, and not
always “consistently” — in the sense of repeatedly applying the same interpretations.

Our final specification pattern is therefore: 163

type

Action = Θ
∼

→ Θ-infset

value

hum int: Rule → Θ → RUL-infset

action: Stimulus → Θ → Θ

hum beha: Stimulus × Rules → Action → Θ
∼

→ Θ-infset

hum beha(sy sti,sy rul)(α)(θ) as θset
post

θset = α(θ) ∧ action(sy sti)(θ) ∈ θset
∧ ∀ θ′:Θ•θ′ ∈ θset ⇒
∃ se rul:RUL•se rul ∈ hum int(sy rul)(θ)⇒se rul(θ,θ′)

164

The above is, necessarily, sketchy: There is a possibly infinite variety of ways of interpreting
some rules. A human, in carrying out an action, interprets applicable rules and chooses one
which that person believes suits some (professional, sloppy, delinquent or criminal) intent.
“Suits” means that it satisfies the intent, i.e., yields true on the pre/post-configuration
pair, when the action is performed — whether as intended by the ones who issued the rules
and regulations or not. We do not cover the case of whether an appropriate regulation is
applied or not

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

58 From Domains to Requirements

4 An Ontology of Requirements Constructions 165

Definition: Requirements. A condition or capability needed by a user to solve a prob-
lem or achieve an objective [133].

Definition: Machine. By the machine we understand the hardware[331] plus software[685]

that implements some requirements[605], i.e., a computing system[151].166

Definition: Requirements Unit. By a requirements unit[618] we mean a single sentence
which expresses an “isolated” requirements. (We omit charaterising “single sentence” and
“isolated”.)

Definition: Requirements Prescription. By a requirements[605] prescription[540] we mean
just that: the prescription of some requirements. Sometimes, by requirements prescrip-
tion, we mean a relatively complete and consistent specification of all requirements, and
sometimes just a requirements unit[618].167

Definition: Requirements Engineering. The engineering of the development of a
requirements prescription[615], from identification of requirements[605] stake-holders, via require-
ments acquisition[606], requirements analysis[607], and requirements prescription[615] to require-
ments validation[800] and requirements verification[807].

We shall just focus on requirements prescription[615], that is, the modelling of requirements [605].

4.1 Business Process Re-engineering 168

Definition: Business Process. By a business process we shall understand a behaviour[79]

of an enterprise, a business, an institution, a factory. A business process reflects the ways
in which a business conducts its affairs, and is a facet[285] of the domain[239]. Other facets
of an enterprise are those of its intrinsics[399], support technology[725], rules and regulations[640],
management and organisation[445] (a facet closely related to business processes), and human
behaviour[345].169

Definition: Business Process Engineering. By business process engineering[100] we shall
understand the design[221], the determination, of business process[99]es. In doing business pro-
cess engineering one is basically designing, i.e., prescribing entirely new business processes.

170

Definition: Business Process Re-engineering. By business process reengineering[101]

we shall understand the re-design[221], the change, of business process[99]es. In doing business
process re-engineering one is basically carrying out change management[109].

4.1.1 The Kinds of Requirements 171

We distinguish between three kinds of requirements: (Sect. 4.2) the domain requirements
are those requirements which can be expressed solely using terms of the domain; (Sect. 4.4)
the machine requirements are those requirements which can be expressed solely using
terms of the machine, and (Sect. 4.3) the interface requirements are those requirements
which must use terms from both the domain and the machine in order to be expressed.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 59

4.1.2 Goals Versus Requirements 172

Whereas a domain description presents a domain as it is, a requirements prescription
presents a domain as it would be if some required machine was implemented (from these
requirements). The machine is the hardware plus software to be designed from the
requirements. That is, the machine is what the requirements are about. 173

We make a distinction between goals and requirements. Goals are what we expect
satisfied by the software implemented from the requirements. But goals could also be of the
system for which the software is required. First we exemplify the latter, then the former.

Goals of a Toll Road System 174

• A goal for a toll road system may be

– to decrease the travel time between certain hubs and

– to lower the number of traffic accidents between certain hubs,

Goals of Toll Road System Software 175

• The goal of the toll road system software is to help automate

– the recording of vehicles entering, passing and leaving the toll road system

– and collecting the fees for doing so.

Goals are usually expressed in terms of properties. Requirements can then be proved to
satisfy the Goals: D,R |= G. [148, Lamsweerde] focus on goals.

Arguing Goal-satisfaction of a Toll Road System 176

• By endowing links and hubs with average traversal times for both ordinary road and
for toll road links and hubs

– one can calculate traversal times between hubs

– and thus argue that the toll road system satisfies [significantly] “quicker” traver-
sal times.

• By endowing links and hubs with traffic accident statistics (real, respectively esti-
mated)

– for both ordinary road and for toll road links and hubs

– one can calculate estimated traffic accident statistics between all hubs

– and thus argue that the combined ordinary road plus toll road system satisfies
[significantly] lower traffic fatalities.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

60 From Domains to Requirements

Arguing Goal-satisfaction of Toll Road System Software 177

• By recording

– tickets issued and collected at toll booths and

– toll road hubs and links entered and left

– as per the requirements specification brought in forthcoming examples (Sects. 4.2.1–
4.2.4),

• we can eventually argue that

– the requirements of the forthcoming examples (Sects. 4.2.1–4.2.4)

– help satisfy the goal of the example ?? on page ??.
178

We shall assume that the (goal and) requirements engineer elicit both Goals and Requirements
from requirements stake-holders.

D,R |= G The Goals can be argued to hold by reasoning over the Requirements and
the Domain.

But we shall focus only on domain and interface requirements such as “derived” from
domain descriptions.

4.1.3 Re-engineered Nets 179

The nets defined in Sect. 3 could be of any topology. They could consist of two or more
nets that were not linked to one another; they could consist of connected nets or nets that
were acyclic; etc.; and the nets were not specifically road, rail, sea lane or air lane nets.
We shall now consider a special kind of road nets: basically the road nets we have in mind180

are linear sequences of pairs of links of opposite direction link “states”, where these links,
let us call them toll road links, are connected to toll road hubs; where, in addition, these
toll road hubs are linked, via toll plazas (i.e., “special” hubs) to toll road hubs by means
of on/off links.181

tp1 tp2 tp3 tpntpn−1tpj

l12

l32

l23 l34 lj−1j

ljj−1l43 lj+1j

ljj+1

ln−1n−2

ln−1n

lnn−1

ln−2n−1

l21

l1 l2 l3 lj ln−1 ln

h2h1 h3 hj hn−1 hn

tpi: toll plaza i, hi: hub i, li: toll plaza to hub link i, lij: hub i to hub j link

Figure 3: A Toll Road System

182

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 61

We do not consider the general nets that are (possibly) connected to the toll plazas. The
pragmatics behind these nets is the following: Drivers enter and leave the toll road nets at
toll road plazas; collect tickets from toll road plaza ticket-issuing booths when entering the
toll road net and present these at toll road plaza ticket-collection booths and pay according
to some function of the time and length (from entry to exit plaza) driven on the toll road
net when leaving the net; drivers are otherwise free to “circle” the toll road net as they see
fit: multiple times “up and down” the net, circling toll road hubs, etc. Our sketch centers 183

around a toll road net with toll booth plazas. The BPR focuses first on entities, actions,
events and behaviours (Sect. 2), then on the six domain facets (Sect. 3). 184

129. Re-engineered Entities: We shall focus on a linear sequence of toll road intersec-
tions (i.e., hubs) connected by pairs of one-way (opposite direction) toll roads (i.e.,
links). Each toll road intersection is connected by a two way road to a toll plaza.
Each toll plaza contains a pair of sets of entry and exit toll booths. (Sect. 4.2.2 brings
more details.) 185

130. Re-engineered Actions: Cars enter and leave the toll road net through one of
the toll plazas. Upon entering, car drivers receive, from the entry booth, a plas-
tic/paper/electronic ticket which they place in a special holder in the front window.
Cars arriving at intermediate toll road intersections choose, on their own, to turn
either “up” the toll road or “down” the toll road — with that choice being registered
by the electronic ticket. Cars arriving at a toll road intersection may choose to “cir-
cle” around that intersection one or more times — with that choice being registered
by the electronic ticket. Upon leaving, car drivers “return” their electronic ticket to
the exit booth and pay the amount “asked” for. 186

131. Re-engineered Events: A car entering the toll road net at a toll both plaza entry
booth constitutes an event. A car leaving the toll road net at a toll both plaza entry
booth constitutes an event. A car entering a toll road hub constitutes an event. A
car entering a toll road link constitutes an event. 187

132. Re-engineered Behaviours: The journey of a car,from entering the toll road net
at a toll booth plaza, via repeated visits to toll road intersections interleaved with
repeated visits to toll road links to leaving the toll road net at a toll booth plaza,
constitutes a behaviour — withreceipt of tickets, return of tickets and payment of
fees being part of these behaviours. Notice that a toll road visitor is allowed to cruise
“up” and “down” the linear toll road net – while (probably) paying for that pleasure
(through the recordings of “repeated” hub and link entries). 188

133. Re-engineered Intrinsics: Toll plazas and abstracted booths are added to domain
intrinsics.

134. Re-engineered Support Technologies: There is a definite need for domain-
describing the failure-prone toll plaza entry and exit booths.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

62 From Domains to Requirements

135. Re-engineered Rules and Regulations: Rules for entering and leaving toll booth
entry and exit booths must be described as must related regulations. Rules and
regulations for driving around the toll road net must be likewise be described.189

136. Re-engineered Scripts: No need.

137. Re-engineered Management and Organisation: There is a definite need for
domain describing the management and possibly distributed organisation of toll
booth plazas.

138. Re-engineered Human Behaviour: Humans, in this case car drivers, may
not change their behaviour in the spectrum from diligent and accurate via sloppy
and delinquent to outright traffic-law breaking – so we see no need for any “re-
engineering”.

4.2 Domain Requirements 190

Definition: Domain Requirements. By domain requirements[605] we understand such
requirements (save those of business process reengineering[101]) which can be expressed sôlely
by using professional terms of the domain[239].191

Definition: Domain Requirements Facet. By domain requirements[258] facets we
understand such domain requirements that basically arise from either of the following op-
erations on domain description[243]s (cum requirements prescription[615]s): domain projection[255],
domain determination[245], domain extension[249], domain instantiation[253] and domain fitting[251].

4.2.1 Projection 192

Definition: Projection. By projection we shall here, in a somewhat narrow sense, mean a
technique that applies to domain description[243]s and yields requirements prescription[615]s. Ba-
sically projection “reduces” a domain description by “removing” (or, but rarely, hiding[337])
entities[272], function[310]s, event[281]s and behaviour[79]s from the domain description. If the do-193

main description is an informal one, say in English, it may have expressed that certain
entities, functions, events and behaviours might be in (some instantiations of) the domain.
If not “projected away” the similar, i.e., informal requirements prescription will express
that these entities, functions, events and behaviours shall be in the domain and hence will
be in the environment of the machine[436] being requirements prescribed.
Keep the following parts (items) of the domain:

• from Item 1 on page 13 to and including Item 11 on page 15,

• from Item 51a on page 23 to and including Item 52c on page 24,

• from Item 56 on page 28 to and including Item 72 on page 31 and

• from Item 80 on page 36 to and including Item 91 on page 41.

That is, omit these parts:

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 63

• Sect. 2.1.5,

• Sects. 2.3–2.4,

• Sects. 2.5.2–2.5.3,

• Sect. 3.1.7 and

• Sects. 3.2–3.6.

and keep these:

• N, H, L,

• obs Hs,

• obs Ls,

• HI, LI,

• obs HI,

• obs LI,

• obs LIs,

• obs HIs,

• PLAN, LHIM,

• wf PLAN,

• ND, wf ND,

• LΣ, LΩ,

• obs LΣ, obs LΣ,

• HΣ, HΩ,

• obs HΣ, obs HΣ,

• V, VI, VP,

• obs VI, obs VP,

• TF, T and

• wf TF.

4.2.2 Instantiation 194

Definition: Instantiation. ‘To represent (an abstraction) by a concrete instance[384]’ [213]. Domain
instantiation is a domain requirements facet[259]. It is an operation performed on a domain description[243]

(cum requirements prescription[615]). Where, in a domain description certain entities and function[310]s are left
undefined, domain instantiation means that these entities or functions are now instantiated into constant
value[802]s.

Example 195 The following instantiation prescription only covers the static aspects of the toll
road net, i.e., simple entities. That is, the states of hubs and links will first be dealt with in Sect. 4.2.3.

139. A toll road net (a subnet of a larger previously described net) consists of a pair: toll road links and
toll road to plaza hubs and links.

a) The toll road links component is a linear sequence of one or more pairs of toll road links.

b) The toll road to plaza hubs and links component is a linear sequence of two or more triples of
a plaza, a (plaza to toll road hub) link and a toll road hub. 196

c) The wellformedness of toll road nets are expressed next.

i. The length of the toll road links sequence is one less than the length of the toll road to
plaza hubs and links sequence. The idea is that the toll road links at position i connect
the toll road hubs at positions i and i+1 of the toll road to plaza hubs and links sequence
— i being the indexes of the toll road links sequence.

ii. All links have distinct link identifiers.

iii. All hubs and plazas have distinct hub identifiers.

iv. From the links in the pairs of links, (li, l
′

i), of position i in the toll road links component
one observes exactly the same two element set of hub identifiers,

v. and these are the identifiers of the hubs at positions i and i + 1 of the toll road to plaza
hubs and links sequence.

vi. The plaza to toll road hub links are indeed connected to these plazas and hubs; and

vii. the plaza and toll road hubs are connected only to the links as mentioned above.
197

d) A toll road plaza is like a hub, with an observable hub identifier (and equipped with ticket-
issuing tool booths and ticket-collection and payment toll booths).

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

64 From Domains to Requirements

type

139. TRN′ = TRLs × PHLs
139. TRN = {|trn:TRN′•wf TRN(trn)|}
139a. TRLs = (L × L)∗

139b. PHLs = (PZ × L × H)∗

198

value

139c. wf TRN: TRN′ → Bool

139c. wf TRN(trn:(trls,phls)) ≡
139(c)i. len trls +1 = len phls ∧
139(c)ii. card xtr Hs(trn) = card xtr HIs(trn) ∧
139(c)iii. card xtr Ls(trn) = card xtr LIs(trn)
139(c)iv. ∀ i:Nat•i ∈ inds trls ⇒
139(c)iv. let (l,l′)=trsl(i),(p,l′′,hi)=phls(i),(,l′′′,hj)=phls(i+1) in

139(c)iv. obs HIs(l) = obs HIs(l′) =
139(c)v. {obs HI(hi),obs HI(hj)} ∧
139(c)vii. case i of

139(c)vii. 1 → obs LIs(hi) = xtr LIs({l,l′,l′′}),
139(c)vii. len trsl − 1 → obs LIs(hj) = xtr LIs({l,l′,l′′′}),
139(c)vii. → let (l′′′′,l′′′′′)=trsl(i) in obs LIs(hi)=xtr LIs({l,l′,l′′,l′′′′,l′′′′′}) end

139(c)vii. end end ∧
139(c)vii. ∀ i:Nat•i ∈ inds phls ⇒
139(c)vii. let (p,l,h)=phls(i) in obs HIs(l)=xtr HIs({p,h}) ∧
139(c)vii. obs LIs(p) = {obs LI(l)} end

199

type

139d. PZ
value

139d. obs HI: PZ → HI

xtr Hs: TRN → H-set

xtr Hs(,phls) ≡ {pz,h|(pz,l,h):(PZ×L×H)•(pz,l,h)∈ elems phls}
xtr Ls: TRN → L-set

xtr Ls(trls,phls) ≡
{l,l′|l,l′:L•(l,l′)∈ elems trls} ∪ {l|(pz,l,h):(PZ×L×H)•(pz,l,h)∈ elems phls}

xtr HIs: TRN → HI-set, xtr HIs(trn) ≡ {obs HI(h)|h:(H|PZ)•h ∈ xtr Hs(trn)}
xtr LIs: TRN → LI-set, xtr LIs(trn) ≡ {obs LI(l)|l:L•l ∈ xtr Ls(trn)}
xtr HIs: H-set → HI-set, xtr HIs(hs) = {obs LI(h)|h:H•h ∈ hs}
xtr LIs: L-set → LI-set, xtr LIs(ls) = {obs LI(l)|l:L•l ∈ ls}

Abstraction: From Concrete Toll Road Nets to Abstract Nets 200

140. From concrete toll road nets, trn:TRN, one can abstract the nets, n:N, of Items 1–11.

a) the abstract net contains the hubs of the concrete net,

b) and the links likewise.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 65

value

140. abs N: TRN → N
140. abs N(trn) as n
140a. obs Hs(n) = xtr Hs(trn) ∧
140b. obs Ls(n) = xtr Ls(trn)

Theorem 201

141. One can prove the following theorem: If trn satisfies wf TRN(trn) then abs N(trn) satisfies Axioms
7–8 (Page 14).

141. ∀ trn:TRN • wf TRN(trn) |=
abs N(trn) satisfies axioms 7.–10.

4.2.3 Determination 202

Definition: Determination. Domain determination is a domain requirements facet[259]. It is an operation
performed on a domain description[243] cum requirements prescription[615]. Any nondeterminism[482] expressed
by either of these specifications which is not desirable for some required software design must be made
deterministic (by this requirements engineer[612] performed operation).

Example 203 We shall focus on making more specific the rather generically defined
nets, hubs and links. There are no traffic signals within the toll road net and pairs of toll road links are
“one way, opposite direction” links.

h3 σ

l’

l
h

h σ

h

l’’’’

l’’’

l’

l

l’’’’

l’’’
h

= {(l’’i,li),(l’i,l’’i),(l’i,li),(l’’i,l’’i)}
in−on,on−off,reverse,in−out

{(l’’i,l’’’’i),(l’’’i,l’’i),(l’’’i,l’’’’i),(l’’i,l’’i)} = h σ

p
in

= {(_,l’’i),(l’’i,_)}t σ

out

= {(l’’i,li),(l’’i,l’’’’i),(l’’i,l’’i),(l’’’i,li),(l’i,l’’’’i),(l’’’i,l’’’’i),(l’i,li)}

l’’ l’’ l’’

Figure 4: Four example hub states: plaza, end hubs, “middle” hub

204

142. Pairs of toll road links, l, l′, connecting adjacent hubs hj, hk, of identifiers hji, hki, respectively,
always and only allow traffic in opposite directions, that is, are always in respective states {(hji, hki)}
and {(hki, hji)}.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

66 From Domains to Requirements

143. Hub, h, states, hσ, are constant and allow traffic onto connected links not closed for traffic in
directions from hub h.

144. Plazas allow traffic only onto connected plaza to hub links of the toll road net. (Whatever other
links, “outside” the toll road net, the plazas may be connected to is covered in the last line of the
axiom below.)

205

axiom

∀ (trls,phls):TRN •

∀ i:Nat • i ∈ inds trls
let (l,l′) = trls(i), (p,l′′,h) = phls(i) in

case i of

1 → obs HΣ(h) = {(obs LI(l′′),obs LI(l)),
(obs LI(l′),obs LI(l′′)),(obs LI(l′),obs LI(l)),
(obs LI(l′′),obs LI(l′′))},

→ let (l′′′,l′′′′) = trls(i−1) in

obs HΣ(h) = {(obs LI(l′′),obs LI(l)),
(obs LI(l′′),obs LI(l′′′′)),(obs LI(l′′),obs LI(l′′)),
(obs LI(l′′),obs LI(l′′)),(obs LI(l′′′),obs LI(l)),
(obs LI(l′),obs LI(l′′′′)),(obs LI(l′′′),obs LI(l′′′′)),
(obs LI(l′),obs LI(l))} end end end ∧

let (l′′′,l′′′′) = trls(len trsl), (p,l′′,h) = phls(1 + len trsl) in

obs HΣ(h) = {(obs LI(l′′),obs LI(l′′′′)),
(obs LI(l′′′),obs LI(l′′)),(obs LI(l′′′),obs LI(l′′′′)),
(obs LI(l′′),obs LI(l′′))} end ∧

∀ (p,l′′,):(PZ×L×H)•(p,l′′,) ∈ elems phls ⇒
let lis = obs LIs(p) assert: obs LI(l′′) ∈ lis in

obs HΣ(p) = {(li,obs LI(l′′)),(obs LI(l′′),li)|li:LI•li ∈ lis} end

206
In the last line of the wellformedness axiom above we express that the plaza maybe connected to many
links not in the toll road net and that the plaza is open for all traffic from these into the net (via l′′), from
l′′ to these and that traffic may even reverse at the plazas, that is, decide to not enter the toll road net
after having just visited the plaza.

4.2.4 Extension 207

Definition: Extension. Domain extension is a domain requirements facet[259]. It is an operation
performed on a domain description[243] or a requirements prescription[615]. It effectively extends a domain
description[243] by entities, functions, events and/or behaviours conceptually possible, but not necessarily
humanly or technologically feasible in the domain (as it was).

Figure 5 on the facing page abstracts some of the extensions to nets: the plaza entry and exit booths.208

209 The following is a prolonged example. It contains three kinds of formalisations: a RAISE/CSP model,
a Duration Calculus model [235, 181] and a Timed Automata model [5, 181]. The narrative for all three
models are given when narrating the RAISE/CSP model.

Intuition 210 A toll road system is delimited by toll plazas with entry
and exit booths with their gates. To get access, from outside, to the roads within the toll road system, a
car must pass through an entry booth and its entry gate. To leave the roads within the toll road system
a car must pass through an exit booth and its exit gate. Cars collect tickets upon entry and return these
tickets upon exit and pay a fee for having driven on the toll roads. The gates help ensure that cars have
collected tickets and have paid their dues.211

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 67

Entry
Booth

Exit
Booth

Car

Car

Exit Booth
Exit Gate

Enter Sensor Exit Sensor
Exit Booth

Entry Booth
Exit Sensor

Exit Booth
Enter Sensor

Payment Display & Acceptor

Ticket Collector

Entry Booth
Exit Gate

Vehicle
Direction

Vehicle
Direction

Entry Booth

Ticket Dispensor

Figure 5: Entry and Exit Tool Booths

exit sensorgateticket dispenserentry sensor

Car

Figure 6: A toll plaza entry booth

Descriptions 212

• A RAISE/CSP Model We use the CSP property [32, 131] of RSL.

Toll Booth Plazas With respect to toll road systems we focus on just their plazas: that is, where
cars enter and leave the systems. The below description is grossly simplified: instead of plazas having one
or more entry and one or more exit booths (both with gates), we just assume one (pair: booth/gate) of
each. 213

145. A toll plaza consists of a one pair of an entry booth and and entry gate and one pair of an exit
booth and an exit gate.

146. Entry booths consist of an entry sensor, a ticket dispenser and an exit sensor.

147. Exit booths consist of an entry sensor, a ticket collector, a payment display and a payment compo-
nent.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

68 From Domains to Requirements

type

145. PZ = (EB×G) × (XB×G)
146. EB = ...

147. XB = ...

Cars :214

148. There are vehicles.

149. Vehicles have unique vehicle identifications.

type

148. V
149. VId
value

149. obs VId: V → VId
axiom

149. ∀ v,v′:V • v 6=v′ ⇒ obs VId(v) 6= obs VId(v′)

Entry Booths :215

The description now given is an idealisation. It assumes that everything works: that the vehicles
behave as expected and that the electro-mechanics of booths and gates do likewise.

150. An entry sensor registers whether a car is entering the entry booth or not,

a) that is, for the duration of the car passing the entry sensor that sensor senses the car identifi-
cation cid

b) otherwise it senses “nothing”.
216

151. A ticket dispenser

a) either holds a ticket or does not hold a ticket, i.e., no ticket;

b) normally it does not hold a ticket;

c) the ticket dispenser holds a ticket soon after a car has passed the entry sensor;

d) the passing car collects the ticket –

e) after which the ticket dispenser no longer holds a ticket.

152. An exit sensor

a) registers the identification of a car leaving the toll booth

b) otherwise it senses “nothing”.

Gates :217

153. A gate

a) is either closed or open;

b) it is normally closed;

c) if a car is entering it is secured set to close (as a security measure);

d) once a car has collected a ticket it is set to open;

e) and once a car has passed the exit sensor it is again set to close.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 69

The Entry Plaza System :218

type

C, CI
G = open | close
TK == Ticket | no ticket

value

obs CI: (C|Ticket) → CI
channel

entry sensor:CI
ticket dispenser:Ticket
exit sensor:CI
gate ch:G

value

vs:V-set

eb:EB,xb:XB,eg,xg:G

219

system: G × EB × V-set × XB × G
system(eg,eb,vs,xb,xg) ≡

‖{car(obs CI(c),c)|c:C•c ∈ cs} ‖ entry booth(eb) ‖ entry gate(eg) ‖ ...

car: CI × C → out entry sensor,exit sensor
in ticket dispenser Unit

car(ci,c) ≡
entry sensor ! ci ;
let ticket = ticket dispenser ? assert: ticket 6= no ticket in

ticket dispenser ! no ticket ;
exit sensor ! ci ;
car(add(ticket,c)) end

220

entry booth: Unit → in entry sensor, exit sensor
out ticket dispenser
out gate ch Unit

entry booth(b) ≡
gate ch ! close ;
let ci = entry sensor ? in

ticket dispenser ! make ticket(cid) ;
let res = ticket dispenser ? in assert: res = no ticket ;
gate ch ! open ;
let ci′ = exit sensor ? in assert: ci′ = ci ;
gate ch ! close ;
entry booth(add Ticket(ticket,b)) end end end

221

entry gate: G → in gate Unit

entry gate(g) ≡
case gate ch ? of

close → exit gate(close) assert: g = open,
open → exit gate(open) assert: g = close

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

70 From Domains to Requirements

end

add Ticket: Ticket × C
∼

→ C
pre add Ticket(t,c): ∼has Ticket(c)
post: add Ticket(t,c): has Ticket(c)

222

has Ticket: (C|B) → Bool

obs Ticket: (C|B)
∼

→ Ticket
pre obs Ticket(cb): has Ticket(cb)

rem Ticket: (C
∼

→ C) | (B
∼

→ B)
pre rem Ticket(cb): has Ticket(cb)
post rem Ticket(cb): ∼has Ticket(cb)

In the next section, “A Duration Calculus Model”, we shall start refining the descriptions given above.
We do so in order to handle failures of vehicles to behave as expected and of the electro-mechanics of
booths and gates.

223
• A Duration Calculus Model We use the Duration Calculus [235, 181] extension to RSL. We
abstract the channels of the RAISE/CSP model to now be Boolean-valued variables.224

type

ES = Bool [true=passing, false=not passing]
TD = Bool [true=ticket, false=no ticket]
G = Bool [true=open, false=closing⌈⌉closed⌈⌉opening]
XS = Bool [true=car has just passed, false=car passing⌈⌉no-one passing]

variable

entry sensor:ES := false ;
ticket dispenser:TD := false ;
gate:G := false ;
exit sensor:XS := false ;

225

154. No matter its position, the gate must be closed within no more than δeg time units after the
entry sensor has registered that a car is entering the toll booth.

155. A ticket must be in the ticket dispenser within δet time units after the entry sensor has registered
that a car is entering the toll booth.

156. The ticket is in the ticket dispenser at most δtdc time units

157. The gate must be open within δgo time units after a ticket has been collected.

158. The exit sensor is registering (i.e., is on) the identification of exiting cars and is not registering
anything when no car is passing (i.e., is off).

226

154. ∼(⌈entry sensor⌉ ; (ℓ = δeg ∧ ⌈gate⌉))
155. ∼(⌈entry sensor⌉ ; (ℓ = δet ∧ ⌈∼ticket dispenser⌉))
156. �(⌈∼ticket dispenser⌉ ⇒ ℓ < δtdc)
157. ∼(⌈ticket dispenser⌉ ; (⌈∼ticket dispenser ∧ ∼gate⌉ ∧ ℓ ≥ δgo))
158. �(⌈gate=closing⌉ ⇒ ⌈∼ exit sensor⌉)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 71

227
• A Timed Automata Model A timed automaton [5, 181] for a configuration of an entry gate, its
entry booth and a car is shown in Fig. 7. Figure 8 on the following page shows the a car, an exit booth
and its exit gate interactions. They are more-or-less “derived” from the example of Sect. 7.5 of [5, Alur &
Dill, 1994] (Pages 42–45). The right half of the car timed automaton of Fig. 7 is to be thought of as the

same as the left half of the car timed automaton of Fig. 8 on the following page, cf. the vertical dotted (
...)

line. 228

x

e

c

td

tc

o

tc

x

e

c

Entry Booth Car

ig

ca

ca

o:open, ig: idle gate, c:close, ib: idle booth, ca:cruise around,e:entry, td:ticket deposit, tc:ticket collection, x:exit

ib

c

o

_

_

Cd

On

Cd: closed, Cg:closing, On:open, Og:opening

Plaza j

Entry Gate

keg > 5

keg < 7_

keg:=0

keg < 7

keg:=0 keg > 5_

Og Cg

ig o

Figure 7: A timed automata model of gate, entry booth and car interactions
229

value

eg,xg:G, eb:EB, xb:XB, vs:V-set

System: G×EV×V-set×XB×G → Unit

System(eg,eb,vs,xb,xg) ≡
Entry Gate(eg) ‖ Entry Booth(eb) ‖
‖{Car(obs CId(c),c)|ci:C,v:C•c ∈ cs} ‖
Exit Booth(xb) ‖ Exit Gate(xg)

230

4.2.5 Fitting 231

Definition: Fitting. By domain requirements fitting we understand an operation which takes n

domain requirements prescriptions, dri
(i = {1..n}), claimed to share m independent sets of tightly related

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

72 From Domains to Requirements

e

pd

td

x

o

pd

e
tc

c

p
p

Car

Plaza k

Exit Booth

x

Exit Gate

ca

ca

ib

ig c

ig

ca:cruise around, ib:idle, e:entry, td:ticket deposit, pd:payment display, p: payment, x:exit, c:close, o:open, ig:idle gate

kxg:=0
c

kxg < 7_

o
kxg:=0

kxg < 7

kxg > 5

kxg > 5_

_

o

On

Cd

Cg Og

Figure 8: A timed automata model of car, exit booth and gate interactions

sets of simple entities, actions, events and/or behaviours and map these into n+m domain requirements
prescriptions, δrj

(j = {1..n+m}), where m of these, δrn+k
(k = {1..m}) capture the m shared phenomena

and concepts and the other n prescriptions, δrℓ
(ℓ = {1..n}), are like the n “input” domain requirements

prescriptions, dri
(i = {1..n}), except that they now,(instead of the “more-or-less” shared prescriptions,

that are now consolidated in δrn+k
)prescribe interfaces between δri

and δrn+k
for i : {1..n}.

Examples 232

to be written

4.3 Interface Requirements 233

Definition: Interface Requirements. Interface requirements are those requirements[605] which can on
be expressed using professional terms from both the domain[239] and the machine[436]. Thus, by interface
requirements we understand the expression of expectations as to which software-software, or software-
hardware interface[393] places (i.e., channel[110]s), input[382]s and output[502]s (including the semiotics[658] of
these input/outputs) there shall be in some contemplated computing system[151]. Interface requirements can234

often, usefully, be classified in terms of shared data initialisation requirements[671], shared data refreshment
requirements[673], computational data+control requirements[146], man-machine dialogue requirements[447], man-
machine physiological requirements[448] and machine-machine dialogue requirements[437]. Interface requirements
constitute one requirements facet[285]. Other requirements facets are: business process reengineering[101],
domain requirements[258] and machine requirements[438].

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 73

4.3.1 But First: On Shared Phenomena and Concepts 235

Definition: Shared Phenomenon or Concept. A shared phenomenon (or concept) is a phenomenon
(respectively a concept) which is present in some domain[239] (say in the form of facts, knowledge[407] or
information[373]) and which is also represented in the machine[436] (say in the form of some entity[272], simple,
action, event or behaviour). A phenomenon of a domain, when shared, becomes a concept of the machine.

We shall give some examples – but they are just illustrative. Proper narration and formalisation is left to
the reader !

4.3.2 Shared Simple Entities 236

Definition: Shared Simple Entity. By a shared simple entity we mean a simple entitywhich both
occurs in the domain[239] (as a phenomenon or a concept) and in themachine[436]. Simple entities that are
shared between the domain and the machine must initially be input to the machine. Dynamically arising
simple entities must likewise be inputand all such machine entities must have their attributes updated,
when need arise. Requirements for shared simple entitiesthus entail requirements for their representation
and for their human/machine and/or machine/machine transfer dialogue.

Example 237 Main shared entities are those of hubs and links. Representations of
hubs and links “within” the machine necessarily abstracts many of the properties of hubs and links; some
(such) attributes may not be represented altogether.

As for human input, some man/machine dialogue based around a set of visual display unit screens
with fields for the input of hub, respectively link attributes can then be devised. Etc.

4.3.3 Shared Actions 238

Definition: Shared Action. By a shared action we mean an action that can only be partly computed
by the machine[436]. That is, the machine[436], in order to complete an action, may have to inquire with the
domain[239] (in order, say, to extract some measurable, time-varying simple entity attribute value) in order
to proceed in its computation.

Example 239 In order for a car driver to leave an exit toll booth the following
component actions must take place: (a) the driver inserts the electronic pass into the exit toll booth; (b)
the exit toll booth scans and accepts the ticket andcalculates the fee for the car journey from entry booth
via the toll road net to the exit booth; (c) exit toll booth alerts the driver as to the cost and is requested
to pay this amount; (d) once the driver has paid (e) the exit booth toll gate is raised. Actions (a,d) are
driver actions, (b,c,e) are machine actions.

4.3.4 Shared Events 240

Definition: Shared Event. By a shared event we mean an event whose occurrence in the domain[239]

need be communicated to the machine[436] and, vice-versa, an event whose occurrence in the machine[436]

need be communicated to the domain[239].

Examples 241 The arrival of a car at a toll plaza entry booth is an event that must be
communicated to the machine so that the entry booth may issue a proper pass (ticket). Similarly for the
arrival of a car at a toll plaza exit booth is an event that must be communicated to the machine so that
the machine may request the return of the pass and compute the fee. The end of that computation is an
event that is communicated to the driver (in the domain) requesting that person to pay a certain fee after
which the exit gate is opened.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

74 From Domains to Requirements

4.3.5 Shared Behaviours 242

Definition: Shared Behaviour. By a shared behaviour we mean a behaviour many of whose actions
and events occur both in the domain[239] and in the machine[436] (in some encoded form, and in the same
squence).

Example 243 A typical toll road net use behaviour is as follows: Entry at some
toll plaza: receipt of electronic ticket, placement of ticket in special ticket “pocket” in front window, the
raising of the entry booth toll gate; drive up to [first] toll road hub (with electronic registration of time of
occurrence), drive down a selected link (with electronic registration of time of occurrence of entry to and
exit from link), then a repeated number of zero, one or more toll road hub and link visits – some of which
may be “repeats” – ending with a drive down from a toll road hub to a toll plaza with the return of the
electronic ticket, etc. – cf. Sect, 4.3.4.

4.4 Machine Requirements 244

Definition: Machine Requirements. Machine requirements are those requirements[605] which, in
principle, can be expressed without using professional domain terms (for which these requirements are
established).
Thus, by machine [436] requirements [605], we understand requirements [605] put specifically to, i.e., expected
specifically from, the machine [436]. We normally analyse machine requirements into performance require-
ments [521], dependability requirements [218], maintenance requirements [443], platform requirements [527] and doc-
umentation requirements [238].

4.4.1 An Enumeration of Classes of Machine Requirements 245

We shall in these lecture notes not go into any detail about machine requirements. But we shall classify
machine requirements into a long list of specific kinds of machine requirements.

• Performance

– Storage

– Time

– Software Size

• Dependability

– Accessability

– Availability

– Reliability

– Robustness

– Safety

– Security

• Maintenance

– Adaptive

– Corrective

– Perfective

– Preventive

• Platforms

– Development

– Demonstration

– Execution

– Maintenance

• Documentation

• Other

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 75

5 Conclusion 246

We discuss a number of issues.

5.1 What Have We Omitted

Our coverage of domain and requirements engineering has focused on modelling techniques for domain
and requirements facets. We have omitted the important software engineering tasks of stakeholder iden-
tification and liaison, domain and, to some extents also requirements, especially goal acquisition and
analysis, terminologisation, and techniques for domain and requirements and goal validation and [goal]
verification (D,R |= G).

We refer, instead, to [32, Vol.3, Part IV (Chaps. 9, 12–14) and Part V (Chaps. 18, 20–23)].

5.2 Domain Descriptions Are Not Normative 247

A description of, for example, “the” domain of the New York Stock Exchange would describe the set of
rules and regulations governing the submission of sell offers and buy bids as well as rules and regulations for
clearing (‘matching’) sell offers and buy bids. These rules and regulations appears to be quite different from
those of the Tokyo Stock Exchange [217]. A normative description of stock exchanges would abstract these
rules so as to be rather un-informative. And, anyway, rules and regulations changes and business process re-
engineering changes entities, actions, events and behaviours. For any given software development one may
thus have to rewrite parts of existing domain descriptions, or construct an entirely new such description.

5.3 “Requirements Always Change” 248

This claim is often used as a hidden excuse for not doing a proper, professional job of requirements
prescription, let alone “deriving” them, as we advocate, from domain descriptions. Instead we now make
the following counterclaims [1] “domains are far more stable than requirements” and [2] “requirements changes
arise more as a result of business process re-engineering than as a result of changing stakeholder ideas”. 249

Closer studies of a number of domain descriptions, for example of a financial service industry, reveals
that the domain in terms of which an “ever expanding” variety of financial products are offered, are, in
effect, based on a small set of very basic domain functions which have been offered for well-nigh centuries !

We thus claim that thoroughly developed domain descriptions and thoroughly “derived” requirements
prescriptions tend to stabilise the requirements re-design, but never alleviate it.

5.4 What Can Be Described and Prescribed 250

The issue of “what can be described” has been a constant challenge to philosophers. In [204, 1919] Bertrand
Russell covers his first Theory of Descriptions, and in [203, Philosophy of Mathematics] a revision, as The
Philosophy of Logical Atomism. The issue is not that straightforward. In [40, 41] we try to broach the
topic from the point of view of the kind of domain engineering presented in this paper.

Our approach is simple; perhaps too simple ! We can describe what can be observed. We do so, first by 251

postulating types of observable phenomena and of derived concepts; then by the introduction of observer
functions and by axioms over these, that is, over values of postulated types and observers. To this we add
defined functions; usually described by pre/post-conditions. The narratives refer to the “real” phenom-
ena whereas the formalisations refer to related phenomenological concepts. The narrative/formalisation
problem is that one can ‘describe’ phenomena without always knowing how to formalise them.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

76 From Domains to Requirements

5.5 What Have We Achieved – and What Not 252

Section 1.2.3 made some claims. We think we have substantiated them all, albeit ever so briefly.

Each of the domain facets (intrinsics, support technologies, rules and regulations, scripts [licenses
and contracts], management and organisation and human behaviour) and each of the requirements facets
(projection, instantiation, determination, extension and fitting) provide rich grounds for both specification
methodology studies and and for more theoretical studies [35, ICTAC 2007].

5.6 Relation to Other Work 253

The most obvious ‘other’ work is that of [139, Problem Frames]. In [139] Jackson, like is done here, departs
radically from conventional requirements engineering. In his approach understandings of the domain, the
requirements and possible software designs are arrived at, not hierarchically, but in parallel, interacting
streams of decomposition. Thus the ‘Problem Frame’ development approach iterates between concerns of254

domains, requirements and software design. “Ideally” our approach pursues domain engineering prior to
requirements engineering, and, the latter, prior to software design. But see next.255

The recent book [148, Axel van Lamsweerde] appears to represent the most definitive work on Require-
ments Engineering today. Much of its requirements and goal acquisition and analysis techniques carries
over to main aspects of domain acquisition and analysis techniques and the goal-related techniques of [148]
apply to determining which projections, instantiation, determination and extension operations to perform
on domain descriptions.

5.7 “Ideal” Versus Real Developments 256

The term ‘ideal’ has been used in connection with ‘ideal development’ from domain to requirements. We
now discuss that usage. Ideally software development could proceed from developing domain descrip-
tions via “deriving” requirements prescriptions to software design, each phase involving extensive formal
specifications, verifications (formal testing, model checking and theorem proving) and validation.257

More realistically less comprehensive domain description development (D) may alternate with both
requirements development (R) work and with software design (S) – in some controlled, contained iterated
and “spiralling” manner and such that it is at all times clear which development step is what: D, R or S!

5.8 Description Languages 258

We have used the RSL specification language, [110, 32], for the formalisations of this report, but any of the
model-oriented approaches and languages offered by Alloy [137], B, Event B [3], RAISE [112], VDM [107]
and Z [233], should work as well.259

No single one of the above-mentioned formal specification languages, however, suffices. Often one has
to carefully combine the above with elements of Petri Nets [199], CSP [128], MSC [136], Statecharts [120],
and/or some temporal logic, for example either DC [235] or TLA+ [147]. Research into how such diverse
textual and diagrammatic languages can be combined is ongoing [9].

5.9 Entailments 260

D,R |= G[*] From the Domain and the Requirements we can reason that the Goals are met.
D,S |= R[*] In a proof of correctness of Software design with respect to Requirements prescriptions

one often has to refer to assumptions about the Domain. [*] Formalising our understandings of the Domain,
the Requirements and the Software design enables proofs that the software is right and the formalisation
of the “derivation” of Requirements from Domain specifications help ensure that it is the right software
[58].

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 77

5.10 Domain Versus Ontology Engineering 261

In the information science community an ontology is a “formal, explicit specification of a shared concep-
tualisation”. Most of the information science ontology work seems aimed primarily at axiomatisations of
properties of entities. Apart from that there are many issues of “ontological engineering” that are sim-
ilar to the triptych kind of domain engineering; but then, we claim, that domain engineering goes well
beyond ontological engineering and makes free use of whatever formal specification languages are needed,
cf. Sect. 6.1.

6 Bibliographical Notes 262

6.1 Description Languages

Besides using as precise a subset of a national language, as here English, as possible, and in enumerated
expressions and statements, we have “paired” such narrative elements with corresponding enumerated
clauses of a formal specification language. We have been using the RAISE Specification Language, RSL,
[112], in our formal texts. But any of the model-oriented approaches and languages offered by

• Alloy [137],

• CafeOBJ [109],

• Event B [3],

• VDM [107] and

• Z [233],

should work as well. 263

No single one of the above-mentioned formal specification languages, however, suffices. Often one has
to carefully combine the above with elements of

• Petri Nets [199],

• CSP: Communicating Sequential Processes [128],

• MSC: Message Sequence Charts [136],

• Statecharts [120],

• and some temporal logic, for example

– DC: Duration Calculus [235]

– or TLA+ [147].

Research into how such diverse textual and diagrammatic languages can be meaningfully and proof-
theoretically combined is ongoing [9]. And even then !

6.2 References

[1] H. Abelson, G. J. Sussman, and J. Sussman. Structure and Interpretation of Computer Programs. The
MIT Press, Cambridge, Mass., USA, 1996. 2nd edition.

[2] J.-R. Abrial. The B Book: Assigning Programs to Meanings. Tracts in Theoretical Computer Science.
Cambridge University Press, Cambridge, England, 1996.

[3] J.-R. Abrial. The B Book: Assigning Programs to Meanings and Modeling in Event-B: System and
Software Engineering. Cambridge University Press, Cambridge, England, 1996 and 2009.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

78 From Domains to Requirements

[4] J.-R. Abrial and L. Mussat. Event B Reference Manual (Editor: Thierry Lecomte), June 2001. Report
of EU IST Project Matisse IST-1999-11435.

[5] R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Computer Science, 126(2):183–235,
1994. (Preliminary versions appeared in Proc. 17th ICALP, LNCS 443, 1990, and Real Time: Theory in
Practice, LNCS 600, 1991).

[6] J. Alves-Foss, editor. Formal Syntax and Semantics of Java. LNCS. Springer–Verlag, 1998.

[7] D. Andrews and W. Henhapl. Pascal. In [53], chapter 7, pages 175–252. Prentice-Hall, 1982.

[8] K. R. Apt. Principles of Constraint Programming. Cambridge University Press, August 2003. ISBN
0521825830.

[9] K. Araki et al., editors. IFM 1999–2009: Integrated Formal Methods, volume 1945, 2335, 2999, 3771,
4591, 5423 (only some are listed) of Lecture Notes in Computer Science. Springer, 1999–2009.

[10] K. Arnold, J. Gosling, and D. Holmes. The Java Programming Language. Addison Wesley, US, 1996.

[11] R.-J. Back and J. von Wright. Refinement Calculus: A Systematic Introduction. Graduate Texts in
Computer Science. Springer-Verlag, Heidelberg, Germany, 1998.

[12] J. W. Backus and P. Naur. Revised Report on the Algorithmic Language ALGOL 60. Communications
of the ACM, 6(1):1–1, 1963.

[13] H. P. Barendregt. The Lambda Caculus — Its Syntax and Semantics. North-Holland Publ.Co., Amster-
dam, 1981.

[14] H. P. Barendregt. Introduction to Lambda Calculus. Niew Archief Voor Wiskunde, 4:337–372, 1984.

[15] H. P. Barendregt. The Lambda Calculus. Number 103 in Studies in Logic and the Foundations of
Mathematics. North-Holland, Amsterdam, revised edition, 1991.

[16] H. Barringer, J. Cheng, and C. B. Jones. A logic covering undefinedness in program proofs. Acta
Informatica, 21:251–269, 1984.

[17] H. Bekič, P. Lucas, K. Walk, and M. Others. Formal Definition of PL/I, ULD Version I. Technical report,
IBM Laboratory, Vienna, 1966.

[18] H. Bekič, P. Lucas, K. Walk, and M. Others. Formal Definition of PL/I, ULD Version II. Technical
report, IBM Laboratory, Vienna, 1968.

[19] H. Bekič, P. Lucas, K. Walk, and M. Others. Formal Definition of PL/I, ULD Version III. IBM Laboratory,
Vienna, 1969.

[20] C. Berge. Théorie des Graphes et ses Applications. Collection Universitaire de Mathematiques. Dunod,
Paris, 1958. See [21].

[21] C. Berge. Graphs, volume 6 of Mathematical Library. North-Holland Publ. Co., second revised edition
of part 1 of the 1973 english version edition, 1985. See [20].

[22] R. Bird and O. de Moor. Algebra of Programming. Prentice Hall, September 1996.

[23] G. Birtwistle, O.-J.Dahl, B. Myhrhaug, and K. Nygaard. SIMULA begin. Studentlitteratur, Lund,
Sweden, 1974.

[24] D. Bjørner. Programming in the Meta-Language: A Tutorial. In D. Bjørner and C. B. Jones, editors, The
Vienna Development Method: The Meta-Language, [52], LNCS, pages 24–217. Springer–Verlag, 1978.

[25] D. Bjørner. Software Abstraction Principles: Tutorial Examples of an Operating System Command
Language Specification and a PL/I-like On-Condition Language Definition. In D. Bjørner and C. B.
Jones, editors, The Vienna Development Method: The Meta-Language, [52], LNCS, pages 337–374.
Springer–Verlag, 1978.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 79

[26] D. Bjørner. The Vienna Development Method: Software Abstraction and Program Synthesis. In Math-
ematical Studies of Information Processing, volume 75 of LNCS. Springer–Verlag, 1979. Proceedings of
Conference at Research Institute for Mathematical Sciences (RIMS), University of Kyoto, August 1978.

[27] D. Bjørner, editor. Abstract Software Specifications, volume 86 of LNCS. Springer, 1980.

[28] D. Bjørner. Application of Formal Models. In Data Bases. INFOTECH Proceedings, October 1980.

[29] D. Bjørner. Formalization of Data Base Models. In D. Bjørner, editor, Abstract Software Specification,
[27], volume 86 of LNCS, pages 144–215. Springer–Verlag, 1980.

[30] D. Bjørner. Domain Modelling: Resource Management Strategics, Tactics & Operations, Decision Sup-
port and Algorithmic Software. In J. Davies, B. Roscoe, and J. Woodcock, editors, Millenial Perspectives
in Computer Science, Cornerstones of Computing (Ed.: Richard Bird and Tony Hoare), pages 23–40,
Houndmills, Basingstoke, Hampshire, RG21 6XS, UK, 2000. Palgrave (St. Martin’s Press). An Oxford
University and Microsoft Symposium in Honour of Sir Anthony Hoare, September 13–14, 1999.

[31] D. Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling. Texts in Theoretical Computer
Science, the EATCS Series. Springer, 2006. See [37, 42].

[32] D. Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling; Vol. 2: Specification of Systems
and Languages; ol. 3: Domains, Requirements and Software Design. Texts in Theoretical Computer
Science, the EATCS Series. Springer, 2006.

[33] D. Bjørner. Software Engineering, Vol. 2: Specification of Systems and Languages. Texts in Theoretical
Computer Science, the EATCS Series. Springer, 2006. Chapters 12–14 are primarily authored by Christian
Krog Madsen. See [38, 43].

[34] D. Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Software Design. Texts in
Theoretical Computer Science, the EATCS Series. Springer, 2006. See [39, 44].

[35] D. Bjørner. Domain Theory: Practice and Theories, Discussion of Possible Research Topics. In IC-
TAC’2007, volume 4701 of Lecture Notes in Computer Science (eds. J.C.P. Woodcock et al.), pages
1–17, Heidelberg, September 2007. Springer.

[36] D. Bjørner. From Domains to Requirements. In Montanari Festschrift, volume 5065 of Lecture Notes in
Computer Science (eds. Pierpaolo Degano, Rocco De Nicola and José Meseguer), pages 1–30, Heidelberg,
May 2008. Springer.

[37] D. Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling. Qinghua University Press, 2008.

[38] D. Bjørner. Software Engineering, Vol. 2: Specification of Systems and Languages. Qinghua University
Press, 2008.

[39] D. Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Software Design. Qinghua
University Press, 2008.

[40] D. Bjørner. An Emerging Domain Science – A Rôle for Stanis law Leśniewski’s Mereology and Bertrand
Russell’s Philosophy of Logical Atomism. Higher-order and Symbolic Computation, 2009.

[41] D. Bjørner. On Mereologies in Computing Science. In Festschrift for Tony Hoare, History of Computing
(ed. Bill Roscoe), London, UK, 2009. Springer.

[42] D. Bjørner. Chinese: Software Engineering, Vol. 1: Abstraction and Modelling. Qinghua University
Press. Translated by Dr Liu Bo Chao et al., 2010.

[43] D. Bjørner. Chinese: Software Engineering, Vol. 2: Specification of Systems and Languages. Qinghua
University Press. Translated by Dr Liu Bo Chao et al., 2010.

[44] D. Bjørner. Chinese: Software Engineering, Vol. 3: Domains, Requirements and Software Design.
Qinghua University Press. Translated by Dr Liu Bo Chao et al., 2010.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

80 From Domains to Requirements

[45] D. Bjørner. Domain Engineering. In BCS FACS Seminars, Lecture Notes in Computer Science, the BCS
FAC Series (eds. Paul Boca and Jonathan Bowen), pages 1–42, London, UK, 2010. Springer.

[46] D. Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of Informatics,
Part I of II: The Engineering Part. Kibernetika i sistemny analiz, (2), May 2010.

[47] D. Bjørner. Believable Software Management. Encyclopedia of Software Engineering, 1(1):1–32, 2011.

[48] D. Bjørner. Domain Engineering: Technology Management, Research and Engineering. A JAIST Press Re-
search Monograph (# 4), March 2009. This Research Monograph12 contains the following chapters: [83,
85, 86, 87, 88, 89, 90, 91, 92, 84]. Bjørner will post this 507 page book (with 77 fine photos of “all things
Japanese”, in full colours, taken by Dines in 2006) to you provided you e-mail your name and address
and post international reply postage coupons (http://en.wikipedia.org/wiki/International reply coupon)
to Dines Bjørner, Fredsvej 11, DK-2840 Holte, Denmark in the total amount of: Denmark
60.50 Kr., Europe 126.00 Kr., elsewhere 209.00 Kr.

[49] D. Bjørner. From Domains to Requirements — On a Triptych of Software Development. Submitted for
publication, Submitted 8 January, 2010.

[50] D. Bjørner. The Role of Domain Engineering in Software Development. Why Current Requirements
Engineering Seems Flawed! In Perspectives of Systems Informatics, volume 5947 of Lecture Notes in
Computer Science, pages 2–34, Heidelberg, Wednesday, January 27, 2010. Springer.

[51] D. Bjørner, A. P. Ershov, and N. D. Jones, editors. Partial Evaluation and Mixed Computation. Proceed-
ings of the IFIP TC2 Workshop, Gammel Avernæs, Denmark, October 1987. North-Holland, 1988. 625
pages.

[52] D. Bjørner and C. B. Jones, editors. The Vienna Development Method: The Meta-Language, volume 61
of LNCS. Springer, 1978. This was the first monograph on Meta-IV. [24, 25, 26].

[53] D. Bjørner and C. B. Jones, editors. Formal Specification and Software Development. Prentice-Hall,
1982.

[54] D. Bjørner and H. H. Løvengreen. Formal Semantics of Data Bases. In 8th Int’l. Very Large Data Base
Conf., Mexico City, Sept. 8-10 1982.

[55] D. Bjørner and H. H. Løvengreen. Formalization of Data Models. In Formal Specification and Software
Development, [53], chapter 12, pages 379–442. Prentice-Hall, 1982.

[56] D. Bjørner and O. N. Oest, editors. Towards a Formal Description of Ada, volume 98 of LNCS. Springer,
1980.

[57] W. D. Blizard. A Formal Theory of Objects, Space and Time. The Journal of Symbolic Logic, 55(1):74–
89, March 1990.

[58] B. Boehm. Software Engineering Economics. Prentice-Hall, Englewood Cliffs, NJ., USA, 1981.

[59] R. Bruni and J. Meseguer. Generalized Rewrite Theories. In Jos C. M. Baeten and Jan Karel Lenstra
and Joachim Parrow and Gerhard J. Woeginger, editor, Automata, Languages and Programming. 30th
International Colloquium, ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4, 2003. Proceedings,
volume 2719 of Lecture Notes in Computer Science, pages 252–266. Springer-Verlag, 2003.

[60] D. Cansell and D. Méry. Logical Foundations of the B Method. Computing and Informatics, 22(1–2),
2003.

[61] D. Carrington, D. J. Duke, R. Duke, P. King, G. A. Rose, and G. Smith. Object-Z: An object-oriented
extension to Z. In S. Vuong, editor, Formal Description Techniques, II (FORTE’89), pages 281–296.
Elsevier Science Publishers (North-Holland), 1990.

12http://www.imm.dtu.dk/ db/jaistmono.pdf

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 81

[62] C.C.I.T.T. The Specification of CHILL. Technical Report Recommendation Z200, International Telegraph
and Telephone Consultative Committee, Geneva, Switzerland, 1980.

[63] E. Chailloux, P. Manoury, and B. Pagano. Developing Applications With Objective Caml. Project
Cristal, INRIA, Domaine de Voluceau, Rocquencourt, B.P. 105, F-78153 Le Chesnay Cedex, France,
2004. Preliminary translation of the book Développement d’applications avec Objective Caml [64].

[64] E. Chailloux, P. Manoury, and B. Pagano. Développement d’applications avec Objective Caml. Éditions
O’Reilly, Paris, France, Avril 2000. ISBN 2-84177-121-0.

[65] J. Cheng. A Logic for Partial Functions. PhD thesis, Department of Computer Science, University of
Manchester, 1986. UMCS-86-7-1.

[66] A. Church. Introduction to Mathematical Logic. The Princeton University Press, Princeton, New Jersey,
USA, 1956. Reprint Edition, October 28, 1996, ISBN 0691029067.

[67] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Talcott. The Maude 2.0
System. In Robert Nieuwenhuis, editor, Rewriting Techniques and Applications (RTA 2003), number
2706 in Lecture Notes in Computer Science, pages 76–87. Springer-Verlag, June 2003.

[68] E. F. Codd. A relational model for large shared databank. Communications of the ACM, 13(6):377–387,
1970.

[69] G. Cousineau and M. Mauny. The Functional Approach to Programming. Cambridge University Press,
Cambridge, UK, 1998. ISBN 0-521-57183-9 (hardcover), 0-521-57681-4 (paperback).

[70] D. Crystal. The Cambridge Encyclopedia of Language. Cambridge University Press, 1987, 1988.

[71] O.-J. Dahl, E. Dijkstra, and C. Hoare. Structured Programming. Academic Press, 1972.

[72] O.-J. Dahl and C. Hoare. Hierarchical program structures. In [71], pages 197–220. Academic Press, 1972.

[73] O.-J. Dahl and K. Nygaard. SIMULA – an ALGOL-based simulation language. Communications of the
ACM, 9(9):671–678, 1966.

[74] O. Danvy. A Rational Deconstruction of Landin’s SECD Machine. Research RS 03–33, BRICS: Basic
Research in Computer Science, Dept. of Comp.Sci., University of Århus, Ny Munkegade, Bldg. 540,
DK-8000 Århus C, Denmark, October 2003. ISSN 0909 0878. E–mail: BRICS@brics.dk.

[75] C. Date. An Introduction to Database Systems, I. The Systems Programming Series. Addison Wesley,
1981.

[76] C. Date. An Introduction to Database Systems, II. The Systems Programming Series. Addison Wesley,
1983.

[77] C. Date and H. Darwen. A Guide to the SQL Standard. Addison-Wesley Professional, November 8, 1996.
4th Edition, ISBN: 0201964260.

[78] J. de Bakker. Control Flow Semantics. The MIT Press, Cambridge, Mass., USA, 1995.

[79] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, Volume B: Formal Models and Semantics, pages 243–320. Elsevier, 1990.

[80] R. Diaconescu and K. Futatsugi. CafeOBJ Report: The Language, Proof Techniques, and Methodologies
for Object-Oriented Algebraic Specification. AMAST Series in Computing - Vol. 6. World Scientific
Publishing Co., Pte. Ltd., 5 Toh Tuck Link, Singapore 596224, July 1998. 196pp, ISBN 981-02-3513-5,
US$30.

[81] R. Diaconescu, K. Futatsugi, and K. Ogata. CafeOBJ: Logical Foundations and Methodology. Computing
and Informatics, 22(1–2), 2003.

[82] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

82 From Domains to Requirements

[83] Dines Bjørner. [48] Chap. 1: On Domains and On Domain Engineering – Prerequisites for Trustworthy
Software – A Necessity for Believable Management, pages 3–38. JAIST Press, March 2009.

[84] Dines Bjørner. [48] Chap. 10: Towards a Family of Script Languages – – Licenses and Contracts –
Incomplete Sketch, pages 283–328. JAIST Press, March 2009.

[85] Dines Bjørner. [48] Chap. 2: Possible Collaborative Domain Projects – A Management Brief, pages
39–56. JAIST Press, March 2009.

[86] Dines Bjørner. [48] Chap. 3: The Rôle of Domain Engineering in Software Development, pages 57–72.
JAIST Press, March 2009.

[87] Dines Bjørner. [48] Chap. 4: Verified Software for Ubiquitous Computing – A VSTTE Ubiquitous
Computing Project Proposal, pages 73–106. JAIST Press, March 2009.

[88] Dines Bjørner. [48] Chap. 5: The Triptych Process Model – Process Assessment and Improvement, pages
107–138. JAIST Press, March 2009.

[89] Dines Bjørner. [48] Chap. 6: Domains and Problem Frames – The Triptych Dogma and M.A.Jackson’s
PF Paradigm, pages 139–175. JAIST Press, March 2009.

[90] Dines Bjørner. [48] Chap. 7: Documents – A Rough Sketch Domain Analysis, pages 179–200. JAIST
Press, March 2009.

[91] Dines Bjørner. [48] Chap. 8: Public Government – A Rough Sketch Domain Analysis, pages 201–222.
JAIST Press, March 2009.

[92] Dines Bjørner. [48] Chap. 9: Towards a Model of IT Security — – The ISO Information Security Code
of Practice – An Incomplete Rough Sketch Analysis, pages 223–282. JAIST Press, March 2009.

[93] O. Dommergaard. The design of a virtual machine for Ada. In [27], pages 463–605. Springer, 1980.

[94] O. Dommergaard and S. Bodilsen. A formal definition of P-code. Technical report, Dept. of Comp. Sci.,
Techn. Univ. of Denmark, 1980.

[95] D. J. Duke and R. Duke. Towards a semantics for Object-Z. In D. Bjørner, C. A. R. Hoare, and
H. Langmaack, editors, VDM and Z – Formal Methods in Software Development, volume 428 of Lecture
Notes in Computer Science, pages 244–261. VDM-Europe, Springer-Verlag, 1990.

[96] R. Duke, P. King, G. A. Rose, and G. Smith. The Object-Z specification language. In T. Korson,
V. Vaishnavi, and M. B, editors, Technology of Object-Oriented Languages and Systems: TOOLS 5,
pages 465–483. Prentice Hall, 1991.

[97] R. K. Dybvig. The Scheme Programming Language. The MIT Press, Cambridge, Mass., USA, 2003. 3rd
Edition.

[98] A. Ershov. On the essence of translation. Computer Software and System Programming, 3(5):332–346,
1977.

[99] A. Ershov. On the partial computation principle. Information Processing Letters, 6(2):38–41, April 1977.

[100] A. Ershov. Mixed computation: Potential applications and problems for study. Theoretical Computer
Science, 18:41–67, 1982.

[101] A. Ershov. On Futamura projections. BIT (Japan), 12(14):4–5, 1982. (In Japanese).

[102] A. Ershov. On mixed computation: Informal account of the strict and polyvariant computational schemes.
In M. Broy, editor, Control Flow and Data Flow: Concepts of Distributed Programming. NATO ASI Series
F: Computer and System Sciences, vol. 14, pages 107–120. Springer-Verlag, 1985.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 83

[103] A. Ershov, D. Bjørner, Y. Futamura, K. Furukawa, A. Haraldson, and W. Scherlis, editors. Special
Issue: Selected Papers from the Workshop on Partial Evaluation and Mixed Computation, 1987 (New
Generation Computing, vol. 6, nos. 2,3). Ohmsha Ltd. and Springer-Verlag, 1988.

[104] A. Ershov and V. Grushetsky. An implementation-oriented method for describing algorithmic languages.
In B. Gilchrist, editor, Information Processing 77, Toronto, Canada, pages 117–122. North-Holland, 1977.

[105] A. Ershov and V. Itkin. Correctness of mixed computation in Algol-like programs. In J. Gruska, editor,
Mathematical Foundations of Computer Science, Tatranská Lomnica, Czechoslovakia. (Lecture Notes in
Computer Science, vol. 53), pages 59–77. Springer-Verlag, 1977.

[106] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge. The MIT Press,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, 1996. 2nd printing.

[107] J. Fitzgerald and P. G. Larsen. Modelling Systems – Practical Tools and Techniques in Software Devel-
opment. Cambridge University Press, Cambridge, UK, Second edition, 2009.

[108] FOLDOC: The free online dictionary of computing. Electronically, on the Web:
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?ISWIM, 2004.

[109] K. Futatsugi, A. Nakagawa, and T. Tamai, editors. CAFE: An Industrial–Strength Algebraic Formal
Method, Sara Burgerhartstraat 25, P.O. Box 211, NL–1000 AE Amsterdam, The Netherlands, 2000.
Elsevier. Proceedings from an April 1998 Symposium, Numazu, Japan.

[110] C. W. George, P. Haff, K. Havelund, A. E. Haxthausen, R. Milne, C. B. Nielsen, S. Prehn, and K. R. Wag-
ner. The RAISE Specification Language. The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead,
England, 1992.

[111] C. W. George and A. E. Haxthausen. The Logic of the RAISE Specification Language. Computing and
Informatics, 22(1–2), 2003.

[112] C. W. George, A. E. Haxthausen, S. Hughes, R. Milne, S. Prehn, and J. S. Pedersen. The RAISE
Development Method. The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead, England, 1995.

[113] J. Gosling and F. Yellin. The Java Language Specification. Addison-Wesley & Sun Microsystems. ACM
Press Books, 1996. 864 pp, ISBN 0-10-63451-1.

[114] D. Gries. The Science of Programming. Springer-Verlag, 1981.

[115] O. Grillmeyer. Exploring Computer Science with Scheme. Springer-Verlag, New York, USA, 1998.

[116] C. Gunther. Semantics of Programming Languages. The MIT Press, Cambridge, Mass., USA, 1992.

[117] Y. Gurevich. Sequential Abstract State Machines Capture Sequential Algorithms. ACM Transactions on
Computational Logic, 1(1):77–111, July 2000.

[118] P. Haff, editor. The Formal Definition of CHILL. ITU (Intl. Telecmm. Union), Geneva, Switzerland, 1981.

[119] M. R. Hansen and H. Rischel. Functional Programming in Standard ML. Addison Wesley, 1997.

[120] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming,
8(3):231–274, 1987.

[121] D. Harel and R. Marelly. Come, Let’s Play – Scenario-Based Programming Using LSCs and the Play-
Engine. Springer-Verlag, 2003.

[122] F. Harrary. Graph Theory. Addison Wesley Publishing Co., 1972.

[123] E. Hehner. The Logic of Programming. Prentice-Hall, 1984.

[124] E. Hehner. a Practical Theory of Programming. Springer-Verlag, 2nd edition, 1993. On the net:
http://www.cs.toronto.edu/˜hehner/aPToP/.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

84 From Domains to Requirements

[125] A. Hejlsberg, S. Wiltamuth, and P. Golde. The C# Programming Language. Microsoft •net Development
Series. Addison-Wesley, 75 Arlington Street, Suite 300, Boston, MA 02116, USA, (617) 848-6000, 30
October 2003. 672 page, ISBN 0321154916.

[126] M. C. Henson, S. Reeves, and J. P. Bowen. Z Logic and its Consequences. Computing and Informatics,
22(1–2), 2003.

[127] J. Hintikka. Knowledge and Belief: An Introduction to the Logic of the Two Notions. Cornell University
Press, Ithaca, N.Y., USA, June 1962. ASIN 0801401879.

[128] C. Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Computer Science. Prentice-Hall
International, 1985. Published electronically: http://www.usingcsp.com/cspbook.pdf (2004).

[129] C. Hoare and N. Wirth. An axiomatic definition of the programming language Pascal. Acta Informatica,
2:335–355, 1973.

[130] T. Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Computer Science. Prentice-Hall
International, 1985.

[131] T. Hoare. Communicating Sequential Processes. Published electronically: http://www.usingcsp.-

com/cspbook.pdf, 2004. Second edition of [130]. See also http://www.usingcsp.com/.

[132] C. J. Hogger. Essentials of Logic Programming. Graduate Texts in Computer Science, no.1, 310 pages.
Clarendon Press, December 1990. .

[133] IEEE CS. IEEE Standard Glossay of Software Engineering Terminology, 1990. IEEE Std.610.12.

[134] Inmos Ltd. Specification of instruction set & Specification of floating point unit instructions. In Trans-
puter Instruction Set – A compiler writer’s guide, pages 127–161. Prentice Hall, Hemel Hempstead,
Hertfordshire HP2 4RG, UK, 1988.

[135] B. B. S. Institution. Specification for computer programming language Pascal. Technical Report BS6192,
BSI, 1982.

[136] ITU-T. CCITT Recommendation Z.120: Message Sequence Chart (MSC), 1992, 1996, 1999.

[137] D. Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cambridge, Mass.,
USA, April 2006. ISBN 0-262-10114-9.

[138] M. A. Jackson. Software Requirements & Specifications: a lexicon of practice, principles and prejudices.
ACM Press. Addison-Wesley, Reading, England, 1995.

[139] M. A. Jackson. Problem Frames — Analyzing and Structuring Software Development Problems. ACM
Press, Pearson Education. Addison-Wesley, England, 2001.

[140] K. Jensen and N. Wirth. Pascal User Manual and Report, volume 18 of LNCS. Springer–Verlag, 1976.

[141] N. D. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program Generation.
C.A.R.Hoare Series in Computer Science. Prentice Hall International, 1993.

[142] B. Kernighan and D. Ritchie. C Programming Language. Prentice Hall, 2nd edition, 1989.

[143] D. Knuth. The Art of Computer Programming, Vol.1: Fundamental Algorithms. Addison-Wesley, Read-
ing, Mass., USA, 1968.

[144] D. Knuth. The Art of Computer Programming, Vol.2.: Seminumerical Algorithms. Addison-Wesley,
Reading, Mass., USA, 1969.

[145] D. Knuth. The Art of Computer Programming, Vol.3: Searching & Sorting. Addison-Wesley, Reading,
Mass., USA, 1973.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 85

[146] I. Lakatos. Proofs and Refutations: The Logic of Mathematical Discovery (Eds.: J. Worrall and E. G.
Zahar). Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge CB2 2RU,
England, 2 September 1976. ISBN: 0521290384. Published in 1963-64 in four parts in the British Journal
for Philosophy of Science. (Originally Lakatos’ name was Imre Lipschitz.).

[147] L. Lamport. Specifying Systems. Addison–Wesley, Boston, Mass., USA, 2002.

[148] A. Lamsweerde. Requirements Engineering: from system goals to UML models to software specifications.
Wiley, 2009.

[149] P. Landin. Histories of discoveries of continuations: Belles-lettres with equivocal tenses, 1997. In O.
Danvy, editor, ACM SIGPLAN Workshop on Continuations, Number NS-96-13 in BRICS Notes Series,
1997.

[150] P. J. Landin. A Correspondence Between ALGOL 60 and Church’s Lambda-Notation (in 2 parts). Com-
munications of the ACM, 8(2-3):89–101 and 158–165, Feb.-March 1965.

[151] P. J. Landin. A Generalization of Jumps and Labels. Technical report, Univac Sys. Prgr. Res. Grp., N.Y.,
1965.

[152] P. J. Landin. Getting Rid of Labels. Technical report, Univac Sys. Prgr. Res. Grp., N.Y., 1965.

[153] J. Lee. Computer Semantics. Van Nostrand Reinhold Co., 1972.

[154] J. Lee and W. Delmore. The Vienna Definition Language, a generalization of instruction definitions. In
SIGPLAN Symp. on Programming Language Definitions, San Francisco, Aug. 1969.

[155] H. S. Leonard and N. Goodman. The Calculus of Individuals and its Uses. Journal of Symbolic Logic,
5:45–44, 1940.

[156] X. Leroy and P. Weis. Manuel de Référence du langage Caml. InterEditions, Paris, France, 1993. ISBN
2-7296-0492-8.

[157] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley & Sun Microsystems.
ACM Press Books, 1996. 496 pp, ISBN 0-10-63452-X.

[158] J. Lipson. Elements of Algebra and Algebraic Computing. Addison-Wesley, Reading, Mass., 1981.

[159] W. Little, H. Fowler, J. Coulson, and C. Onions. The Shorter Oxford English Dictionary on Historical
Principles. Clarendon Press, Oxford, England, 1987.

[160] J. Lloyd. Foundation of Logic Programming. Springer-Verlag, 1984.

[161] P. Lucas. Formal Semantics of Programming Languages: VDL. IBM Journal of Devt. and Res., 25(5):549–
561, 1981.

[162] P. Lucas and K. Walk. On the Formal Description of PL/I. Annual Review Automatic Programming Part
3, 6(3), 1969.

[163] E. Luschei. The Logical Systems of Leśniewksi. North Holland, Amsterdam, The Netherlands, 1962.

[164] ANSI X3.23-1974. The Cobol programming language. Technical report, American National Standards
Institute, Standards on Computers and Information Processing, 1974.

[165] ANSI X3.53-1976. The PL/I programming language. Technical report, American National Standards
Institute, Standards on Computers and Information Processing, 1976.

[166] ANSI X3.9-1966. The Fortran programming language. Technical report, American National Standards
Institute, Standards on Computers and Information Processing, 1966.

[167] J. McCarthy. A Basis for a Mathematical Theory of Computation. In Computer Programming and Formal
Systems. North-Holland Publ.Co., Amsterdam, 1963.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

86 From Domains to Requirements

[168] J. McCarthy. Artificial Intellingence. Electronically, on the Web: http://www-formal.stanford.-

edu/jmc/, 2004.

[169] J. McCarthy and et al. LISP 1.5, Programmer’s Manual. The MIT Press, Cambridge, Mass., USA, 1962.

[170] S. Merz. On the Logic of TLA+. Computing and Informatics, 22(1–2), 2003.

[171] J. Meseguer. Software Specification and Verification in Rewriting Logic. NATO Advanced Study Institute,
2003.

[172] Microsoft Corporation. MCAD/MCSD Self-Paced Training Kit: Developing Web Applications with Mi-
crosoft Visual Basic .NET and Microsoft Visual C# .NET. Microsoft Corporation, Redmond, WA, USA,
2002. 800 pages.

[173] Microsoft Corporation. MCAD/MCSD Self-Paced Training Kit: Developing Windows-Based Applications
with Microsoft Visual Basic .NET and Microsoft Visual C# .NET. Microsoft Corporation, Redmond, WA,
USA, 2002.

[174] D. Miéville and D. Vernant. Stanis law Leśniewksi aujourd’hui. Grenoble, October 8-10, 1992.

[175] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The MIT Press, Cambridge, Mass.,
USA and London, England, 1990.

[176] C. C. Morgan. Programming from Specifications. International Series in Computer Science. Prentice
Hall, Hemel Hempstead, Hertfordshire HP2 4RG, UK, 1990.

[177] T. Mossakowski, A. E. Haxthausen, D. Sanella, and A. Tarlecki. CASL — The Common Algebraic
Specification Language: Semantics and Proof Theory. Computing and Informatics, 22(1–2), 2003.

[178] J. F. Nilsson. Some Foundational Issues in Ontological Engineering, October 30 – Novewmber 1 2002.
Lecture slides for a PhD Course in Representation Formalisms for Ontologies, Copenhagen, Denmark.

[179] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL, A Proof Assistant for Higher-Order Logic,
volume 2283 of Lecture Notes in Computer Science. Springer-Verlag, 2002.

[180] Object Management Group. OMG Unified Modelling Language Specification. OMG/UML,
http://www.omg.org/uml/, version 1.5 edition, March 2003. www.omg.org/cgi-bin/doc?formal/03-03-
01.

[181] E.-R. Olderog and H. Dierks. Real-Time Systems: Formal Specification and Automatic Verification.
Cambridge University Press, UK, 2008.

[182] O. Ore. Graphs and their Uses . The Mathematical Association of America, 1963.

[183] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Language Reference. Computer
Science Laboratory, SRI International, Menlo Park, CA, Sept. 1999.

[184] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS System Guide. Computer
Science Laboratory, SRI International, Menlo Park, CA, Sept. 1999.

[185] D. L. Parnas. On the criteria to be used in decomposing systems into modules. Communications of the
ACM, 15(12):1053–1058, Dec. 1972.

[186] D. L. Parnas. A technique for software module specification with examples. Communications of the
ACM, 14(5), May 1972.

[187] D. L. Parnas. Software Fundamentals: Collected Papers, Eds.: David M. Weiss and Daniel M. Hoffmann.
Addison–Wesley Publ. Co., April 9 2001. 688 pages. ISBN 0201703696. Amazon price (August 2001)
US˙$ 49.95.

[188] D. L. Parnas and P. C. Clements. A rational design process: How and why to fake it. IEEE Trans.
Software Engineering, 12(2):251–257, February 1986.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 87

[189] D. L. Parnas, P. C. Clements, and D. M. Weiss. Enhancing reusability with information hiding. In Tutorial:
Software Reusability (Ed.: Peter Freeman), pages 83–90. IEEE Press, 1986.

[190] L. Paulson. Isabelle: The next 700 theorem provers. In P. Oddifreddi, editor, Logic in Computer Science,
pages 361–386. Academic Press, 1990.

[191] C. Petzold. Programming Windows with C# (Core Reference) . Microsoft Corporation, Redmond, WA,
USA, 2001. 1200 pages.

[192] G. D. Plotkin. A Structural Approach to Operational Semantics. Technical report, Comp. Sci. Dept.,
Aarhus Univ., Denmark; DAIMI-FN-19, 1981. Definitive version of this seminal report is (to be) published
in a special issue of the Journal of Logic and Algebraic Programming (eds. Jan Bergstra and John Tucker)
devoted to a workshop on SOS: Structural Operational Semantics, a Satellite Event of CONCUR 2004,
August 30, 2004, London, United Kingdom. Look also for Gordon Plotkin’s introductory paper for that
issue: The Origins of Structural Operational Semantics.

[193] G. D. Plotkin. Structural operational semantics. Lecture notes, Aarhus University, DAIMI FN-19.
Reprinted 1991, 1981. See [195, 194].

[194] G. D. Plotkin. The origins of structural operational semantics. Journal of Logic and Algebraic Program-
ming, 60–61:3–15, July-December 2004. See [193, 195].

[195] G. D. Plotkin. A structural approach operational semantics. Journal of Logic and Algebraic Programming,
60–61:17–139, July-December 2004. Widely disseminated since 1981 as [193]. See also [194].

[196] B. Randell. On Failures and Faults. In FME 2003: Formal Methods, volume 2805 of Lecture Notes in
Computer Science, pages 18–39. Formal Methods Europe, Springer–Verlag, 2003. Invite Paper.

[197] W. Reisig. On Gurevich’s Theorem for Sequential Algorithms. Acta Informatica, 2003.

[198] W. Reisig. The Expressive Power of Abstract State Machines. Computing and Informatics, 22(1–2),
2003. This paper is one of a series: [60, 81, 177, 111, 170, 126] appearing in a double issue of the same
journal: Logics of Specification Languages — edited by Dines Bjørner.

[199] W. Reisig. Petrinetze: Modellierungstechnik, Analysemethoden, Fallstudien. Leitfäden der Informatik.
Vieweg+Teubner, 1st edition, 15 June 2010. 248 pages; ISBN 978-3-8348-1290-2.

[200] J. C. Reynolds. The Craft of Programming. Prentice-Hall, 1981.

[201] J. C. Reynolds. The Semantics of Programming Languages. Cambridge University Press, 1999.

[202] A. W. Roscoe. Theory and Practice of Concurrency. C.A.R. Hoare Series in Computer Science. Prentice-
Hall, 1997. Now available on the net: http://www.comlab.ox.ac.uk/people/bill.roscoe/publications/-
68b.pdf.

[203] B. Russell. The Philosophy of Logical Atomism. The Monist: An International Quarterly Journal of
General Philosophical Inquiry,, xxxviii–xxix:495–527, 32–63, 190–222, 345–380, 1918–1919.

[204] B. Russell. Introduction to Mathematical Philosophy. George Allen and Unwin, London, 1919.

[205] D. A. Schmidt. Denotational Semantics: a Methodology for Language Development. Allyn & Bacon,
1986.

[206] S. Schneider. Concurrent and Real-time Systems — The CSP Approach. Worldwide Series in Computer
Science. John Wiley & Sons, Ltd., Baffins Lane, Chichester, West Sussex PO19 1UD, England, January
2000.

[207] P. Sestoft. Java Precisely. The MIT Press, 25 July 2002. 100 pages (sic !), ISBN 0262692767.

[208] P. M. Simons. Foundations of Logic and Linguistics: Problems and their Solutions, chapter Leśniewski’s
Logic and its Relation to Classical and Free Logics. Plenum Press, New York, 1985. Georg Dorn and P.
Weingartner (Eds.).

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

88 From Domains to Requirements

[209] J. M. Spivey. Understanding Z: A Specification Language and its Formal Semantics, volume 3 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press, Jan. 1988.

[210] J. M. Spivey. The Z Notation: A Reference Manual. International Series in Computer Science. Prentice
Hall, Hemel Hempstead, Hertfordshire HP2 4RG, UK, 1989.

[211] J. Srzednicki and Z. Stachniak, editors. Leśniewksi’s Lecture Notes in Logic. Dordrecht, 1988.

[212] J. Srzednicki and Z. Stachniak. Leśniewksi’s Systems Protothetic. . Dordrecht, 1998.

[213] Staff of Merriam Webster. Online Dictionary: http://www.m-w.com/home.htm, 2004. Merriam–
Webster, Inc., 47 Federal Street, P.O. Box 281, Springfield, MA 01102, USA.

[214] J. Stein, editor. The Random House American Everyday Disctionary. Random House, New York, N.Y.,
USA, 1949, 1961.

[215] B. Stroustrup. C++ Programming Language. Addison-Wesley Publishing Company, 1986.

[216] S. J. Surma, J. T. Srzednicki, D. I. Barnett, and V. F. Rickey, editors. Stanis law Leśniewksi: Collected
works (2 Vols.). Dordrecht, Boston – New York, 1988.

[217] T. Tamai. Social Impact of Information System Failures. Computer, IEEE Computer Society Journal,
42(6):58–65, June 2009.

[218] R. Tennent. The Semantics of Programming Languages. Prentice–Hall Intl., 1997.

[219] S. Thompson. Haskell: The Craft of Functional Programming. Addison Wesley, 2nd edition, 29 March
1999. 512 pages, ISBN 0201342758.

[220] D. Turner. Miranda: A Non-strict Functional Language with Polymorphic Types. In J. Jouannaud,
editor, Functional Programming Languages and Computer Architectures, number 201 in Lecture Notes
in Computer Science. Springer-Verlag, 1985.

[221] J. van Benthem. The Logic of Time, volume 156 of Synthese Library: Studies in Epistemology, Logic,
Methhodology, and Philosophy of Science (Editor: Jaakko Hintika). Kluwer Academic Publishers, P.O.Box
17, NL 3300 AA Dordrecht, The Netherlands, second edition, 1983, 1991.

[222] R. van Glabbeek and P. Weijland. Branching Time and Abstraction in Bisimulation Semantics. Electroni-
cally, on the Web: http://theory.stanford.edu/~rvg/abstraction/abstraction.html, Centrum
voor Wiskunde en Informatica, Postbus 94079, 1090 GB Amsterdam, The Netherlands, January 1996.

[223] A. van Wijngaarden. Report on the algorithmic language Algol 68. Acta Informatica, 5:1–236, 1975.

[224] B. Venners. Inside the Java 2.0 Virtual Machine (Enterprise Computing). McGraw-Hill; ISBN:
0071350934, October 1999.

[225] D. Watt, B. Wichmann, and W. Findlay. Ada: Language and Methodology. Intl. Ser. in Comp. Sc.
Prentice-Hall International, 1986.

[226] P. Weis and X. Leroy. Le langage Caml. Dunod, Paris, France, 1999. ISBN 2-10-004383-8, Second
edition.

[227] Wikipedia. Polymorphism. In Internet. Published: http://en.wikipedia.org/wiki/Polymorphism (compu-
ter science), 2005.

[228] G. Winskel. The Formal Semantics of Programming Languages. The MIT Press, Cambridge, Mass.,
USA, 1993.

[229] N. Wirth. The Programming Language PASCAL. Acta Informatica, 1(1):35–63, 1971.

[230] N. Wirth. Systematic Programming. Prentice-Hall, 1973.

[231] N. Wirth. Algorithms + Data Structures = Programs. Prentice-Hall, 1976.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Lecture Notes in Software Engineering 89

[232] N. Wirth and C. Hoare. A Contribution to the Development of ALGOL. Communications of the ACM,
9(6):413–432, 1966.

[233] J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and Refinement. Prentice Hall Interna-
tional Series in Computer Science, 1996.

[234] E. N. Zalta. Logic. In The Stanford Encyclopedia of Philosophy. Published: http://plato.stanford.edu/,
Winter 2003.

[235] C. C. Zhou and M. R. Hansen. Duration Calculus: A Formal Approach to Real–time Systems. Monographs
in Theoretical Computer Science. An EATCS Series. Springer–Verlag, 2004.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

90 CoMet 1

A An RSL Primer 264

This is an ultra-short introduction to the RAISE Specification Language, RSL. Examples follow and expand on
the examples of earlier sections.

A.1 Types

The reader is kindly asked to study first the decomposition of this section into its sub-parts and sub-sub-parts.

A.1.1 Type Expressions

Type expressions are expressions whose values are types, that is, possibly infinite sets of values (of “that” type).

Atomic Types Atomic types have (atomic) values. That is, values which we consider to have no proper
constituent (sub-)values, i.e., cannot, to us, be meaningfully “taken apart”.

RSL has a number of built-in atomic types. There are the Booleans, integers, natural numbers, reals,
characters, and texts.265

Basic Types

type

[1] Bool

[2] Int

[3] Nat

[4] Real

[5] Char

[6] Text

1. The Boolean type of truth values false and
true.

2. The integer type on integers ..., –2, –1, 0, 1, 2,
... .

3. The natural number type of positive integer val-
ues 0, 1, 2, ...

4. The real number type of real values, i.e., values

whose numerals can be written as an integer,
followed by a period (“.”), followed by a natu-
ral number (the fraction).

5. The character type of character values ′′a′′, ′′b′′,
...

6. The text type of character string values ′′aa′′,
′′aaa′′, ..., ′′abc′′, ...

266

Example 1 .Basic Net Attributes:

• For safe, uncluttered traffic, hubs and links can ‘carry’ a maximum of vehicles.

• Links have lengths. (We ignore hub (traversal) lengths.)

• One can calculate whether a link is a two-way link.
267

type

MAX = Nat

LEN = Real

is Two Way Link = Bool

value

obs Max: (H|L) → MAX

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

An RSL Primer 91

obs Len: L → LEN
is two way link: L → is Two Way Link
is two way link(l) ≡ ∃ lσ:LΣ • lσ ∈ obs HΣ(l)∧card lσ=2

. .End of Example 1

Composite Types 268

Composite types have composite values. That is, values which we consider to have proper
constituent (sub-)values, i.e., can, to us, be meaningfully “taken apart”.

From these one can form type expressions: finite sets, infinite sets, Cartesian products, lists,
maps, etc.

Let A, B and C be any type names or type expressions, then:

Composite Type Expressions

[7] A-set

[8] A-infset

[9] A × B × ... × C
[10] A∗

[11] Aω

[12] A →m B
[13] A → B

[14] A
∼

→ B
[15] (A)
[16] A | B | ... | C
[17] mk id(sel a:A,...,sel b:B)
[18] sel a:A ... sel b:B

7. The set type of finite cardinality set values.

8. The set type of infinite and finite cardinality set
values.

9. The Cartesian type of Cartesian values.

10. The list type of finite length list values.

11. The list type of infinite and finite length list
values.

12. The map type of finite definition set map val-
ues.

13. The function type of total function values.

14. The function type of partial function values.

15. In (A) A is constrained to be:

• either a Cartesian B × C × ... × D, in
which case it is identical to type expres-
sion kind 9,

• or not to be the name of a built-in type
(cf., 1–6) or of a type, in which case
the parentheses serve as simple delim-
iters, e.g., (A →m B), or (A∗)-set, or (A-

set)list, or (A|B) →m (C|D|(E →m F)), etc.

16. The postulated disjoint union of types A, B, . . . ,
and C.

17. The record type of mk id-named record values
mk id(av,...,bv), where av, . . . , bv, are values of
respective types. The distinct identifiers sel a,
etc., designate selector functions.

18. The record type of unnamed record values
(av,...,bv), where av, . . . , bv, are values of re-
spective types. The distinct identifiers sel a,
etc., designate selector functions.

269

Example 2 .Composite Net Type Expressions:

The type clauses of function signatures:

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

92 CoMet 1

value

f: A → B

often have the type expressions A and/or B be composite type expressions:

value

obs HIs: L → HI-set
obs LIs: H → LI-set
obs HΣ: H → HT-set

set HΣ: H × HΣ → H

270

Right-hand sides of type definitions often have composite type expressions:

type

N = H-set × L-set
HT = LI × HI × LI
LT′ = HI × LI × HI

. .End of Example 2

A.1.2 Type Definitions 271

Concrete Types Types can be concrete in which case the structure of the type is specified
by type expressions:

Type Definition

type

A = Type expr
schematic examples:

A1 = B1-set, A2 = B1-infset

A3 = B2 × C1 × D1
B1 = E∗, B2 = Eω

C1 = F →m G

D1 = H → J, D2 = H
∼

→ J
K = L | M

272

Example 3 .Composite Net Types:

There are many ways in which nets can be concretely modelled:

• Sorts + Observers + Axioms: First we show an example of type definitions without
right-hand side, that is, of sort definitions.

From a net one can observe many things.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

An RSL Primer 93

Of the things we focus on are the hubs and the links.

A net contains two or more hubs and one or more links. Possibly other entities and net
attributes may also be observable, but we shall not consider those here.

type

[sorts] Nα, H, L, HI, LI
value

obs Hs: Nα → H-set

obs Ls: Nα → L-set
axiom

∀ n:Nα
• card obs Hs(n)>0 ⇒ card obs Ls(n)≥1 ∧ ...

273

• Cartesians + Wellformedness: A net can be considered as a Cartesian of sets of two
or more hubs and sets of one or more links.

type

[sorts] H, L
Nβ = H-set × L-set

value

wf Nβ: Nβ → Bool

wf Nβ(hs,ls) ≡ card hs>1 ⇒ card ls>0

inject Nβ : Nα
∼

→ Nβ pre: wf Nβ(hs,ls)
inject Nβ(nα) ≡ (obs Hs(nα),obs Ls(nα))

274

• Cartesians + Maps + Wellformedness: Or a net can be described

a as a triple of b-c-d:

b hubs (modelled as a map from hub identfiers to hubs),

c links (modelled as a map from link identfiers to links), and

d a graph from hub hi identifiers hii to maps from identfiers liji
of hub hi connected

links lij to the identfiers hji
of link connected hubs hj .

275

type

[sorts] H, HI, L, LI
[a] Nγ = HUBS × LINKS × GRAPH
[b] HUBS = HI →m H
[c] LINKS = LI →m L
[d] GRAPH = HI →m (LI −m> HI)

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

94 CoMet 1

– [b,c] hs:HUBS and ls:LINKS are maps from hub (link) identifiers to hubs (links)
where one can still observe these identfiers from these hubs (link).

• Example 12 on page 112 defines the well-formedness predicates for the above map types.

. .End of Example 3

276

Variety of Type Definitions

[1] Type name = Type expr /∗ without | s or subtypes ∗/
[2] Type name = Type expr 1 | Type expr 2 | ... | Type expr n
[3] Type name ==

mk id 1(s a1:Type name a1,...,s ai:Type name ai) |
... |
mk id n(s z1:Type name z1,...,s zk:Type name zk)

[4] Type name :: sel a:Type name a ... sel z:Type name z
[5] Type name = {| v:Type name′ • P(v) |}

where a form of [2–3] is provided by combining the types:277

Record Types

Type name = A | B | ... | Z
A == mk id 1(s a1:A 1,...,s ai:A i)
B == mk id 2(s b1:B 1,...,s bj:B j)
...
Z == mk id n(s z1:Z 1,...,s zk:Z k)

Types A, B, ..., Z are disjoint, i.e., shares no values, provided all mk id k are distinct and due
to the use of the disjoint record type constructor ==.

axiom

∀ a1:A 1, a2:A 2, ..., ai:Ai •

s a1(mk id 1(a1,a2,...,ai))=a1 ∧ s a2(mk id 1(a1,a2,...,ai))=a2 ∧
... ∧ s ai(mk id 1(a1,a2,...,ai))=ai ∧

∀ a:A • let mk id 1(a1′,a2′,...,ai′) = a in

a1′ = s a1(a) ∧ a2′ = s a2(a) ∧ ... ∧ ai′ = s ai(a) end

278

Example 4 . Net Record Types: Insert Links:

19. To a net one can insert a new link in either of three ways:

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

An RSL Primer 95

a) Either the link is connected to two existing hubs — and the insert operation must
therefore specify the new link and the identifiers of two existing hubs;

b) or the link is connected to one existing hub and to a new hub — and the insert
operation must therefore specify the new link, the identifier of an existing hub, and
a new hub;

c) or the link is connected to two new hubs — and the insert operation must therefore
specify the new link and two new hubs.

d) From the inserted link one must be able to observe identifier of respective hubs.

20. From a net one can remove a link.13 The removal command specifies a link identifier.

279

type

19 Insert == Ins(s ins:Ins)
19 Ins = 2xHubs | 1x1nH | 2nHs
19a 2xHubs == 2oldH(s hi1:HI,s l:L,s hi2:HI)
19b 1x1nH == 1oldH1newH(s hi:HI,s l:L,s h:H)
19c 2nHs == 2newH(s h1:H,s l:L,s h2:H)
20 Remove == Rmv(s li:LI)

axiom

19d ∀ 2oldH(hi′,l,hi′′):Ins • hi′6=hi′′ ∧ obs LIs(l)={hi′,hi′′} ∧
∀ 1old1newH(hi,l,h):Ins • obs LIs(l)={hi,obs HI(h)} ∧
∀ 2newH(h′,l,h′′):Ins • obs LIs(l)={obs HI(h′),obs HI(h′′)}

RSL Explanation

• 19: The type clause type Ins = 2xHubs | 1x1nH | 2nHs introduces the type name Ins
and defines it to be the union (|) type of values of either of three types: 2xHubs, 1x1nH
and 2nHs.

– 19a): The type clause type 2xHubs == 2oldH(s hi1:HI, s l:L, s hi2:HI) defines the
type 2xHubs to be the type of values of record type 2oldH(s hi1:HI,s l:L,s hi2:HI),
that is, Cartesian-like, or “tree”-like values with record (root) name 2oldH and with
three sub-values, like branches of a tree, of types HI, L and HI. Given a value,
cmd, of type 2xHubs, applying the selectors s hi1, s l and s hi2 to cmd yield the
corresponding sub-values.

– 19b): Reading of this type clause is left as exercise to the reader.

– 19c): Reading of this type clause is left as exercise to the reader.

– 19d): The axiom axiom has three predicate clauses, one for each category of Insert
commands.

13– provided that what remains is still a proper net

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

96 CoMet 1

♦ The first clause: ∀ 2oldH(hi′,l,hi′′):Ins • hi′6=hi′′ ∧ obs HIs(l) = {hi′, hi′′} reads
as follows:

◦ For all record structures, 2oldH(hi′,l,hi′′), that is, values of type Insert (which
in this case is the same as of type 2xHubs),

◦ that is values which can be expressed as a record with root name 2oldH
and with three sub-values (“freely”) named hi′, l and hi′′

◦ (where these are bound to be of type HI, L and HI by the definition of
2xHubs),

◦ the two hub identifiers hi′ and hi′′ must be different,

◦ and the hub identifiers observed from the new link, l, must be the two
argument hub identifiers hi′ and hi′′.

♦ Reading of the second predicate clause is left as exercise to the reader.

♦ Reading of the third predicate clause is left as exercise to the reader.

The three types 2xHubs, 1x1nH and 2nHs are disjoint: no value in one of them is the
same value as in any of the other merely due to the fact that the record names, 2oldH,
1oldH1newH and 2newH, are distinct. This is no matter what the “bodies” of their record
structure is, and they are here also distinct: (s hi1:HI,s l:L,s hi2:HI), (s hi:HI,s l:L,s h:H),
respectively (s h1:H,s l:L,s h2:H).

• 20; The type clause type Remove == Rmv(s li:LI)

– (as for Items 19b) and 19c))

– defines a type of record values, say rmv,

– with record name Rmv and with a single sub-value, say li of type LI

– where li can be selected from by rmv selector s li.

End of RSL Explanation

Example 17 on page 123 presents the semantics functions for int Insert and int Remove.

. .End of Example 4

Subtypes 280

In RSL, each type represents a set of values. Such a set can be delimited by means of predicates.
The set of values b which have type B and which satisfy the predicate P, constitute the subtype
A:

Subtypes

type

A = {| b:B • P(b) |}

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

An RSL Primer 97

281

Example 5 . Net Subtypes:

In Example 3 on page 92 we gave three examples. For the first we gave an example, Sorts +
Observers + Axioms, “purely” in terms of sets, see Sorts — Abstract Types below. For the
second and third we gave concrete types in terms of Cartesians and Maps. 282

• In the Sorts + Observers + Axioms part of Example 3

– a net was defined as a sort, and so were its hubs, links, hub identifiers and link
identifiers;

– axioms – making use of appropriate observer functions - make up the wellformedness
condition on such nets.

We now redefine this as follows:
283

type

[sorts] N′, H, L, HI, LI
N = {|n:N′

• wf N(n)|}
value

wf N: N′ → Bool

wf N(n) ≡
∀ n:N • card obs Hs(n)≥0 ∧ card obs Ls(n)≥0 ∧
axioms 2.–3., 5.–6., and 10., (Page 13)

284

• In the Cartesians + Wellformedness part of Example 3

– a net was a Cartesian of a set of hubs and a set of links

– with the wellformedness that there were at least two hubs and at least one link

– and that these were connected appropriately (treated as ...).

We now redefine this as follows:

type

N′ = H-set × L-set
N = {|n:N′

• wf N(n)|}

285

• In the Cartesians + Maps + Wellformedness part of Example 3

– a net was a triple of hubs, links and a graph,

– each with their wellformednes predicates.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

98 CoMet 1

We now redefine this as follows:

286

type

[sorts] L, H, LI, HI
N′ = HUBS × LINKS × GRAPH
N = {|(hs,ls,g):N′

• wf HUBS(hs)∧wf LINKS(ls)∧wf GRAPH(g)(hs,ls)|}
HUBS′ = HI →m H
HUBS = {|hs:HUBS′

• wf HUBS(hs)|}
LINKS′ = LI → L
LINKS = {|ls:LINKS′

• wf LINKS(ls)|}
GRAPH′ = HI →m (LI →m HI)
GRAPH = {|g:GRAPH′

• wf GRAPH(g)|}
value

wf GRAPH: GRAPH′ → (HUBS × LINKS) → Bool

wf GRAPH(g)(hs,ls) ≡ wf N(hs,ls,g)

Example 12 on page 112 presents a definition of wf GRAPH.

. .End of Example 5

Sorts — Abstract Types 287

Types can be (abstract) sorts in which case their structure is not specified:

Sorts

type

A, B, ..., C

288

Example 6 . Net Sorts:

In formula lines of Examples 3–5 we have indicated those type clauses which define sorts, by
bracketed [sorts] literals.

. .End of Example 6

A.2 Concrete RSL Types: Values and Operations 289

A.2.1 Arithmetic

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

An RSL Primer 99

Arithmetic

type

Nat, Int, Real

value

+,−,∗: Nat×Nat→Nat | Int×Int→Int | Real×Real→Real

/: Nat×Nat
∼

→Nat | Int×Int
∼

→Int | Real×Real
∼

→Real

<,≤,=,6=,≥,> (Nat|Int|Real) × (Nat|Int|Real) → Bool

290

A.2.2 Set Expressions

Set Enumerations Let the below a’s denote values of type A, then the below designate
simple set enumerations:

Set Enumerations

{{}, {a}, {e1,e2,...,en}, ...} ⊆ A-set

{{}, {a}, {e1,e2,...,en}, ..., {e1,e2,...}} ⊆ A-infset

291

Example 7 . Set Expressions over Nets:

We now consider hubs to abstract cities, towns, villages, etcetera. Thus with hubs we can
associate sets of citizens.

Let c:C stand for a citizen value c being an element in the type C of all such. Let g:G stand
for any (group) of citizens, respectively the type of all such. Let s:S stand for any set of groups,
respectively the type of all such. Two otherwise distinct groups are related to one another if
they share at least one citizen, the liaisons. A network nw:NW is a set of groups such that for
every group in the network one can always find another group with which it shares liaisons. 292

Solely using the set data type and the concept of subtypes, we can model the above:

type

C
G′ = C-set, G = {| g:G′

• g 6={} |}
S = G-set

L′ = C-set, L = {| ℓ:L′
• ℓ 6={} |}

NW′ = S, NW = {| s:S • wf S(s) |}
value

wf S: S → Bool

wf S(s) ≡ ∀ g:G • g ∈ s ⇒ ∃ g′:G • g′ ∈ s ∧ share(g,g′)
share: G×G → Bool

share(g,g′) ≡ g 6=g′ ∧ g ∩ g′ 6= {}
liaisons: G×G → L
liaisons(g,g′) = g ∩ g′ pre share(g,g′)

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

100 CoMet 1

293

Annotations: L stands for proper liaisons (of at least one liaison). G′, L′ and N′ are the “raw”
types which are constrained to G, L and N. {| binding:type expr • bool expr |} is the general
form of the subtype expression. For G and L we state the constraints “in-line”, i.e., as direct
part of the subtype expression. For NW we state the constraints by referring to a separately
defined predicate. wf S(s) expresses — through the auxiliary predicate — that s contains at
least two groups and that any such two groups share at least one citizen. liaisons is a “truly”
auxiliary function in that we have yet to “find an active need” for this function!294

The idea is that citizens can be associated with more than one city, town, village, etc.
(primary home, summer and/or winter house, working place, etc.). A group is now a set
of citizens related by some “interest” (Rotary club membership, political party “grassroots”,
religion, et.). The reader is invited to define, for example, such functions as:The set of groups
(or networks) which are represented in all hubs [or in only one hub]. The set of hubs whose
citizens partake in no groups [respectively networks]. The group [network] with the largest
coverage in terms of number of hubs in which that group [network] is represented.
.
. .End of Example 7

Set Comprehension 295

The expression, last line below, to the right of the ≡, expresses set comprehension. The
expression “builds” the set of values satisfying the given predicate. It is abstract in the
sense that it does not do so by following a concrete algorithm.

Set Comprehension

type

A, B
P = A → Bool

Q = A
∼

→ B
value

comprehend: A-infset × P × Q → B-infset

comprehend(s,P,Q) ≡ { Q(a) | a:A • a ∈ s ∧ P(a)}

296

Example 8 .Set Comprehensions:

Item 52 on page 23, the wf N(hs,ls,g) wellformedness predicate definition, includes:

type

51a. PLAN = HI →m LHIM
51b. LHIM = LI →m HI-set
value

52c. no junk: PLAN → Bool

52c. no junk(plan) ≡ dom plan = ∪{rng(plan(hi))|hi:HI•hi ∈ dom plan}

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

An RSL Primer 101

It expresses the distributed union of sets (rng (plan(li)) of hub identifiers (for each of the hi
indexed maps from (definition set, dom) link identiers to (range set, rng) hub identifiers,
where hi:HI ranges over dom plan).
. .End of Example 8

A.2.3 Cartesian Expressions 297

Cartesian Enumerations Let e range over values of Cartesian types involving A, B, . . .,
C, then the below expressions are simple Cartesian enumerations:

Cartesian Enumerations

type

A, B, ..., C
A × B × ... × C

value

(e1,e2,...,en)

298

Example 9 .Cartesian Net Types:

So far we have abstracted hubs and links as sorts. That is, we have not defined their types
concretely. Instead we have postulated some attributes such as: observable hub identifiers
of hubs and sets of observable link identifiers of links connected to hubs. We now claim the
following further attributes of hubs and links. 299

• Concrete links have

– link identifiers,

– link names – where two or more connected links may have the same link name,

– two (unordered) hub identifiers,

– lenghts,

– locations – where we do not presently defined what we main by locations,

– etcetera

• Concrete hubs have

– hub identifiers,

– unique hub names,

– a set of one or more observable link identifiers,

– locations,

– etcetera.
300

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

102 CoMet 1

type

LN, HN, LEN, LOC
cL = LI × LN × (HI × HI) × LOC × ...
cH = HI × HN × LI-set × LOC × ...

. .End of Example 9

A.2.4 List Expressions 301

List Enumerations Let a range over values of type A, then the below expressions are
simple list enumerations:

List Enumerations

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ...} ⊆ A∗

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ..., 〈e1,e2,...,en,... 〉, ...} ⊆ Aω

〈 a i .. a j 〉

The last line above assumes ai and aj to be integer-valued expressions. It then expresses
the set of integers from the value of ei to and including the value of ej . If the latter is
smaller than the former, then the list is empty.

List Comprehension 302

The last line below expresses list comprehension.

List Comprehension

type

A, B, P = A → Bool, Q = A
∼

→ B
value

comprehend: Aω × P × Q
∼

→ Bω

comprehend(l,P,Q) ≡
〈 Q(l(i)) | i in 〈1..len l〉 • P(l(i))〉

303

Example 10 . Routes in Nets:

• A phenomenological (i.e., a physical) route of a net is a sequence of one or more adjacent
links of that net.

• A conceptual route is a sequence of one or more link identifiers.

• An abstract route is a conceptual route

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

An RSL Primer 103

– for which there is a phenomenological route of the net for which the link identifiers
of the abstract route map one-to-one onto links of the phenomenological route.

304

type

N, H, L, HI, LI
PR′ = L∗

PR = {| pr:PR′
• ∃ n:N • wf PR(pr)(n)|}

CR = LI∗

AR′ = LI∗

AR = {| ar:AR′
• ∃ n:N • wf AR(ar)(n) |}

value

wf PR: PR′ → N → Bool

wf PR(pr)(n) ≡
∀ i:Nat • {i,i+1}⊆inds pr ⇒

obs HIs(l(i)) ∩ obs HIs(l(i+1)) 6= {}
wf AR′: AR′ → N → Bool

wf AR(ar)(n) ≡
∃ pr:PR • pr ∈ routes(n) ∧ wf PR(pr)(n) ∧ len pr=len ar ∧

∀ i:Nat • i ∈ inds ar ⇒ obs LI(pr(i))=ar(i)

305

• A single link is a phenomenological route.

• If r and r′ are phenomenological routes

– such that the last link r

– and the first link of r′

– share observable hub identifiers,

then the concatenation r̂r′ is a route.

This inductive definition implies a recursive set comprehension.

• A circular phenomenological route is a phenomenological route whose first and last links
are distinct but share hub identifiers.

• A looped phenomenological route is a phenomenological route where two distinctly posi-
tions (i.e., indexed) links share hub identifiers.

306

value

routes: N → PR-infset

routes(n) ≡
let prs = {〈l〉|l:L•obs Ls(n)} ∪

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

104 CoMet 1

∪ {pr̂pr′|pr,pr′:PR•{pr,pr′}⊆prs∧obs HIs(r(len pr))∩obs HIs(pr′(1))6={}}
prs end

is circular: PR → Bool

is circular(pr) ≡ obs HIs(pr(1))∩obs HIs(pr(len pr)) 6={}

is looped: PR → Bool

is looped(pr) ≡ ∃ i,j:Nat • i 6=j∧{i,j}⊆index pr ⇒ obs HIs(pr(i))∩obs HIs(pr(j)) 6={}

307

• Straight routes are Phenomenological routes without loops.

• Phenomenological routes with no loops can be constructed from phenomenological routes
by removing suffix routes whose first link give rise to looping.

value

straight routes: N → PR-set

straight routes(n) ≡
let prs = routes(n) in {straight route(pr)|pr:PR•ps ∈ prs} end

straight route: PR → PR
straight route(pr) ≡

〈pr(i)|i:Nat•i:[1..len pr] ∧ pr(i) 6∈ elems〈pr(j)|j:Nat•j:[1..i]〉〉

. End of Example 10

A.2.5 Map Expressions 308

Map Enumerations Let (possibly indexed) u and v range over values of type T1 and T2,
respectively, then the below expressions are simple map enumerations:

Map Enumerations

type

T1, T2
M = T1 →m T2

value

u,u1,u2,...,un:T1, v,v1,v2,...,vn:T2
{[], [u7→v], ..., [u1 7→v1,u2 7→v2,...,un7→vn],...} ⊆ M

Map Comprehension 309

The last line below expresses map comprehension:

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

An RSL Primer 105

Map Comprehension

type

U, V, X, Y
M = U →m V

F = U
∼

→ X

G = V
∼

→ Y
P = U → Bool

value

comprehend: M×F×G×P → (X →m Y)
comprehend(m,F,G,P) ≡

[F(u) 7→ G(m(u)) | u:U • u ∈ dom m ∧ P(u)]

310

Example 11 .Concrete Net Type Construction:

• We Define a function con[struct] Nγ (of the Cartesians + Maps + Wellformedness
part of Example 3.

– The base of the construction is the fully abstract sort definition of Nα in the Sorts
+ Observers + Axioms part of Example 3 – where the sorts of hub and link
identifiers are taken from earlier examples.

– The target of the construction is the Nγ of the Cartesians + Maps + Well-
formedness part of Example 3.

– First we recall the ssential types of that Nγ .
311

type

Nγ = HUBS × LINKS × GRAPH
HUBS = HI →m H
LINKS = LI →m L
GRAPH = HI →m (LI →m HI)

value

con Nγ : Nα → Nγ

con Nγ(nα) ≡
let hubs = [obs HI(h) 7→ h | h:H • h ∈ obs Hs(nα)],

links = [obs LI(h) 7→ l | l:L • l ∈ obs Ls(nα)],
graph = [obs HI(h) 7→ [obs LI(l) 7→ ι(obs HIs(l)\{obs HI(h)})

| l:L • l ∈ obs Ls(nα)∧li ∈ obs LIs(h)]
| H:h • h ∈ obs Hs(nα)] in

(hubs.links,graph) end

ι: A-set
∼

→ A [A could be LI-set]
ι(as) ≡ if card as=1 then let {a}=as in a else chaos end end

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

106 CoMet 1

312

theorem:

nα satisfies axioms 2.–3., 5.–6., and 10. (Page 13) ⇒ wf Nγ(con Nγ(nα))

. End of Example 11

A.2.6 Set Operations 313

Set Operator Signatures

Set Operations

value

21 ∈: A × A-infset → Bool

22 6∈: A × A-infset → Bool

23 ∪: A-infset × A-infset → A-infset

24 ∪: (A-infset)-infset → A-infset

25 ∩: A-infset × A-infset → A-infset

26 ∩: (A-infset)-infset → A-infset

27 \: A-infset × A-infset → A-infset

28 ⊂: A-infset × A-infset → Bool

29 ⊆: A-infset × A-infset → Bool

30 =: A-infset × A-infset → Bool

31 6=: A-infset × A-infset → Bool

32 card: A-infset
∼

→ Nat

Set Examples 314

Set Examples

examples

a ∈ {a,b,c}
a 6∈ {}, a 6∈ {b,c}
{a,b,c} ∪ {a,b,d,e} = {a,b,c,d,e}
∪{{a},{a,b},{a,d}} = {a,b,d}
{a,b,c} ∩ {c,d,e} = {c}
∩{{a},{a,b},{a,d}} = {a}
{a,b,c} \ {c,d} = {a,b}
{a,b} ⊂ {a,b,c}
{a,b,c} ⊆ {a,b,c}
{a,b,c} = {a,b,c}
{a,b,c} 6= {a,b}
card {} = 0, card {a,b,c} = 3

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

An RSL Primer 107

Informal Explication 315

21. ∈: The membership operator expresses that an element is a member of a set.

22. 6∈: The non-membership operator expresses that an element is not a member of a
set.

23. ∪: The infix union operator. When applied to two sets, the operator gives the set
whose members are in either or both of the two operand sets.

24. ∪: The distributed prefix union operator. When applied to a set of sets, the operator
gives the set whose members are in some of the operand sets.

25. ∩: The infix intersection operator. When applied to two sets, the operator gives the
set whose members are in both of the two operand sets.

26. ∩: The prefix distributed intersection operator. When applied to a set of sets, the
operator gives the set whose members are in some of the operand sets. 316

27. \: The set complement (or set subtraction) operator. When applied to two sets, the
operator gives the set whose members are those of the left operand set which are not
in the right operand set.

28. ⊆: The proper subset operator expresses that all members of the left operand set are
also in the right operand set.

29. ⊂: The proper subset operator expresses that all members of the left operand set are
also in the right operand set, and that the two sets are not identical.

30. =: The equal operator expresses that the two operand sets are identical.

31. 6=: The non-equal operator expresses that the two operand sets are not identical.

32. card: The cardinality operator gives the number of elements in a finite set.

Set Operator Definitions 317

The operations can be defined as follows (≡ is the definition symbol):

Set Operation Definitions

value

s′ ∪ s′′ ≡ { a | a:A • a ∈ s′ ∨ a ∈ s′′ }
s′ ∩ s′′ ≡ { a | a:A • a ∈ s′ ∧ a ∈ s′′ }
s′ \ s′′ ≡ { a | a:A • a ∈ s′ ∧ a 6∈ s′′ }
s′ ⊆ s′′ ≡ ∀ a:A • a ∈ s′ ⇒ a ∈ s′′

s′ ⊂ s′′ ≡ s′ ⊆ s′′ ∧ ∃ a:A • a ∈ s′′ ∧ a 6∈ s′

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

108 CoMet 1

s′ = s′′ ≡ ∀ a:A • a ∈ s′ ≡ a ∈ s′′ ≡ s⊆s′ ∧ s′⊆s
s′ 6= s′′ ≡ s′ ∩ s′′ 6= {}
card s ≡

if s = {} then 0 else

let a:A • a ∈ s in 1 + card (s \ {a}) end end

pre s /∗ is a finite set ∗/
card s ≡ chaos /∗ tests for infinity of s ∗/

A.2.7 Cartesian Operations 318

Cartesian Operations

type

A, B, C
g0: G0 = A × B × C
g1: G1 = (A × B × C)
g2: G2 = (A × B) × C
g3: G3 = A × (B × C)

value

va:A, vb:B, vc:C, vd:D

(va,vb,vc):G0,
(va,vb,vc):G1
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decomposition expressions

let (a1,b1,c1) = g0,
(a1′,b1′,c1′) = g1 in .. end

let ((a2,b2),c2) = g2 in .. end

let (a3,(b3,c3)) = g3 in .. end

A.2.8 List Operations 319

List Operator Signatures

List Operations

value

hd: Aω ∼

→ A

tl: Aω ∼

→ Aω

len: Aω ∼

→ Nat

inds: Aω → Nat-infset

elems: Aω → A-infset

.(.): Aω × Nat
∼

→ A
̂: A∗ × Aω → Aω

=: Aω × Aω → Bool

6=: Aω × Aω → Bool

List Operation Examples 320

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

An RSL Primer 109

List Examples

examples

hd〈a1,a2,...,am〉=a1
tl〈a1,a2,...,am〉=〈a2,...,am〉
len〈a1,a2,...,am〉=m
inds〈a1,a2,...,am〉={1,2,...,m}
elems〈a1,a2,...,am〉={a1,a2,...,am}
〈a1,a2,...,am〉(i)=ai
〈a,b,c〉̂〈a,b,d〉 = 〈a,b,c,a,b,d〉
〈a,b,c〉=〈a,b,c〉
〈a,b,c〉 6= 〈a,b,d〉

Informal Explication 321

• hd: Head gives the first element in a nonempty list.

• tl: Tail gives the remaining list of a nonempty list when Head is removed.

• len: Length gives the number of elements in a finite list.

• inds: Indices give the set of indices from 1 to the length of a nonempty list. For
empty lists, this set is the empty set as well.

• elems: Elements gives the possibly infinite set of all distinct elements in a list.

• ℓ(i): Indexing with a natural number, i larger than 0, into a list ℓ having a number
of elements larger than or equal to i, gives the ith element of the list. 322

• ̂: Concatenates two operand lists into one. The elements of the left operand list
are followed by the elements of the right. The order with respect to each list is
maintained.

• =: The equal operator expresses that the two operand lists are identical.

• 6=: The non-equal operator expresses that the two operand lists are not identical.
323

The operations can also be defined as follows:

List Operator “Definitions”

value

is finite list: Aω → Bool

len q ≡
case is finite list(q) of

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

110 CoMet 1

true → if q = 〈〉 then 0 else 1 + len tl q end,
false → chaos end

inds q ≡
case is finite list(q) of

true → { i | i:Nat • 1 ≤ i ≤ len q },
false → { i | i:Nat • i6=0 } end

elems q ≡ { q(i) | i:Nat • i ∈ inds q }

324

q(i) ≡
case (q,i) of

(〈〉,1) → chaos,
(,1) → let a:A,q′:Q • q=〈a〉̂q′ in a end

→ q(i−1)
end

fq ̂ iq ≡
〈 if 1 ≤ i ≤ len fq then fq(i) else iq(i − len fq) end

| i:Nat • if len iq6=chaos then i ≤ len fq+len end 〉
pre is finite list(fq)

iq′ = iq′′ ≡
inds iq′ = inds iq′′ ∧ ∀ i:Nat • i ∈ inds iq′ ⇒ iq′(i) = iq′′(i)

iq′ 6= iq′′ ≡ ∼(iq′ = iq′′)

A.2.9 Map Operations 325

Map Operator Signatures and Map Operation Examples

value

m(a): M → A
∼

→ B, m(a) = b

dom: M → A-infset [domain of map]
dom [a1 7→b1,a2 7→b2,...,an7→bn] = {a1,a2,...,an}

rng: M → B-infset [range of map]
rng [a1 7→b1,a2 7→b2,...,an7→bn] = {b1,b2,...,bn}

†: M × M → M [override extension]
[a 7→b,a′7→b′,a′′7→b′′] † [a′7→b′′,a′′7→b′] = [a 7→b,a′7→b′′,a′′7→b′]

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

An RSL Primer 111

326

∪: M × M → M [merge ∪]
[a 7→b,a′7→b′,a′′7→b′′] ∪ [a′′′7→b′′′] = [a 7→b,a′7→b′,a′′7→b′′,a′′′7→b′′′]

\: M × A-infset → M [restriction by]
[a 7→b,a′7→b′,a′′7→b′′]\{a} = [a′7→b′,a′′7→b′′]

/: M × A-infset → M [restriction to]
[a 7→b,a′7→b′,a′′7→b′′]/{a′,a′′} = [a′7→b′,a′′7→b′′]

=,6=: M × M → Bool

◦: (A →m B) × (B →m C) → (A →m C) [composition]
[a 7→b,a′7→b′] ◦ [b7→c,b′ 7→c′,b′′7→c′′] = [a 7→c,a′7→c′]

Map Operation Explication

• m(a): Application gives the element that a maps to in the map m.

• dom: Domain/Definition Set gives the set of values which maps to in a map.

• rng: Range/Image Set gives the set of values which are mapped to in a map.

• †: Override/Extend. When applied to two operand maps, it gives the map which is
like an override of the left operand map by all or some “pairings” of the right operand
map.

• ∪: Merge. When applied to two operand maps, it gives a merge of these maps.

• \: Restriction. When applied to two operand maps, it gives the map which is a
restriction of the left operand map to the elements that are not in the right operand
set.

• /: Restriction. When applied to two operand maps, it gives the map which is a
restriction of the left operand map to the elements of the right operand set.

• =: The equal operator expresses that the two operand maps are identical.

• 6=: The non-equal operator expresses that the two operand maps are not identical.

• ◦: Composition. When applied to two operand maps, it gives the map from definition
set elements of the left operand map, m1, to the range elements of the right operand
map, m2, such that if a is in the definition set of m1 and maps into b, and if b is in
the definition set of m2 and maps into c, then a, in the composition, maps into c.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

112 CoMet 1

Example 12 .Miscellaneous Net Expressions: Maps:

Example 3 on page 92 left out defining the well-formedness of the map types:

type

GRAPH = HI →m (LI →m HI-set)
HUBS = HI →m H
LINKS = LI →m L
Nγ = HUBS × LINKS × GRAPH

value

wf HUBS: H-set → Bool

wf HUBS(hubs) ≡ ∀ hi:HI • hi ∈ dom hubs ⇒ obs HI(hubs(hi))=hi
wf LINKS: L-set → Bool

wf LINKS(links) ≡ ∀ li:LI • li ∈ dom links ⇒ obs LI(links(li))=li
wf Nγ: Nγ → Bool

wf Nγ(hs,ls,g) ≡
dom hs = dom g ∧
∪ {dom g(hi)|hi:HI • hi ∈ dom g} = dom links ∧
∪ {rng g(hi)|hi:HI • hi ∈ dom g} = dom g ∧
∀ hi:HI • hi ∈ dom g ⇒ ∀ li:LI • li ∈ dom g(hi) ⇒ (g(hi))(li) 6=hi
∀ hi:HI • hi ∈ dom g ⇒ ∀ li:LI • li ∈ dom g(hi) ⇒

∃ hi′:HI • hi′ ∈ dom g ⇒ ∃ ! li:LI • li ∈ dom g(hi) ⇒ (g(hi))(li) = hi′ ∧ (g(hi′))(li) = hi

327

• Hubs record the same hubs as do the net corresponding GRAPH (dom hs = dom g ∧).

• GRAPH record the same links as do the net corresponding LINKS (∪ {dom g(hi)|hi:HI
• hi ∈ dom g} = dom links).

• The target (or range) hub identifiers of graphs are the same as the domain of the graph
(∪ {rng g(hi)|hi:HI • hi ∈ dom g} = dom g), that is none missing, no new ones !

• No links emanate from and are incident upon the same hub (∀ hi:HI • hi ∈ dom g ⇒ ∀
li:LI • li ∈ dom g(hi) ⇒ (g(hi))(li) 6=hi).

• If there is a link from one hub to another in the GRAPH, then the same link also connects
the other hub to the former (∀ hi:HI • hi ∈ dom g ⇒ ∀ li:LI • li ∈ dom g(hi) ⇒ ∃ hi′:HI
• hi′ ∈ dom g ⇒ ∃ ! li:LI • li ∈ dom g(hi) ⇒ (g(hi))(li) = hi′ ∧ (g(hi′))(li) = hi).

. End of Example 12

Map Operation “Redefinitions” 328

The map operations can also be defined as follows:

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

An RSL Primer 113

value

rng m ≡ { m(a) | a:A • a ∈ dom m }

m1 † m2 ≡
[a 7→b | a:A,b:B •

a ∈ dom m1 \ dom m2 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a)]

m1 ∪ m2 ≡ [a 7→b | a:A,b:B •

a ∈ dom m1 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a)]

329

m \ s ≡ [a 7→m(a) | a:A • a ∈ dom m \ s]
m / s ≡ [a 7→m(a) | a:A • a ∈ dom m ∩ s]

m1 = m2 ≡
dom m1 = dom m2 ∧ ∀ a:A • a ∈ dom m1 ⇒ m1(a) = m2(a)

m1 6= m2 ≡ ∼(m1 = m2)

m◦n ≡
[a 7→c | a:A,c:C • a ∈ dom m ∧ c = n(m(a))]
pre rng m ⊆ dom n

A.3 The RSL Predicate Calculus 330

A.3.1 Propositional Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values (true or
false [or chaos]). Then:

Propositional Expressions

false, true

a, b, ..., c ∼a, a∧b, a∨b, a⇒b, a=b, a 6=b

are propositional expressions having Boolean values. ∼, ∧, ∨, ⇒, = and 6= are Boolean
connectives (i.e., operators). They can be read as: not, and, or, if then (or implies), equal

and not equal.

A.3.2 Simple Predicate Expressions 331

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values, let x, y, ...,
z (or term expressions) designate non-Boolean values and let i, j, . . ., k designate number
values, then:

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

114 CoMet 1

Simple Predicate Expressions

false, true

a, b, ..., c
∼a, a∧b, a∨b, a⇒b, a=b, a 6=b
x=y, x6=y,
i<j, i≤j, i≥j, i6=j, i≥j, i>j

are simple predicate expressions.

A.3.3 Quantified Expressions 332

Let X, Y, . . ., C be type names or type expressions, and let P(x), Q(y) and R(z) designate
predicate expressions in which x, y and z are free. Then:

Quantified Expressions

∀ x:X • P(x)
∃ y:Y • Q(y)
∃ ! z:Z • R(z)

are quantified expressions — also being predicate expressions.
They are “read” as: For all x (values in type X) the predicate P(x) holds; there exists

(at least) one y (value in type Y) such that the predicate Q(y) holds; and there exists a
unique z (value in type Z) such that the predicate R(z) holds.333

Example 13 .Predicates Over Net Quantities:

From earlier examples we show some predicates:

• Example 1: Right hand side of function definition is two way link(l):

∃ lσ:LΣ • lσ ∈ obs HΣ(l)∧card lσ=2334

• Example 3:

– The Sorts + Observers + Axioms part:

∗ Right hand side of the wellformedness function wf N(n) definition:
∀ n:N • card obs Hs(n)≥2 ∧ card obs Ls(n)≥1 ∧ axioms 2.–3., 5.–6., and
10., (Page 13)

∗ Right hand side of the wellformedness function wf N(hs,ls) definition:
card hs≥2 ∧ card ls≥1 ...

335

– The Cartesians + Maps + Wellformedness part:

∗ Right hand side of the wf HUBS wellformedness function definition:
∀ hi:HI • hi ∈ dom hubs ⇒ obs HIhubs(hi)=hi

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

An RSL Primer 115

∗ Right hand side of the wf LINKS wellformedness function definition:
∀ li:LI • li ∈ dom links ⇒ obs LIlinks(li)=li

∗ Right hand side of the wf N(hs,ls,g) wellformedness function definition:
[c] dom hs = dom g ∧
[d] ∪ {dom g(hi)|hi:HI • hi ∈ dom g} = dom links ∧
[e] ∪ {rng g(hi)|hi:HI • hi ∈ dom g} = dom g ∧
[f] ∀ hi:HI • hi ∈ dom g ⇒ ∀ li:LI • li ∈ dom g(hi) ⇒ (g(hi))(li) 6=hi
[g] ∀ hi:HI • hi ∈ dom g ⇒ ∀ li:LI • li ∈ dom g(hi) ⇒

∃ hi′:HI • hi′ ∈ dom g ⇒ ∃ ! li:LI • li ∈ dom g(hi) ⇒
(g(hi))(li) = hi′ ∧ (g(hi′))(li) = hi

. End of Example 13

A.4 λ-Calculus + Functions 336

A.4.1 The λ-Calculus Syntax

λ-Calculus Syntax

type /∗ A BNF Syntax: ∗/
〈L〉 ::= 〈V〉 | 〈F〉 | 〈A〉 | (〈A〉)
〈V〉 ::= /∗ variables, i.e. identifiers ∗/
〈F〉 ::= λ〈V〉 • 〈L〉
〈A〉 ::= (〈L〉〈L〉)

value /∗ Examples ∗/
〈L〉: e, f, a, ...
〈V〉: x, ...
〈F〉: λ x • e, ...
〈A〉: f a, (f a), f(a), (f)(a), ...

A.4.2 Free and Bound Variables 337

Free and Bound Variables Let x, y be variable names and e, f be λ-expressions.

• 〈V〉: Variable x is free in x.

• 〈F〉: x is free in λy •e if x 6= y and x is free in e.

• 〈A〉: x is free in f(e) if it is free in either f or e (i.e., also in both).

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

116 CoMet 1

A.4.3 Substitution 338

In RSL, the following rules for substitution apply:
Substitution of an expression N for all free free x in M is expressed: subst([N/x]M).

Substitution

• subst([N/x]x) ≡ N;

• subst([N/x]a) ≡ a,

for all variables a 6= x;

• subst([N/x](P Q)) ≡ (subst([N/x]P) subst([N/x]Q));

• subst([N/x](λx•P)) ≡ λy•P;

• subst([N/x](λy•P)) ≡ λy• subst([N/x]P),

if x 6=y and y is not free in N or x is not free in P;

• subst([N/x](λy•P)) ≡ λz•subst([N/z]subst([z/y]P)),

if y 6=x and y is free in N and x is free in P

(where z is not free in (N P)).

A.4.4 α-Renaming and β-Reduction 339

α and β Conversions

• α-renaming: λx•M

If x, y are distinct variables then replacing x by y in λx•M results in λy•subst([y/x]M).
We can rename the formal parameter of a λ-function expression provided that no free
variables of its body M thereby become bound.

• β-reduction: (λx•M)(N)

All free occurrences of x in M are replaced by the expression N provided that no free
variables of N thereby become bound in the result. (λx•M)(N) ≡ subst([N/x]M)

340

Example 14 .Network Traffic:

We model traffic by introducing a number of model concepts. We simplify, without loosing the
essence of this example, namely to show the use of λ–functions, by omitting consideration of
dynamically changing nets. These are introduced next:

• Let us assume a net, n:N.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

An RSL Primer 117

• There is a dense set, T, of times – for which we omit giving an appropriate definition.

• There is a sort, V, of vehicles.

• TS is a dense subset of T.

• For each ts:TS we can define a minimum and a maximum time. 341

• The MIN and MAX functions are meta-linguistic, that is, are not defined in our formal
specification language RSL, but can be given a satisfactory meaning.

• At any moment some vehicles, v:V, have a pos:Pos ition on the net and VP records those.

• A Pos ition is either on a link or at a hub.

• An onLink position can be designated by the link identifier, the identifiers of the from
and to hubs, and the fraction, f:F, of the distance down the link from the from hub to
the to hub.

• An atHub position just designates the hub (by its identifier).

• Traffic, tf:TF, is now a continuous function from T ime to NP (“recordings”).

• Modelling traffic in this way, in fact, in whichever way, entails a (“serious”) number of
well-formedness conditions. These are defined in wf TF (omitted: ...).

342

value

n:N
type

T, V
TS = T-infset

axiom

∀ ts:TS • ∃ tmin,tmax:T: tmin ∈ ts ∧ tmax ∈ ts ∧ ∀ t:T • t ∈ ts ⇒ tmin ≤ t ≤ tmax
[that is: ts = {MIN (ts)..MAX (ts)}]

type

VP = V →m Pos
TF′ = T → VP, TF = {|tf:TF′

•wf TF(tf)(n)|}
Pos = onL | atH
onL == mkLPos(hi:HI,li:LI,f:F,hi:HI), atH == mkHPos(hi:HI)

value

wf TF: TF→ N → Bool

wf TF(tf)(n) ≡ ...
DOMAIN : TF → TS
MIN ,MAX : TS → T

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

118 CoMet 1

343

We have defined the continuous, composite entity of traffic. Now let us define an operation of
inserting a vehicle in a traffic.

• To insert a vehicle, v, in a traffic, tf , is prescribable as follows:

– the vehicle, v, must be designated;

– a time point, t, “inside” the traffic tf must be stated;

– a traffic, vtf , from time t of vehicle v must be stated;

– as well as traffic, tf , into which vtf is to be “merged”.

• The resulting traffic is referred to as tf ′.

value

insert V: V × T × TF → TF → TF
insert V(v,t,vtf)(tf) as tf′

344

• The function insert V is here defined in terms of a pair of pre/post conditions.

• The pre-condition can be prescribed as follows:

– The insertion time t must be within to open interval of time points in the traffic tf
to which insertion applies.

– The vehicle v must not be among the vehicle positions of tf .

– The vehicle must be the only vehicle “contained” in the “inserted” traffic vtf .

pre: MIN (DOMAIN (tf)≤t≤MAX (DOMAIN (tf)) ∧
∀ t′:T • t′ ∈ DOMAIN (tf) ⇒ v 6∈ dom tf(t′) ∧
MIN (DOMAIN (vtf)) = t ∧
∀ t′:T•t′ ∈ DOMAIN (vtf) ⇒ dom vtf(t′)={v}

345

• The post condition “defines” tf ′, the traffic resulting from merging vtf with tf :

– Let ts be the time points of tf and vtf , a time interval.

– The result traffic, tf ′, is defines as a λ-function.

– For any t′′ in the time interval

– if t′′ is less than t, the insertion time, then tf ′ is as tf ;

– if t′′ is t or larger then tf ′ applied to t′′, i.e., tf ′(t′′)

∗ for any v′ : V different from v yields the same as (tf(t))(v′),

∗ but for v it yields (vtf(t))(v).

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

An RSL Primer 119

346

post: tf′ = λt′′•

let ts = DOMAIN (tf) ∪ DOMAIN (vtf) in

if MIN (ts) ≤ t′′ ≤ MAX (ts)
then

((t′′<t) → tf(t′′),
(t′′≥t) → [v′7→ if v′6=v then (tf(t))(v′) else (vtf(t))(v) end

|v′:V•v′ ∈ vehicles(tf)])
else chaos end

end

assumption: wf TF(vtf)∧wf TF(tf)
theorem: wf TF(tf′)

value

vehicles: TF → V-set

vehicles(tf) ≡ {v|t:T,v:V•t ∈ DOMAIN (tf)∧v ∈ dom tf(t)}

We leave it as an exercise for the reader to define functions for: removing a vehicle from a
traffic, changing to course of a vehicle from an originally (or changed) vehicle traffic to another.
etcetera.
. .End of Example 14

A.4.5 Function Signatures 347

For sorts we may want to postulate some functions:

Sorts and Function Signatures

type

A, B, ..., C
value

obs B: A → B
...
obs C: A → C

These functions cannot be defined. Once a domain is presented in which sort A and sorts
or types B, ... and C occurs these observer functions can be demonstrated. 348

Example 15 .Hub and Link Observers:

Let a net with several hubs and links be presented. Now observer functions obs Hs and obs Ls
can be demonstrated: one simply “walks” along the net, pointing out this hub and that link,
one-by-one until all the net has been visited. 349

The observer functions obs HI and obs LI can be likewise demonstrated, for example: when
a hub is “visited” its unique identification can be postulated (and “calculated”) to be the unique

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

120 CoMet 1

geographic position of the hub one which is not overlapped by any other hub (or link), and
likewise for links.

. End of Example 15

A.4.6 Function Definitions 350

Functions can be defined explicitly:

type

A, B
value

f: A → B [a total function]
f(a expr) ≡ b expr

g: A
∼

→ B [a partial function]
g(a expr) ≡ b expr
pre P(a expr)
P: A → Bool

a expr, b expr are A, respectively B valued expressions of any of the kinds illustrated in
earlier and later sections of this primer.351

Or functions can be defined implicitly:

value

f: A→B
f(a expr) as b
post P(a expr,b)
P: A×B→Bool

g: A
∼

→B
g(a expr) as b
pre P′(a expr)
post P(a expr,b)
P′: A→Bool

where b is just an identifier.

The symbol
∼

→ indicates that the function is partial and thus not defined for all arguments.
Partial functions should be assisted by preconditions stating the criteria for arguments to
be meaningful to the function.352

Finally functions, f, g, ..., h, can be defined in terms of axioms over function identifiers,
f, g, ..., h, and over identifiers of function arguments and results.

type

A, B, ..., C, D
value

f: A → B, g: B → C, ..., h: C → D
axiom

∀ a:A, b:B, ..., c:C, d:D
P1(f,g,...,h,a,b,...,c,d) ∧ ... ∧ Pn(f,g,...,h,a,b,...,c,d)

where P1, . . . , Pm and Q1, . . . , Qn designate suitable predicate expressions.353

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

An RSL Primer 121

Example 16 . Axioms over Hubs, Links and Their Observers:

The axioms displayed in Items 7–10 on Page 14 of Sect. 2.1 demonstrates how a number of
entities and observer functions are constrained (that is, partially defined) by function signatures.

. .End of Example 16

A.5 Other Applicative Expressions 354

A.5.1 Simple let Expressions

Simple (i.e., nonrecursive) let expressions:

Let Expressions

let a = Ed in Eb(a) end

is an “expanded” form of:

(λa.Eb(a))(Ed)

A.5.2 Recursive let Expressions 355

Recursive let expressions are written as:

Recursive let Expressions

let f = λa•E(f,a) in B(f,a) end

let f = (λg•λa•E(g,a))(f) in B(f.a) end

let f = F(f) in E(f,a) end where F ≡ λg•λa•E(g,a)
let f = YF in B(f,a) end where YF = F(YF)

We read f = YF as “f is a fix point of F”.

A.5.3 Non-deterministic let Clause 356

The non-deterministic let clause:

let a:A • P(a) in B(a) end

expresses the non-deterministic selection of a value a of type A which satisfies a predicate
P(a) for evaluation in the body B(a). If no a:A • P(a) the clause evaluates to chaos.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

122 CoMet 1

A.5.4 Pattern and “Wild Card” let Expressions 357

Patterns and wild cards can be used:

Patterns

let {a} ∪ s = set in ... end

let {a, } ∪ s = set in ... end

let (a,b,...,c) = cart in ... end

let (a, ,...,c) = cart in ... end

let 〈a〉̂ℓ = list in ... end

let 〈a, ,b〉̂ℓ = list in ... end

let [a 7→b] ∪ m = map in ... end

let [a 7→b,] ∪ m = map in ... end

A.5.5 Conditionals 358

Various kinds of conditional expressions are offered by RSL:

Conditionals

if b expr then c expr else a expr
end

if b expr then c expr end ≡ /∗ same as: ∗/
if b expr then c expr else skip end

if b expr 1 then c expr 1
elsif b expr 2 then c expr 2
elsif b expr 3 then c expr 3
...
elsif b expr n then c expr n end

case expr of

choice pattern 1 → expr 1,
choice pattern 2 → expr 2,
...
choice pattern n or wild card → expr n end

359

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

An RSL Primer 123

Example 17 .Choice Pattern Case Expressions: Insert Links:

We consider the meaning of the Insert operation designators.

33. The insert operation takes an Insert command and a net and yields either a new net
or chaos for the case where the insertion command “is at odds” with, that is, is not
semantically well-formed with respect to the net.

34. We characterise the “is not at odds”, i.e., is semantically well-formed, that is:

• pre int Insert(op)(hs,ls),

as follows: it is a propositional function which applies to Insert actions, op, and nets,
(hs.ls), and yields a truth value if the below relation between the command arguments
and the net is satisfied. Let (hs,ls) be a value of type N. 360

35. If the command is of the form 2oldH(hi′,l,hi′) then

⋆1 hi′ must be the identifier of a hub in hs,

⋆s2 l must not be in ls and its identifier must (also) not be observable in ls, and

⋆3 hi′′ must be the identifier of a(nother) hub in hs.

36. If the command is of the form 1oldH1newH(hi,l,h) then

⋆1 hi must be the identifier of a hub in hs,

⋆2 l must not be in ls and its identifier must (also) not be observable in ls, and

⋆3 h must not be in hs and its identifier must (also) not be observable in hs.
361

37. If the command is of the form 2newH(h′,l,h′′) then

⋆1 h′ — left to the reader as an exercise (see formalisation !),

⋆2 l — left to the reader as an exercise (see formalisation !), and

⋆3 h′′ — left to the reader as an exercise (see formalisation !).

Conditions concerning the new link (second ⋆s, ⋆2, in the above three cases) can be expressed
independent of the insert command category. 362

value

33 int Insert: Insert → N
∼

→ N
34′ pre int Insert: Ins → N → Bool

34′′ pre int Insert(Ins(op))(hs,ls) ≡
⋆2 s l(op) 6∈ ls ∧ obs LI(s l(op)) 6∈ iols(ls) ∧

case op of

35) 2oldH(hi′,l,hi′′) → {hi′,hi′′}∈ iohs(hs),

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

124 CoMet 1

36) 1oldH1newH(hi,l,h) →
hi ∈ iohs(hs) ∧ h6∈ hs ∧ obs HI(h) 6∈ iohs(hs),

37) 2newH(h′,l,h′′) →
{h′,h′′}∩ hs={} ∧ {obs HI(h′),obs HI(h′′)}∩ iohs(hs)={}

end

RSL Explanation

• 33: The value clause value int Insert: Insert → N
∼

→ N names a value, int Insert, and
defines its type to be Insert → N

∼

→ N, that is, a partial function (
∼

→) from Insert
commands and nets (N) to nets.
(int Insert is thus a function. What that function calculates will be defined later.)

• 34′: The predicate pre int Insert: Insert → N → Bool function (which is used in con-
nection with int Insert to assert semantic well-formedness) applies to Insert commands
and nets and yield truth value true if the command can be meaningfully performed on
the net state.

• 34′′: The action pre int Insert(op)(hs,ls) (that is, the effect of performing the function
pre int Insert on an Insert command and a net state is defined by a case distinction over
the category of the Insert command. But first we test the common property:

• ⋆2: s l(op) 6∈ls∧obs LI(s l(op)) 6∈iols(ls), namely that the new link is not an existing net
link and that its identifier is not already known.

– 35): If the Insert command is of kind 2oldH(hi’,l,hi”) then {hi′,hi′′}∈ iohs(hs), that
is, then the two distinct argument hub identifiers must not be in the set of known
hub identifiers, i.e., of the existing hubs hs.

– 36): If the Insert command is of kind 1oldH1newH(hi,l,h) then ... exercise left as
an exercises to the reader.

– 37): If the Insert command is of kind 2newH(h’,l,h”) ... exercise left as an exercises
to the reader. The set intersection operation is defined in Sect. A.2.6 on page 106
Item 25 on page 107.

End of RSL Explanation
363

38. Given a net, (hs,ls), and given a hub identifier, (hi), which can be observed from some
hub in the net, xtr H(hi)(hs,ls) extracts the hub with that identifier.

39. Given a net, (hs,ls), and given a link identifier, (li), which can be observed from some
link in the net, xtr L(li)(hs,ls) extracts the hub with that identifier.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

An RSL Primer 125

value

38: xtr H: HI → N
∼

→ H
38: xtr H(hi)(hs,) ≡ let h:H•h ∈ hs ∧ obs HI(h)=hi in h end

pre hi ∈ iohs(hs)

39: xtr L: HI → N
∼

→ H
39: xtr L(li)(,ls) ≡ let l:L•l ∈ ls ∧ obs LI(l)=li in l end

pre li ∈ iols(ls)

RSL Explanation

• 38: Function application xtr H(hi)(hs,) yields the hub h, i.e. the value h of type H,
such that (•) h is in hs and h has hub identifier hi.

• 38: The wild-card, , expresses that the extraction (xtr H) function does not need the
L-set argument.

• 39: Left as an exercise for the reader.

End of RSL Explanation
364

40. When a new link is joined to an existing hub then the observable link identifiers of that
hub must be updated to reflect the link identifier of the new link.

41. When an existing link is removed from a remaining hub then the observable link identifiers
of that hub must be updated to reflect the removed link (identifier).

value

aLI: H × LI → H, rLI: H × LI
∼

→ H
40: aLI(h,li) as h′

pre li 6∈ obs LIs(h)
post obs LIs(h′) = {li} ∪ obs LIs(h) ∧ non I eq(h,h′)

41: rLI(h′,li) as h
pre li ∈ obs LIs(h′) ∧ card obs LIs(h′)≥2
post obs LIs(h) = obs LIs(h′) \ {li} ∧ non I eq(h,h′)

RSL Explanation

• 40: The add link identifier function aLI:

– The function definition clause aLI(h,li) as h′ defines the application of aLI to a pair
(h,li) to yield an update, h′ of h.

– The pre-condition pre li 6∈ obs LIs(h) expresses that the link identifier li must not
be observable h.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

126 CoMet 1

– The post-condition post obs LIs(h) = obs LIs(h′) \ {li} ∧ non I eq(h,h′) expresses
that the link identifiers of the resulting hub are those of the argument hub except
(\) that the argument link identifier is not in the resulting hub.

• 41: The remove link identifier function rLI:

– The function definition clause rLI(h′,li) as h defines the application of rLI to a pair
(h′,li) to yield an update, h of h′.

– The pre-condition clause pre li ∈ obs LIs(h′) ∧ card obs LIs(h′)≥2 expresses that
the link identifier li must not be observable h.

– post-condition clause post obs LIs(h) = obs LIs(h′) \ {li} ∧ non I eq(h,h′) expresses
that the link identifiers of the resulting hub are those of the argument hub except
that the argument link identifier is not in the resulting hub.

End of RSL Explanation
365

42. If the Insert command is of kind 2newH(h’,l,h”) then the updated net of hubs and links,
has

• the hubs hs joined, ∪, by the set {h′,h′′} and

• the links ls joined by the singleton set of {l}.

43. If the Insert command is of kind 1oldH1newH(hi,l,h) then the updated net of hubs and
links, has

43.1 : the hub identified by hi updated, hi′, to reflect the link connected to that hub.

43.2 : The set of hubs has the hub identified by hi replaced by the updated hub hi′ and
the new hub.

43.2 : The set of links augmented by the new link.

44. If the Insert command is of kind 2oldH(hi’,l,hi”) then

44.1–.2 : the two connecting hubs are updated to reflect the new link,

44.3 : and the resulting sets of hubs and links updated.

366

int Insert(op)(hs,ls) ≡
⋆i case op of

42 2newH(h′,l,h′′) → (hs ∪ {h′,h′′},ls ∪ {l}),
43 1oldH1newH(hi,l,h) →
43.1 let h′ = aLI(xtr H(hi,hs),obs LI(l)) in

43.2 (hs\{xtr H(hi,hs)}∪{h,h′},ls ∪{l}) end,
44 2oldH(hi′,l,hi′′) →

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

An RSL Primer 127

44.1 let hsδ = {aLI(xtr H(hi′,hs),obs LI(l)),
44.2 aLI(xtr H(hi′′,hs),obs LI(l))} in

44.3 (hs\{xtr H(hi′,hs),xtr H(hi′′,hs)}∪ hsδ,ls ∪{l}) end

⋆j end

⋆k pre pre int Insert(op)(hs,ls)

RSL Explanation

• ⋆i–⋆j: The clause case op of p1 → c1, p2 → c2, . . . pn → cn end is a conditional clause.

• ⋆k: The pre-condition expresses that the insert command is semantically well-formed —
which means that those reference identifiers that are used are known and that the new
link and hubs are not known in the net.

• ⋆i + 42: If op is of the form 2newH(h′,l,h′′ then — the narrative explains the rest;

else

• ⋆i + 43: If op is of the form 1oldH1newH(hi,l,h) then

– 43.1: h′ is the known hub (identified by hi) updated to reflect the new link being
connected to that hub,

– 43.2: and the pair [(updated hs,updated ls)] reflects the new net: the hubs have the
hub originally known by hi replaced by h′, and the links have been simple extended
(∪) by the singleton set of the new link;

else

• ⋆i + 44: 44: If op is of the form 2oldH(hi′,l,hi′′) then

– 44.1: the first element of the set of two hubs (hsδ) reflect one of the updated hubs,

– 44.2: the second element of the set of two hubs (hsδ) reflect the other of the updated
hubs,

– 44.3: the set of two original hubs known by the argument hub identifiers are removed
and replaced by the set hsδ;

else — well, there is no need for a further ‘else’ part as the operator can only be of either
of the three mutually exclusive forms !

End of RSL Explanation
367

45. The remove command is of the form Rmv(li) for some li.

46. We now sketch the meaning of removing a link:

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

128 CoMet 1

a) The link identifier, li, is, by the pre int Remove pre-condition, that of a link, l, in
the net.

b) That link connects to two hubs, let us refer to them as h′ and h′.

c) For each of these two hubs, say h, the following holds wrt. removal of their con-
necting link:

i. If l is the only link connected to h then hub h is removed. This may mean that

• either one

• or two hubs

are also removed when the link is removed.

ii. If l is not the only link connected to h then the hub h is modified to reflect that
it is no longer connected to l.

d) The resulting net is that of the pair of adjusted set of hubs and links.

368

value

45 int Remove: Rmv → N
∼

→ N
46 int Remove(Rmv(li))(hs,ls) ≡
46a) let l = xtr L(li)(ls), {hi′,hi′′} = obs HIs(l) in

46b) let {h′,h′′} = {xtr H(hi′,hs),xtr H(hi′′,hs)} in

46c) let hs′ = cond rmv(h′,hs) ∪ cond rmv H(h′′,hs) in

46d) (hs\{h′,h′′} ∪ hs′,ls\{l}) end end end

46a) pre li ∈ iols(ls)

cond rmv: LI × H × H-set → H-set

cond rmv(li,h,hs) ≡
46(c)i) if obs HIs(h)={li} then {}
46(c)ii) else {sLI(li,h)} end

pre li ∈ obs HIs(h)

RSL Explanation

• 45: The int Remove operation applies to a remove command Rmv(li) and a net (hs,ls)
and yields a net — provided the remove command is semantically well-formed.

• 46: To Remove a link identifier by li from the net (hs,ls) can be formalised as follows:

– 46a): obtain the link l from its identifier li and the set of links ls, and

– 46a): obtain the identifiers, {hi′,hi′′}, of the two distinct hubs to which link l is
connected;

– 46b): then obtain the hubs {h′,h′′} with these identifiers;

– 46c): now examine cond rmv each of these hubs (see Lines 46(c)i)–46(c)ii)).

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

An RSL Primer 129

◦ The examination function cond rmv either yields an empty set or the singleton
set of one modified hub (a link identifier has been removed).

◦ 46c) The set, hs′, of zero, one or two modified hubs is yielded.

◦ That set is joined to the result of removing the hubs {h′,h′′}

◦ and the set of links that result from removing l from ls.

The conditional hub remove function cond rmv

– 46(c)i): either yields the empty set (of no hubs) if li is the only link identifier inh,

– 46(c)ii): or yields a modification of h in which the link identifier li is no longer
observable.

End of RSL Explanation

. End of Example 17

A.5.6 Operator/Operand Expressions 369

Operator/Operand Expressions

〈Expr〉 ::=
〈Prefix Op〉 〈Expr〉
| 〈Expr〉 〈Infix Op〉 〈Expr〉
| 〈Expr〉 〈Suffix Op〉
| ...

〈Prefix Op〉 ::=
− | ∼ | ∪ | ∩ | card | len | inds | elems | hd | tl | dom | rng

〈Infix Op〉 ::=
= | 6= | ≡ | + | − | ∗ | ↑ | / | < | ≤ | ≥ | > | ∧ | ∨ | ⇒
| ∈ | 6∈ | ∪ | ∩ | \ | ⊂ | ⊆ | ⊇ | ⊃ | ̂ | † | ◦

〈Suffix Op〉 ::= !

A.6 Imperative Constructs 370

A.6.1 Statements and State Changes

Often, following the RAISE method, software development starts with highly abstract,
sorts and applicative constructs which, through stages of refinements, are turned into
concrete types and imperative constructs.

Imperative constructs are thus inevitable in RSL.

Unit

value

stmt: Unit → Unit

stmt()

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

130 CoMet 1

• The Unit clause, in a sense, denotes “an underlying state”

– which we, for simplicity, can consider as

– a mapping from identifiers of declared variables into their values.

• Statements accept no arguments and, usually, operate on the state

– through “reading” the value(s) of declared variables and

– through “writing”, i.e., assigning values to such declared variables.

• Statement execution thus changes the state (of declared variables).

• Unit → Unit designates a function from states to states.

• Statements, stmt, denote state-to-state changing functions.

• Affixing () as an “only” arguments to a function “means” that () is an argument of
type Unit.

A.6.2 Variables and Assignment 371

Variables and Assignment

0. variable v:Type := expression
1. v := expr

A.6.3 Statement Sequences and skip

Sequencing is expressed using the ‘;’ operator. skip is the empty statement having no
value or side-effect.

2. skip

3. stm 1;stm 2;...;stm n

A.6.4 Imperative Conditionals

4. if expr then stm c else stm a end

5. case e of: p 1→S 1(p 1),...,p n→S n(p n) end

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

An RSL Primer 131

A.6.5 Iterative Conditionals 372

6. while expr do stm end

7. do stmt until expr end

A.6.6 Iterative Sequencing

8. for i in list • P(list(i)) do S(list(i)) end

9. for e in set • P(e) do S(e) end

A.7 Process Constructs 373

A.7.1 Process Channels

Let A, B and C stand for three types of (channel) messages and i:IIdx, j:JIdx for channel
array indexes, then:

Process Channels

channel

c:A
channel

{k[i]|i:IIdx}:B
{ch[i,j]i:IIdx,j:JIdx}:C

declare a channel, c, and a set (an array) of channels, k[i], capable of communicating values
of the designated types (A and B). 374

Example 18 .Modelling Connected Links and Hubs:

Examples (18–21) of this section, i.e., Sect. A.7 are building up a model of one form of meaning
of a transport net. We model the movement of vehicles around hubs and links. We think of each
hub, each link and each vehicle to be a process. These processes communicate via channels. 375

• We assume a net, n : N , and a set, vs, of vehicles.

• Each vehicle can potentially interact

– with each hub and

– with each link.

• Array channel indices (vi,hi):IVH and (vi,li):IVL serve to effect these interactions.

• Each hub can interact with each of its connected links and indices (hi,li):IHL serves these
interactions.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

132 CoMet 1

type

N, V, VI
value

n:N, vs:V-set

obs VI: V → VI
type

H, L, HI, LI, M
IVH = VI×HI, IVL = VI×LI, IHL = HI×LI

376

• We need some auxiliary quantities in order to be able to express subsequent channel
declarations.

• Given that we assume a net, n : N and a set of vehicles, vs : V S, we can now define the
following (global) values:

– the sets of hubs, hs, and links, ls of the net;

– the set, ivhs, of indices between vehicles and hubs,

– the set, ivls, of indices between vehicles and links, and

– the set, ihls, of indices between hubs and links.

value

hs:H-set = obs Hs(n), ls:L-set = obs Ls(n)
his:HI-set = {obs HI(h)|h:H•h ∈ hs}, lis:LI-set = {obs LI(h)|l:L•l ∈ ls},
ivhs:IVH-set = {(obs VI(v),obs HI(h))|v:V,h:H•v ∈ vs∧h ∈ hs}
ivls:IVL-set = {(obs VI(v),obs LI(l))|v:V,l:L•v ∈ vs∧l ∈ ls}
ihls:IHL-set = {(hi,li)|h:H,(hi,li):IHL• h ∈ hs∧hi=obs HI(h)∧li ∈ obs LIs(h)}

377

• We are now ready to declare the channels:

– a set of channels, {vh[i]|i:IVH•i∈ivhs} between vehicles and all potentially traversable
hubs;

– a set of channels, {vh[i]|i:IVH•i∈ivhs} between vehicles and all potentially traversable
links; and

– a set of channels, {hl[i]|i:IHL•i∈ihls}, between hubs and connected links.

channel

{vh[i] | i:IVH • i ∈ ivhs} : M
{vl[i] | i:IVL • i ∈ ivls} : M
{hl[i] | i:IHL • i ∈ ihls} : M

. End of Example 18

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

An RSL Primer 133

A.7.2 Process Definitions 378

A process definition is a function definition. The below signatures are just examples. They
emphasise that process functions must somehow express, in their signature, via which
channels they wish to engage in input and output events.

Processes P and Q are to interact, and to do so “ad infinitum”. Processes R and S are
to interact, and to do so “once”, and then yielding B, respectively D values. 379

value

P: Unit → in c out {k[i]|i:IIdx} Unit

Q: i:KIdx → out c in k[i] Unit

P() ≡ ... c ? ... k[i] ! e ... ; P()
Q(i) ≡ ... c ! e ... k[i] ? ... ; Q(i)

k[i]!v k[i]?

c? c!e

P() Q(i)

Figure 9: The P —— Q Process

380

Example 19 .Communicating Hubs, Links and Vehicles:

• Hubs interact with links and vehicles:

– with all immediately adjacent links,

– and with potentially all vehicles.

• Links interact with hubs and vehicles:

– with both adjacent hubs,

– and with potentially all vehicles.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

134 CoMet 1

• Vehicles interact with hubs and links:

– with potentially all hubs.

– and with potentially all links.

381

value

hub: hi:HI × h:H → in,out {hl[(hi,li)|li:LI•li ∈ obs LIs(h)]}
in,out {vh[(vi,hi)|vi:VI•vi ∈ vis]} Unit

link: li:LI × l:L → in,out {hl[(hi,li)|hi:HI•hi ∈ obs HIs(l)]}
in,out {vl[(vi,li)|vi:VI•vi ∈ vis]} Unit

vehicle: vi:VI → (Pos × Net) → v:V → in,out {vh[(vi,hi)|hi:HI•hi ∈ his]} Unit

in,out {vl[(vi,li)|li:LI•li ∈ lis]} Unit

. End of Example 19

A.7.3 Process Composition 382

Let P and Q stand for names of process functions, i.e., of functions which express will-
ingness to engage in input and/or output events, thereby communicating over declared
channels. Let P and Q stand for process expressions, and let Pi stand for an indexed
process expression, then:

P ‖ Q Parallel composition
P ⌈⌉⌊⌋ Q Nondeterministic external choice (either/or)
P ⌈⌉ Q Nondeterministic internal choice (either/or)
P –‖ Q Interlock parallel composition
O { Pi | i:Idx } Distributed composition, O = ‖,⌈⌉⌊⌋,⌈⌉,–‖

express the parallel (‖) of two processes, or the nondeterministic choice between two pro-
cesses: either external (⌈⌉⌊⌋) or internal (⌈⌉). The interlock (–‖) composition expresses that
the two processes are forced to communicate only with one another, until one of them
terminates.383

Example 20 .Modelling Transport Nets:

• The net, with vehicles, potential or actual, is now considered a process.

• It is the parallel composition of

– all hub processes,

– all link processes and

– all vehicle processes.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

An RSL Primer 135

value

net: N → V-set → Unit

net(n)(vs) ≡
‖ {hub(obs HI(h))(h)|h:H•h ∈ obs Hs(n)} ‖
‖ {link(obs LI(l))(l)|l:L•l ∈ obs Ls(n)} ‖
‖ {vehicle(obs VI(v))(obs PN(v))(v)|v:V•v ∈ vs}

obs PN: V → (Pos×Net)

384

• We illustrate a schematic definition of simplified hub processes.

• The hub process alternates, internally non-deterministically, ⌈⌉, between three sub-processes

– a sub-process which serves the link-hub connections,

– a sub-process which serves thos vehicles which communicate that they somehow
wish to enter or leave (or do something else with respect to) the hub, and

– a sub-process which serves the hub itself — whatever that is !

hub(hi)(h) ≡
⌈⌉⌊⌋{let m = hl[(hi,li)] ? in hub(hi)(Ehℓ

(li)(m)(h)) end|i:LI•li ∈ obs LI(h)}
⌈⌉ ⌈⌉⌊⌋{let m = vh[(vi,hi)] ? in hub(vi)(Ehv

(vi)(m)(h)) end|vi:VI•vi ∈ vis}
⌈⌉ hub(hi)(Ehown

(h))

385

• The three auxiliary processes:

– Ehℓ
update the hub with respect to (wrt.) connected link, li, information m,

– Ehv
update the hub with wrt. vehicle, vi, information m,

– Ehown
update the hub with wrt. whatever the hub so decides. An example could be

signalling dependent on previous link-to-hub communicated information, say about
traffic density.

Ehℓ
: LI → M → H → H

Ehv
: VI → M → H → H

Ehown
: H → H

The reader is encouraged to sketch/define similarly schematic link and vehicle processes.
.
. .End of Example 20

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

136 CoMet 1

A.7.4 Input/Output Events 386

Let c and k[i] designate channels of type A and e expression values of type A, then:

[1] c?, k[i]? input A value
[2] c!e, k[i]!e output A value

value

[3] P: ... → out c ..., P(...) ≡ ... c!e ... offer an A value,
[4] Q: ... → in c ..., Q(...) ≡ ... c? ... accept an A value
[5] S: ... → ..., S(...) = P(...)‖Q(...) synchronise and communicate

[5] expresses the willingness of a process to engage in an event that [1,3] “reads” an input,
respectively [2,4] “writes” an output. If process P reaches the c!e “program point before”
process Q ‘reaches program point’ c? then process P “waits” on Q — and vice versa.
Once both processes have reached these respective program points they “synchronise while
communicating the message vale e.

The process function definitions (i.e., their bodies) express possible [output/input]
events.387

Example 21 . Modelling Vehicle Movements:

• Whereas hubs and links are modelled as basically static, passive, that is, inert, processes
we shall consider vehicles to be “highly” dynamic, active processes.

• We assume that a vehicle possesses knowledge about the road net.

– The road net is here abstracted as an awareness of

– which links, by their link identifiers,

– are connected to any given hub, designated by its hub identifier,

– the length of the link,

– and the hub to which the link is connected “at the other end”, also by its hub
identifier

388

• A vehicle is further modelled by its current position on the net in terms of either hub or
link positions

– designated by appropriate identifiers

– and, when “on a link” “how far down the link”, by a measure of a fraction of the
total length of the link, the vehicle has progressed.

type

Net = HI →m (LI →m HI)
Pos = atH | onL
atH == mk atH(hi:HI)
onL == mk onL(fhi:HI,li:LI,f:F,thi:HI)
F = {|f:Real•0≤f≤1|}

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

An RSL Primer 137

389

• We first assume that the vehicle is at a hub.

• There are now two possibilities (1–2] versus [4–8]).

– Either the vehicle remains at that hub

∗ [1] which is expressed by some non-deterministic wait

∗ [2] followed by a resumption of being that vehicle at that location.

– [3] Or the vehicle (driver) decides to “move on”:

∗ [5] Onto a link, li,

∗ [4] among the links, lis, emanating from the hub,

∗ [6] and towards a next hub, hi′.

– [4,6] The lis and hi′ quantities are obtained from the vehicles own knowledge of the
net.

– [7] The hub and the chosen link are notified by the vehicle of its leaving the hub
and entering the link,

– [8] whereupon the vehicle resumes its being a vehicle at the initial location on the
chosen link.

390

• The vehicle chooses between these two possibilities by an internal non-deterministic choice
([3]).

type

M == mk L H(li:LI,hi:HI) | mk H L(hi:HI,li:LI)
value

vehicle: VI → (Pos × Net) → V → Unit

vehicle(vi)(mk atH(hi),net)(v) ≡
[1] (wait ;
[2] vehicle(vi)(mk atH(hi),net)(v))
[3] ⌈⌉
[4] (let lis=dom net(hi) in

[5] let li:LI•li ∈ lis in

[6] let hi′=(net(hi))(li) in

[7] (vh[(vi,hi)]!mk H L(hi,li)‖vl[(vi,li)]!mk H L(hi,li));
[8] vehicle(vi)(mk onL(hi,li,0,hi′),net)(v)
[9] end end end)

391

• We then assume that the vehicle is on a link and at a certain distance “down”, f, that
link.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

138 CoMet 1

• There are now two possibilities ([1–2] versus [4–7]).

– Either the vehicle remains at that hub

∗ [1′] which is expressed by some non-deterministic wait

∗ [2′] followed by a resumption of being that vehicle at that location.

– [3′] Or the vehicle (driver) decides to “move on”.

– [4′] Either

∗ [5′] The vehicle is at the very end of the link and signals the link and the hub
of its leaving the link and entering the hub,

∗ [6′] whereupon the vehicle resumes its being a vehicle at hub h′.

– [7′] or the vehicle moves further down, some non-zero fraction down the link.

• The vehicle chooses between these two possibilities by an internal non-deterministic choice
([3]).

392

type

M == mk L H(li:LI,hi:HI) | mk H L(hi:HI,li:LI)
value

δ:Real = move(h,f) axiom 0<δ≪1
vehicle(vi)(mk onL(hi,li,f,hi′),net)(v) ≡
[1′] (wait ;
[2′] vehicle(vi)(mk onL(hi,li,f,hi′),net)(v))
[3′] ⌈⌉
[4′] (case f of

[5′] 1 → ((vl[vi,hi′]!mk L H(li,hi′)‖vh[vi,li]!mk L H(li,hi′));
[6′] vehicle(vi)(mk atH(hi′),net)(v)),
[7′] → vehicle(vi)(mk onL(hi,li,f+δ,hi′),net)(v)
[8′] end)
move: H × F → F

. End of Example 21

A.8 Simple RSL Specifications 393

Besides the above constructs RSL also possesses module-oriented scheme, class and object
constructs. We shall not cover these here. An RSL specification is then simply a sequence
of one or more clusters of zero, one or more sort and/or type definitions, zero, one or
more variable declarations, zero, one or more channel declarations, zero, one or more value
definitions (including functions) and zero, one or more and axioms. We can illustrate these
specification components schematically:394

Simple RSL Specifications

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

An RSL Primer 139

type

A, B, C, D, E, F, G

Hf = A-set, Hi = A-infset

J = B×C×...×D

Kf = E∗, Ki = Eω

L = F→m G

Mt = J → Kf, Mp = J
∼

→ Ki

N == alpha | beta | ... | omega

O == mk Hf(as:Hf)

| mk Kf(el:Kf) | ...
P = Hf | Kf | L | ...

variable

vhf:Hf := 〈〉
channel

chf:F, chg:G, {chb[i]|i:A}:B

value

va:A, vb:B, ..., ve:E

f1: A → B, f2: C
∼

→ D

f1(a) ≡ Ef1(a)

f2: E → in|out chf F

f2(e) ≡ Ef2(e)

f3: Unit → in chf out chg Unit

...
axiom

Pi(f1,va),

Pj(f2,vb),

...
Pk(f3,ve)

395

The ordering of these clauses is immaterial. Intuitively the meaning of these definitions
and declarations are the following.

The type clause introduces a number of user-defined type names; the type names are
visible anywhere in the specification; and either denote sorts or concrete types.

The variable clause declares some variable names; a variable name denote some value
of decalred type; the variable names are visible anywhere in the specification: assigned to
(‘written’) or values ‘read’.

The channel clause declares some channel names; either simple channels or arrays of
channels of some type; the channel names are visible anywhere in the specification. 396

The value clause bind (constant) values to value names. These value names are visible
anywhere in the specification. The specification

type

A
value

a:A

non-deterministically binds a to a value of type A. Thuis includes, for example

type

A, B
value

f: A → B

which non-deterministically binds f to a function value of type A→B. 397

The axiom clause is usually expressed as several “comma (,) separated” predicates:

Pi(Ai, fi, vi),Pj(Aj, fj , vj), . . .,Pk(Ak, fk, vk)

where (Ak, fℓ, vℓ) is an abbreviation for Aℓ1 , Aℓ2 , . . . , At, fℓ1 , fℓ2 , . . . , fℓf
, vℓ1 , vℓ2, . . . , vℓv

.
The indexed sort or type names, A and the indexed function names, d, are defined elsewhere
in the specification. The index value names, v are usually names of bound ‘variables’ of
universally or existentially quantified predicates of the indexed (“comma”-separated) P. 398

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

140 CoMet 1

Example 22 .A Neat Little “System”:

We present a self-contained specification of a simple system: The system models vehicles
moving along a net, vehicle, the recording of vehicles entering links, enter sensor, the recording
of vehicles leaving links, leave sensor, and the road pricing payment of a vehicle having traversed
(entered and left) a link. Note that vehicles only pay when completing a link traversal; that
‘road pricing’ only commences once a vehicle enters the first link after possibly having left
an earlier link (and hub); and that no road pricing payment is imposed on vehicles entering,
staying-in (or at) and leaving hubs.399

We assume the following: that each link is somehow associated with two pairs of sensors:
a pair of enter and leave sensors at one end, and a pair of enter and leave sensors at the other
end; and a road pricing process which records pairs of link enterings and leavings, first one,
then, after any time interval, the other, with leavings leading to debiting of traversal fees; Our
first specification define types, assume a net value, declares channels and state signatures of
all processes.400

• ves stand for vehicle entering (link) sensor channels,

• vls stand for vehicle leaving (link) sensor channels,

• rp stand for ‘road pricing’ channel

• enter sensor(hi,li) stand for vehicle entering [sensor] process from hub hi to link (li).

• leave sensor(li,hi) stand for vehicle leaving [sensor] process from link li to hub (hi).

• road pricing() stand for the unique ‘road pricing’ process.

• vehicle(vi)(...) stand for the vehicle vi process.

401

type

N, H, HI, LI, VI
RPM == mk Enter L(vi:VI,li:LI) | mk Leave L(vi:VI,li:LI)

value

n:N
channel

{ves[obs HI(h),li]|h:H•h ∈ obs Hs(n)∧li ∈ obs LIs(h)}:VI
{vls[li,obs HI(h)]|h:H•h ∈ obs Hs(n)∧li ∈ obs LIs(h)}:VI
rp:RPM

type

Fee, Bal
LVS = LI →m VI-set, FEE = LI →m Fee, ACC = VI →m Bal

value

link: (li:LI × L) → Unit

enter sensor: (hi:HI × li:LI) → in ves[hi,li],out rp Unit

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

An RSL Primer 141

leave sensor: (li:LI × hi:HI) → in vls[li,hi],out rp Unit

road pricing: (LVS×FEE×ACC) → in rp Unit

402

To understand the sensor behaviours let us review the vehicle behaviour. In the vehicle behaviour
defined in Example 21, in two parts, Page 137 and Page 138 we focus on the events [7] where
the vehicle enters a link, respectively [5′] where the vehicle leaves a link. These are summarised
in the schematic reproduction of the vehicle behaviour description. We redirect the interactions
between vehicles and links to become interactions between vehicles and enter and leave sensors.

value

δ:Real = move(h,f) axiom 0<δ≪1
move: H × F → F

403vehicle: VI → (Pos × Net) → V → Unit

vehicle(vi)(pos,net)(v) ≡
[1] (wait ;
[2] vehicle(vi)(pos,net)(v))
[3] ⌈⌉

case pos of

mk atH(hi) →
[4−6] (let lis=dom net(hi) in let li:LI•li ∈ lis in let hi′=(net(hi))(li) in

[7] ves[hi,li]!vi;
[8] vehicle(vi)(mk onL(hi,li,0,hi′),net)(v)
[9] end end end)

mk onL(hi,li,f,hi′) →
[4′] (case f of

[5′−6′] 1 → (vls[li,hi]!vi; vehicle(vi)(mk atH(hi′),net)(v)),
[7′] → vehicle(vi)(mk onL(hi,li,f+δ,hi′),net)(v)
[8′] end)

end

404

• As mentioned on Page 140 link behaviours are associated with two pairs of sensors:

– a pair of enter and leave sensors at one end, and

– a pair of enter and leave sensors at the other end;

value

link(li)(l) ≡
let {hi,hi′} = obs HIs(l) in

enter sensor(hi,li) ‖ leave sensor(li,hi) ‖
enter sensor(hi′,li) ‖ leave sensor(li,hi′) end

enter sensor(hi,li) ≡
let vi = ves[hi,li]? in rp!mk Enter LI(vi,li); enter sensor(hi,li) end

leave sensor(li,hi) ≡
let vi = ves[li,hi]? in rp!mk Leave LI(vi,li); enter sensor(li,hi) end

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

142 CoMet 1

405

• The LVS component of the road pricing behaviour serves,

– among other purposes that are not mentioned here,

– to record whether the movement of a vehicles “originates” along a link or not.

• Otherwise we leave it to the reader to carefully read the formulas.

value

payment: VI × LI → (ACC × FEE) → ACC
payment(vi,li)(fee,acc) ≡

let bal′ = if vi ∈ dom acc then add(acc(vi),fee(li)) else fee(li) end

in acc † [vi 7→ bal′] end

add: Fee × Bal → Bal [add fee to balance]

406
road pricing(lvs,fee,acc) ≡ in rp

let m = rp? in

case m of

mk Enter LI(vi,li) →
road pricing(lvs†[li 7→lvs(li)∪{vi}],fee,acc),

mk Leave LI(vi,li) →
let lvs′ = if vi ∈ lvs(li) then lvs†[li 7→lvs(li)\{vi}] else lvs end,

acc′ = payment(vi,li)(fee,acc) in

road pricing(lvs′,fee,acc′)
end end end

. End of Example 22

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 143

B Terminology 407

B.1 Term Table of Contents

A 143
B 150
C 153
D 162
E 169
F172

G 176
H 177
I 180
K 186
L186
M 189

N 194
O 195
P 197
Q 206
R 206
S213

T 223
U 229
V 230
W231

In any development project it is important to define the terms before their first use, to
maintain, including adjust, update and extend, such a glossary of term definitions, and to
adhere to the definitions.

B.2 Terms

. .A

1. Abstract: Something which focuses on essential properties. Abstract is a relation:
something is abstract with respect to something else (which possesses — what is
considered — inessential properties).

2. Abstract algebra: An abstract [1] algebra[26] is an algebra whose carrier elements
and whose functions are defined by postulates (axiom[75]s, laws) which specify general
properties, rather than values, of functions. (Abstract algebras are also referred to
as postulational, or axiom[75]atic algebras. The axiomatic approach to the study of
algebras forms the cornerstone of so-called modern algebra [158].)

3. Abstraction: ‘The art of abstracting. The act of separating in thought; a mere
idea; something visionary.’

4. Abstract data type: An abstract [1] data[193] type [782] is a set of values for which no
external world or computer (i.e., data) representation is being defined, together with
a set of abstractly defined functions over these data values.

5. Abstraction function: An abstraction[3] function[310] is a function which applies to
value [802]s of a concrete type [157] and yields values of — what is said to be a corre-
sponding — abstract type [7]. (Same as retrieve function[624].)

6. Abstract syntax: An abstract [1] syntax [733] is a set of rules, often in the form of an
axiom system[77], or in the form of a set of sort definition[695]s, which defines a set of
structures without prescribing a precise external world, or a computer (i.e., data)
representation of those structures.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

144 CoMet 1

7. Abstract type: An abstract [1] type [782] is the same as an abstract data type [4], except
that no functions over the data values have been specified.

8. Accessibility: We say that a resource [620] is accessible by another resource, if that
other resource can make use of the former resource. (Accessibility is a dependability
requirement [218]. Usually accessibility is considered a machine [436] property. As such,
accessibility is (to be) expressed in a machine requirements [438] document.)

9. Acceptor: An acceptor is a device, like a finite state automaton[289] of a pushdown
automaton[564], which, when given (i.e., presented with) character strings (or, in gen-
eral, finite structures), purported to belong to a language, can recognise, i.e., can
decide, whether these character strings belong to that language.

10. Acquirer: The legal entity, a person, an institution or a firm which orders some
development [228] to take place. (Synonymous terms are client [116] and customer [192].)

11. Acquisition: The common term means purchase. Here we mean the collection of
knowledge [407] (about a domain[239], about some requirements [605], or about some soft-
ware [685]). This collection takes place in an interaction between the developer [227]s and
representatives of the client [116] (user [796]s, etc.). (A synonym term is elicitation[265].)

12. Action: By an action we shall understand something which potentially changes a
state [705], that is, value [802]s of dynamic [260] attribute [69]s of simple entities [681]. We con-
sider action[12]s to be one of the four kinds of entities [272] that the Triptych “repeat-
edly” considers. The other three are: simple entities [681], event [281]s and behaviour [79]s.
Consideration of these are included in the specification of all domain facet [250]s and
all requirements facet [614]s.

13. Activation stack: See the Comment field of the function activation[311] entry.

14. Active: By active is understood a phenomenon[524] which, over time [761], changes
value [802], and does so either by itself, autonomous [73]ly, or also because it is “in-
structed” (i.e., is “bid” (see biddable [85]), or “programmed” (see programmable [546]) to
do so). (Contrast to inert [367] and reactive [578].)

15. Actor: By an actor we shall understand someone which carries out an action[12]. (A
synonymous term for actor is agent [24].)

16. Actual argument: When a function is invoked it is usually applied to a list of
values, the actual argument [52]s. (See also formal parameter [302].)

17. Actuator: By an actuator we shall understand an electronic, a mechanical, or an
electromechanical device which carries out an action[12] that influences some physi-
cal value [802]. (Usually actuators, together with sensor [659]s, are placed in reactive [578]

systems, and are linked to controller [183]s. Cf. sensor [659].)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 145

18. Acyclic: Acyclicity is normally thought of as a property of graphs. (Hence see next
entry: acyclic graph[19].)

19. Acyclic graph: An acyclic graph is usually thought of as a directed graph[232] in which
there is no nonempty path[517], in the direction of the arrow [54]s, from any node [479] to
itself. (Often acyclic graphs are called directed acyclic graphs, DAG s. An undirected
graph which is acyclic is a tree [777].)

20. Adaptive: By adaptive we mean some thing that can adapt or arrange itself to a
changing context [172], a changing environment [275].

21. Adaptive maintenance: By adaptive maintenance we mean an update, as here,
of software, to fit (to adapt) to a changing environment. (Adaptive maintenance is
required when new input/output media are attached to the existing software, or when
a new, underlying database management system is to be used (instead of an older
such), etc. We also refer to corrective maintenance [187], perfective maintenance [519], and
preventive maintenance [541].)

22. Address: An address is the same as a link [425], a pointer [528] or a reference [587]: Some-
thing which refers to, i.e., designates something (typically something else). (By an
address we shall here, in a narrow sense, understand the location[431], the place, or
position in some storage [715] at which some data[193] is store [714]d or kept.)

23. Ad hoc polymorphism: See Comment field of polymorphic [529].

24. Agent: By an agent we mean the same as an actor [15] — a human or a machine (i.e.,
robot). (The two terms actor [15] and agent [24] are here considered to be synonymous.)

25. AI: Abbreviation for artificial intelligence. (We shall refrain from positing (including
risking) a definition of the term AI. Instead we refer to John McCarthy’s home page
[168].)

26. Algebra: An algebra is here taken to just mean: A set of value [802]s, A, the carrier of
the algebra, and a set of function[310]s, Φ, on these values such that the result values
are within the set of values: Φ = A∗ → A. (We make the distinction between uni-
versal algebra[790]s, abstract algebra[2]s and concrete algebra[155]s. See also heterogeneous
algebra[336]s, partial algebra[515]s and total algebra[765]s.)

27. Algebraic semantics: By an algebraic semantics we understand a semantics [655]

which denotes one, or a (finite or infinite) set of zero, one or more algebra[26]s. (Usually
an algebraic semantics is expressed in terms of (i) sort [694] definitions, (ii) function
signature [318]s and (iii) axiom[75]s.)

28. Algebraic systems: An algebraic system is an algebra[26]. (We use the term sys-
tem[736] as an entity with two clearly separable parts: the carrier [106] of the algebra and
the function[310]s of the algebra. We distinguish between concrete algebra[155]s, abstract
algebra[2]s and universal algebra[790]s — here listed in order of increasing abstraction[3].)

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

146 CoMet 1

29. Algebraic type: An algebraic type is here considered the same as a sort [694]. (That
is, algebraic types are specified as are algebraic systems [28].)

30. Algol: Algol stands for Algorithmic Language. (Algol 60 designed in the period
1958–1960 [12]. It became a reference standard for future language designs (Algol W
[232], Algol 68 [223], Pascal [229, 129, 140] and others.)

31. Algorithm: The notion of an algorithm is so important that we will give a number
of not necessarily complementary definitions, and will then discuss these.

• By an algorithm we shall understand a precise prescription for carrying out
an orderly, finite set of operation[493]s on a set of data[193] in order to calculate
(compute [148]) a result. (This is a version of the classical definition. It is
compatible with computability in the sense of Turing machine [781]s and Lambda-
calculus [412]. Other terms for algorithm are: effective procedure, and abstract
program.)

• Let there be given a possibly infinite set of state [705]s, S, let there be given a
possibly infinite set of initial states, I, where I ⊆ S, and let there be given
a next state function f : S → S. (C, where C = (Q, I, f) is an initialised,
deterministic [226] transition[772] system.) A sequence s0, s1, . . . , si−1, si, . . . , sm such
that f(si−1) = si is a computation[144]. An algorithm, A, is a C with final states
O, i.e.: A = (Q, I, f, O), where O ⊆ S, such that each computation ends with a
state sm in O. (This is basically Don Knuth’s definition [143]. In that definition
a state is a collection of identified data, i.e., a formalised representation of
information, i.e., of computable data. Thus Knuth’s definition is still Turing
and Lambda-calculus “compatible”.)

• There is given the same definition as just above with the generalisation that
a state is any association of variables to phenomena, whether the latter are
representable “inside” the computer or not. (This is basically Yuri Gurevitch’s
definition of an algorithm [117, 197, 198]. As such this definition goes beyond
Turing machine and Lambda-calculus “compatibility”. That is, captures more!)

32. Algorithmic: Adjective form of algorithm[31].

33. Allocate: To apportion for a specific purpose or to particular persons or things,
to distribute tasks among human and automated components. (We shall here use
the term generally for the allocation of resources (see also resource allocation[621]),
specifically for storage [715] to assignable variable [59]s. In the general sense, allocation, as
the name implies, has some spatial qualities about it: allocation to spatial positions.
In the special sense we can indeed talk of storage space.)

34. Alphabet: A finite collection of script symbols called the letters of the alphabet.

35. Alpha-renaming: By alpha-renaming (α-renaming) we mean the substitution of a
binding [88] identifier [351], with another, the “new”, identifier, in some Lambda-expression[414]

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 147

(statement or clause), such that all free occurrences of that binding identifier in that
expression (statement or clause) are replaced by the new identifier, and such that
that new identifier is not already bound in that expression (statement or clause).
(Alpha-renaming is a concept of the Lambda-calculus [412].)

36. Ambiguous: A sentence [660] is ambiguous if it is open to more than one interpreta-
tion[397], i.e., has more than one model [460] and these models are not isomorphic [403].

37. Analogic: Equivalency or likeness of relations. Resemblance of relations or at-
tributes as a ground of reasoning. Also: Presumptive reasoning based on the as-
sumption that if things have some similar attributes, their other attributes will be
similar [159].

38. Analogue: A representative in another class or group [159]. (Used in this technical
note in the sense above, not in the sense of electrical engineering or control theory.)

39. Analysis: The resolution of anything complex into simple elements. A determina-
tion of proper components. The tracing of things to their sources; the discovery of
general principles underlying concrete phenomena [159]. (In conventional mathemat-
ics analysis pertains to continuous phenomena, e.g. differential and integral calculi.
Our analysis is more related to hybrid systems of both discrete and continuous phe-
nomena, or often to just discrete ones.)

40. Analytic: Of, or pertaining to, or in accordance with analysis [39].

41. Analytic grammar: A grammar [325], i.e., a syntax [733] whose designated sentences (in
general: Structures) can be subject to analysis [39], i.e., where the syntactic composition
can be revealed through analysis [39].

42. Anomaly: Deviation from the normal.

43. Anthropomorphic: Attributing a human personality to anything impersonal or
irrational [159]. (See anthropomorphism[44]. It seems to be a “disease” of programmers
to attribute their programs with human properties: “The program does so-and-
so; and after that, it then goes on to do such-and-such,” etcetera. Programs, to
recall, are, as are any description is, a mere syntactic, i.e., static text. As such they
certainly can “do nothing”. But they may prescribe that certain actions are effected
by machine — when a machine interprets (“executes”) the program text!)

44. Anthropomorphism: Ascription of a human form and attributes to the Deity, or
of a human attribute or personality to anything impersonal or irrational [159]. (See
anthropomorphic [43].)

45. Application: By an application we shall understand either of two rather different
things: (i) the application of a function to an argument [52], and (ii) the use of software
for some specific purpose (i.e., the application). (See next entry for variant (ii).)

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

148 CoMet 1

46. Application domain: An area of activity which some software [685] is to support (or
supports) or partially or fully automate (resp. automates). (We normally omit the
prefix ‘application’ and just use the term domain[239].)

47. Applicative: The term applicative is used in connection with applicative program-
ming. It is hence understood as programming where applying functions to argu-
ment [52]s is a main form of expression, and hence designates function application as a
main form of operation. (Thus the terms applicative and functional [312] are here used
synonymously.)

48. Applicative programming: See the term applicative [47] just above. (Thus the
terms applicative programming and functional programming [313] are here used synony-
mously.)

49. Applicative programming language: Same as functional programming language [314].

50. Arc: Same as an edge [262]. (Used normally in connection with graph[327]s.)

51. Architecture: The structure and content of software [685] as perceived by their user [796]s
and in the context of the application domain[46]. (The term architecture is here used
in a rather narrow sense when compared with the more common use in civil engi-
neering.)

52. Argument: A value [802] provided (possibly as part of an argument list) when invoking
a function.

53. Arity: By the arity of a function[310] (i.e., an operation[493]) we understand the number
(0, 1, or more) of argument [52]s that the function applies to. (Usually a function
applies to an argument list, and the arity is therefore the length of this list.)

54. Arrow: A directed edge [262]. (Branches are arrows.)

55. Artefact: An artificial product [159]. (Anything designed or constructed by humans
or machines, which is made by humans.)

56. Artifact: Same term as artefact [55].

57. Artificial intelligence: See AI [25].

58. Assertion: By an assertion we mean the act of stating positively usually in antici-
pation of denial or objection. (In the context of specification[698]s and program[545]s an
assertion is usually in the form of a pair of predicate [536]s “attached” to the specifi-
cation text, to the program text, and expressing properties that are believed to hold
before any interpretation of the text; that is, “a before” and “an after”, or, as we
shall also call it: a pre- and a post-condition.)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 149

59. Assignable variable: By an assignable variable we understand an entity of a pro-
gram text which denote [216]s a storage [715] location[431] whose associated value [802] can be
changed by an assignment [60]. (Usually, in the context of specifications and programs,
assignable variables are declared.)

60. Assignment: By an assignment we mean an update to, a change of a storage [715]

location[431]. (Usually, in the context of specifications and programs, assignments are
prescribed by assignment statements.)

61. Associative: Property of a binary operator o: If for all values a, b and c, (a o b) o c =
a o (b o c), then o is said to be an associative operator. (Addition (+) and multipli-
cation (*) of natural numbers are associative operators.)

62. Asynchronous: Not synchronous [731]. (In the context of computing we say that
two or more process [544]es — some of which may represent the world external to
the computing device — are asynchronous if occurrences of the event [281]s of these
processes are not (a priori) coordinated.)

63. Atomic: In the context of software engineering [693] atomic means: A phenomenon[524]

(a concept [152], a simple entity [681], a value [802]) which consists of no proper subparts,
i.e., no proper subphenomena[524], subconcept [152]s, subentities [272] or subvalue [802]s other
than itself. When we consider a phenomenon[524], a concept [152], a simple entity [681], a
value [802], to be atomic, then it is often a matter of choice, with the choice reflecting
a level of abstraction[3].

64. Atomic action:

65. Atomic behaviour:

66. Atomic entity: Either an atomic action[64], an atomic behaviour [65], an atomic event [67]

or an atomic simple entity [68]

67. Atomic event:

68. Atomic simple entity:

69. Attribute: We use the term attribute only in connection with values of composite
type. An attribute is now whether a composite value possesses a certain property,
or what value it has for a certain component part. (An example is that of database
(e.g., SQL) relations (i.e., tabular data structures): Columns of a table (i.e., a relation)
are usually labelled with a name designating the attribute (type) for values of that
column. Another example is that, say, of a Cartesian: A = B×C×D. A can be said to
have the attributes B, C, and D. Yet other examples are M = A →m B, S = A-set and L
= A∗. M is said to have attributes A and B. S is said to have attribute A. L is said to
have attribute A. In general we make the distinction between an entity consisting of
subentities (being decomposable into proper parts, cf. subentity [721]), and the entities

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

150 CoMet 1

having attributes. A person, like me, has a height attribute, but my height cannot
be “composed away from me”!)

70. Attribute grammar: A grammar, usually expressed as a BNF Grammar [92], where,
to each rule [638], and to each nonterminal, of the left-hand side or of the right-hand
side of the rule, there is associated one or more (attribute) assignable variable [59]s
together with a set of single assignments to some of these variables — such that the
assignment expression variables are those of the attribute variables of the rule.

71. Automaton: An automaton is a device with state [705]s, input [382]s, some states des-
ignated as final states, and with a next state transition[772] function which to every
state and input designates a next state. (There may be a finite, or there may be an
infinite number of states. The next state transition function may be deterministic [226]

or nondeterministic [481].)

72. Automorphism: An isomorphism[404] that maps an algebra into itself is an automor-
phism. (See also endomorphism[268], epimorphism[276], homomorphism[343], monomor-
phism[467].)

73. Autonomous: A phenomenon[524] (a concept [152], an entity [272]) is said to be au-
tonomous if it changes value [802] at its own discretion or without influence from an
environment [275]. (Rephrasing the above we get: (i) A phenomenon is said to be of,
or possess, the autonomous active dynamic attribute if it changes value only on its
own volition — that is, it cannot also change value as a result of external stimuli;
(ii) or when its actions cannot be controlled in any way: That is, they are a “law
onto themselves and their surroundings”. We speak of such phenomena as being
dynamic [260]. Other dynamic active [14] phenomena may be active [14] or reactive [578].)

74. Availability: We say that a resource [620] is available for use by other resources, if
within a reasonable time interval these other resources can make use of the former
resource. (Availability is a dependability requirement [218]. Usually availability is con-
sidered a machine [436] property. As such availability is (to be) expressed in a machine
requirements [438] document.)

75. Axiom: An established rule or principle or a self-evident truth.

76. Axiomatic specification: A specification[698] presented, i.e., given, in terms of a set
of axiom[75]s. (Usually an axiomatic specification also includes definitions of sort [694]s
and function signature [318]s.)

77. Axiom system: Same as axiomatic specification[76].

. B

78. B: B stands for Bourbaki, pseudonym for a group of mostly French mathematicians
which began meeting in the 1930s, aiming to write a thorough unified set-theoretic

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 151

account of all mathematics. They had tremendous influence on the way mathe-
matics has been done since. (The founding of the Bourbaki group is described in
André Weil’s autobiography, titled something like “memoir of an apprenticeship”
(orig. Souvenirs D’apprentissage). There is a usable book on Bourbaki by J. Fang.
Liliane Beaulieu has a book forthcoming, which you can sample in “A Parisian Cafe
and Ten Proto-Bourbaki Meetings 1934–1935” in the Mathematical Intelligencer 15
no. 1 (1993) 27–35. From http://www.faqs.org/faqs/sci-math-faq/bourbaki/

(2004). Founding members were: Henri Cartan, Claude Chevalley, Jean Coulomb,
Jean Delsarte, Jean Dieudonné, Charles Ehresmann, René de Possel, Szolem Man-
delbrojt, André Weil. From: http://www.bourbaki.ens.fr/ (2004). B also stands
for a model-oriented specification language [2].)

79. Behaviour: A sequence of action[12]s and event [281]s is a behaviour. A set of be-
haviours is a behaviour.

By behaviour we shall understand the way in which something functions or operates.

In the context of domain engineering behaviour is a concept associated with phenom-
ena[524], in particular manifest simple entities [681]. And then behaviour is that which
can be observed about the value [802] of that simple entity [681] and its interaction[392] with
its environment [275].

80. Behaviour, Communicating: A concurrent behaviour where actions of one be-
haviour synchronise and communicate with actions of other behaviours.

81. Behaviour, Concurrent: A set of behaviours.

82. Behaviour, Parallel: A set of behaviours.

83. Behaviour, Sequential: A sequence of actions and events.

84. Beta-reduction: By Beta-reduction we understand the substitution whereby all
free [305] occurrences of a designated variable [803] in a Lambda-expression[414] are replaced
by Lambda-expression[414] (in which some Alpha-renamings may have to be made first).

85. Biddable: A phenomenon[524] is biddable if it can be advised (through a “contrac-
tual arrangement”) on which action[12]s are expected of it in various state [705]s. (A
biddable phenomenon does not have to take these actions, but then the “contractual
arrangement” need no longer be honoured by other phenomena (other [sub]domains)
with which it interact [391]s (i.e., shares phenomena).)

86. Bijection: See bijective function[87].

87. Bijective function: A total surjective function[727] which maps all value [802]s of its
postulated definition set [211] into all distinct values of its postulated range [576]set is
called bijective. (See also injective function[380] and surjective function[727].)

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

152 CoMet 1

88. Binding: By binding we mean a pairing of, usually, an identifier [351], a name [474],
with some resource [620]. (In the context of software engineering we find such bindings
as: (i) of an assignable variable [59] to a storage [715] location[431], (ii) of a procedure [543]

name [474] to a procedure denotation[213], etc.)

89. Block: By a block we shall here understand a textual entity, one that is suitably
delineated. (In the context of software engineering a block is normally some partial
specification[698] which locally introduces some (applicative [47], i.e., expression) constant
definitions (i.e., let .. in .. end), or some (imperative [352], i.e., statement) local
variable declarations (i.e., begin dcl .. ; .. end).)

90. Block-structured programming language: A programming language [551] is said
to be block-structured if it permits such program constructs (incl. procedures) whose
semantics [655] amount to the creation of a local identifier scope [649], and where such
can be nested, zero, one or more within another.

91. BNF: Abbreviation for Backus–Naur Form (Grammar). (See BNF Grammar [92].)

92. BNF Grammar: By BNF Grammar we mean a concrete, linear textual represen-
tation of a grammar [325], i.e., a syntax [733], one that designate [222]s a set of strings. (A
BNF Grammar usually is represented in the form of a set of rule [638]s. Each rule
has a nonterminal [484] left-hand-side symbol [728] and a finite set of zero, one or more
alternative right-hand-side strings of terminal [750] and nonterminal symbols.)

93. Boolean: By Boolean we mean a data type of logical values (true and false),
and a set of connectives: ∼, ∧, ∨, and ⇒. (Boolean derives from the name of the
mathematician George Boole.)

94. Boolean connective: By a Boolean[93] connective [167] we mean either of the Boolean
operators: ∧, ∨, ⇒ (or ⊃), ∼ (or ¬).

95. Bound: The concept of being bound is associated with (i) identifier [351]s (i.e., name [474]s)
and expression[282]s, and (ii) with name [474]s (i.e., identifier [351]s) and resource [620]s. An
identifier is said to be either free [305] or bound in an expression based on certain
rules being satisfied or not. If an identifier is bound in an expression then bound
occurrences of that identifier are bound to the same resource. If a name is bound to
some resource then all bound occurrences of that name denote [216] that resource. (Cf.
free [305].)

96. BPR: See business process reengineering [101]

97. Branch: Almost the same as an edge [262], except that branches are directed, i.e., are
(like) arrow [54]s. (Used usually in connection with tree [777]s.)

98. Brief: By a brief is understood a document [237], or a part of a document which
informs about a phase [523] , or a stage [702] , or a step[711] of development [228]. (A brief
thus contains information[373].)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 153

99. Business process: By a business process we shall understand a behaviour [79] of an
enterprise, a business, an institution, a factory. (Thus a business process reflects the
ways in which a business conducts its affairs, and is a facet [285] of the domain[239]. Other
facets of an enterprise are those of its intrinsics [399], management and organisation[445]

(a facet closely related, of course, to business processes), support technology [725], rules
and regulations [640], and human behaviour [345].)

100. Business process engineering: By business process engineering [100] we shall under-
stand the design[221], the determination, of business process [99]es. (In doing business
process engineering one is basically designing, i.e., prescribing entirely new business
processes.)

101. Business process reengineering: By business process reengineering [101] we shall
understand the redesign[221], the change, of business process [99]es. (In doing business
process reengineering one is basically carrying out change management [109].)

. C

102. Calculate: Given an expression and an applicable rule [638] of a calculus [104], to change
the former expression into a resulting expression. (Same as compute [148].)

103. Calculation: A sequence of steps which, from an initial expression, following rules
of a calculus [104], calculate [102]s another, perhaps the same, expression. (Same as com-
putation[144].)

104. Calculus: A method of computation[144] or calculation[103] in a special notation. (From
mathematics we know the differential and the integral calculi, and also the Laplace
calculus. From metamathematics we have learned of the λ-calculus. From logic we
know of the Boolean (propositional) calculus.)

105. Capture: The term capture is used in connection with domain knowledge [254] (i.e.,
domain capture [242]) and with requirements acquisition[606]. It shall indicate the act of
acquiring, of obtaining, of writing down, domain knowledge, respectively require-
ments.

106. Carrier: By a carrier is understood a, or the set of entities of an algebra[26] — the
former in the case of a heterogeneous algebra[336].

107. Cartesian: By a Cartesian is understood an ordered product, a fixed grouping,
a fixed composition, of entities. (Cartesian derives from the name of the French
mathematician René Descartes.)

108. C.C.I.T.T: Abbreviation for Comité Consultative Internationale de Telegraphie et
Telephonie. (CCITT is an alternative form of reference.)

109. Change management: Same as business process reengineering [101].

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

154 CoMet 1

110. Channel: By a channel is understood a means of interaction[392], i.e., of communica-
tion[122] and possibly of synchronisation[729] between behaviour [79]s. (In the context of
computing we can think of channels as being either input, or output, or both input
and output channels.)

111. Chaos: By chaos we understand the totally undefined behaviour [79]: Anything may
happen! (In the context of computing chaos may, for example, be the designation[223]

for the never-ending, the never-terminating process [544].)

112. CHI: Abbreviation for Computer Human Interface. (Same as HCI [334].)

113. CHILL: Abbreviation for CCITT’s High Level Language. (See [62, 118].)

114. Class: By a class we mean either of two things: a class clause [115], as in RSL, or a
set of entities defined by some specification[698], typically a predicate [536].

115. Clause: By a clause is meant an expression[282], designating a value [802], or a state-
ment [707], designating a state [705] change, or a sentential form, which designates both
a value and a state change. (When we use the term clause we mean it mostly in the
latter sense of both designating a value and a side effect.)

116. Client: By a client we mean any of three things: (i) The legal body (a person or a
company) which orders the development of some software, or (ii) a process [544] or a
behaviour [79] which interact [391]s with another process or behaviour (i.e., the server [663]),
in order to have that server perform some action[12]s on behalf of the client, or (iii)
a user of some software (i.e., computing system). (We shall normally use the term
customer in the first or in the second sense (i, ii).)

117. Closure: By a closure is usually meant some transitive closure of a relation ℜ: If
aℜb and bℜc then aℜc, and so forth. To this we shall add another meaning, used
in connection with implementation of (for example) procedures: Denotationally a
procedure, when invoked, in some calling environment, is to be interpreted in the
defining environment. Hence a procedure closure is a pair: The procedure text and
the defining environment.

118. Code: By code we mean a program[545] which is expressed in the machine language
of a computer.

119. Coding: By coding we shall here, simply, mean the act of programming in a ma-
chine, i.e., in a computer-close language. (Thus we do not, except where explicitly
so mentioned, mean the encoding of one string of characters into another, say for
communication[122] over a possibly faulty communication channel [110] (usually with the
decoding of the encoded string “back” into the original, or a similar string).)

120. Cohesion: Cohesion expresses a measure of “closeness”, of “dependency”, of “stick-
ing together” among a set of entities. (In the context of software engineering cohesion

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 155

is, as it is here, a term used to express a dependency relation between module [464]s of
a specification[698] or a program[545]. Two modules have a higher cohesion the larger the
number of cross-references (to types and values, including, in particular functions)
there are among them.)

121. Collision: Collision, as used here, means that two (or more) occurrences of the
same identifier, of which at least one is free, and which at some stage occurred in
different text parts, are brought together, say by function application (i.e., macro-
expansion) and thereby become bound. (Collision is a concept introduced in the
Lambda-calculus, see . Collision is an undesirable effect. See also confusion[162].)

122. Communication: A process [544] by which information[373] is exchanged between in-
dividuals (behaviour [79]s, process [544]es) through a common system[736] of symbol [728]s,
sign[679]s, or protocol [561]s.

123. Commutative: Property of a binary operator o: If for all values a and b, a o b =
b o a, then o is said to be a commutative operator. (Addition (+) and multiplication
(*) of natural numbers are commutative operators.)

124. Compilation: By a compilation we shall mean the conversion, the translation[775], of
one formal text to another, usually a high-level program text to a low-level machine
code text.

125. Compiler: By a compiler we understand a device (usually a software package) which
given sentence [660]s (i.e., source program[696]s) in one language, generates sentences
(i.e., target program[743]s) in another language. (Usually the source and the target
languages are related as follows: The source language is normally a so-called “higher-
order” language, like Java, and the target language is normally a “lower (abstraction)
level” language, like Java Byte Code (or a computer machine language) for which an
interpreter is readily available.)

126. Compiler dictionary: By a compiler dictionary we shall understand a composite
data structure (with a varying number of entries) and a fixed number of operations.
The data structure values reflect properties of a program text being compiled. These
properties could be: types of some program text variable, type structure of some
program text type name, program point of definition of some (goto) label, etc. The
possibly hierarchical, i.e., recursively nested, structure of the compiler dictionary fur-
ther reflects a similarly hierarchical structure of the program text being compiled.
The operations include those that insert, update, and search for entries in the com-
piler dictionary.

127. Compile time: By compile time we understand that time interval during which a
source program[696] is being compiled and during which certain analyses, and hence
decisions, can be made about, and actions taken with respect to the source program

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

156 CoMet 1

(to be, i.e., being, compiled) — such as type check [783]ing, name scope check [650]ing,
etc. (Contrast to run time [641].)

128. Compiling algorithm: By a compiling algorithm we shall understand a speci-
fication which, for every rule in a syntax (of a source program[696]ming language),
prescribes which target program[743]ming language data structure to generate. (We
refer to (Sects. 16.8–16.10) for “our story” on compiling algorithms.)

129. Complete: We say that a proof system[557] is complete if all true sentences are
provable.

130. Completeness: Noun form of the complete [129] adjective.

131. Component: By a component we shall here understand a set of type definitions and
component local variable declarations, i.e., a component local state, this together with
a (usually complete) set of modules, such that these modules together implement a
set of concepts and facilities, i.e., functions, that are judged to relate to one another.

132. Component design: By a component design we shall understand the design[221]

of (one or more) component [131]s. (We shall refer to for “our story” on component
design.)

133. Composite: We say that a phenomenon[524] or a concept [152], is composite when it is
possible and meaningful to consider that phenomenon or concept as analysable into
two or more subphenomena or subconcepts.

134. Composite action:

135. Composite behaviour:

136. Composite entity: Either a composite action[134], a composite behaviour [135], a com-
posite event [137] or a composite simple entity [138].

137. Composite event:

138. Composite simple entity:

139. Composite type:

140. Composition: By composition we mean the way in which a phenomenon[524], a
concept [152], is “put together” (i.e., composed) into a composite [133] phenomenon[524],
resp. concept [152].

141. Compositional: We say that two or more phenomena or concepts are composi-
tional if it is meaningful to compose these phenomena and/or concepts. (Typically a
denotational semantics [215] is expressed compositionally: By composing the semantics
of sentence parts into the semantics of the composition of the sentence parts.)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 157

142. Compositional documentation: By compositional documentation we mean a de-
velopment, or a presentation (of that development), of, as here, some description[220]

(prescription[540] or specification[698]), in which some notion of “smallest”, i.e., atomic
phenomena and concepts are developed (resp. presented) first, then their composi-
tions, etc., until some notion of full, complete development (etc.) has been achieved.
(See also composition[140], compositional [141] and hierarchical documentation[340].)

143. Comprehension: By comprehension we shall here mean set [664], list [428] or map[449]

comprehension, that is, the expression, of a set, a list, respectively a map, by a
predicate over the elements of the set, list or pairings of the map, that belong to the
set, list, respectively the map.

144. Computation: See calculation[103].

145. Computational linguistics: The study and knowledge of the syntax [733] and se-
mantics [655] of language [417] based on notions of computer science [149] and computing
science [150]. (Thus computational linguistics emphasises those aspects of language
whose analysis (recognition), or synthesis (generation), can be mechanised.)

146. Computational data+control requirements: By a computational data + con-
trol requirements we mean a requirements which express how the dynamics of compu-
tations or data (may) warrant interaction between the machine and its environment,
hence is an interface requirements [394] facet [285]. (See also shared data initialisation re-
quirements [671], shared data refreshment requirements [673], man-machine dialogue require-
ments [447], man-machine physiological requirements [448], and machine-machine dialogue
requirements [437].)

147. Computational semantics: By a computational semantics we mean a specification
of the semantics of a language which emphasises run-time computations, i.e., state-
to-next-state transitions, as effected when following the prescriptions of programs.
(Terms similar in meaning to computational semantics are operational semantics [496]

and structural operational semantics [720].)

148. Compute: Given an expression and an applicable rule [638] of a calculus [104], to change
the former expression into a resulting expression. (Same as calculate [102].)

149. Computer Science: The study and knowledge of the phenomena that can exist
inside computers.

150. Computing Science: The study and knowledge of how to construct those phenom-
ena that can exist inside computers.

151. Computing system: A combination of hardware [331] and software [685] that together
make meaningful computation[144]s possible.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

158 CoMet 1

152. Concept: An abstract or generic idea generalised from phenomena or concepts. (A
working definition of a concept has it comprising two components: The extension[283]

and the intension[389]. A word of warning: Whenever we describe something claimed
to be a “real instance”, i.e., a physical phenomenon[524], then even the description
becomes that of a concept, not of “that real thing”!)

153. Concept formation: The forming, the enunciation, the analysis [39], and definition
of concepts (on the basis, as here, of analysis [39] of the universe of discourse [793] (be it
a domain[239] or some requirements [605])). (Domain and requirements concept forma-
tion(s) is treated in Vol. 3, Chaps. 13 (Domain Analysis and Concept Formation)
and 21 (Requirements Analysis and Concept Formation).)

154. Concrete: By concrete we understand a phenomenon[524] or, even, a concept [152],
whose explication, as far as is possible, considers all that can be observed about the
phenomenon, respectively the concept. (We shall, however, use the term concrete
more loosely: To characterise that something, being specified, is “more concrete”
(possessing more properties) than something else, which has been specified, and
which is thus considered “more abstract” (possessing fewer properties [considered
more relevant]).)

155. Concrete algebra: A concrete [154] algebra[26] is an algebra whose carrier is some
known set of mathematical elements and whose functions are known, i.e., well-defined.
That is, the model [460]s of both the carrier and all the functions are pre-established.
(Concrete algebras are the level of the empirical (actual) world of mathematics and
its applications, where one deals with specific sets of elements (integers, Booleans,
reals, etc.), and where operations on these sets that are defined by rules or algorithms
or combinations. In general one “knows” a concrete algebra when one knows what
the elements of the carrier A are and how to evaluate [279] the functions φi : Φ over A
[158].)

156. Concrete syntax: A concrete [154] syntax [733] is a syntax which prescribes actual,
computer representable data structure [199]s. (Typically a BNF Grammar [92] is a concrete
syntax.)

157. Concrete type: A concrete [154] type [782] is a type which prescribes actual, computer
representable data[193] structure [719]s. (Typically the type definitions of programming
languages designate concrete types.)

158. Concurrency: By concurrency we mean the simultaneous existence of two or more
behaviour [79]s, i.e., two or more process [544]es. (That is, a phenomenon[524] is said to
exhibit concurrency when one can analyse the phenomenon into two or more concur-
rent [159] phenomena.)

159. Concurrent: Two (or more) event [281]s can be said to occur concurrently, i.e., be con-
current, when one cannot meaningfully describe any one of these events to (“always”)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 159

“occur” before any other of these events. (Thus concurrent systems are systems of
two or more processes (behaviours) where the simultaneous happening of “things”
(i.e., events) is deemed beneficial, or useful, or, at least, to take place!)

160. Configuration: By a configuration we shall here understand the composition[140]

of two or more semantic value [802]s. (Usually we shall decompose a configuration
into parts such that each part enjoys a temporal [747] relationship with respect to the
other parts: being “more dynamic [260]”, being “more static [708]”, etc. More specifically,
we shall typically model the semantics of imperative [352] programming languages in
terms of semantic function[656]s over configurations composed from environment [275]s
and storage [715]s.)

161. Conformance: Conformance is a relation between two document [237]s (A and B).
B is said to conform to A, if everything A specifies is satisfied by B. (Conformance
is thus, here, taken to be the same as correct [185]ness, i.e., congruence [163]. Usually
conformance is used in standardisation documents: Any system claiming to follow
this standard must show conformance to it.)

162. Confusion: Confusion, as used here, means that two (or more) occurrences of the
same identifier, bound to possibly different values, may be confused in that it is
difficult from a smaller context of the text in which they occur to discern, to decide,
which meanings, which values, the various occurrences are bound to. (Confusion
is a concept introduced in the Lambda-calculus, see . Confusion is an OK, albeit
annoying, effect! See also collision[121].)

163. Congruence: An algebra[26], A, is said to be congruent with another algebra, B, if,
for every operation, oB, and suitable set of arguments, b1, b2, . . . , bn, to that opera-
tion, in B, there corresponds an operation, oA, and a suitable set of arguments, a1, a2,
. . . , an, in A such that oA(a1, a2, . . . ,an) = oB(b1, b2, . . . , bn). (Compare this defini-
tion to that of conformance [161]. The difference is one between a precise, mathematical
meaning of congruence, as contrasted to an informal meaning of conformance.)

164. Conjunction: Being combined, being conjoined, composed. (We shall mostly think
of conjunction as the (meaning of the) logical connective “and”: ∧.)

165. Connection: Connection is a topological notion, and, as such, is also an ontological
concept related to “parts and wholes”, where parts may be, or may not be connected,
i.e., “so close” to one another, that there can be no other parts “inserted in between”.

166. Connector: We shall here, by a connector, mean a hardware, or some software
device that “connects” two like devices, hardware+hardware, or software+software.
(Typically, in software engineering, when “connecting” two independently developed
component [131]s, one deploys a connector in order to connect them.)

167. Connective: By a connective is here meant one of the Boolean “operators”: “and”
∧, “or” ∨, “imply” ⇒, and “negation” ∼.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

160 CoMet 1

168. Consistent: A set of axiom[75]s is said to be consistent if, by means of these, and
some deduction rule [206]s, one cannot prove a property and its negation.

169. Consistency: Being consistent [168] (throughout).

170. Constraint: By a constraint we shall here, in a somewhat narrow sense, understand
a property that must be satisfied by certain values of a given type. (That is: The
type may define more values than are to be satisfied by the constraint. We also use
the terms data invariant [196], or well-formedness [812]. The term constraint has taken on
a larger meaning than propagated in this book. We refer to constraint programming,
constraint satisfaction problems, etc. For a seminal text book we refer to [8]. In
constraint programming a constraint, as expressed in a problem model, and hence in
a constraint program, is a relation on a sequence of values of (a sequence of) variables
of that program.
As you see, the difference, in the two meanings of ‘constraint’, really, is minor.)

171. Constructor: By a constructor we mean either of two, albeit related, things, a type
constructor, or a value constructor. By a type constructor we mean an operator on
types which when applied to types, say A, constructs another type, say B. By a
value constructor we mean a sometimes distributed fix operator which when applied
to one or more values constructs a value of a different type. (Examples of type
constructors are -set, ×, ∗, ω, →m , →,

∼

→ (sets, Cartesians, finite lists, finite and
infinite lists, maps, total functions, partial functions), and mk B. Examples of value
constructors are: {•,•,...,•}, (•,•,...,•), 〈•,•,...,•〉, [•7→•,• 7→•,...,• 7→•] and mk B(•,•,...,•),
etc., (sets, Cartesians, lists, maps, and variant records).)

172. Context: There are two related meanings: (i) the parts of a discourse that surround
some text and (ii) the interrelated conditions in which something is understood. (The
former meaning emphasises syntactical properties, i.e., speaks of a syntactic context;
the latter, we claim, semantical properties (i.e., semantic context). We shall often,
by a syntactic context speak of the scope [649] of an identifier [351]: the text (parts)
over which the identifier is defined, i.e., is bound [95]. And by a semantic context we
then speak of the environment [275] in which an identifier [351] is bound [95] to its semantic
meaning. As such semantic contexts go, hand-in-hand, in configuration[160]s, with
state [705]s.)

173. Context-Free: By context-free we mean that something is defined free of any consid-
erations of the context [172] in which that “something” (otherwise) occurs. (We shall
use the context-free concept extensively: context-free grammar [175] and context-free
syntax [176], etc. The type definition[785] rule [638]s of RSL have a context-free interpreta-
tion.)

174. Context-Free language: By a context-free language we mean a language [417] which
can be generated by a context-free syntax [176]. (See generator [322].)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 161

175. Context-Free Grammar: See context-free syntax .

176. Context-Free Syntax: By a context-free syntax we shall understand a type system
consisting of type definitions in which right-hand-side occurrences of defined type
name [787]s can be freely substituted for any of a variety of their definitions. (Typically
a BNF Grammar [92] specifies a context-free syntax.)

177. Context-Sensitive Grammar: See context-sensitive syntax .

178. Context-Sensitive Syntax: By a context-sensitive syntax we may understand a
type system consisting of ordinary type definitions in which right-hand-side occur-
rences of defined type name [787]s cannot be freely substituted for any of a variety of
their definitions, but may only be substituted provided these right-hand-side type
names (i.e., nonterminal [484]s) occur in specified contexts (of other type names or lit-
eral [429]s). (Usually a context-sensitive syntax can be specified by a set of rules where
both left-hand and right-hand sides are composite type expressions. The left-hand-
side composite expression then specifies the contexts in which the right-hand side
may be substituted.)

179. Continuation: By a continuation we shall, rather technically, understand a state-
to-state transformation function, specifically one that is the denotation of a program
point [548], that is, of any computation as from that program point (i.e., label [410])
onwards — until program termination[751].

180. Continuous: Of a mathematical curve, i.e., function: ‘Having the property that the
absolute value of the numerical difference between the value at a given point and the
value at any point in a neighborhood of the given point can be made as close to zero
as desired by choosing the neighborhood small enough’ [213].

181. Contract: A contract is a script [651] specifically expressing a legally binding agree-
ment between two or more parties — hence a document describing the conditions of
the contract; a contract is business arrangement for the supply of goods or services
at fixed prices, times and locations. In software development a contract specifies
what is to be developed (a domain description[243], a requirements prescription[615], or
a software design[688]), how it might, or must be developed, criteria for acceptance of
what has been developed, delivery dates for the developed items, who the “parties”
to the contract are: the client [116] and the developer [227], etc.

A legally binding agreement between two or more parties — hence a document de-
scribing the conditions of the contract.

In domains a contract is a set of rule [638]s and regulation[595]s.

182. Control: To control has two meanings: to check, test or verify by evidence or
experiments, and to exercise restraining or directing influence over, to regulate. (We
shall mostly mean the second form. And we shall often use the term ‘control’ in
conjunction with the term ‘monitor [466]ing’.)

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

162 CoMet 1

183. Controller: By a controller we here mean a computing system[151], which interfaces
with some physical environment, a reactive [578] system, i.e., a plant, and which, by
temporally sensing (i.e., sampling) characteristic values of that plant, and by similarly
regularly activating actuator [17]s in the plant, can make the plant behave according
to desired prescriptions. (We stress the reactive system nature of the plant to be
controlled. See also sensor [659].)

184. Conversion: By conversion we shall here, in a rather limiting sense, with a base in
the Lambda-calculus [412], understand either an Alpha-renaming [35] or a Beta-reduction[84]

of some Lambda-expression[414]. (We refer to Chap. 7.)

185. Correct: See next entry: correctness [186].

186. Correctness: Correctness is a relation between two specifications A and B: B is
correct with respect to A if every property of what is specified in A is a property of
B. (Compare to conformance [161] and congruence [163].)

187. Corrective maintenance: By corrective maintenance we understand a change,
predicated by a specification A, to a specification, B′, resulting in a specification,
B′′, such that B′′ satisfies more properties of A than does B′. (That is: Specification
B′ is in error in that it is not correct [185] with respect to A. But B′′ is an improvement
over B′. Hopefully B′′ is then correct wrt. A. We also refer to adaptive maintenance [21],
perfective maintenance [519], and preventive maintenance [541].)

188. CSP: Abbreviation for Communicating Sequential Processes. (See [130, 202] and
Chap. 21. Also, but not in this book, a term that covers constraint satisfaction
problem (or programming).)

189. Curry: Name of American mathematician: Haskell B. Curry. Also a verb: to Curry
— see Currying [191].

190. Curried: A function invocation[317], commonly written f(a1, a2, ..., an), is said to be
Curried when instead written: f(a1)(a2)...(an). (The act of rewriting a function
invocation into Curried form is called Currying [191].)

191. Currying: A function signature [318], normally written, f: A×B×...×C→D can be
Curried into being written f: A→B→...→C→D. The act of doing so is called Currying.

192. Customer: By a customer we mean either of three things: (i) the client [116], a person,
or a company, which orders the development of some software, or (ii) a client [116]

process [544] or a behaviour [79] which interact [391]s with another process or behaviour
(i.e., the server [663]), in order to have that server perform some action[12]s on behalf
of the client, or (iii) a user of some software (i.e., computing system). (We shall
normally use the term customer in the third sense (iii).)

. .D

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 163

193. Data: Data is formalised representation of information. (In our context information
is what we may know, informally, and even express, in words, or informal text or
diagrams, etc. Data is correspondingly the internal computer, including database
representation of such information.)

194. Data abstraction: Data abstraction takes place when we abstract from the partic-
ular formal representation of data.

195. Database: By a database we shall generally understand a large collection of data.
More specifically we shall, by a database, imply that the data are organised according
to certain data structuring and data query [571] and update [794] principles. (Classically,
three forms of (data structured) databases can be identified: The hierarchical [339], the
network [478], and the relation[599]al database forms. We refer to [75, 76] for seminal
coverage, and to [29, 28, 54, 55] for formalisation, of these database forms.)

196. Data invariant: By a data[193] invariant is understood some property that is expected
to hold for all instances of the data. (We use the term ‘data’ colloquially, and really
should say type invariance, or variable content invariance. Then ‘instances’ can be
equated with values. See also constraint [170].)

197. Data refinement: Data refinement is a relation. It holds between a pair of data if
one can be said to be a “more concrete” implementation of the other. (The whole
point of data abstraction[194], in earlier phase [523]s, stage [702]s and step[711]s of develop-
ment [228], is that we can later concretise, i.e., data refine.)

198. Data reification: Same as data refinement [197]. (To reify is to render something
abstract as a material or concrete thing.)

199. Data structure: By a data structure we shall normally understand a composition
of data[193] value [802]s, for example, in the “believed” form of a linked list [428], a tree [777],
a graph[327] or the like. (As in contrast to an information structure [374], a data structure
(by our using the term data[193]) is bound to some computer representation.)

200. Data type: By a data[193] type [782] is understood a set of value [802]s and a set of
function[310]s over these values — whether abstract [1] or concrete [154].

201. Declaration: A declaration prescribes the allocation of a resource of the kind de-
clared: (i) A variable, i.e., a location in some storage; (ii) a channel between active
processes; (iii) an object, i.e., a process possessing a local state; etc.

202. Decidable: A formal logic system is decidable if there is an algorithm[31] which
prescribes computation[144]s that can determine whether any given sentence in the
system is a theorem.

203. Decomposition: By a decomposition is meant the presentation of the parts of a
composite [133] “thing”.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

164 CoMet 1

204. Deduce: To perform a deduction[205], see next. (Cf. infer [368].)

205. Deduction: A form of reasoning where a conclusion about particulars follows from
general premises. (Thus deduction goes from the general (case) to the specific (case).
See contrast to induction[364]: inferring from specific cases to general cases.)

206. Deduction rule: A rule [638] for performing deduction[205]s.

207. Definiendum: The left-hand side of a definition[210], that which is to be defined.

208. Definiens: The right-hand side of a definition[210], that which is defining “something”.

209. Definite: Something which has specified limits. (Watch out for the four terms:
finite [288], infinite [370], definite [209] and indefinite [361].)

210. Definition: A definition defines something, makes it conceptually “manifest”. A
definition consists of two parts: a definiendum[207], normally considered the left-hand
part of a definition, and a definiens [208], normally considered the right-hand part (the
body) of a definition.

211. Definition set: By a definition set we mean, given a function[310], the set of value [802]s
for which the function is defined, i.e., for which, when it is applied to a member of
the definition set yields a proper value. (Cf., range set [577].)

212. Delimiter: A delimiter delimits something: marks the start, and/or end of that
thing. (A delimiter thus is a syntactic notion.)

213. Denotation: A direct specific meaning as distinct from an implied or associated idea
[213]. (By a denotation we shall, in our context, associate the idea of mathematical
functions: That is, of the denotational semantics [215] standing for functions.)

214. Denotational: Being a denotation[213].

215. Denotational semantics: By a denotational semantics we mean a semantics [655]

which to atomic [63] syntactical notions associate simple mathematical structures (usu-
ally function[310]s, or set [664]s of trace [766]s, or algebra[26]s), and which to composite [133]

syntactical notions prescribe a semantics which is the functional [312] composition[140] of
the denotational semantics of the composition[140] parts.

216. Denote: Designates a mathematical meaning according to the principles of denota-
tional semantics [215]. (Sometimes we use the looser term designate.)

217. Dependability: Dependability is defined as the property of a machine [436] such that
reliance can justifiably be placed on the service it delivers [196]. (See definition of the
related terms: error [278], failure [286], fault [287] and machine service [439].)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 165

218. Dependability requirements: By requirements [605] concerning dependability we
mean any such requirements which deal with either accessibility [8] requirements, or
availability [74] requirements, or integrity [388] requirements, or reliability [601] requirements,
or robustness [631] requirements, or safety [642] requirements, or security requirements.

219. Describe: To describe something is to create, in the mind of the reader, a model [460]

of that something. The thing, to be describable, must be either a physically man-
ifest phenomenon[524], or a concept derived from such phenomena. Furthermore, to
be describable it must be possible to create, to formulate a mathematical, i.e., a
formal description of that something. (This delineation of description is narrow. It is
too narrow for, for example, philosophical or literary, or historical, or psychological
discourse. But it is probably too wide for a software engineering [693], or a computing
science [150] discourse. See also description[220].)

220. Description: By a description is, in our context, meant some text which designates
something, i.e., for which, eventually, a mathematical model [460] can be established.
(We readily accept that our characterisation of the term ‘description’ is narrow.
That is: We take as a guiding principle, as a dogma, that an informal text, a rough
sketch[634], a narrative [476], is not a description unless one can eventually demonstrate
a mathematical model that somehow relates to, i.e., “models” that informal text.
To further paraphrase our concern about “describability”, we now state that a de-
scription is a description of the entities, function[310]s, event [281]s and behaviour [79]s of
a further designated universe of discourse: That is, a description of a domain[239], a
prescription[540] of requirements [605], or a specification[698] of a software design[688].)

221. Design: By a design we mean the specification[698] of a concrete [154] artefact [55], some-
thing that can either be physically manifested, like a chair, or conceptually demon-
strated, like a software program.

222. Designate: To designate is to present a reference to, to point out, something. (See
also denote [216] and designation[223].)

223. Designation: The relation between a syntactic marker and the semantic thing sig-
nified. (See also denote [216] and designate [222].)

224. Destructor: By a destructor we shall here understand a function[310] which applies
to a composite [133] value [802] and yields a further specified part (i.e., a subpart) of that
value. (Examples of destructors in RSL are the list indexing function, and the selector
functions of a variant record. They do not destroy anything, however.)

225. Determinate: ()

226. Deterministic: In a narrow sense we shall say that a behaviour, a process, a set of
actions, is deterministic if the outcome of the behaviour, etc., can be predicted: Is
always the same given the same “starting conditions”, i.e., the same initial configu-
ration[160] (from which the behaviour, etc., proceeds). (See also nondeterministic [481].)

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

166 CoMet 1

227. Developer: The person, or the company, which constructs an artefact [55], as here, a
domain description[243], or a requirements prescription[615], or a software design[688].

228. Development: The set of actions that are carried out in order to construct an
artefact [55].

229. Diagram: A usually two-dimensional drawing, a figure. (Sometimes a diagram is
annotated with informal and formal [296] text.)

230. Dialogue: A “conversation” between two agent [24]s (men or machines). (We thus
speak of man-machine dialogues as carried out over CHI [112]s (HCI [334]s).)

231. Didactics: Systematic instruction based on a clear conceptualisation of the bases,
of the foundations, upon which what is being instructed rests. (One may speak of
the didactics of a field of knowledge, such as, for example, software engineering. We
believe that the present three volume book represents such a clearly conceptualised
didactics, i.e., a foundationally consistent and complete basis.)

232. Directed graph: A directed graph is a graph[327] all of whose edge [262]s are directed,
i.e., are arrow [54]s.

233. Directory: A collection of directions. (We shall here take the more limited view of
a directory as being a list of names of, i.e., references to resource [620]s.)

234. Discharge: We use the term discharge in a very narrow sense, namely that of
discharging a proof obligation, i.e., by carrying out a proof.

235. Discrete: As opposed to continuous [180]: consisting of distinct or unconnected ele-
ments [213].

236. Disjunction: Being separated, being disjoined, decomposed. (We shall mostly think
of disjunction as the (meaning of the) logical connective “or”: ∨.)

237. Document: By a document is meant any text, whether informal or formal [296],
whether informative, descriptive (or prescriptive) or analytic [40]. (Descriptive docu-
ments may be rough sketch[634]es, terminologies, narrative [476]s, or formal [296]. Informa-
tive documents are not descriptive. Analytic documents “describe” relations between
documents, verification[807] and validation[800], or describe properties of a document.)

238. Documentation requirements: By documentation requirements we mean require-
ments which state which kinds of documents shall make up the deliverable, what these
documents shall contain and how they express what they contain.

239. Domain: Same as application domain[46]; hence see that term for a characterisation.
(The term domain is the preferred term.)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 167

240. Domain acquisition: The act of acquiring, of gathering, domain knowledge [254], and
of analysing and recording this knowledge.

241. Domain analysis: The act of analysing recorded domain knowledge [254] in search
of (common) properties of phenomena, or relating what may be considered separate
phenomena.

242. Domain capture: The act of gathering domain knowledge [254], of collecting it —
usually from domain stakeholder [703]s.

243. Domain description: A textual, informal or formal document which describes a
domain as it is. (Usually a domain description is a set of documents with many
parts recording many facets of the domain: The intrinsics [399], business process [99]es,
support technology [725], management and organisation[445], rules and regulations [640], and
the human behaviour [345]s.)

244. Domain description unit: By a domain description unit we understand a short,
“one- or two-liner”, possibly rough-sketch[633] description[220] of some property of a
domain[239] phenomenon[524], i.e., some property of an entity [272], some property of a
function[310], of an event [281], or some property of a behaviour [79]. (Usually domain
description units are the smallest textual, sentential fragments elicited from domain
stakeholder [703]s.)

245. Domain determination: Domain determination is a domain requirements facet [259].
It is an operation performed on a domain description[243] cum requirements prescrip-
tion[615]. Any nondeterminism[482] expressed by either of these specifications which is
not desirable for some required software design must be made deterministic (by this
requirements engineer [612] performed operation). Other domain requirements facets
are: domain projection[255], domain instantiation[253], domain extension[249] and domain
fitting [251].

246. Domain development: By domain development we shall understand the develop-
ment [228] of a domain description[243]. (All aspects are included in development: domain
acquisition[240], domain analysis [39], domain model [460]ling, domain validation[800] and do-
main verification[807].)

247. Domain engineer: A domain engineer is a software engineer [692] who performs do-
main engineering [248]. (Other forms of software engineer [692]s are: requirements engi-
neer [612]s and software design[688]ers (cum programmer [547]s).)

248. Domain engineering: The engineering of the development of a domain descrip-
tion[243], from identification of domain[239] stakeholder [703]s, via domain acquisition[240],
domain analysis [241] and domain description[243] to domain validation[256] and domain ver-
ification[257].

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

168 CoMet 1

249. Domain extension: Domain extension is a domain requirements facet [259]. It is
an operation performed on a domain description[243] or a requirements prescription[615].
It effectively extends a domain description[243] by entities, functions, events and/or
behaviours conceptually possible, but not necessarily humanly or technologically fea-
sible in the domain (as it was). Other domain requirements facets are: domain
projection[255], domain determination[245], domain instantiation[253] and domain fitting [251].

250. Domain facet: By a domain facet we understand one amongst a finite set of generic
ways of analysing a domain: A view of the domain, such that the different facets cover
conceptually different views, and such that these views together cover the domain.
(We consider here the following domain facets: business process [99], intrinsics [399], sup-
port technology [725], management and organisation[445], rules and regulations [640], and
human behaviour [345].)

251. Domain fitting: By domain requirements fitting we understand an operation which
takes n domain requirements prescriptions, dri

, that are claimed to share m indepen-
dent sets of tightly related sets of simple entities, actions, events and/or behaviours
and map these into n+m domain requirements prescriptions, δrj

, where m of these,
δrn+k

capture the shared phenomena and concepts and the other n prescriptions, δrℓ
,

are like the n “input” domain requirements prescriptions, dri
, except that they now,

instead of the “more-or-less” shared prescriptions, that are now consolidated in δrn+k
,

prescribe interfaces between δri
and δrn+k

for i : {1..n}. Other domain requirements
facets are: domain projection[255], domain determination[245], domain instantiation[253] and
domain extension[249].

252. Domain initialisation: Domain initialisation is an interface requirements facet [395].
It is an operation performed on a requirements prescription[615]. For an explanation see
shared data initialisation[670] (its ‘equivalent’). Other interface requirements facet [395]s
are: shared data refreshment [672], computational data+control [146], man-machine dia-
logue [446], man-machine physiological [448] and machine-machine dialogue [437] requirements [605].

253. Domain instantiation: Domain instantiation is a domain requirements facet [259].
It is an operation performed on a domain description[243] (cum requirements prescrip-
tion[615]). Where, in a domain description certain entities and function[310]s are left
undefined, domain instantiation means that these entities or functions are now instan-
tiated into constant value [802]s. Other requirements facets are: domain projection[255],
domain determination[245], domain extension[249] and domain fitting [251].

254. Domain knowledge: By domain knowledge we mean that which a particular group
of people, all basically engaged in the “same kind of activities”, know about that
domain of activity, and what they believe that other people know and believe about
the same domain. (We shall, in our context, strictly limit ourselves to “knowledge”,
staying short of “beliefs”, and we shall similarly strictly limit ourselves to assume
just one “actual” world, not any number of “possible” worlds. More specifically, we

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 169

shall strictly limit our treatment of domain knowledge to stay clear of the (albeit very
exciting) area of reasoning about knowledge and belief between people (and agents)
[127, 106].)

255. Domain projection: Domain projection is a domain requirements facet [259]. It is
an operation performed on a domain description[243] cum requirements prescription[615].
The operation basically “removes” from a description definitions of those entities
(including their type definition[785]s), functions, events and behaviours that are not to
be considered in the requirements [605]. The removed phenomena and concepts are thus
projected “away”. Other domain requirements facets are: domain determination[245],
domain instantiation[253], domain extension[249] and domain fitting [251].

256. Domain validation: By domain validation we rather mean: ‘validation[800] of a
domain description’, and by that we mean the informal assurance that a description
purported to cover the entities, function[310]s, event [281]s and behaviour [79]s of a further
designated domain indeed does cover that domain in a reasonably representative
manner. (Domain validation is, necessarily, an informal activity: It basically involves
a guided reading of a domain description (being validated) by stakeholder [703]s of the
domain, and ends in an evaluation report written by these domain stakeholder [703]

readers.)

257. Domain verification: By domain verification we mean verification[807] of claimed
properties of a domain description, and by that we mean the formal assurance that
a description indeed does possess those claimed properties. (The usual principles,
techniques and tools of verification apply here.)

258. Domain requirements: By domain requirements [605] we understand such require-
ments — save those of business process reengineering [101] — which can be expressed
sôlely by using professional terms of the domain[239]. (Domain requirements constitute
one requirements facet [285]. Others requirements facets are: business process reengi-
neering [101], interface requirements [394] and machine requirements [438].)

259. Domain requirements facet: By domain requirements [258] facets we understand
such domain requirements that basically arise from either of the following operations
on domain description[243]s (cum requirements prescription[615]s): domain projection[255],
domain determination[245], domain extension[249], domain instantiation[253] and domain fit-
ting [251].

260. Dynamic: An entity [272] is said to be dynamic if its value changes over time, i.e., it
is subjected, somehow, to actions. (We distinguish three kinds of dynamic entities:
inert [367], active [14] and reactive [578]. This is in contrast to static [708].)

261. Dynamic typing: Enforcement of type checking at run time [641]. (A language is said
to be dynamically typed if it is not statically typed .)

. E

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

170 CoMet 1

262. Edge: A line, a connection, between two node [479]s of a graph[327] or a tree [777]. (Other
terms for the same idea are: arc [50] and branch[97].)

263. Elaborate: See next: elaboration[264].

264. Elaboration: The three terms elaboration, evaluation[280] and interpretation[397] es-
sentially cover the same idea: that of obtaining the meaning of a syntactical item in
some configuration[160], or as a function from configurations to value [802]s. Given that
configuration typically consists of static [708] environment [275]s and dynamic [260] state [705]s
(or storage [715]s), we use the term elaboration in the more narrow sense of designating,
or yielding functions from syntactical items to functions from configurations to pairs
of states and values.

265. Elicitation: To elicit, to extract. (See also: acquisition[11]. We consider elicitation
to be part of acquisition. Acquisition is more than elicitation. Elicitation, to us, is
primarily the act of extracting information, i.e., knowledge. Acquisition is that plus
more: Namely the preparation of what and how to elicit and the postprocessing of
that which has been elicited — in preparation of proper analysis. Elicitation applies
both to domain and to requirements elicitation.)

266. Embedded: Being an integral part of something else. (When something is embedded
in something else, then that something else is said to surround the embedded thing.)

267. Embedded system: A system[736] which is an integral part of a larger system.
(We shall use the term embedded system primarily in the context of the larger,
‘surrounding’ system being reactive [578] and/or hard real time [330].)

268. Endomorphism: A homomorphism[343] that maps an algebra into itself is an endo-
morphism. (See also automorphism[72], epimorphism[276], isomorphism[404], monomor-
phism[467].)

269. Engineer: An engineer is a person who “walks the bridge” between science and
technology: (i) Constructing, i.e., designing, technology [746] based on scientific insight,
and (ii) analysing technology for its possible scientific content.

270. Engineering: Engineering is the design of technology [746] based on scientific insight,
and the analysis of technology for its possible scientific content. (In the context
of this glossary we single out three forms of engineering: domain engineering [248],
requirements engineering [613] and software design[688]; together we call them software
engineering [693]. The technology constructed by the domain engineer [247] is a domain
description[243]. The technology constructed by the requirements engineer [612] is a re-
quirements prescription[615]. The technology constructed by the software design[688]er is
software [685].)

271. Enrichment: The addition of a property to something already existing. (We shall
use the term enrich in connection with a collection (i.e., a RSL scheme or a RSL

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 171

class) — of definitions, declaration and axioms — being ‘extended with’ further
such definitions, declaration and axioms.)

272. Entity: By an entity we shall understand either a simple entity [681], an action[12], an
event [281] or a behaviour [79].

273. Enumerable: By enumerable we mean that a set of elements satisfies a proposi-
tion[560], i.e., can be logically characterised.

274. Enumeration: To list, one after another. (We shall use the term enumeration
in connection with the syntactic expression of a “small”, i.e., definite, number of
elements of a(n enumerated) set [664], list [428] or map[449].)

275. Environment: A context, that is, in our case (i.e., usage), the (“more static”)
part of a configuration[160] in which some syntactic entity is elaborated, evaluated, or
interpreted. (In our “metacontext”, i.e., that of software engineering, environments,
when deployed in the elaboration (etc.) of, typically, specifications or programs,
record, i.e., list, associate, identifiers of the specification or program text with their
meaning.)

276. Epimorphism: If a homomorphism[343] φ is a surjective function[727] then φ is an epi-
morphism. (See also automorphism[72], endomorphism[268], isomorphism[404], monomor-
phism[467].)

277. Epistemology: The study of knowledge. (Contrast, please, to ontology [492].)

278. Error: An error is an action that produces an incorrect result. An error is that
part of a machine [436] state [705] which is “liable to lead to subsequent failure”. An
error affecting the machine service [439] is an indication that a failure [286] occurs or has
occurred [196]. (An error is caused by a fault [287].)

279. Evaluate: See next: evaluation[280].

280. Evaluation: The three terms elaboration, evaluation[280] and interpretation[397] essen-
tially cover the same idea: that of obtaining the meaning of a syntactical item in
some configuration[160], or as a function from configurations to value [802]s. Given that
configuration typically consists of static [708] environment [275]s and dynamic [260] state [705]s
(or storage [715]s), we use the term evaluation in the more narrow sense of designat-
ing, or yielding functions from syntactical items to functions from configurations to
values.

281. Event: Something that occurs instantaneously. (We shall, in our context, take events
as being manifested by certain state [705] changes, and by certain interaction[392]s be-
tween behaviour [79]s or process [544]es. The occurrence of events may “trigger” actions.
How the triggering, i.e., the invocation[402] of functions are brought about is usually
left implied, or unspecified. We consider event [281]s to be one of the four kinds of

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

172 CoMet 1

entities [272] that the Triptych “repeatedly” considers. The other three are: simple
entities [681], action[12]s and behaviour [79]s. Consideration of these are included in the
specification of all domain facet [250]s and all requirements facet [614]s.)

282. Expression: An expression, in our context (i.e., that of software engineering), is a
syntactical entity which, through evaluation[280], designates a value [802].

283. Extension: We shall here take extension to be the same as enrichment [271]. In
domain requirements [258], when we ‘perform’ extension, we introduce entities [272] (simple
entities [681], action[12]s, event [281]s and behaviour [79]s) that were not [originally] in the
domain [but will now become entities of the domain resulting from implementing the
requirements].

284. Extensional: Concerned with objective reality [213]. (Please observe a shift here:
We do not understand the term extensional as ‘relating to, or marked by extension
in the above sense, but in contrast to intensional [390].)

. .F

285. Facet: By a facet we understand one amongst a finite set of generic ways of analysing
and presenting a domain[239], a requirements [605] or a software design[688]: a view of the
universe of discourse, such that the different facets cover conceptually different views,
and such that these views together cover that universe of discourse. (Examples of
domain facets are intrinsics [399], business process [99]es, support technology [725], manage-
ment and organisation[445], rules and regulations [640] and human behaviour [345]. Examples
of requirements facets are business process reengineering [101], domain requirements [258],
interface requirements [394] and machine requirements [438]. Examples of software design
facets are software architecture [687], component design[132], module design[465], etc.)

286. Failure: A fault [287] may result in a failure. A machine [436] failure occurs when the
delivered machine service [439] deviates from fulfilling the machine function, the latter
being what the machine is aimed at [196]. (A failure is thus something relative to a
specification[698], and is due to a fault [287]. Failures are concerned with such things as
accessibility [8], availability [74], reliability [601], safety [642] and security .)

287. Fault: The adjudged (i.e., the ‘so judged’) or hypothesised cause of an error [278]

[196]. (An error [278] is caused by a fault, i.e., faults cause errors. A software fault is
the consequence of a human error [278] in the development of that software.)

288. Finite: Of a fixed number less than infinity, or of a fixed structure that does not
“flow” into perpetuity as would any information structure [374] that just goes on and
on. (Watch out for the four terms: finite [288], infinite [370], definite [209] and indefinite [361].)

289. Finite state automaton: By a finite state automaton we understand an automa-
ton[71] whose state set is finite. (We shall usually consider only what is known as
Moore automata: that is, automata which have some final states.)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 173

290. Finite state machine: By a finite state machine we understand an extended finite
state automaton[289]. The extension amounts simply to the following: Every transition
(caused by an input, in a state, to another state) also yields an output. (We shall
thus consider only what is known as Mealy machines. The output is intended to
designate some action, or some signal, to be considered by an environment of the
machine.)

291. Finite state transducer: By a finite state transducer we simply mean the same as
a finite state machine. (The machine in question is said to transduce, to “translate”
any sequence of inputs to some corresponding sequence of outputs.)

292. First-order: We say that a predicate logic [537] is first order when quantified variables
are not allowed to range over functions. (If they range over functions we call the logic
a higher-order [341] logic [190, 179]. Similar remarks can be made for general first-order
functions, respectively higher-order functions.)

293. Fix point: The fix point of a function, F , is any value, f , for which Ff = f . A
function may have any number of fixed points from none (e.g., Fx = x+1) to infinitely
many (e.g., Fx = x). The fixed point combinator, written as either “fix” or “Y”
will return the fixed point of a function. (The fix point identity is YF = F (YF).)

294. Fitting: Fitting in the context of requirements engineering is an operation that
applies to n (where n is 2 or more) domain requirements descriptions (d1, d2, . . . , dn)
and yields n + 1 domain requirements descriptions (d′

1
, d′

2
, . . . , d′

n and d“shared”)
where n of these each, d′

i, cover major parts of respective di and where d“shared”
covers what is “somehow” common to d1, d2, . . . , dn.

295. Flowchart: A diagram (a chart), for example of circles (input, output), annotated
(square) boxes, annotated diamonds and infixed arrows, that shows step by step flow
through an algorithm.

296. Formal: By formal we shall, in our context (i.e., that of software engineering), mean
a language, a system, an argument (a way of reasoning), a program or a specifi-
cation whose syntax and semantics is based on (rules of) mathematics (including
mathematical logic).

297. Formal definition: Same as formal description[299], formal prescription[303] or formal
specification[304].

298. Formal development: Same as the standard meaning of the composition of for-
mal [296] and development [228]. (We usually speak of a spectrum of development modes:
systematic development [737], rigorous development [629], and formal development. For-
mal software development, to us, is at the “formalistic” extreme of the three modes
of development: Complete formal specification[304]s are always constructed, for all
(phases and) stages of development; all proof obligation[555]s are expressed; and all are
discharged (i.e., proved to hold).)

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

174 CoMet 1

299. Formal description: A formal [296] description[220] of something. (Usually we use the
term formal description only in connection with formalisation[300] of domain[239]s.)

300. Formalisation: The act of making a formal specification of something elsewhere
informally specified; or the document which results therefrom.

301. Formal method: By a formal method we mean a method [456] whose techniques and
tools14 are formal [296]ly based. (It is common to hear that some notation is claimed
to be that of a formal method — where it then turns out that few, if any, of the
building blocks of that notation have any formal foundation. This is especially true
of many diagrammatic notations. UML is a case in point — much is presently being
done to formalise subsets of UML [180].)

302. Formal parameter: By a formal parameter we mean an identification (say a naming
and a typing), in a function definition[316]’s function signature [318], of an argument of
the function, a place-holder for actual argument [16]s.

303. Formal prescription: Same as formal definition[297] or formal specification[304]. (Usu-
ally we use the term formal prescription only in connection with formalisation[300] of
requirements [605].)

304. Formal specification: A formalisation[300] of something. (Same as formal defini-
tion[297], formal description[299] or formal prescription[303]. Usually we use the term formal
specification only in connection with formalisation[300] of software design[688]s.)

305. Free: The concept of being free is associated with (i) identifier [351]s (i.e., name [474]s)
and expression[282]s, and (ii) with name [474]s (i.e., identifier [351]s) and resource [620]s. An
identifier is said to be either bound [95] or free in an expression based on certain rules
being satisfied or not. If an identifier is free in an expression then nothing is said
about what free occurrences of that identifier are bound to. (Cf. bound [95].)

306. Freeing: The removal of storage [715] location[431]s, or of stack activation[701]s.

307. Frontier: The concept of frontier is here associated with tree [777]s. Visualise that
tree as represented as a flat diagram with no crosses (i.e., intersecting) branch[97]es.
A frontier of a tree is a reading of the leaves (cf. leaf [419]) of the tree in one of the
two possible directions, say left to right or right to left. (See tree traversal [778].)

308. FUNARG: A specification or a programming language is said to enjoy, i.e. possess,
the FUNARG property if value [802]s of function invocation[317]s may be function[310]s
defined locally to the invoked function. (LISP has the FUNARG property. So does
SAL, a simple applicative language defined in .)

14Tools include specification and programming languages as such, as well as all the software tools relating
to these languages (editors, syntax checkers, theorem provers, proof assistants, model checkers, specification
and program (flow) analysers, interpreters, compilers, etc.).

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 175

309. Full algebra: A full algebra is a total algebra[765].

310. Function: By a function we understand something which when applied to a value [802],
called an argument, yields a value called a result. (Functions can be modelled as sets
of (argument, result) pair — in which case applying a function to an argument
amounts to “searching” for an appropriate pair. If several such pairs have the same
argument (value), the function is said to be nondeterministic [481]. If a function is
applied to an argument for which there is no appropriate pair, then the function is
said to be partial; otherwise it is a total function.)

311. Function activation: When, in an operational, i.e., computational (“mechanical”)
sense, a function is being applied, then some resources have to be set aside in order to
carry out, to handle, the application. This is what we shall call a function activation.
(Typically a function activation, for conventional block-structured [90] languages (like
C#, Java, Standard ML [125, 207, 119]), is implemented by means (also) of a stack-
like data structure: Function invocation then implies the stacking (pushing) of a stack
activation on that stack, i.e., the activation stack [13] (a circular reference!). Elabo-
ration of the function definition body means that intermediate values are pushed
and popped from the topmost activation element, etc., and that completion of the
function application means that the top stack activation is popped.)

312. Functional: A function whose arguments are allowed themselves to be functions is
called a functional. (The fix point [293] (finding) function is a functional.)

313. Functional programming: By functional programming we mean the same as ap-
plicative programming [48]: In its barest rendition functional programming involves just
three things: definition of functions, functions as ordinary value [802]s, and function ap-
plication[315] (i.e., function invocation[317]). (Most current functional programming lan-
guages (Haskell, Miranda, Standard ML) go well beyond just providing the three
basic building blocks of functional programming [219, 220, 175].)

314. Functional programming language: By a functional programming language we
mean a programming language [551] whose principal values are functions and whose
principal operations on these values are their creation (i.e., definition), their applica-
tion (i.e., invocation) and their composition. (Functional programming languages of
interest today, 2005, are (alphabetically listed): CAML [69, 63, 64, 226, 156], Haskell
[219], Miranda [220], Scheme [1, 115, 97] and SML (Standard ML) [175, 119]. LISP

1.5 was a first functional programming language [169].)

315. Function application: The act of applying a function to an argument is called a
function application. (See ‘comment’ field of function activation[311] just above.)

316. Function definition: A function[310] definition[210], as does any definition, consists of
a definiens [208] and a definiendum[207]. The definiens is a function signature [318] and the
definiendum is a clause, typically an expression. (Cf. Lambda-function[415]s.)

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

176 CoMet 1

317. Function invocation: Same as function application[315]. (See parenthesized remark
of entry 311 (function activation[311]).)

318. Function signature: By a function signature we mean a text which presents the
name of the function, the types of its argument values and the type(s) of its result
value(s).

. G

319. Garbage: By garbage we shall here understand those (computing) resource [620]s
which can no longer be referenced. (Usually we restrict our ‘garbage’ concern to
that of storage [715] location[431]s that can no longer be accessed because there are no
references to them.)

320. Garbage collector: To speak of garbage collection we must first introduce the
notions of allocatable storage [715], i.e., storage — what shall be known as free, i.e.,
unallocated — location[431]s (including those that can be considered garbage [319]). By a
garbage collector we shall here understand a device, a software program or a hardware
mechanism which “returns” to a set of free locations that can subsequently be made
available for allocation[33].

321. Generate: By generate we shall understand that which can be associated both
with a grammar [325] and with an automaton[71]: namely a language [417], i.e., a set of
strings. Either accepted as input [382] to a finite state automaton[289], or denote [216]d by a
grammar [325]. (Acceptance by an automaton means that the automaton is started in
an initial state and upon completion of reading the input is in a final state. Generation
by a grammar means the recursive (i.e., repeated) substitution[722] of nonterminal [484]s
of a grammar rule [638] left-hand side with the left-hand sides of the rules whose right-
hand side is the substituted nonterminal.)

322. Generator: A generator is a concept: It can be thought of as a device, i.e., a software
program or a machine mechanism, which outputs typically sequences of structures
— typically symbols. (A BNF Grammar [92] can thus be said to generate the (usually
infinite) set of strings, i.e., of sentence of the designated language. A finite state
machine [290] can likewise be said to be a generator: Upon being presented with any
input string it generates an output string (a transduction).)

323. Generator function: To speak of a generator function we need first introduce the
concept of a sort [694] “of interest”. A generator function is a function which when
applied to arguments of some kind, i.e., types, yields a value of the type of the sort
“of interest”. (Typically the sort “of interest” can be thought of as the state (a stack,
a queue, etc.).)

324. Glossary: According to [159] a gloss is “a word inserted between the lines or in
the margin as an explanatory rendering of a word in the text; hence a similar ren-
dering in a glossary or dictionary. Also, a comment, explanation, interpretation.”

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 177

Furthermore according to [159] a glossary is therefore “a collection of glosses, a list
with explanations of abstruse, antiquated, dialectical, or technical terms; a partial
dictionary.”

325. Grammar: See syntax , in general, or regular syntax , context-free syntax , context-
sensitive syntax and BNF in specific.

326. Grand state: “Grand state” is a colloquial term. It is meant to have the same
meaning as configuration[160]. (The colloquialism is used in the context of, for example,
praising a software engineer as “being one who really knows how to design the grand
state for some universe of discourse” being specified.)

327. Graph: By a graph we shall here mean the term as usually used in the discrete
mathematics discipline of graph theory: as a (usually, but not necessarily finite) set
of node [479]s (vertexes), some of which may be connected by (one or more) arc [50]s
(edge [262]s, lines). (A graph edge defines a path[517] of length one. If there is a path
from one node to another, and from that other node to yet a third node, then the
graph, by transitivity, defines a path from the first to the third node, etc. A graph
can be either an acyclic graph[19] (no path “cycles back”) or a cyclic graph, a directed
graph[232] (edges are one-directional arrows) or an undirected graph [20, 21, 182, 122].)

328. Ground term: A ground term is either an identifier [351] or a value [802] literal [429]. (The
identifier is then assumed to be bound to a value. The value literal typically is an
alphanumeric string designating, for example, an integer, a real, a truth value, a
character, etc.)

329. Grouping: By grouping we mean the ordered, finite collection, into a Cartesian[107],
of mathematical structures (i.e., value [802]s).

. .H

330. Hard real time: By hard real time we mean a real time [580] property where the
exact, i.e., absolute timing, or time interval, is of essence. (Thus, if a system is said
to enjoy, or must possess, a certain real time property, for example, (i) the system
must emit a certain signal on the 11th of December 2015 at 17:20:30 hours15, or (ii)
that a response signal must be issued after an interval of exactly 1234 days, 5 hours,
6 minutes, and 7 seconds plus/minus 8 microseconds (from when an initiating signal
was received), then it is hard real time. Cf. soft real time [684].)

331. Hardware: By hardware is meant the physical embodiment of a computer: its
electronics, its boards, the racks, cables, button, lamps, etc.

332. Hazard: A hazard is a source of danger.

15That time is when the current author hopes to celebrate the exact hour of his anniversary of 50 years
of marriage to Kari Skallerud!

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

178 CoMet 1

333. Hazard analysis: Hazard analysis is a process used to determine how a device can
cause hazards to occur and then reducing the risks to an acceptable level. (The
process consists of: (1) the developer of the system determining what could go wrong
with the device, (2) determining how the effects of the failure can be mitigated, and
(3) implementing and testing mitigations.)

334. HCI: Abbreviation for human computer interface. (Same as CHI [112], and same as
man-machine [446] interface.)

335. Heap: By a heap is here meant an unordered, finite collection, i.e., a set, of storage [715]

location[431]s, such that each of these locations can be said to be allocated (for some
purpose), and such that a freeing, i.e., deallocation, of these locations usually does
not follow the inverse order of their allocation. (Thus a heap works in contrast to an
activation stack [13] — complementary, so to speak! Typically a garbage collector [320] is
involved in helping to secure locations on the heap available for allocation.)

336. Heterogeneous algebra: A heterogeneous algebra is an algebra whose carrier A is
an indexed set of carriers: A1, A2,. . . , Am, and whose functions, φin : Φ, or arity n,
are of type [782]: Ai1×Ai2× · · ·×Ain → Aj where ik, for all k ∈ {1, . . . , n}, are in the
set {1, 2, . . . , m}.

337. Hiding: Hiding is a concept related to module [464]s. In fact, it is a main purpose of
syntactically providing the module mechanism. You have, somewhat mechanistically,
to imagine a group of (developers of) modules. One module mentions (i.e., uses),
say, functions defined in other modules. But those other modules, besides, in order
to define those “exported” functions, define auxiliary functions (types, etc.) that
“reveal” details of implementation which it is not necessary to divulge. (One may
wish, later, in “the life of that module”, to change those implementation decisions.)
Hence, by syntactic means, such as, for example, export, import and hide clauses, the
developer requests the module compiling system to statically (or otherwise) secure
that other modules cannot “inspect” those auxiliary functions, types, etc. (We refer
to [186, 185, 189, 188, 187]. Parnas must be credited, among others, for having
skillfully propagated the hiding concept.)

338. Hierarchy: By a hierarchy we understand a conceptual decomposition of resources
into what can be “pictured” as a tree [777]-like structure (and where the emphasis is
on the root of the structure).

339. Hierarchical: By something being hierarchical we mean that that something forms
a hierarchy [338]. (See also compositional [141].)

340. Hierarchical documentation: By hierarchical documentation we mean a devel-
opment, or a presentation (of that development), of, as here, some description[220]

(prescription[540] or specification[698]), in which a notion of “largest”, overall, phenom-
ena and concepts are developed (resp. presented) first, then their decompositions into

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 179

component phenomena and concepts, etc., until some notion of atomic, i.e., “small-
est” development (etc.) has been achieved. (See also hierarchy [338] (just above) and
compositional documentation[142].)

341. Higher-order: A functional [312] or a value [802] whose definition set [211] or range set [577]

values are function[310]s. (See, in contrast, first-order [292].)

342. Homeomorphism: A function that is a one-to-one mapping between sets such
that both the function and its inverse are continuous. (Not to be confused with
homomorphism[343].)

343. Homomorphism: A function[310], φ : A → A′, from values of the carrier A of one
algebra[26] (A, Ω) to values of the carrier A′ of another algebra (A′, Ω′) is said to be
a homomorphism (same as a morphism) from (A, Ω) to (A′, Ω′), if for any ω : Ω
and for any ai : A, there is a corresponding ω′ : Ω′ such that: φ(ω(a1, a2, ..., an)) =
ω′(φ(a1), φ(a2), ..., φ(an)). (See also automorphism[72], endomorphism[268], epimorphism[276],
isomorphism[404] and monomorphism[467].)

344. Homomorphic principle: The homomorphic principle advises the software engi-
neer to formulate function definition[316]s such that they express a homomorphism[343].
(It is a basic tenet of a denotational semantics [215] definition[210] that it is expressed as
a homomorphism[343].)

345. Human behaviour: By human behaviour we shall here understand the way a
human follows the enterprise rules and regulations [640] as well as interacts with a ma-
chine [436]: dutifully honouring specified (machine dialogue [230]) protocol [561]s, or neg-
ligently so, or sloppily not quite so, or even criminally not so! (Human behaviour
is a facet [285] of the domain[239] (of the enterprise). We shall thus model human be-
haviour also in terms of it failing to react properly, i.e., humans as nondeterminis-
tic [481] agent [24]s! Other facets of an enterprise are those of its intrinsics [399], business
process [99]es, support technology [725], management and organisation[445], and rules and
regulations [640].)

346. Hybrid: Something heterogeneous, something (as a computing device) that has
two different types of components (software [685], respectively hardware, the latter in-
cluding, besides the digital computer, also controller [183]s (sensor [659]s, actuator [17]s))
performing essentially the same function by cooperating on computing “that same”
function. (Typically we speak of, i.e., deploy hybridicity when monitor [466]ing and
control [182]ling reactive system[579]s — but then hybridicity additionally, to us, means
a combination in which the controller [183] handles analog matters of continuity, and
the software [685] plus computer handles discrete matters. Finally, for a conventional
analogue controller [183] there is usually but one “decision mode”. With the software-
directed computing system there is now the possibility of multiple discrete + contin-
uous controller [183] “regimes”.)

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

180 CoMet 1

347. Hypothesis: An assumption made for the sake of argument.

. I

348. Icon: A pictorial representation, an image, a sign whose form (shape, etc.) suggests
its meaning. (A graphic symbol on a computer display screen which suggests the
purpose of an available function[310] or value [802] which designate [222]s that entity [272].)

349. Iconic: Adjective form of icon[348].

350. Identification: The pointing out of a relation, an association, between an identi-
fier [351] and that “thing”, that phenomenon[524], it designate [222]s, i.e., it stands for or
identifies.

351. Identifier: A name. (Usually represented by a string of alphanumeric characters,
sometimes with properly infixed “-”s or “ ”s.)

352. Imperative: Expressive of a command [213]. (We take imperative to more specifi-
cally be a reflection of do this, then do that. That is, of the use of a state [705]-based
programming approach, i.e., of the use of an imperative programming language [354].
See also indicative [362], optative [499], and putative [566].)

353. Imperative programming: Programming, imperative [352]ly, “with” references to
storage [715] location[431]s and the updates of those, i.e., of state [705]s. (Imperative pro-
gramming seems to be the classical, first way of programming digital computers.)

354. Imperative programming language: A programming language which, signifi-
cantly, offers language constructs for the creation and manipulation of variables,
i.e., storage [715]s and their location[431]s. (Typical imperative programming languages
were, in “ye olde days”, Fortran, Cobol, Algol 60, PL/I, Pascal, C, etc. [166,
164, 12, 165, 12, 142]. Today programming languages like C++, Java, C#, etc.
[215, 207, 125] additionally offer module [464] cum object [487] “features”.)

355. Implementation: By an implementation we understand a computer program that
is made suitable for compilation[124] or interpretation[397] by a machine [436]. (See next
entry: implementation relation[356].)

356. Implementation relation: By an implementation[355] relation we understand a log-
ical relation of correctness [186] between a software design specification[689] and an imple-
mentation[355] (i.e., a computer program made suitable for compilation[124] or interpre-
tation[397] by a machine [436]).

357. Incarnation: A particular instance of a value, usually a state. (We shall here use the
term incarnation to designate any one activation on an activation stack [13] — where
such an incarnation, i.e., activation, represents a program block [89] or function[310] (or
procedure, or subroutine [723]) invocation[402].)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 181

358. Incomplete: We say that a proof system[557] is incomplete if not all true sentences
are provable.

359. Incompleteness: Noun form of the incomplete [358] adjective.

360. Inconsistent: A set of axiom[75]s is said to be inconsistent if, by means of these, and
some deduction rule [206]s, one can prove a property and its negation.

361. Indefinite: Not definite, i.e., of a fixed number or a specific property, but it is not
known, at the point of uttering the term ‘indefinite’, what that number or property
is. (Watch out for the four terms: finite [288], infinite [370], definite [209] and indefinite [361].)

362. Indicative: Stating an objective fact. (See also imperative [352], optative [499] and puta-
tive [566].)

363. Induce: The use of induction[364]. (To conclude a general property from special
cases.)

364. Induction: Inference of a general property from particular instances. (On the basis
of several, “similar” cases one may infer a general, say, principle or property. In
contrast to deduction[205]: from general (e.g., from laws) to specific instances.)

365. Inductive: The use of induction[364].

366. In extension: A concept of logic. In extension is a correlative word that indicates
the reference of a term or concept. (When we speak of functions in extension, we
shall therefore mean it in the sense of presenting “all details”, the “inner workings”
of that function. Contrast to in intension[378].)

367. Inert: A dynamic [260] phenomenon[524] is said to be inert if it cannot change value [802]

of its own volition, i.e., by itself, but only through the interaction[392] between that
phenomenon[524] and a change-instigating environment [275]. An inert phenomenon only
changes value as the result of external stimuli. These stimuli prescribe exactly which
new value they are to change to. (Contrast to active [14] and reactive [578].)

368. Infer: Common term for deduce [204] or induce [363].

369. Inference rule: Same as deduction rule [206].

370. Infinite: As you would think of it: not finite! (Watch out for the four terms:
finite [288], infinite [370], definite [209] and indefinite [361].)

371. Informal: Not formal! (We normally, by an informal specification mean one which
may be precise (i.e., unambiguous, and even concise), but which, for example is
expressed in natural, yet (domain specific) professional language — i.e., a language
which does not have a precise semantics let alone a formal proof system[557]. The UML

notation is an example of an informal language [180].)

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

182 CoMet 1

372. Informatics: The confluence of (i) applications, (ii) computer science, (iii) computing
science [i.e., the art [143, 144, 145] (1968–1973), craft [200] (1981), discipline [82]
(1976), logic [123] (1984), practice [124] (1993–2004), and science [114] (1981) of
programming], (iv) software engineering and (v) mathematics.

373. Information: The communication or reception of knowledge. (By information we
thus mean something which, in contrast to data[193], informs us. No computer rep-
resentation is, let alone any efficiency criteria are, assumed. Data as such does, i.e.,
bit patterns do, not ‘inform’ us.)

374. Information structure: By an information structure we shall normally understand
a composition of more “formally” represented (i.e., structured) information[373], for
example, in the “believed” form of table [739], a tree [777], a graph[327], etc. (In contrast
to data structure [199], an information structure does not necessarily have a computer
representation, let alone an “efficient” such.)

375. Informative documentation: By informative documentation we understand texts
which inform, but which do not (essentially) describe that which a development [228]

is to develop. (Informative documentation is balanced by descriptive and analytic [40]

documentation to make up the full documentation of a development [228].)

376. Infrastructure: According to the World Bank: ‘Infrastructure’ is an umbrella term
for many activities referred to as ‘social overhead capital’ by some development
economists, and encompasses activities that share technical and economic features
(such as economies of scale and spillovers from users to nonusers). We shall use
the term as follows: Infrastructures are concerned with supporting other systems or
activities. Computing systems for infrastructures are thus likely to be distributed
and concerned in particular with supporting communication of information, control,
people and materials. Issues of (for example) openness, timeliness, security, lack of
corruption, and resilience are often important. (Winston Churchill is quoted to have
said, during a debate in the House of Commons, in 1946: . . . The young Labourite
speaker that we have just listened to, clearly wishes to impress upon his constituency
the fact that he has gone to Eton and Oxford since he now uses such fashionable
terms as ‘infra-structures’.)

377. Inheritance: The act of inheriting’ a ‘property. (The term inheritance, in software
engineering, is deployed in connection with a relationship between two pieces (i.e.,
module [464]s) of specification and/or program texts A and B. B may be said to inherit
some type [782], or variable [803], or value [802] definitions from A.)

378. In intension: A concept of logic: In intension is a correlative word that indicates the
internal content of a term or concept that constitutes its formal definition. (When we
speak of functions in intension, we shall therefore mean it in the sense of presenting
only the “input/output” relation of the function. Contrast to in extension[366].)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 183

379. Injection: A mathematical function, f , that is a one-to-one mapping from definition
set [211] A to range set [577] B. (That is, if for some a in A, f(a) yields a b, then for all
a : A all b : B are yielded and there is a unique a for each b, or, which is the same,
there is an inverse function[401], f−1, such that f−1(f(a)) = a for all a : A. See also
bijection[86] and surjection[726].)

380. Injective function: A function[310] which maps value [802]s of its postulated definition
set [211] into some, but not all, of its postulated range set [577] is called injective. (See
also bijective function[87] and surjective function[727] .)

381. In-order: A special order of tree traversal [778] in which visits are made to nodes of
trees and subtrees as follows: First the tree root is visited and “marked” as having
been in-order visited. Then for each subtree a subtree in-order traversal is made,
in the order left to right (or right to left). When a tree, whose number of subtrees
is zero, is in-order traversed, then just that tree’s root is visited (and that tree has
then been in-order traversed) and (the leaf) is “marked” as having been visited.
After each subtree visit the root (of the tree of which the subtree is a subtree) is
revisited, i.e., again “marked” as having been in-order visited. (Cf. Fig. 13: a left
to right in-order traversal of that tree yields the following sequence of “markings”:
AQCQALXLFLAKUKJKZMZKA. Cf. also Fig. 10).

A

C X F U J

M

Q L K

Z

Figure 10: A left-to-right in-order tree traversal

382. Input: By input we mean the communication[122] of information[373] (data[193]) from an
outside, an environment [275], to a phenomenon[524] “within” our universe of discourse.
(More colloquially, and more generally: Input can be thought of as value [802](s) trans-
ferred over channel [110](s) to, or between process [544]es. Cf. output [502]. In a narrow
sense we talk of input to an automaton[71] (i.e., a finite state automaton[289] or a push-
down automaton[564]) and a machine [436] (here in the sense of, for example, a finite state
machine [290] (or a pushdown machine [565])).)

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

184 CoMet 1

383. Input alphabet: The set of symbol [728]s input [382] to an automaton[71] or a machine [436]

in the sense of, for example, a finite state machine [290] or a pushdown machine [565].

384. Instance: An individual, a thing, an entity [272]. (We shall usually think of an ‘in-
stance’ as a value [802].)

385. Instantiation: ‘To represent (an abstraction) by a concrete instance [384]’ [213]. (We
shall sometimes be using the term ‘instantiation’ in lieu of a function invocation[317]

on an activation stack [13].)

386. Installation manual: A document [237] which describes how a computing system[151]

is to be installed. (A special case of ‘installation’ is the downloading of software [685]

onto a computing system[151]. See also training manual [767] and user manual [798].)

387. Intangible: Not tangible [742].

388. Integrity: By a machine [436] having integrity we mean that that machine remains
unimpaired, i.e., has no faults, errors and failures, and remains so even in the situa-
tions where the environment of the machine has faults, errors and failures. (Integrity
is a dependability requirement [218].)

389. Intension: Intension indicates the internal content of a term. (See also in inten-
sion[378]. The intension of a concept [152] is the collection of the properties possessed
jointly by all conceivable individuals falling under the concept [178]. The intension
determines the extension[283] [178].)

390. Intensional: Adjective form of intension[389].

391. Interact: The term interact here addresses the phenomenon of one behaviour [79]

acting in unison, simultaneously, concurrent [159]ly, with another behaviour, including
one behaviour influencing another behaviour. (See also interaction[392].)

392. Interaction: Two-way reciprocal action.

393. Interface: Boundary between two disjoint sets of communicating phenomena or con-
cepts. (We shall think of the systems as behaviour [79]s or process [544]es, the boundary
as being channel [110]s, and the communications as input [382]s and output [502]s.)

394. Interface requirements: Interface requirements are those requirements [605] which
can on be expressed using professional, i.e., technical terms from both the domain[239]

and the machine [436]. Thus, by interface requirements we understand the expression of
expectations as to which software-software, or software-hardware interface [393] places
(i.e., channel [110]s), input [382]s and output [502]s (including the semiotics [658] of these in-
put/outputs) there shall be in some contemplated computing system[151]. (Interface
requirements can often, usefully, be classified in terms of shared data initialisation
requirements [671], shared data refreshment requirements [673], computational data+control

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 185

requirements [146], man-machine dialogue requirements [447], man-machine physiological re-
quirements [448] and machine-machine dialogue requirements [437]. Interface requirements
constitute one requirements facet [285]. Other requirements facets are: business process
reengineering [101], domain requirements [258] and machine requirements [438].)

395. Interface requirements facet: See interface requirements [394] for a list of facets:
shared data initialisation[670], shared data refreshment [672], computational data+control [146],
man-machine dialogue [446], man-machine physiological [448] and machine-machine dialogue [437]

requirements [605].

396. Interpret: See next: interpretation[397].

397. Interpretation: The three terms elaboration, evaluation[280] and interpretation[397] es-
sentially cover the same idea: that of obtaining the meaning of a syntactical item in
some configuration[160], or as a function from configurations to value [802]s. Given that
configuration typically consists of static [708] environment [275]s and dynamic [260] state [705]s
(or storage [715]s), we use the term interpretation in the more narrow sense of desig-
nating, or yielding functions from syntactical items to functions from configurations
to states.

398. Interpreter: An interpreter is an agent [24], a machine [436], which performs interpreta-
tion[397]s.

399. Intrinsics: By the intrinsics of a domain[239] we shall understand those phenomena
and concepts of a domain which are basic to any of the other facets, with such a
domain intrinsics initially covering at least one specific, hence named, stakeholder [703]

view. (Intrinsics is thus one of several domain facet [250]s. Others include: business
process [99]es, support technology [725], rules and regulations [640], scripts [651], management
and organisation[445], and human behaviour [345].)

400. Invariant: By an invariant we mean a property that holds of a phenomenon[524] or
a concept [152], both before and after any action[12] involving that phenomenon or a
concept. (A case in point is usually an information[373] or a data structure [199]: Assume
an action, say a repeated one (e.g., a while loop). We say that the action (i.e., the
while loop) preserves an invariant, i.e., usually a proposition[560], if the proposition
holds true of the state [705] before and the state after any interpretation[397] of the while
loop. Invariance is here seen separate from the well-formedness [812] of an information[373]

or a data structure [199]. We refer to the explication of well-formedness [812]!)

401. Inverse function: See injection[379].

402. Invocation: See function invocation[317].

403. Isomorphic: One to one. (See isomorphism[404].)

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

186 CoMet 1

404. Isomorphism: If a homomorphism[343] φ is a bijective function[87] then φ is an isomor-
phism. (See also automorphism[72], endomorphism[268], epimorphism[276] and monomor-
phism[467].)

. .J

405. J: The J operator (J for Jump) was introduced (before 1965) by Peter Landin as a
functional [312] used to explain the creation and use of program closure [117]s, and these
again are used to model the denotation[213] of label [410]s. (We refer to [150, 152, 151,
149, 74]. Cf. www.dcs.qmw.ac.uk/~peterl/danvy/.)

. .K

406. Keyword: A significant word from a title or document.

407. Knowledge: What is, or what can be known. The body of truth, information, and
principles acquired by mankind [213]. (See epistemology [277] and ontology [492]. A priori
knowledge: Knowledge that is independent of all particular experiences. A posteriori
knowledge: Knowledge, which derives from experience alone.)

408. Knowledge engineering: The representation and modelling of knowledge. (The
construction of ontological and epistemological knowledge and its manipulation. In-
volves such subdisciplines as modal logic [459]s (promise and commitment, knowledge
and belief), speech act theories, agent [24] theories, etc. Knowledge engineering usually
is concerned with the knowledge that one agent may have about another agent.)

409. KWIC: Abbreviation for keyword-in-context (A classical software application.)

. .L

410. Label: Same as named program point [548].

411. Lambda-application: Within the confines of the Lambda-calculus [412], Lambda-
application[411] is the same as function application[315]. (Subject, however, to simple
term-rewriting [753] using (say just) Alpha-renaming [35] and Beta-reduction[84].)

412. Lambda-calculus: A calculus [104] for expressing and “manipulating” functions. The
Lambda-calculus (λ-calculus) is a de facto “standard” for “what is computable”.
See Lambda-expression[414]s. As a calculus [104] it prescribes a language, the language
of Lambda-expression[414]s, a set of conversion[184] rules — these apply to Lambda-
expression[414]s and result in Lambda-expression[414]s. They “mimic” function defini-
tion[316] and function application[315]. The seminal texts on the Lambda-calculi are
[66, 13, 14, 15].

413. Lambda-combination: See Lambda-application[411].

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 187

414. Lambda-expression: The language of the “pure” (i.e., simple, but fully power-
ful) Lambda-calculus [412] has three kinds of Lambda-expressions: Lambda-variable [416]s,
Lambda-function[415]s and Lambda-application[411]s.

415. Lambda-function: By a Lambda-function we understand a Lambda-expression[414]

of the form λx•e, where x is a binding variable and e is a Lambda-expression. (It is
usually the case that e contains free [305] occurrences of x — these being bound by the
binding variable in λx•e.)

416. Lambda-variable: The x in the Lambda-function[415] expression λx•e: both the
formal parameter, the first x you see in λx•e, and all the free [305] occurrences of x in
the block [89] (i.e., body) expression e.

417. Language: By a language we shall understand a possibly infinite set of sentence [660]s
which follow some syntax [733], express some semantics [655] and are uttered, or written
down, due to some pragmatics [534].

418. Law: A law is a rule of conduct prescribed as binding or enforced by a controlling
authority. (We shall take the term law in the specific sense of law of Nature (cf.,
Ampére’s Law, Boyle’s Law, the conservation laws (of mass-energy, electric charge,
linear and angular momentum), Newton’s Laws, Ohm’s Law, etc.), and laws of Math-
ematics (cf. “law of the excluded middle” (as in logic: a proposition must either be
true, or false, not both, and not none)).)

419. Leaf: A leaf is a node [479] in a tree [777] for which there are no subtree [777]s of that node.
(Thus a leaf is a concept of tree [777]s. Cf. Fig. 13 on page 228.)

420. Lemma: An auxiliary proposition[560] used in the demonstration of another proposi-
tion. (Instead of proposition we could use the term theorem[756].)

421. Lexical analysis: The analysis of a sentence [660] into its constituent word [814]s. (Sen-
tences also are usually “decorated” with such signs as for example punctuation marks
(, . : ;), delimiters (() [], etc.), and other symbols (? !, etc.). Lexical analysis there-
fore is a process which serves to recognise which character sequences are words and
which are not (i.e., which are delimiters, etc.).)

422. Lexicographic: The principles and practices of establishing, maintaining and using
a dictionary. (We shall, in software engineering, mostly be using the term ‘lexi-
cographic’ in connection with compilers and, more rarely, database schemas — al-
though, as the definition implies, it is of relevance in any context where a computing
system builds, maintains and uses a dictionary.)

423. Lexicographical order: The order, i.e., sequence, in which entries of a dictionary
appear. (More specifically, the lexicographical ordering of entries in a compiler dictio-
nary [126] is, for a block-structured programming language [90], determined by the nesting

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

188 CoMet 1

structure of block [89]s. The dictionary itself, generally “mimics” the nesting structure
of the language.)

424. License: A license is a script [651] specifically expressing a permission to act; is freedom
of action; is a permission granted by competent authority to engage in a business or
occupation or in an activity otherwise unlawful; a document, plate, or tag evidencing
a license granted; a grant by the holder of a copyright or patent to another of any of
the rights embodied in the copyright or patent short of an assignment of all rights.
Licenses appear more to have morally than legally binding poser.

425. Link: A link is the same as a pointer [528], an address [22] or a reference [587]: something
which refers to, i.e., designates something (typically something else).

426. Lifted function: A lifted function, say of type A → B → C, has been created from
a function of type B → C by ‘lifting’ it, i.e., by abstracting it in a variable, say a of
type A. (Assume λb : B·E(b) to be a function of type B → C. Now λa : A·λb : B·E(b)
is a lifted version of λb : B · E(b). An example is and: λb1, b2 : Bool · b1 ∧ b2, Boolean
conjunction. We lift and to be a function, ∧T , over time: λt : T · b1(t)∧ b2(t), where
the variables b1, b2 typically could be (e.g., assignable) variables whose values change
over time.)

427. Linguistics: The study and knowledge of the syntax [733], semantics [655] and pragmat-
ics [534] of language [417](s).

428. List: A list is an ordered sequence of zero, one or more not necessarily distinct
entities.

429. Literal: A term whose use in software engineering, i.e., programming, shall mean:
an identifier which denotes a constant, or is a keyword. (Usually that identifier is
emphasised. Examples of RSL literals are: Bool, true, false, chaos, if, then, else,

end, let, in, and the numerals 0, 1, 2., ..., 1234.5678, etc.)

430. Live Sequence Chart: The Live Sequence Chart language is a special graphic nota-
tion for expressing communication between and coordination and timing of processes.
(See [121].)

431. Location: By a location is meant an area of storage [715].

432. Logic: The principles and criteria of validity of inference and deduction, that is, the
mathematics of the formal principles of reasoning. (We refer to Vol. 1, Chap. 9 for
our survey treatment of mathematical logic.)

433. Logic programming: Logic programming is programming based on an interpreter
which either performs deductions or inductions, or both. (In logic programming the
chief values are those of the Booleans, and the chief forms of expressions are those of
propositions and predicates.)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 189

434. Logic programming language: By a logic programming [433] language is meant
a language which allows one to express, to prescribe, logic programming [433]. (The
classical logic programming language is Prolog [160, 132].)

435. Loose specification: By a loose specification is understood a specification which
either underspecifies a problem, or specifies this problem nondeterministically .

. .M

436. Machine: By the machine we understand the hardware [331] plus software [685] that
implements some requirements [605], i.e., a computing system[151]. (This definition follows
that of M.A. Jackson [138].)

437. Machine-Machine dialogue requirements:By machine-machine dialogue require-
ments we understand the syntax [733] (incl. sequential structure), and semantics [655]

(i.e., meaning) of the communications (i.e., messages) transferred in either direction
over the automated interface between machine [436]s (including supporting technolo-
gies). (See also computational data+control requirements [146], shared data initialisation
requirements [671], shared data refreshment requirements [673], man-machine dialogue re-
quirements [447], and man-machine physiological requirements [448].)

438. Machine requirements: Machine requirements are those requirements [605] which, in
principle, can be expressed without using professional (i.e., technical) terms from the
domain[239] (for which these requirements are established). Thus, by machine [436] re-
quirements [605] we understand requirements [605] put specifically to, i.e., expected specif-
ically from, the machine [436]. (We normally analyse machine requirements into perfor-
mance requirements [521], dependability requirements [218], maintenance requirements [443],
platform requirements [527] and documentation requirements [238].)

439. Machine service: The service delivered by a machine is its behaviour [79] as it is
perceptible by its user(s), where a user is a human, another machine, or a(nother)
system which interact [391]s with it [196].

440. Macro: Macros have the same syntax as procedures, that is, a pair of a signature [680]

(i.e., a macro name followed by a formal argument list of distinct identifiers (i.e., the
formal parameter [302]s)) and a macro body, a text. Syntactically we can distinguish
between macro definitions and macro invocation[402]s. Semantically, invocations, in
some text, of the macro name and an actual argument [16] list are then to be thought
of as an expansion of that part of the text with the macro (definition) body and such
that formal parameters are replaced (macro substitution[441]) by actual arguments.
Semantically a macro is different from a procedure [543] in that a macro expansion
takes place in a context [172], i.e., an environment [275], where free [305] identifiers of the
macro body are replaced by their value as defined at the place of the occurrence of the
macro invocation. Whereas, for a procedure, the free identifiers of a procedure body
are bound to their value at the point where the procedure was defined. (Thus the

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

190 CoMet 1

difference between a macro and a procedure is the difference between evaluation[280]

in a calling, versus in a defining environment.)

441. Macro substitution: See under macro [440]s.

442. Maintenance: By maintenance we shall here, for software, mean change to soft-
ware [685], i.e., its various document [237]s, due to needs for (i) adapting that software to
new platform[526]s, (ii) correcting that software due to observed software errors, (iii)
improving certain performance properties of the machine [436] of which the software is
part, or (iv) avoiding potential problems with that machine. (We refer to subcate-
gories of maintenance: adaptive maintenance [21], corrective maintenance [187], perfective
maintenance [519] and preventive maintenance [541].)

443. Maintenance requirements: By maintenance [442] requirements [605] we understand
requirements which express expectations on how the machine [436] being desired (i.e.,
required) is expected to be maintained. (We also refer to adaptive maintenance [21],
corrective maintenance [187], perfective maintenance [519] and preventive maintenance [541].)

444. Management: Management is about resources: their acquisition, scheduling (over
time), allocation (over locations), deployment (in performing actions) and disposal
(“retirement”). (We distinguish between board-directed, strategic, tactical and op-
erational actions: board-directed actions target mainly financial resources: obtaining
new funds through conversion of goodwill into financial resources, acquiring and sell-
ing “competing” or “supplementary” business units; strategic actions convert finan-
cial resources into production, service supplies and resources and vice-versa — and in
this these actions schedule availability of such resources; tactical actions mainly al-
locate resources; and operational actions order, monitor and control the deployment
of resources in the performance of actions.)

445. Management and organisation: The composite term management and organi-
sation applies in connection with management [444] as outlined just above and with
organisation[500]. The term then emphasises the relations between the organisation
and management of an enterprise. (Other facets of an enterprise are those of its
intrinsics [399], business process [99]es, support technology [725], rules and regulations [640] and
human behaviour [345].)

446. Man-machine dialogue: By man-machinedialogues we understand actual instanti-
ations of user [796] interactions with machine [436]s, and machine interactions with users:
what input the users provide, what output the machine initiates, the interdepen-
dencies of these inputs/outputs, their temporal and spatial constraints, including
response times, input/output media (locations), etc. (

447. Man-machine dialogue requirements: By man-machine dialogue requirements
we understand those interface requirements [394] which express expectations on, i.e.,

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 191

mandates the protocol [561] according to which user [796]s are to interact with the ma-
chine [436], and the machine with the users. (See man-machine dialogue [446]. For other
interface requirements [394] see computational data+control requirements [146], shared data
initialisation requirements [671], shared data refreshment requirements [673], man-machine
physiological requirements [448] and machine-machine dialogue requirements [437].))

448. Man-machine physiological requirements: By man-machine physiological re-
quirements we understand those interface requirements [394] which express expecta-
tions on, i.e., mandates, the form and appearance of ways in which the man-machine
dialogue [446] utilises such physiological devices as visual display screens, keyboards,
“mouses” (and other tactile instruments), audio microphones and loudspeakers, tele-
vision cameras, etc. (See also computational data+control requirements [146], shared data
initialisation requirements [671], shared data refreshment requirements [673], man-machine
dialogue requirements [447] and machine-machine dialogue requirements [437].)

449. Map: A map is like a function[310], but is here thought of as an enumerable [273] set
of pairs of argument/result values. (Thus the definition set [211] of a map is usually
decidable, i.e., whether an entity is a member of a definition set of a map or not can
usually be decided.)

450. Mechanical semantics: By a mechanical semantics we understand the same as
an operational semantics [496] (which is again basically the same as a computational
semantics [147]), i.e., a semantics of a language specified using concrete constructs (like
stacks, program pointers, etc.), and otherwise as defined in operational semantics [496]

and computational semantics [147].

451. Mereology: The theory of parthood relations: of the relations of part to whole
and the relations of part to part within a whole. (Mereology is often considered
a branch of ontology [492]. Leading investigators of mereology were Franz Brentano,
Edmund Husserl, Stanislaw Lesniewski [208, 163, 174, 211, 212, 216] and Leonard
and Goodman [155].)

452. Meta-IV: Meta-IV stands for the fourth metalanguage (for programing language def-
inition conceived at the IBM Vienna Laboratory in the 1960s and 1970s). (Meta-IV
is pronounced meta-four.)

453. Metalanguage: By a metalanguage is understood a language [417] which is used to ex-
plain another language, either its syntax [733], or its semantics [655], or its pragmatics [534],
or two or all of these! (One cannot explain any language using itself. That would
lead to any interpretation of what is explained being a valid solution, in other words:
Nonsense. RSL thus cannot be used to explain RSL. Typically formal specification
languages are metalanguages: being used to explain, for example, the semantics of
ordinary programming languages.)

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

192 CoMet 1

454. Metalinguistic: We say that a language is used in a metalinguistic manner when
it is being deployed to explain some other language. (And we also say that when we
examine a language, like we could, for example, examine RSL, and when we use a
subset of RSL to make that analysis, then that subset of RSL is used metalinguistically
(wrt. all of RSL).)

455. Metaphysics: We quote from: http://mally.stanford.edu/: “Whereas physics is the
attempt to discover the laws that govern fundamental concrete objects, metaphysics
is the attempt to discover the laws that systematize the fundamental abstract objects
presupposed by physical science, such as natural numbers, real numbers, functions,
sets and properties, physically possible objects and events, to name just a few. The
goal of metaphysics, therefore, is to develop a formal ontology, i.e., a formally precise
systematization of these abstract objects. Such a theory will be compatible with
the world view of natural science if the abstract objects postulated by the theory are
conceived as patterns of the natural world.” (Metaphysics may, to other scientists and
philosophers, mean more or other, but for software engineering the characterisation
just given suffices.)

456. Method: By a method we shall here understand a set of principle [542]s for selecting
and using a number of technique [745]s and tool [763]s in order to construct some arte-
fact [55]. (This is our leading definition — one that sets out our methodological quest:
to identify, enumerate and explain the principles, the techniques and, in cases, the
tools — notably where the latter are specification and programming languages. (Yes,
languages are tools.))

457. Methodology: By methodology we understand the study and knowledge of method [456]s,
one, but usually two or more. (In some dialects of English, methodology is confused
with method.)

458. Mixed computation: By a mixed computation we understand the same as by a
partial evaluation[516]. (The term mixed computation was used notably by Andrei
Petrovich Ershov [99, 104, 105, 98, 100, 101, 102, 103], in my mind the “father” of
Russian computing science.)

459. Modal logic: A modal is an expression (like “necessarily” or “possibly”) that is
used to qualify the truth of a judgment. Modal logic is, strictly speaking, the study
of the deductive behavior of the expressions “it is necessary that” and “it is possible
that”. (The term “modal logic” may be used more broadly for a family of related
systems. These include logics for belief, for tense and other temporal expressions,
for the deontic (moral) expressions such as “it is obligatory that”, “it is permitted
that” and many others. An understanding of modal logic is particularly valuable
in the formal analysis of philosophical argument, where expressions from the modal
family are both common and confusing. Modal logic also has important applications
in computer science [234].)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 193

460. Model: A model is the mathematical meaning of a description (of a domain), or a
prescription (of requirements), or a specification (of software), i.e., is the meaning
of a specification of some universe of discourse. (The meaning can be understood
either as a mathematical function, as for a denotational semantics [215] meaning, or an
algebra[26] as for an algebraic semantics [27] or a denotational semantics [215] meaning, etc.
The essence is that the model is some mathematical structure.)

461. Model-oriented: A specification (description, prescription) is said to be model-
oriented if the specification (etc.) denote [216]s a model [460]. (Contrast to property-
oriented [559].)

462. Model-oriented type: A type is said to be model-oriented if its specification des-
ignate [222]s a model [460]. (Contrast to property-oriented [559] type [782].)

463. Modularisation: The act of structuring a text using module [464]s.

464. Module: By a module we shall understand a clearly delineated text which denotes
either a single complex quantity, as does, usually, an object [487], or a possibly empty,
possibly infinite set of model [460]s of objects. (The RSL module concept is manifested
in the use of one or more of the RSL class [114] (class ... end), object [487] (object

identifier class ... end, etc.), and scheme [648] (scheme identifier class ... end), etc.,
constructs. We refer to [73, 72, 23] and to [186, 185] for original, early papers on
modules.)

465. Module design: By module design we shall understand the design[221] of (one or
more) module [464]s.

466. Monitor: Syntactically a monitor is “a programming language construct which
encapsulates variables, access procedures and initialisation code within an abstract
data type. The monitor’s variable may only be accessed via its access procedures
and only one process may be actively accessing the monitor at any one time. The
access procedures are critical sections.” Semantically “a monitor may have a queue
of processes which are waiting to access it” [108].

467. Monomorphism: If a homomorphism[343] φ is an injective function[380] then φ is
an isomorphism. (See also automorphism[72], endomorphism[268], epimorphism[276], and
monomorphism[467].)

468. Monotonic: A function, f : A → B, is monotonic, if for all a, a′ in the definition
set A of f , and some ordering relations, ⊑, on a and B, we have that if a ⊑ a′ then
f(a) ⊑ f(a′).

469. Mood: A conscious state of mind, as here, of a specification. (We can thus express
an indicative [362] mood, an optative [499] mood, a putative [566] mood or an imperative [352]

mood. Our use of these various forms of moods is due to Michael Jackson [138].)

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

194 CoMet 1

470. Morphism: Same as homomorphism[343].

471. Morphology: (i) A study and description of word formation (as inflection, deriva-
tion, and compounding) in language; (ii) the system of word-forming elements and
processes in a language; (iii) a study of structure or form [213].

472. Multi-dimensional: A composite (i.e., a nonatomic [63]) entity [272] is a multi-dimensional
entity [272] if some relations between properly contained (i.e., constituent) subentities
(cf. subentity [721]) can only be described by both forward and backward references,
and/or with recursive references. (This is in contrast to one-dimensional [491] entities.)

473. Multimedia: The use of various forms of input/output media in the man-machine
interface: Text, two-dimensional graphics, voice (audio), video, and tactile instru-
ments (like “mouse”).

. N

474. Name: A name is syntactically (generally an expression, but usually it is) a simple
alphanumeric identifier. Semantically a name denotes (i.e., designates) “something”.
Pragmatically a name is used to uniquely identify that “something”. (Shakespeare:
Romeo: “What’s in a name?” Juliet to Romeo: “That which we call a rose by any
other name would smell as sweet.”)

475. Naming: The action of allocating a unique name to a value.

476. Narrative: By a narrative we shall understand a document text which, in precise,
unambiguous language, introduces and describes (prescribes, specifies) all relevant
properties of entities, functions, events and behaviours, of a set of phenomena and
concepts, in such a way that two or more readers will basically obtain the same idea
as to what is being described (prescribed, specified). (More commonly: Something
that is narrated, a story.)

477. Natural language: By a natural language we shall understand a language like
Arabic, Chinese, English, French, Russian, Spanish, etc. — one that is spoken today,
2005, by people, has a body of literature, etc. (In contrast to natural languages we
have (i) professional languages, like the languages of medical doctors, or lawyers,
or skilled craftsmen like carpenters, etc.; and we have (ii) formal languages like
software specification languages, programming languages, and the languages of first-
order predicate logics, etc.)

478. Network: By a network we shall understand the same as a directed, but not nec-
essarily acyclic graph[19]. (Our only use of it here is in connection with network
databases.)

479. Node: A point in some graph[327] or tree [777].

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 195

480. Nondeterminate: Same as nondeterministic [481].

481. Nondeterministic: A property of a specification: May, on purpose, i.e., deliberately
have more than one meaning. (A specification which is ambiguous also has more than
one meaning, but its ambiguity is of overriding concern: It is not ‘nondeterministic’
(and certainly not ‘deterministic’ !).)

482. Nondeterminism: A nondeterministic [481] specification models nondeterminism.

483. Nonstrict: Nonstrictness is a property associated with functions. A function is
nonstrict, in certain or all arguments, if, for undefined values of these it may still
yield a defined value. (See also strict function[717]s.)

484. Nonterminal: The concept of a nonterminal (together with the concept of a termi-
nal [750]) is a concept associated with the rule of grammar [639]s. (See that term: rule of
grammar [639] for a full explanation.)

485. Notation: By a notation we shall usually understand a reasonably precisely de-
lineated language. (Some notations are textual, as are programming notations or
specification languages; some are diagrammatic, as are, for example, Petri net [522]s,
Statechart [706]s, Live Sequence Chart [430]s, etc.)

486. Noun: Something, a name, that refers to an entity [272], a quality, a state [705], an
action[12], or a concept [152]. Something that may serve as the subject of a verb[806].
(But beware: In English many nouns can be “verbed”, and many verbs can be
“nouned”!)

. .O

487. Object: An instance of the data structure [199] and behaviour [79] defined by the ob-
ject’s class [114]. Each object has its own value [802]s for the instance variable [803]s of its
class and can respond to the function[310]s defined by its class. (Various specification
language [699]s, object Z [61, 95, 96], RSL, etc., each have their own, further refined,
meaning for the term ‘object’, and so do object-oriented [488] programming language [551]

(viz., C++ [215], Java [10, 113, 157, 224, 6, 207], C# [191, 173, 172, 125] and so on).)

488. Object-oriented: We say that a program is object-oriented [488] if its main structure
is determined by a modularisation[463] into a class [114], that is, a cluster of type [782]s,
variable [803]s and procedure [543]s, each such set acting as a separate abstract data type [4].
Similarly we say that a programming language [551] is object-oriented if it specifically
offers language constructs to express the appropriate modularisation[463]. (Object-
orientedness became a mantra of the 1990s: Everything had to be object-oriented.
And many programming problems are indeed well served by being structured around
some object-oriented notion. The first object-oriented [488] programming language [551]

was Simula 67 [23].)

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

196 CoMet 1

489. Observer: By an observer we mean basically the same as an observer function[490].

490. Observer function: An observer function is a function[310] which when “applied”
to an entity [272] (a phenomenon[524] or a concept [152]) yields subentities or attributes
of that entity (without “destroying” that entity). (Thus we do not make a distinc-
tion between functions that observe subentities (cf. subentity [721]) and functions that
observe attribute [69]s. You may wish to make distinctions between the two kinds of
observer function. You can do so by some simple naming [475] convention: assign names
the prefix obs when you mean to observe subentities, and attr when you mean to
observe attributes. Vol. 3 Chap. 5 introduces these concepts.)

491. One-dimensional: A composite entity [272] is a one-dimensional entity [272] if all rela-
tions between properly contained (i.e., constituent) subentities can be described by
either no references to other subentities, or only by backward or only by forward ref-
erences. (This is in contrast to multi-dimensional [472] entities. Thus arrays of arbitrary
order (vectors, matrices, tensors) are usually one-dimensional.)

492. Ontology: In philosophy: A systematic account of Existence. To us: An explicit
formal specification of how to represent the phenomena, concepts and other entities
that are assumed to exist in some area of interest (some universe of discourse) and
the relationships that hold among them. (Further clarification: An ontology is a cat-
alogue of concept [152]s and their relationships — including properties as relationships
to other concepts.)

493. Operation: By an operation we shall mean a function[310], or an action[12] (i.e., the
effect of function invocation[402]). (The context determines which of these two strongly
related meanings are being referred to.)

494. Operational: We say that a specification[698] (a description[220], a prescription[540]),
say of a function[310], is operational if what it explains is explained in terms of how
that thing, how that phenomenon, or concept, operates (rather than by what it
achieves). (Usually operational definitions are model oriented [461] (in contrast to prop-
erty oriented [559]).)

495. Operational abstraction: Although a definition (a specification[698], a descrip-
tion[220], or a prescription[540]) may be said, or claimed, to be operational [494], it may
still provide abstraction[3] in that the model-oriented [461] concepts of the definition
are not themselves directly representable or performable by humans or computers.
(This is in contrast to denotational [214] abstraction[3]s or algebra[26]ic (or axiom[75]atic)
abstraction[3]s.)

496. Operational semantics: A definition[210] of a language [417] semantics [655] that is op-
erational [494]. (See also structural operational semantics [720].)

497. Operation reification: To speak of operation[493] reification[597] one must first be able
to refer to an abstract, usually property-oriented [559], specification of the operation.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 197

Then, by operation reification[597] we mean a specification[698] which indicates how the
operation might be (possibly efficiently) implemented. (Cf. data reification[198] and
operation transformation[498].)

498. Operation transformation: To speak of operation[493] reification[597] one must first
be able to refer to an abstract, usually property-oriented [559], specification of the op-
eration. Then, by operation transformation[771] we mean a specification[698] which is,
somehow, calculate [102]d from the abstract specification. (Three nice books on such
calculi are: [176, 22, 11].)

499. Optative: Expressive of wish or desire. (See also imperative [352], indicative [362], and
putative [566].)

500. Organisation: Organisation is about the “grand scale”, executive and strategic
national, continental or global (world wide) (i) allocation of major resource (e.g.,
business) units, whether in a hierarchical, in a matrix, or in some other organigram-
specified structure, (ii) as well as the clearly defined relations (which information,
decisions and actions are transferred) between these units, and (iii) organisational
dynamics.

501. Organisation and management: The composite term organisation and manage-
ment applies in connection with organisation[500] as outlined just above and with man-
agement [444]s (cf. Item 444 on page 190). The term then emphasises the relations
between the organisation and management of an enterprise. (Other facets of an en-
terprise are those of its intrinsics [399], business process [99]es, support technology [725], rules
and regulations [640] and human behaviour [345].)

502. Output: By output we mean the communication[122] of information[373] (data[193]) to an
outside, an environment [275], from a phenomenon[524] “within” our universe of discourse.
(More colloquially, and more generally: output can be thought of as value [802](s)
transferred over channel [110](s) from, or between, process [544]es. Cf. input [382]. In a
narrow sense we talk of output from a machine [436] (e.g., a finite state machine [290] or
a pushdown machine [565]).)

503. Output alphabet: The set of symbol [728]s output [502] from a machine [436] in the sense
of, for example, a finite state machine [290] or a pushdown machine [565].

504. Overloaded: The concept of ‘overloaded’ is a concept related to function[310] sym-
bol [728]s, i.e., function[310] name [474]s. A function name is said to be overloaded if
there exists two or more distinct signature [680]s for that function name. (Typically
overloaded function symbols are ‘+’, which applies, possibly, in some notation, to
addition of integers, addition of reals, etc., and ‘=’, which applies, possibly, in some
notation, to comparison of any pair of value [802]s of the same type [782].)

. .P

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

198 CoMet 1

505. Paradigm: A philosophical and theoretical framework of a scientific school or disci-
pline within which theories, laws and generalizations and the experiments performed
in support of them are formulated; a philosophical or theoretical framework of any
kind. (Software engineering is full of paradigms: Object-orientedness is one.)

506. Paradox: A statement that is seemingly contradictory or opposed to common sense
and yet is perhaps true. An apparently sound argument leading to a contradic-
tion. (Some famous examples are Russell’s Paradox16 and the Liar Paradox.17 Most
paradoxes stem from some kind of self-reference.)

507. Parallel programming language: A programming language [551] whose major kinds
of concepts are process [544]es, process composition[140] [putting processes in parallel and
nondeterministic [481] {internal or external} choice of process elaboration[264]], and syn-
chronisation and communication between processes. (A main example of a practical
parallel programming language is occam [134], and of a specificational ‘programming’
language is CSP [130, 202, 206]. Most recent imperative programming language [354]s
(Java, C#, etc.) provide for programming constructs (e.g., threads) that somehow
mimic parallel programming.)

508. Parameter: Same as formal parameter [302].

509. Parametric polymorphism: See the parenthesised part of the polymorphic [529] en-
try.

510. Parameterised: We say that a definition[210], of a class [114] (or of a function[310])
is parameterised if an instantiation[385] of an object [487] of the class (respectively an
invocation[402] of the function) allows an actual argument [16] to be substituted (cf.
substitution[722]) into the class definition (function body) for every occurrence of the
[formal] parameter [508].

511. Parser: A parser is an algorithm[31], say embodied as a software [685] program[545], which
accepts text strings, and, if the text string is generated by a suitable grammar [325],
then it will yield a parse tree [512] of that string. (See generator [322].)

512. Parse tree: To speak of a parse tree we assume the presence of a string of termi-
nal [750]s and nonterminal [484]s, and of a grammar [325]. A parse tree is a tree [777] such that
each subtree (of a root [632] and its immediate descendants, whether terminal [750]s or
nonterminal [484]s) corresponds to a rule [638] of the grammar, and hence such that the
frontier [307] of the tree is the given string.

513. Parsing: The act of attempting to construct a parse tree [512] from a grammar [325] and
a text string.

16If R is the set of all sets which do not contain themselves, does R contain itself? If it does then it
doesn’t and vice versa.

17“This sentence is false” or “I am lying”.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 199

514. Part: To speak of parts we must be able to speak of “parts and wholes”. That is:
We assume some mereology [451], i.e., a theory of parthood relations: of the relations
of part to whole and the relations of part to part within a whole.

515. Partial algebra: A partial algebra is an algebra whose functions are not defined for
all combinations of arguments over the carrier.

516. Partial evaluation: To speak of partial evaluation we must first speak of evalua-
tion[280]. Normally evaluation is a process [544], as well as the result of that process,
whereby an expression[282] in some language is evaluated in some context [172] which
binds every free identifier [305] of the expression to some value [802]. A partial evaluation
is an evaluation in whose context not all free identifiers are bound to (hence, defined)
values. The result of a partial evaluation is therefore a symbolic evaluation, one in
which the resulting value is expressed in terms of actual values and the undefined
free identifiers. (We refer to [51, 141].)

517. Path: The concept of paths is usually associated with graph[327]s and tree [777]s (i.e.,
networks). A path is then a sequence of one or more graph edges or tree branches
such that two consecutive edges (branches) share a node of the graph (or [root] of a
tree). (We shall also use the term route [635] synonymously with paths.)

518. Pattern: We shall take a pattern, p, (as in RSL) to mean an expression with identi-
fiers, a, and constants, k, as follows. Basis clauses: Any identifier a is a pattern, and
any constant, k, is a pattern. Inductive clause: If p1, p2, . . . , pm are patterns, then so
are (p1, p2, . . . , pm), < p1, p2, . . . , pm >, {p1, p2,. . . , pm}, [pd1 7→ pr1 , pd2 7→pr2 , . . . ,
pdm

7→ prm
], and so are: < p > ̂a, â < p >, {p} ∪ a, and [pd1 7→ pr1] ∪ a. (The

idea is that a pattern, p, is “held up against” a value, v, “of the same kind” and then
we attempt to ”match” the pattern, p, with the value, v, and if a matching can be
made, then the free identifiers of p are bound to respective component values of v.)

519. Perfective maintenance: By perfective maintenance we mean an update, as here,
of software, to achieve a more desirable use of resources: time, storage space, equip-
ment. (We also refer to adaptive maintenance [21], corrective maintenance [187] and pre-
ventive maintenance [541].)

520. Performance: By performance we, here, in the context of computing, mean quan-
titative figures for the use of computing resources: time, storage space, equipment.

521. Performance requirements: By performance requirements we mean requirements [605]

which express performance [520] properties (desiderata).

522. Petri net: The Petri net language is a special graphic notation for expressing con-
currency of actions, and simultaneity of events, of processes. (See [199].)

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

200 CoMet 1

523. Phase: By a phase we shall here, in the context of software development, under-
stand either the domain[239] development [228] phase, the requirements [605] development [228]

phase, or the software design[688] phase.

524. Phenomenon: By a phenomenon we shall mean a physically manifest “thing”.
(Something that can be sensed by humans (seen, heard, touched, smelled or tasted),
or can be measured by physical apparatus: Electricity (voltage, current, etc.), me-
chanics (length, time and hence velocity, acceleration, etc.), chemistry, etc.)

525. Phenomenology: Phenomenology is the study of structures of consciousness as
experienced from the first-person point of view [234].

526. Platform: By a platform, we shall, in the context of computing, understand a
machine [436]: Some computer (i.e., hardware) equipment and some software sys-
tems. (Typical examples of platforms are: Microsoft Windows running on an IBM

ThinkPad Series T model, or Trusted Solaris operating system with an Oracle

Database 10g running on a Sun Fire E25K Server.)

527. Platform requirements: By platform requirements we mean requirements [605] which
express platform[526] properties (desiderata). (There can be several platform require-
ments: One set for the platform on which software shall be developed. Another set
for the platform(s) on which software shall be utilised. A third set for the platform
on which software shall be demonstrated. And a fourth set for the platform on which
software shall be maintained. These platforms need not always be the same.)

528. Pointer: A pointer is the same as an address [22], a link [425], or a reference [587]: some-
thing which refers to, i.e., designates something (typically something else).

529. Polymorphic: Polymorphy is a concept associated with functions and the type of
the values to which the function applies. If, as for the length of a list function, len,
that function applies to lists of elements of any type, then we say the length function
is polymorphic. So, in general, the ability to appear in many forms; the quality or
state of being able to assume different forms. From Wikipedia, the Free Enclycopedia
[227]:

In computer science, polymorphism is the idea of allowing the same code
to be used with different types, resulting in more general and abstract
implementations. The concept of polymorphism applies to functions as
well as types: A function that can evaluate to and be applied to values
of different types is known as a polymorphic function. A data type that
contains elements of an unspecified type is known as a polymorphic data
type. There are two fundamentally different kinds of polymorphism: If the
range of actual types that can be used is finite and the combinations must
be specified individually prior to use, it is called ad hoc polymorphism[23].
If all code is written without mention of any specific type and thus can

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 201

be used transparently with any number of new types, it is called para-
metric polymorphism. Programming using the latter kind is called generic
programming, particularly in the object-oriented community. However,
in many statically typed functional programming languages the notion of
parametric polymorphism is so deeply ingrained that most programmers
simply take it for granted.

530. Portability: Portability is a concept associated with software [685], more specifically
with the program[545]s (or data[193]). Software is (or files, including database [195] records,
are) said to be portable if it (they), with ease, can be “ported” to, i.e., made to “run”
on, a new platform[526] and/or compile with a different compiler, respectively different
database management system.

531. Post-condition: The concept of post-condition is associated with function applica-
tion. The post-condition of a function f is a predicate pof

which expresses the relation
between argument a and result r values that the function f defines. If a represent
argument values, r corresponding result values and f the function, then f(a) = r can
be expressed by the post-condition predicate pof

, namely, for all applicable a and r
the predicate pof

expresses the truth of pof
(a, r). (See also pre-condition[535].)

532. Postfix: The concept of postfix is basically a syntactic one, and is associated with
operator/operand expressions. It is one about the displayed position of a unary (i.e.,
a monadic) operator with respect to its operand (expression). An expression is said
to be in postfix form if a monadic operator is shown, is displayed, after the expression
to which it applies. (Typically the factorial operator, say !, is shown after its operand
expression, viz. 7!.)

533. Post-order: A special order of tree traversal [778] in which visits are made to nodes of
trees and subtrees as follows: First, for each subtree, a subtree post-order traversal
is made, in the order left to right (or right to left). When a tree, whose number of
subtrees is zero, is post-order traversed, then just that tree’s root is visited (and that
tree has then been post-order traversed) and (the leaf) is “marked” as having been
post-order visited. After each subtree visit the root of the tree of which the subtree
is a subtree is revisited and now it is “marked” as having been visited. (Cf. Fig. 13
on page 228: A left to right post-order traversal of that tree yields the following
sequence of “markings”: CQXFLUJMZKA; cf. also Fig. 11).

534. Pragmatics: Pragmatics is the (i) study and (ii) practice of the factors that govern
our choice of language in social interaction and the effects of our choice on others. (We
use the term pragmatics in connection with the use of language, as complemented
by the semantics [655] and syntax [733] of language.)

535. Pre-condition: The concept of pre-condition is associated with function application
where the function being applied is a partial function. That is: for some arguments
of its definition set the function yields chaos, that is, does not terminate. The

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

202 CoMet 1

A

C X F U J

M

Q L K

Z

Figure 11: A left to right post-order tree traversal

pre-consition of the function is then a predicate which expresses those values of the
arguments for which the function application terminates, that is, yields a result value.
(See weakest pre-condition[811].)

536. Predicate: A predicate is a truth-valued expression involving terms over arbitrary
values, well-formed formula relating terms and with Boolean[93] connective [167]s and
quantifier [569]s.

537. Predicate logic: A predicate logic is a language of predicate [536]s (given by some
formal [296] syntax [733]) and a proof system[557].

538. Pre-order: A special order of tree traversal [778] in which visits are made to nodes of
trees and subtrees as follows: First to the root of the tree with that root now being
“marked” as having been pre-order visited. Then for each subtree a subtree pre-order
traversal is made, in the order left to right (or right to left). When a tree, whose
number of subtrees is zero, is pre-order traversed, then just that tree’s root is visited
(and that tree has then been pre-order traversed) and the leaf is then “marked” as
having been pre-order visited. (Cf. Fig. 13 on page 228: A right-to-left pre-order
traversal of that tree yields the following sequence of “markings”: AKZMJULFXQC.
Cf. also Fig. 12 on the facing page).

539. Presentation: By presentation we mean the syntactic document [237]ation of the
results of some development [228].

540. Prescription: A prescription is a specification which prescribes something desig-
natable, i.e., which states what shall be achieved. (Usually the term ‘prescription’ is
used only in connection with requirements [605] prescriptions.)

541. Preventive maintenance: By preventive maintenance — of a machine [436] — we
mean that a set of special tests are performed on that machine [436] in order to ascer-
tain whether the machine [436] needs adaptive maintenance [21], and/or corrective main-

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 203

A

C X F U J

M

Q L K

Z

Figure 12: A right-to-left pre-order tree traversal

tenance [187], and/or perfective maintenance [519]. (If so, then an update, as here, of
software, has to be made in order to achieve suitable integrity [388] or robustness [631] of
the machine [436].)

542. Principle: An accepted or professed rule of action or conduct, . . . , a fundamental
doctrine, right rules of conduct, . . . [214]. (The concept of principle, as we bring
it forth, relates strongly to that of method [456]. The concept of principle is “fluid”.
Usually, by a method, some people understand an orderliness. Our definition puts
the orderliness as part of overall principles. Also, one usually expects analysis and
construction to be efficient and to result in efficient artifacts. Also this we relegate
to be implied by some principles, techniques and tools.)

543. Procedure: By a procedure we mean the same as a function[310]. (Same as routine [636]

or subroutine [723].)

544. Process: By a process we understand a sequence of actions and events. The events
designate interaction with some environment of the process.

545. Program: A program, in some programming language [551], is a formal text which can
be subject to interpretation[397] by a computer. (Sometimes we use the term code [118]

instead of program, namely when the program is expressed in the machine language
of a computer.)

546. Programmable: An active [14] dynamic [260] phenomenon[524] has the programmable
(active dynamic) attribute if its action[12]s (hence state [705] changes) over a future
time interval can be accurately prescribed. (Cf. autonomous [73] and biddable [85].)

547. Programmer: A person who does software design[688].

548. Program point: By a program point we shall here understand any point in a
program text (whether of an applicative programming language [49] (i.e., functional pro-

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

204 CoMet 1

gramming language [314]), an imperative programming language [354], or a logic program-
ming language [434]) between any two textually neighbouring token[762]s. (The idea of
a program point is the following: Assume an interpreter [398] of programs of the desig-
nated kind. Such an interpreter, at any step of its interpretation[397] process [544], can
be thought of as interpreting a special token, or a sequence of neighbouring tokens,
in both cases: “between two program points”.)

549. Program organisation: By program organisation we loosely mean how a pro-
gram[545] (i.e., its text) is structured into, for example, module [464]s (eg., class [114]es),
procedure [543]s, etc.

550. Programming: The act of constructing program[545]s. From [108]:

1: The art of debugging a blank sheet of paper (or, in these days of on-
line editing, the art of debugging an empty file). 2: A pastime similar to
banging one’s head against a wall, but with fewer opportunities for reward.
3: The most fun you can have with your clothes on (although clothes are
not mandatory).

551. Programming language: A language for expressing program[545]s, i.e., a language
with a precise syntax [733], a semantics [655] and some textbooks which provides remnants
of the pragmatics [534] that was originally intended for that programming language.
(See next entry: programming language type [552].)

552. Programming language type: With a programming language [551] one can asso-
ciate a type [782]. Typically the name of that type intends to reveal the type of a
main paradigm, or a main data type of the language. (Examples are: functional pro-
gramming language [314] (major data type is functions, major operations are definition
of functions, application of functions and composition of functions), logic program-
ming language [434] (major kinds of expressions are ground terms in a Boolean algebra,
propositions and predicates), imperative programming language [354] (major kinds of
language constructs are declaration of assignable variables, and assignment to vari-
ables, and a more or less indispensable kind of data type is references [locations,
addresses, pointers]), and parallel programming language [507].)

553. Projection: By projection we shall here, in a somewhat narrow sense, mean a tech-
nique that applies to domain description[243]s and yields requirements prescription[615]s.
Basically projection “reduces” a domain description by “removing” (or, but rarely,
hiding [337]) entities [272], function[310]s, event [281]s and behaviour [79]s from the domain de-
scription. (If the domain description is an informal one, say in English, it may
have expressed that certain entities, functions, events and behaviours might be in
(some instantiations of) the domain. If not “projected away” the similar, i.e., in-
formal requirements prescription will express that these entities, functions, events
and behaviours shall be in the domain and hence will be in the environment of the
machine [436] being requirements prescribed.)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 205

554. Proof: A proof of a theorem, φ, from a set, Γ, of sentences of some formal [296]

proposition[560]al or predicate [536] language, L, is a finite sequence of sentences, φ1, φ2,
. . . , φn, where φ = φ1, where φn = true, and in which each φi is either an axiom[75]

of L, or a member of Γ, or follows from earlier φj ’s by an inference rule [369] of L.

555. Proof obligation: A clause of a program may only be (dynamically) well-defined
if the values of clause parts lie in certain ranges (viz. no division by zero). We
say that such clauses raise proof obligations, i.e., an obligation to prove a property.
(Classically it may not be statically (i.e., compile time) checkable that certain ex-
pression values lie within certain subtype [724]s. Discharging a proof may help ensure
such constraints.)

556. Proof rule: Same as inference rule [369] or axiom[75].

557. Proof system: A consistent [168] and (relative) complete [129] set of proof rule [556]s.

558. Property: A quality belonging and especially peculiar to an individual or thing; an
attribute [69] common to all members of a class. (Hence: “Not a property owned by
someone, but a property possessed by something”.)

559. Property-oriented: A specification (description, prescription) is said to be property-
oriented if the specification (etc.) expresses attribute [69]s. (Contrast to model ori-
ented [461].)

560. Proposition: An expression in language which has a truth value.

561. Protocol: A set of formal rules describing how to exchange messages, between a
human user and a machine [436], or, more classically, across a network. (Low-level
protocols define the electrical and physical standards to be observed, bit and byte
ordering, and the transmission and error detection and correction of the bit stream.
High-level protocols deal with the data formatting, including the syntax of messages,
the terminal-to-computer dialogue, character sets, sequencing of messages, etc.)

562. Pure functional programming language: A functional programming language [314]

is said to be pure if none of its constructs designates side-effects.

563. Pushdown stack: A pushdown stack is a simple stack [700]. (Usually a simple stack
has just the following operations: push an element onto the stack, pop the top element
from the stack, and observe the top element of the stack.)

564. Pushdown automaton: A pushdown automaton is an automaton[71] with the ad-
dition of a pushdown stack [563] such that (i) the pushdown automaton input [382] is
provided both from an environment external to the pushdown automaton and from
the top of the pushdown stack, (ii) the pushdown automaton output [502] is provided
to the pushdown stack by being pushed onto the top of that stack, and (iii) such

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

206 CoMet 1

that the pushdown automaton may direct an element to be popped from the push-
down stack. (The pushdown automaton still has the notion of the final states of the
automaton[71].)

565. Pushdown machine: A pushdown (stack) machine is like a pushdown automaton[564]

with the addition that now the pushdown machine also provides output [502] to the
environment of the pushdown machine.

566. Putative: Commonly accepted or supposed, that is, assumed to exist or to have
existed. (See also imperative [352], indicative [362] and optative [499].)

. .Q

567. Quality: Specific and essential character. (Quality is an attribute [69], a property [558],
a characteristic (something has character).)

568. Quantification: The operation of quantifying. (See quantifier [569]. The x (the y) is
quantifying expression ∀x:X·P (x) (respectively ∃y:Y ·Q(y)).)

569. Quantifier: A marker that quantifies. It is a prefixed operator that binds the vari-
ables in a logical formula by specifying their possible range of value [802]s. (Colloquially
we speak of the universal and the existential quantifiers, ∀, respectively ∃. Typi-
cally a quantified expression is then of either of the forms ∀x:X·P (x) and ∃y:Y ·Q(y).
They ‘read’: For all quantities x of type X it is the case that the predicate P (x) holds;
respectively: There exists a quantity y of type Y such that the predicate Q(y) holds.)

570. Quantity: An indefinite value [802]. (See the quantifier [569] entry: The quantities in
P (x) (respectively Q(y)) are of type X (respectively Y). y is indefinite in that it is
one of the quantities of Y , but which one is not said.)

571. Query: A request for information, generally as a formal request to a database [195].

572. Query language: A formal [296] language [417] for expressing queries (cf. query [571]).
(The most well-known query language, today, 2005, is SQL [77].)

573. Queue: A queue is an abstract data type [4] with a queue data structure and, typically,
the following operations: enqueue (insert into one end of the queue), dequeue (remove
from the other end of the queue). Axioms then determine specific queue properties.
()

. .R

574. Radix: In a positional representation of numbers, that integer by which the signifi-
cance of one digit place must be multiplied to give the significance of the next higher
digit place. (Conventional decimal numbers are radix ten, binary numbers are radix
two.)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 207

575. RAISE: RAISE stands for Rigorous Approach to Industrial Software Engineering.
(RAISE refers to a method, The RAISE Method [112, 31, 33, 34], a specification lan-
guage, RSL [110], and “comes” with a set of tools.)

576. Range: The concept of range is here used in connection with functions. Same as
range set [577]. See next entry.

577. Range set: Given a function[310], its range set is that set of value [802]s which is yielded
when the function is applied to each member of its definition set [211].

578. Reactive: A phenomenon[524] is said to be reactive if the phenomenon performs
action[12]s in response to external stimuli. Thus three properties must be satisfied
for a system to be of reactive dynamic attribute: (i) An interface must be definable
in terms of (ii) provision of input stimuli and (iii) observation of (state) reaction.
(Contrast to inert [367] and active [14].)

579. Reactive system: A system[736] whose main phenomena are chiefly reactive [578]. (See
the reactive [578] entry just above.)

580. Real time: We say that a phenomenon[524] is real time if its behaviour somehow must
guarantee a response to an external event within a given time. (Cf. hard real time [330]

and soft real time [684].)

581. Reasoning: Reasoning is the ability to infer [368], i.e., to make deduction[205]s or induc-
tion[364]s. (Automated reasoning is concerned with the building and use of computing
systems that automate this process. The overall goal is to mechanise different forms
of reasoning.)

582. Recogniser: A recogniser is an algorithm[31] which can decide whether a string can
be generate [321]d by a given grammar [325] of a language [417]. (Typically a recogniser can
be abstractly formulated as a finite state automaton[289] for a regular language [594], and
as a pushdown automaton[564] for a context-free language [174].)

583. Recognition rule: A recognition rule is a text which describes some phenomenon[524],
that is, a possibly singleton class [114] of such (i.e., their embodied concept [152], i.e.,
type [782]), such that it is uniquely decidable, by a human, whether a phenomenon
satisfies the rule or not, i.e., is a member of the class, or not. (The recognition rule
concept used here is due to Michael A. Jackson [138].)

584. Recursion: Recursion is a concept associated both with the function definition[316]s
and with data[193] type definition[785]s. A function definition [a data type] is said to
possess recursion if it is defined in terms of itself. (Cf. with the slightly different
concept of recursive [585].)

585. Recursive: Recursive is a concept associated with function[310]s. A function is said
to be recursive if, in the course of the evaluation of an invocation of the function,

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

208 CoMet 1

that function is repeatedly invoked. (Cf. with the slightly different concept of recur-
sion[584].)

586. Reengineering: By reengineering we shall, in a narrow sense, only consider the
reengineering of business processes. Thus, to us, reengineering is the same as business
process reengineering [101]. (Reengineering is also used in the wider sense of a major
change to some already existing engineering artefact [55].)

587. Reference: A reference is the same as an address [22], a link [425], or a pointer [528]:
something which refers to, i.e., designates something (typically something else).

588. Referential transparency: A concept which is associated with certain kinds of
programming [550] or specification language [699] constructs, namely those whose interpre-
tation[397] does not entail side effects. (A pure functional programming language [562] is
said to be referentially transparent.)

589. Refinement: Refinement is a relation[599] between two specification[698]s: One specifi-
cation, D, is said to be a refinement of another specification, S, if all the properties
that can be observed of S can be observed in D. Usually this is expressed as D ⊑ S.
(Set-theoretically it works the other way around: in D ⊇ S, D allows behaviours not
accounted for in S.)

590. Refutable assertion: A refutable assertion is an assertion that might be refuted
(i.e., convincingly shown to be false). (Einstein’s theory of relativity, in a sense,
refuted Newton’s laws of mechanics. Both theories amount to assertions.)

591. Refutation: A refutation is a statement that (convincingly) refutes an assertion.
(Lakatos [146] drew a distinction between refutation (evidence that counts against a
theory) and rejection (deciding that the original theory has to be replaced by another
theory). We can still use Newton’s theory provided we stay within certain boundaries,
within which that theory is much easier to handle than Einstein’s theory.)

592. Regular expression: To introduce the notion of regular expression we assume an
alphabet [34], A, say finite. Basis clause: For any a in the alphabet, a is a regular
expression. Inductive clause: If r and r′ are regular expressions, then so are rr′,
(r), r | r′, and r⋆. (The denotation, L(r), of a regular expression r is defined as
follows: (i) If r is of the form a, for a in the alphabet A, then L(a) = {a}; (ii) if
r is of the form r′r′′ then L(r′r′′) = {s′̂s′′ | s′ ∈ L(r′), s′′ ∈ L(r′′)}; (iii) or if r is
of the form (r′) then L((r′)) = {s | s ∈ L(r′)}; (iv) or if r is of the form r′ | r′′

then L(r′ | r′′) = {s | s ∈ L(r′) ∨ s ∈ L(r′′)}; (v) or if r is of the form r′⋆ then
L(r′⋆) = {s | s =<> ∨s ∈ L(r′) ∨ s′ ∈ L(r′r′) ∨ s′ ∈ L(r′r′r′) ∨ . . .} where <> is the
empty string, idempotent under concatenation.)

593. Regular grammar: See regular syntax .

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 209

594. Regular language: By a regular language we understand a language [417] which is
the denotation of a regular expression[592]. (Some simple forms of grammar [325]s, that
is, regular syntax [596]es, also generate regular languages.)

595. Regulation: A regulation stipulates that an action[12] be taken in order to remedy
a previous action which “broke” a rule [638]. That is, a regulation is some text which
designates a possibly composite action[12] which, in turn, denotes a state-to-state
change which ostensibly results in a result state in which the rule now holds. Usually
a domain regulation is paired with domain rule.

596. Regular syntax: A regular syntax is a syntax [733] which denotes (i.e., which gener-
ate [321]s) a regular language [594].

597. Reification: The result of a reify [598] action. (See also data reification[198], operation
reification[497] and refinement [589].)

598. Reify: To regard (something abstract [1]) as a material or concrete [154] thing. (Our
use of the term is more operational [494]: To take an abstract [1] thing and turn it into a
less abstract, more concrete [154] thing.)

599. Relation: By a relation we usually understand either a mathematical entity [272] or
an information structure [374] consisting of a set of (relation) tuples (like rows in a
table [739]). The mathematical entity, a relation, can be thought of, also, as a pos-
sibly infinite set of n-groupings (i.e., Cartesian[107]s of the same arity [53]), such that
if (a, b, · · · , c, d, · · · , e, f) is such an n-tuple, then we may say that (a, b, · · · , c) (a
relation argument) relates to (d, · · · , e, f) (a relation result). Thus function[310]s are
special kinds of relations, namely where every argument relates to exactly one result.
(Relations, as information structures, are well-known in relational database [600]s.)

600. Relational database: A database [195] whose data[193] types are (i) atomic [63] values,
(ii) tuples of these, and relations seen as sets of tuples. (The relational database
model is due to E.F. Codd [68].)

601. Reliability: A system being reliable — in the context of a machine being dependable
— means some measure of continuous correct service, that is: Measure of time to
failure [286]. (Cf. dependability [217] [being dependable].) (Reliability is a dependability
requirement [218]. Usually reliability is considered a machine [436] property. As such,
reliability is (to be) expressed in a machine requirements [438] document.)

602. Renaming: By renaming we mean Alpha-renaming [35]. (Renaming, in this sense, is
a concept of the Lambda-calculus [412].)

603. Rendezvous: Rendezvous is a concept related to parallel processes. It stands for
a way of synchronising a number, usually two, of processes. (In CSP the pairing of
output (!) / input (?) clauses designating the same channel provides a language
construct for rendezvous.)

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

210 CoMet 1

604. Representation abstraction: By representation abstraction of [typed] values we
mean a specification which does not hint at a particular data (structure) model, that
is, which is not implementation biased. (Usually a representation abstraction (of
data) is either property oriented [559] or is model oriented [461]. In the latter case it is
then expressed, typically, in terms of mathematical entities such as sets, Cartesians,
lists, maps and functions.)

605. Requirements: A condition or capability needed by a user to solve a problem or
achieve an objective [133].

606. Requirements acquisition: The gathering and enunciation of requirements [605].
(Requirements acquisition comprises the activities of preparation, requirements elici-
tation[265] (i.e. requirements capture [608]) and preliminary requirements evaluation (i.e.,
requirements vetting).)

607. Requirements analysis: By requirements analysis we understand a reading of re-
quirements acquisition rough-sketch[633] prescription units, (i) with the aim of forming
concepts from these requirements prescription units, (ii) as well as with the aim of
discovering inconsistencies, conflicts and incompleteness within these requirements
prescription units, and (iii) with the aim of evaluating whether a requirements can
be objectively shown to hold, and if so what kinds of tests (etc.) ought be devised.

608. Requirements capture: By requirements capture we mean the act of eliciting, of
obtaining, of extracting, requirements from stakeholder [703]s. (For practical purposes
requirements capture is synonymous with requirements elicitation[611].)

609. Requirements definition: Proper definition[210]al part of a requirements prescrip-
tion[615].

610. Requirements development: By requirements development we shall understand
the development [228] of a requirements prescription[615]. (All aspects are included in de-
velopment: requirements acquisition[606], requirements analysis [39], requirements model [460]ling,
requirements validation[800] and requirements verification[807].)

611. Requirements elicitation: By requirements elicitation we mean the actual extrac-
tion of requirements [605] from stakeholder [703]s.

612. Requirements engineer: A requirements engineer is a software engineer [692] who
performs requirements engineering [613]. (Other forms of software engineer [692]s are do-
main engineer [247]s and software design[688]ers (cum programmer [547]).)

613. Requirements engineering: The engineering of the development of a require-
ments prescription[615], from identification of requirements [605] stakeholder [703]s, via re-
quirements acquisition[606], requirements analysis [607], and requirements prescription[615] to
requirements validation[800] and requirements verification[807].

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 211

614. Requirements facet: A requirements facet is a view of the requirements — “seen
from a domain description[243]” — such as domain projection[255], domain determina-
tion[245], domain instantiation[253], domain extension[249], domain fitting [251] or domain ini-
tialisation[252].

615. Requirements prescription: By a requirements [605] prescription[540] we mean just
that: the prescription of some requirements. (Sometimes, by requirements prescrip-
tion, we mean a relatively complete and consistent specification of all requirements,
and sometimes just a requirements prescription unit [616].)

616. Requirements prescription unit: By a requirements [605] prescription[540] unit we
understand a short, “one or two liner”, possibly rough-sketch[633], prescription[540] of
some property of a domain requirements [258], an interface requirements [394], or a machine
requirements [438]. (Usually requirements prescription units are the smallest textual,
sentential fragments elicited from requirements stakeholder [703]s.)

617. Requirements specification: Same as requirements prescription[615] — the preferred
term.

618. Requirements unit: By a requirements unit we mean a single sentence, i.e., a short
expression of a “singular” requirements [605]. (A “full” (or complete) requirements [605]

thus consists of (usually very many) requirements unit [618]s.)

619. Requirements validation: By requirements validation we rather mean the valida-
tion[800] of a requirements prescription[615].

620. Resource: From Old French ressourse relief, resource, from resourdre to relieve, lit-
erally, to rise again, from Latin resurgere . . . an ability to meet and handle a situation
[213] (being resourceful). (In computing we deal with computing resources such as
storage [715], time [761] and further computing equipment. Many computing applications
handle enterprise resources such as enterprise staff, production equipment, building
or land space, production time, etc. In enterprise domains resources include monies,
people, equipment, buildings, time and locations (geographical space).)

621. Resource allocation: The allocation of resource [620]s.

622. Resource scheduling: The scheduling [646] of resource [620]s.

623. Retrieval: Used here in two senses: The general (typically database [195]-oriented)
sense of ‘the retrieval [the fetching] of data (of obtaining information) from a reposi-
tory of such’. And the special sense of ‘the retrieval of an abstraction from a concreti-
sation’, i.e., abstracting a concept from a phenomenon (or another, more operational
concept). (See the next entry for the latter meaning.)

624. Retrieve function: By a retrieve function[310] we shall understand a function that
applies to values of some type [782], the “more concrete, operational” type, and yields
values of some type [782] claimed to be more abstract [1]. (Same as abstraction function[5].)

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

212 CoMet 1

625. Rewrite: The replacement of some text or structure by some other text, respectively
structure. (See rewrite rule [626].)

626. Rewrite rule: A rewrite rule is a directed equation: lhs = rhs. The left- and right-
hand sides are patterns. If some text can be decomposed into three parts, i.e., text0 =
text1̂text2̂text3, where text1 and/or text3 may be empty texts, and where text2 =
lhs, then an application of the rewrite rule lhs = rhs to text0 yields text1̂rhŝtext3.
(The equation lhs = rhs is said to be directed in that this rule does not prescribe
that a subtext equal to rhs is to be rewritten into lhs.)

627. Rewrite system: Rewrite systems are sets of rewrite rule [626]s used to compute, by
repeatedly replacing subterms of a given formula with equal terms, until the sim-
plest form possible is obtained [79]. (Rewrite systems form a both theoretically and
practically interesting subject. They abound in instrumenting theorem proving [758],
and the interpretation[397] of notably algebraic semantics [27] specification language [699]s,
cf. CafeOBJ [81, 80] and Maude [67, 171, 59].)

628. Rigorous: Favoring rigor, i.e., being precise.

629. Rigorous development: Same as the composed meaning of the two terms rigor-
ous [628] and development [228]. (We usually speak of a spectrum of development modes:
systematic development [737], rigorous development and formal development [298]. Rigor-
ous software development, to us, “falls” somewhere between the two other modes
of development: (Always) complete formal specification[304]s are constructed, for all
(phases and) stages of development; some, but usually not all proof obligation[555]s are
expressed; and usually only a few are discharged (i.e., proved to hold).)

630. Risk: The Concise Oxford Dictionary [159] defines risk (noun) in terms of a hazard,
chance, bad consequences, loss, etc., exposure to mischance. Other characterisations
of the term risk are: someone or something that creates or suggests a hazard, and
possibility of loss or injury.

631. Robustness: A system[736] is robust — in the context of a machine [436] being depend-
able — if it retains all its dependability [217] attributes (i.e., properties) after failure [286]

and after maintenance [442]. (Robustness is (thus) a dependability requirement [218].)

632. Root: A root is a node [479] of a tree [777] which is not a subtree [777] of a larger, embedding
(embedded [266]) tree.

633. Rough-sketch: See next item.

634. Rough sketch: By a rough sketch — in the context of descriptive software develop-
ment [690] documentation — we shall understand a document [237] text which describes
something which is not yet consistent and complete, and/or which may still be too
concrete, and/or overlapping, and/or repetitive in its descriptions, and/or with which
the describer has yet to be fully satisfied.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 213

635. Route: Same as path[517].

636. Routine: Same as procedure [543].

637. RSL: RSL stands for the RAISE [112] Specification Language [110, 31, 33, 34]. ()

638. Rule: A regulating principle. In the rules and regulations [640] facet context of mod-
elling domain rules we shall understand a domain rule as some text whose meaning
is a predicate [536] over a pair of suitably chosen domain state [705]s. We may assume
that a domain action[12] or a domain event [281] takes place in the first of these states
and results in the second of these states. If the predicate is true then we say that the
rule has been obeyed, otherwise that it has not been obeyed. Usually a regulation[595]

is attached to the rule. (We use the concept of rules in several different contexts:
rewrite rule [626], rule of grammar [639] and rules and regulations [640].)

639. Rule of grammar: A grammar is made up of one or more rules. A rule has a (left-
hand-side) definiendum[207] and a (right-hand-side) definiens [208]. The definiendum is
usually a single identifier [351]. The definiens is usually a possibly empty string of iden-
tifier [351]s. These identifiers are either terminal [750]s or nonterminal [484]s. A definiendum
identifier is a nonterminal. In a grammar all nonterminals have a defining rule. Those
identifiers which do not appear as a definiendum of a rule are thence considered ter-
minals.

640. Rules and regulations: By rules and regulations we mean guidelines that are in-
tended to be adhered to by the enterprise staff and enterprise customers (i.e., users,
clients) in conducting their “business”, i.e., their actions within, and with, the enter-
prise. (Other facets of an enterprise are those of its intrinsics [399], business process [99]es,
support technology [725], management and organisation[445] and human behaviour [345].)

641. Run time: The time (or time interval) during which a software program[545] is subject
to interpretation[397] by a computer. (The term run time is usually deployed in order
to distinguish between that concept and the concept of compile time [127].)

. S

642. Safety: By safety — in the context of a machine [436] being dependable — we mean
some measure of continuous delivery of service of either correct service, or incorrect
service after benign failure [286], that is, measure of time to catastrophic failure. (Safety
is a dependability requirement [218]. Usually safety is considered a machine [436] property.
As such safety is (to be) expressed in a machine requirements [438] document [237].)

643. Safety critical: A system[736] whose failure [286] may cause injury or death to human
beings, or serious loss of property, or serious disruption of services or production, is
said to be safety critical.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

214 CoMet 1

644. Satisfiable: A predicate [536] is said to be satisfiable if it is true for at least one
interpretation[397]. (In this context think of an interpretation as a binding [88] of all
free [305] variable [803]s of the predicate expression to value [802]s. Cf. valid [799].)

645. Schedule: A schedule is a syntactic composite [133] concept [152]. A schedule is a pre-
scription[540] for (usually where and) when some resources are to be present, i.e., in-
formation[373] about being spatially and temporally available. (As such a schedule
usually also includes some allocation[33] information[373].)

646. Scheduling: The act of providing, of constructing, a schedule [645].

647. Schema: A structured framework or plan. (We shall also use the term ‘schema’ in
connection with, i.e., as a rewrite rule [626] and some axioms that apply to, for example,
applicative program texts and rewrite into imperative program texts.)

648. Scheme: See schema[647].

649. Scope: We shall use the term scope in two sufficiently different senses: (1) In pro-
gramming [550] the scope of an identifier [351] is the region of a program[545] text within
which it represents a certain thing. This usually extends from the place where it is de-
clared to the end of the smallest enclosing block [89] (begin/end or procedure/function
body). An inner block may contain a redeclaration of the same identifier, in which
case the scope of the outer declaration does not include (is shadowed, occluded,
blocked off or obstructed by) the scope of the inner. (2) We also use the term scope
in the context of the degree to which a project scope and span extends: Scope be-
ing the “larger, wider” delineation of what a project “is all about”, span[697] being the
“narrower”, more precise extent.

650. Scope check: Usually a function performed by a compiler [125] concerning the defini-
tion (declaration) and places of use of identifiers of program[545] texts. (Thus the use
of scope [649] is that of the first (1) sense of item 649.)

651. Script: A plan of action. By a domain script we shall, more specifically, under-
stand the structured, almost, if not outright, formally expressed, wording of rules
and regulations [640] of behaviour. See also license [424] and contract [181].

652. Secure: To properly define the concept of secure, we first assume the concept of an
authorised user. Now, a system[736] is said to be secure if an un-authorised user, when
supposedly making use of that system, (i) is not able to find out what the system
does, (ii) is not able to find out how it does ‘whatever’ it does do, and (iii), after
some such “use”, does not know whether he/she knows! (The above characterisation
represents an unattainable proposition. As a characterisation it is acceptable. But
it does not hint at ways and means of implementing secure systems. Once such a
system is believed implemented the characterisation can, however be used as a guide
in devising tests that may reveal to which extent the system indeed is secure. Secure

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 215

systems usually deploy some forms of authorisation and encryption mechanisms in
guarding access to system functions.)

653. Security: When we say that a system[736] exhibits security we mean that it is se-
cure [652]. (Security is a dependability requirement [218]. Usually security is considered
a machine [436] property. As such security is (to be) expressed in a machine require-
ments [438] document.)

654. Selector: By a selector (a selector function) we understand a function which is
applicable to values of a certain, defined, composed type [782], and which yields a proper
component of that value. The function itself is defined by the type definition[785].

655. Semantics: Semantics is the study and knowledge [incl. specification] of meaning
in language [70]. (We make the distinction between the pragmatics [534], the semantics
and the syntax [733] of languages. Leading textbooks on semantics of programming
languages are [78, 116, 201, 205, 218, 228].)

656. Semantic function: A semantics function is a function which when applied to
syntactic values yields their semantic values.

657. Semantic type: By a semantic type we mean a type [782] that defines semantic values.

658. Semiotics: Semiotics, as used by us, is the study and knowledge of pragmatics [534],
semantics [655] and syntax [733] of language(s).

659. Sensor: A sensor can be thought of as a piece of technology [746] (an electronic, a
mechanical or an electromechanical device) that senses, i.e., measures, a physical
value [802]. (A sensor is in contrast to an actuator [17].)

660. Sentence: (i) A word, clause, or phrase or a group of clauses or phrases forming
a syntactic unit which expresses an assertion, a question, a command, a wish, an
exclamation, or the performance of an action, that in writing usually begins with a
capital letter and concludes with appropriate end punctuation, and that in speaking
is distinguished by characteristic patterns of stress, pitch and pauses; (ii) a mathe-
matical or logical statement (as an equation or a proposition) in words or symbols
[213].

661. Sequential: Arranged in a sequence, following a linear order, one after another.

662. Sequential process: A process is sequential if all its observable actions can be, or
are, ordered in sequence.

663. Server: By a server we mean a process [544] or a behaviour [79] which interact [391]s with
another process or behaviour (i.e., a client [116]) in order for the server to perform some
action[12]s on behalf of the client.

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

216 CoMet 1

664. Set: We understand a set as a mathematical entity, something that is not math-
ematically defined, but is a concept that is taken for granted. (Thus by a set we
understand the same as a collection, an aggregation, of distinct entities. Member-
ship (of an entity) of a set is also a mathematical concept which is likewise taken for
granted, i.e., undefined.)

665. Set theoretic: We say that something is set theoretically understood or explained
if its understanding or explanation is based on sets.

666. Shared action: By a shared action we mean an action that can only be partly
computed by the machine [436]. That is, the machine [436], in order to complete an action,
may have to inquire with the domain[239] (in order, say, to extract some measurable,
time-varying simple entity attribute value) in order to proceed in its computation.

667. Shared behaviour: By a shared behaviour we mean a behaviour many of whose
actions and events occur both in the domain[239] and, in some encoded form, and in
the same squence, in the machine [436].

668. Shared concept: See shared phenomenon[676].

669. Shared data: See shared phenomenon[676].

670. Shared data initialisation: By shared data initialisation we understand an oper-
ation[493] that (initially) creates a data structure [199] that reflects, i.e., models, some
shared phenomenon[676] in the machine [436]. (See also shared data refreshment [672].)

671. Shared data initialisation requirements: Requirements for shared data initialisa-
tion[670]. (See also computational data+control requirements [146], shared data refreshment
requirements [673], man-machine dialogue requirements [447], man-machine physiological re-
quirements [448], and machine-machine dialogue requirements [437].)

672. Shared data refreshment: By shared data refreshment we understand a ma-
chine [436] operation[493] which, at prescribed intervals, or in response to prescribed
events updates an (originally initialised) shared data[669] structure. (See also shared
data initialisation[670].)

673. Shared data refreshment requirements: Requirements for shared data refresh-
ment [672]. (See also computational data+control requirements [146], shared data initialisa-
tion requirements [671], man-machine dialogue requirements [447], man-machine physiologi-
cal requirements [448], and machine-machine dialogue requirements [437].)

674. Shared event: By a shared event we mean an event whose occurrence in the do-
main[239] need be communicated to the machine [436] – and, vice-versa, an event whose
occurrence in the machine [436] need be communicated to the domain[239].

675. Shared information: See shared phenomenon[676].

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 217

676. Shared phenomenon or concept: A shared phenomenon (or concept) is a phe-
nomenon (respectively a concept) which is present in some domain[239] (say in the
form of facts, knowledge [407] or information[373]) and which is also represented in the
machine [436] (say in the form of some entity [272], simple, action, evemt or behaviour).
A phenomenon of a domain, when shared, becomes a concept of the machine.

677. Shared simple entity: By a shared simple entity we mean a simple entity which
both occurs in the domain[239] (as a phenomenon or a concept) and in the machine [436].
Simple entities that are shared between the domain and the machine must initially be
input to the machine. Dynamically arising simple entities must likewise be input and
all such machine entities must have their attributes updated, when need arise. Re-
quirements for shared simple entities thus entail requirements for their representation
and for their human/machine and/or machine/machine transfer dialogue.

678. Side effect: A language construct that designates the modification of the state of a
system is said to be a side-effect-producing construct. (Typical side effect constructs
are assignment, input and output. A programming language [551] “without side effects”
is said to be a pure functional programming language [562].)

679. Sign: Same as symbol [728].

680. Signature: See function signature [318].

681. Simple entity: By a simple entity we shall loosely understand an individual,
static [708] or inert [367] dynamic [260] (We shall take the narrow view of a simple entity,
being in contrast to an action[12], an event [281] and a behaviour [79]; that simple enti-
ties “roughly correspond” to what we shall think of as value [802]s. We shall further
allow simple entities to be either atomic [63] or composite [133], i.e., in the latter case
having decomposable subentities [721]. Simple entities have attribute [69]s. Composite
entities have attribute [69]s, subentities [721] and a mereology [451], the latter explains how
the subentities are formed into the simple entity. We consider simple entities [681] to be
one of the four kinds of entities [272] that the Triptych “repeatedly” considers. The
other three are: action[12]s, event [281]s and behaviour [79]s. Consideration of these are
included in the specification of all domain facet [250]s and all requirements facet [614]s.)

682. Simplification: ()

683. Simulation: The imitation of the functioning of one system or process by means of
the functioning of another. (Attempting to predict aspects of the behaviour of some
system by creating an approximate (mathematical) model of it. This can be done by
physical modelling, by writing a special-purpose computer program or using a more
general simulation package, probably still aimed at a particular kind of simulation
[108].)

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

218 CoMet 1

684. Soft real time: By soft real time we mean a real time [580] property where the exact,
i.e., absolute timing, or time interval, is only of loose, approximate essence. (Cf.,
hard real time [330].)

685. Software: By software we understand not only the code that when “submitted” to
a computer enables desired computations to take place, but also all the documen-
tation that went into its development (i.e., its domain description[243], requirements
specification[617], its complete software design[688] (all stages and steps of refinement [589]

and transformation[771]), the installation manual [386], training manual [767], and the user
manual [798]).

686. Software component: Same as component [131].

687. Software architecture: By a software architecture we mean a first kind of speci-
fication of software — after requirements — one which indicates how the software
is to handle the given requirements in terms of software components and their inter-
connection — though without detailing (i.e., designing) these software components.

688. Software design: By software design we shall understand the determination of
which components, which modules and which algorithms shall implement the require-
ments [605] — together with all the documents that usually make up properly doc-
umented software [685]. (Software design entails programming [550], but programming
is a “narrower” field of activity than software design in that programming usually
excludes many documentation aspects.)

689. Software design specification: The specification[698] of a software design[688].

690. Software development: To us, software development includes all three phases
of software [685] development [228]: domain development [246], requirements development [610]

and software design[688].

691. Software development project: A software [685] development project is a planning,
research and development project whose aim is to construct software [685].

692. Software engineer: A software engineer is an engineer [269] who performs one or more
of the functions of software engineering [693]. (These functions include domain engineer-
ing [248], requirements engineering [613] and software design[688] (incl. programming [550]).)

693. Software engineering: The confluence of the science, logic, discipline, craft and
art of domain engineering , requirements engineering and software design.

694. Sort: A sort is a collection, a structure, of, at present, further unspecified entities.
(That is, same as an algebraic type. When we say “at present, further unspecified”,
we mean that the (values of the) sort may be subject to constraining axioms. When
we say “a structure”, we mean that “this set” is not necessarily a set [664] in the
simple sense of mathematics, but may be a collection whose members satisfy certain

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 219

interrelations, for example, some partially ordered set, some neighbourhood set or
other.)

695. Sort definition: The definition[210] of a sort [694]. (Usually a sort definition consists of
the (introduction of) a type name, some (typically observer function[490] and generator
function[323]) signatures, and some axioms relating sort values and functions.)

696. Source program: By a source program we mean a program[545] (text) in some pro-
gramming language [551]. (The term source is used in contrast to target: the result of
compiling a source text for some target machine [436].)

697. Span: Span is here used, in contrast to scope [649], more specifically in the context of
the degree to which a project scope and span extend: Scope being the “larger, wider”
delineation of what a project “is all about”, span[697] being the “narrower”, more precise
extent.

698. Specification: We use the term ‘specification’ to cover the concepts of domain de-
scription[243]s, requirements prescription[615]s and software design[688]s. More specifically
a specification is a definition[210], usually consisting of many definitions.

699. Specification language: By a specification language we understand a formal [296]

language [417] capable of expressing formal [296] specifications. (We refer to such formal
specification languages as: Alloy [137], ASM [198], Event B [2, 4, 60], CafeOBJ [80, 81],
RSL [110, 111], VDM-SL [52, 107] and Z [209, 210, 233, 126].)

700. Stack: A stack is an abstract data type [4] with a stack data structure and, typically,
the following operations: push (onto the top of the stack), pop (remove from the top
of the stack). Axioms then determine specific stack properties. ()

701. Stack activation: Generally: The topmost element of a stack. Specifically, when
a stack is used to record the local states of blocks of a block-structured program-
ming language’s blocks or procedure bodies (they are also blocks), then each stack
element, i.e., each stack activation, records such a local state and — what is known
as static and dynamic — pointers chain such activations together which correspond
to the lexicographic scope of the program, respectively the calling invocation of the
blocks. (We refer to Vol. 2, Chap. 16, Sect. 16.6.1 for a thorough treatment of stack
activations.)

702. Stage: (i) By a development stage we shall understand a set of development activi-
ties which either starts from nothing and results in a complete phase documentation,
or which starts from a complete phase documentation of stage kind, and results in
a complete phase documentation of another stage kind. (ii) By a development stage
we shall understand a set of development activities such that some (one or more) ac-
tivities have created new, externally conceivable (i.e., observable) properties of what
is being described, whereas some (zero, one or more) other activities have refined

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

220 CoMet 1

previous properties. (Typical development stages are: domain[239] intrinsics [399], do-
main[239] support technologies, domain[239] management and organisation[445], domain[239]

rules and regulations [640], etc., and domain requirements [258], interface requirements [394],
and machine requirements [438], etc.)

703. Stakeholder: By a domain[239] (requirements [605], software design[688])18 stakeholder
we shall understand a person, or a group of persons, “united” somehow in their
common interest in, or dependency on the domain (requirements, software design);
or an institution, an enterprise, or a group of such, (again) characterised (and, again,
loosely) by their common interest in, or dependency on the domain (requirements,
software design). (The three stakeholder groups usually overlap.)

704. Stakeholder perspective: By a stakeholder [703] perspective we shall understand
the, or an, understanding of the universe of discourse [793] shared by the specifically
identified stakeholder group — a view that may differ from one stakeholder group to
another stakeholder group of the same universe of discourse.

705. State: By a state we shall, in the context of computer programs, understand a
summary of past computations, and, in the context of domains, a suitably selected
set of dynamic [260] entities.

706. Statechart: The Statechart language is a special graphic notation for expressing
communication between and coordination and timing of processes. (See [120].)

707. Statement: We shall take the rather narrow view that a statement is a programming
language [551] construct which denotes a state [705]-to-state function. (Pure expressions
are then programming language constructs which denote state-to-value functions (i.e.,
with no side effect [678]), whereas “impure” expressions, also called clauses, denote
state-to-state-and-value functions.)

708. Static: An entity [272] is static if it is not subject to actions that change its value [802].
(In contrast to dynamic [260].)

709. Static semantics: The concept of static semantics is one that applies to syntactic
entities, typically programs or specifications of programming language [551]s, respectively
specification language [699]s. The static semantics of such a language is now a predi-
cate [536] that applies to programs (respectively specifications) and yields true if the
program[545] (specification[698]) is syntactically well formed according to the static se-
mantics criteria, typically that certain relations are satisfied between dispersed parts
of the program[545] (specification[698]) texts.

710. Static typing: Enforcement of type checking at compile time [127]. (A programming
language [551] (or a specification language [699]) is said to be statically typed if its programs
(resp. specifications) can be statically type checked .)

18These three areas of concern form three universes of discourse.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 221

711. Step: By a development step we shall understand a refinement of a domain descrip-
tion (or a requirements prescription, or a software design specification) module, from
a more abstract to a more concrete description (or a more concrete requirements
prescription, or a more concrete software design specification).

712. Stepwise development: By a stepwise development we shall understand a de-
velopment [228] that undergoes phases, stages or steps of development, i.e., can be
characterised by pairs of two adjoining phase [523] steps, a last phase [523] step[711] and a
(first) next phase [523] step[711], or two adjoining stage [702] steps.

713. Stepwise refinement: By a stepwise refinement we understand a pair of adjoining
development [228] steps where the transition from one step[711] to the next step[711] is
characterised by a refinement [589]. (Refinement is thus always stepwise refinement.)

714. Store: Same as storage [715]; see next.

715. Storage: By storage we shall understand a function[310] from locations to values.
(Thus we emphasise the mathematical character of storage rather than any techno-
logical character (such as disk storage, etc.).)

716. Strategy: [213]: (1) The science and art of employing the political, economic, psy-
chological, and military forces of a nation or group of nations to afford the maximum
support to adopted policies in peace or war; (2) an adaptation or complex of adap-
tations (as of behaviour or structure) that serves or appears to serve an important
function in achieving evolutionary success. (Applied to business enterprises the above
“translates” into: the science and art of employing the economic and other resources
of an enterprise to achieve maximum support for adopted enterprise policies: enter-
prise products & service profile, market share, growth, profitability, etc.)

717. Strict function: A strict function is a function which yields chaos (i.e., is undefined)
if any of the function arguments are undefined (i.e., chaos). (In RSL the logical
connectives are not strict. All other functions, built-in or defined, are strict.)

718. Strongest post-condition: See weakest pre-condition[811].

719. Structure: The term ‘structure’ is understood rather loosely. Normally we shall
understand a structure as a mathematical structure, such as an algebra[26], or a pred-
icate logic [537], or a Lambda-calculus [412], or some defined abstraction (a scheme [648] or
a class [114]). (Set theory is a (mathematical) structure. So are RSL’s Cartesian, list
and map data types.)

720. Structural operational semantics: By a structural operational semantics we un-
derstand an operational semantics [496] which is expressed in terms of a number of
transition rule [773]s. (See [195].)

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

222 CoMet 1

721. Subentity: A subentity is a proper part of a (thus) non-atomic [63] entity [272]. (Do
not confuse a subentity of an entity with an attribute [69] of that entity (or of that
subentity).)

722. Substitution: By substitution we mean the replacement of a token (viz.: an iden-
tifier) by a structure, usually a text. (The most common form of substitution is that
of Beta-reduction[84] (in the Lambda-calculus [412]). Substitution is a “simpler” form of
rewriting .)

723. Subroutine: Same as routine [636].

724. Subtype: To speak of a subtype we must first be able to speak of a type [782], i.e.,
colloquially, a (suitably structured) set of value [802]s. A subtype of a type is then a
(suitably structured) and proper subset of the values of the type. (Usually we shall,
in RSL, think of a predicate, p, that applies to all members of the type, T , and singles
out a proper subset whose elements satisfy the predicate: {a | a : T · p(a)}.)

725. Support technology: By a support technology we understand a facet [285] of a do-
main[239], one which reflects its (current) dependency on mechanical, electro-mechanical,
electronic and other technologies (i.e., tools) in order to carry out its business pro-
cess [99]es. (Other facets of an enterprise are those of its intrinsics [399], business pro-
cess [99]es, management and organisation[445], rules and regulations [640] and human be-
haviour [345].)

726. Surjection: A surjective function[727] represents surjection. (See also bijection[86] and
injection[379].)

727. Surjective function: A function[310] which maps value [802]s of its postulated definition
set [211] into all of its postulated range set [577] is called surjective. (See also bijective
function[87] and injective function[380].)

728. Symbol: Something that stands for or suggests something else, that is, an arbitrary
or conventional sign used in writing.

729. Synchronisation: By synchronisation we understand the act of ensuring synchro-
nism[730] between occurrence of designated events in two or more processes. (Usually
synchronisation between occurrence of designated events in two or more processes
entails the exchange of information[373], i.e., data[193], between these processes, i.e.,
communication[122].)

730. Synchronism: A chronological arrangement of event [281]s.

731. Synchronous: Happening, existing, or arising at precisely the same time [761] indi-
cating synchronism[730].

732. Synopsis: By a synopsis we shall understand a composition of informative documen-
tation[375] and rough-sketch[633] description[220] of some project.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 223

733. Syntax: By syntax we mean (i) the ways in which words are arranged to show
meaning (cf. semantics) within and between sentences, and (ii) rules for forming
syntactically correct sentences. (See also regular syntax , context-free syntax , context-
sensitive syntax and BNF for specifics.)

734. Synthesis: The construction of an artefact [55].

735. Synthetic: Result of synthesis [734]: not analytic [40].

736. System: A regularly interacting or interdependent group of phenomena or concepts
forming a whole, that is, a group of devices or artificial objects or an organization
forming a network especially for producing something or serving a common purpose.
(This book will have its own characterisation of the concept of a system (commen-
surate, however, with the above encircling characterisation); cf. Vol. 2, Sect. 9.5’s
treatment of system.)

737. Systematic development: Systematic development of software is formal develop-
ment “lite”! (We usually speak of a spectrum of development modes: systematic
development, rigorous development [629], and formal development [298]. Systems software
development, to us, is at the “informal” extreme of the three modes of development:
formal specification[304]s are constructed, but maybe not for all stages of development;
and usually no proof obligations are expressed, let alone proved. The three volumes of
this series of textbooks in software engineering can thus be said to expound primarily
the systematic approach.)

738. Systems engineering: By systems engineering we shall here understand comput-
ing systems engineering: The confluence of developing hardware [331] and software [685]

solutions to requirements [605].

. .T

739. Table: By a table we understand an information structure [374] which can be thought
of as an ordered list [428] of rows, each row consisting of an ordered list [428] of entries,
each consisting of some information[373]. (When thought of as a data structure [199], a
table is normally thought of as either a matrix or a relation[599].)

740. Tangibility: Noun of tangible [742].

741. Tactic: [213]: (1) a device for accomplishing an end (2) a method of employing
forces in combat.Applied to business enterprises the above “translates” into: a set of
resource-dependent actions thought to accomplish a strategy.

742. Tangible: Physically manifest. That is, can be humanly sensed: heard, seen,
smelled, tasted, or touched, or physically measured by a physical apparatus: length
(meter, m), mass (kilogram, kg), time (second, s), electric current (Ampere, A),
thermodynamic temperature (Kelvin, K), amount of substance (mole, mol), lumi-
nous intensity (candela, cd).

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

224 CoMet 1

743. Target program: The concept of target program stems from the fact that programs
of ordinary programming languages need to be translated into some intermediary lan-
guage or final machine, i.e., computer hardware, language, before their designated
computations (i.e., interpretations) can take place. By a target program we under-
stand such an intermediary or final program. (Besides the final target languages
made up from the repertoire of computer hardware instructions and computer (bit,
byte, half-word, word, double-word and variable field) data formats, special interme-
diary languages have been devised: P-code [94] (into which Pascal programs can be
translated) [229, 129, 230, 140, 231, 135, 7], A-code [93] (into which Ada programs
can be translated) [56, 225], etc.)

744. Taxonomy: By taxonomy is meant [159]: “classification, especially in relation to
its general laws or principles; that department of science, or of a particular science
or subject, which consists in or relates to classification.”.

745. Technique: A procedure, an approach, to accomplish something.

746. Technology: We shall in these volumes be using the term technology to stand for
the results of applying scientific and engineering insight. This, we think, is more in
line with current usage of the term IT, information technology.

747. Temporal: Of or relating to time, including sequence of time, or to time intervals
(i.e., durations).

748. Temporal logic: A(ny) logic [432] over temporal [747] phenomena. (We refer to Vol. 2,
Chap. 15 for our survey treatment of some temporal logics.)

749. Term: From [159]: A word or phrase used in a definite or precise sense in some
particular subject, as a science or art; a technical expression. More widely: any
word or group of words expressing a notion or conception, or denoting an object of
thought. (Thus, in RSL, a term is a clause [115], an expression[282], a statement [707], which
has a value [802] (statements have the Unit value).)

750. Terminal: By a terminal we shall mean a terminal symbol [728] which (in contrast to
a nonterminal [484] symbol) designates something specific.

751. Termination: The concept of termination is associated with that of an algorithm[31].
We say that an algorithm, when subject to interpretation[397] (colloquially: ‘execu-
tion’), may, or may not terminate. That is, may halt, or may “go on forever, forever
looping”. (Whether an algorithm terminates is undecidable [792].)

752. Terminology: By terminology is meant ([159]): The doctrine or scientific study
of terms; the system of terms belonging to a science or subject; technical terms
collectively; nomenclature.

753. Term rewriting: Same as rewriting .

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 225

754. Test: A test is a means to conduct testing [755]. (Typically such a test is a set of data
values provided to a program (or a specification) as values for its free [305] variables.
Testing then evaluates the program (resp., interprets (symbolically) the specification)
to obtain a result (value) which is then compared with what is (believed to be) the,
or a, correct result. See Vol. 3, Sects. 14.3.2, 22.3.2 and 29.5.3 for treatments of the
concept of test.)

755. Testing: Testing is a systematic effort to refute a claim of correctness of one (e.g., a
concrete) specification (for example a program) with respect to another (the abstract)
specification. (See Vol. 3, Sects. 14.3.2, 22.3.2, and 29.5.3 for treatments of the
concept of testing.)

756. Theorem: A theorem is a sentence [660] that is provable without assumptions, that is
“purely” from axioms and inference rules.

757. Theorem prover: A mechanical, i.e., a computerised means for theorem proving [758].
(Well-known theorem provers are: PVS [183, 184] and HOL/Isabelle [179].)

758. Theorem proving: The act of proving theorems.

759. Theory: A formal theory is a formal [296] language [417], a set of axioms and inference
rules for sentences in this language, and is a set of theorems proved about sentences
of this language using the axioms and inference rules. A mathematical theory leaves
out the strict formality (i.e., the proof [554]system) requirements and relies on mathe-
matical proofs that have stood the social test of having been scrutinised by mathe-
maticians.

760. Three-valued logic: Standard logics are two value: true and false. A three-
valued logic is a logic for which the Boolean connectives accept a third value, usually
referred to as the undefined, or chaotic (non-termination[751] of operand expression[282]

evaluation[280]). (There can be, and are, many three-valued logics. RSL has one set of
definitions of the outcome of Boolean ground term evaluation with chaos operands.
LPF is a logic for partial functions sugggested as a logic for VDM [16, 65]. John
McCarthy [167] first broached the topic of three-valued logics in computing.)

761. Time: Time is often a notion that is taken for granted. But one may do well, or
better, in trying to understand time as some point set that satisfies certain axioms.
Time and space are also often related (via [other] physically manifest “things”).
Again their interrelationship needs to be made precise. (In comparative concurrency
semantics one usually distinguishes between linear time and branching time semantic
equivalences [222]. We refer to our treatment of time and space in Vol. 2 Chap. 5,
to Johan van Benthem’s book The Logic of Time [221], and to Wayne D. Blizard’s
paper A Formal Theory of Objects, Space and Time [57].)

762. Token: Something given or shown as an identity. (When, in RSL, we define a sort [694]

with no “constraining” axioms, we basically mean to define a set of tokens.)

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

226 CoMet 1

763. Tool: An instrument or apparatus used in performing an operation. (The tools
most relevant to us, in software engineering, are the specification[698] and programming
language [551]s as well as the software [685] packages that aid us in the development of
(other) software.)

764. Topology: (i) A branch of mathematics concerned with those properties of geomet-
ric configurations (as point sets) which are unaltered by elastic deformations (as a
stretching or a twisting) that are homeomorphisms; (ii) the set of all open subsets of
a topological space (i.e., being or involving properties unaltered under a homeomor-
phism [continuity and connectedness are topological properties]) [213].

765. Total algebra: A total algebra is an algebra all of whose functions are total over
the carrier.

766. Trace: The concept of trace is linked to the concept of a behaviour [79]. Trace is then
defined as a sequence of actions and events. ()

767. Training manual: A document [237] which can serve as a basis for a (possibly self-
study) course in how to use a computing system[151]. (See also installation manual [386]

and user manual [798].)

768. Transaction: General: A communicative action or activity involving two agent [24]s
that reciprocally influence each other. (Special: The term transaction has come to
be used, in computing, notably in connection with the use of database management
systems (DBMS, or similar multiuser systems): A transaction is then a unit of in-
teraction with a DBMS (etc.). To further qualify as being a transaction, it must be
handled, by the DBMS (etc.), in a coherent and reliable way independent of other
transactions.)

769. Transduce: To convert (a physical signal, or a message) into another form.

770. Transducer: A device that is actuated by power from one system and supplies power
usually in another form to a second system. (Finite state machines and pushdown stack
machines are considered transducers.)

771. Transformation: The operation of changing one configuration or expression into
another in accordance with a precise rule. (We consider the results of substitution[722],
of translation and of rewriting to be transformations of what the substitution[722], the
translation and the rewriting was applied to.)

772. Transition: Passage from one state, stage, subject or place to another; a movement,
development, or evolution from one form, stage or style to another [213].

773. Transition rule: A rule [638], of such a form that it can specify how any of a well-
defined class of states of a machine [436] may make transitions to another state, possibly
nondeterministically to any one of a well-defined number of other states. (The seminal

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 227

1981 report A Structural Approach to Operational Semantics, by Gordon D. Plotkin
[192], set a de facto standard for formulating transition rules (exploring their theo-
retical properties and uses).)

774. Translate: See translation[775].

775. Translation: An act, process or instance of translating, i.e., of rendering from one
language into another.

776. Translator: Same as a compiler [125].

777. Tree: An acyclic [18] un-directed graph[232]. Thus a tree (i) has a root [632], which is
a node [479], and (ii) zero, one or more, possibly (branch[97] or edge [262]) label [410]led
subtrees. Trees or subtrees with no further subtrees have their roots being equated
with leaves. Nodes may be labelled. (This characterisation allows for trees with no
labels, with only labelled nodes, with only labelled branches, with labelled nodes
and branches, or with only some nodes and some branches being labelled. The
characterisation usually is interpreted as only allowing finite trees, but one could
dispense of the “finite applicability” of the above (i–ii) clauses, to allow infinite trees.
The branch concept, akin to the edge [262] concept, amounts, however, to a directed
edge, i.e., an arrow [54]. We refer specifically to parse tree [512]s. See also a “redefinition”
of trees as found just below, under tree traversal [778], including Fig. 13.)

778. Tree traversal: A way of visiting (all) the node [479]s of a tree [777]. Redefine the notion
of a tree [777] as just given above: Now a tree is a root node and an ordered set (i.e.,
like a list) of zero, one or more subtrees; each subtree is a tree. Roots are labelled.
Hence subtrees are labelled. A tree with an empty set of subtrees is called a leaf.
Their roots are the leaves. A tree traversal is now a way of visiting, in some order,
as indicated by the order of subtrees, (all) the nodes: the root, the branch nodes and
leaves, of a tree. (See the tree of Fig. 13 on the next page. It will be referred to in
entries in-order [381], post-order [533] and pre-order [538].)

779. Triptych: An ancient Roman writing tablet with three waxed leaves hinged to-
gether; a picture (as an altarpiece) or carving in three panels side by side [213]. (The
trilogy of the phases of software development [690], domain engineering [248], requirements
engineering [613] and software design[688] as promulgated by this trilogy of volumes!)

780. Tuple: A grouping of values. (Like 2-tuplets, quintuplets, etc. Used extensively, at
least in the early days, in the field of relational databases — where a tuple was like
a row in a relation (i.e., table).)

781. Turing machine: A hypothetical machine defined in 1935–1936 by Alan Turing
and used for computability theory proofs. It can be understood as consisting of a
finite state machine [290] and an infinitely long “tape” with symbols (chosen from some
finite set) written at regular intervals. A pointer marks the current position and the

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

228 CoMet 1

A

C X F U J

M

Q L K

Z

Figure 13: A labelled, ordered tree

machine is in one of states. At each step the machine reads the symbol at the current
position on the tape. For each combination of current state and symbol read, the
finite state machine specifies the new state and either a symbol to write to the tape
or a direction to move the pointer (left or right) or to halt [108]. (Turing machines
are equivalent, in computational power, to the Lambda-calculus [412].)

782. Type: Generally a certain kind of set of values. (See algebraic type, model-oriented
type, programming language type and sort.)

783. Type check: The concept of type check arises from the concepts of function signa-
tures and function arguments. If arguments are not of the appropriate type then a
type check yields an error [278] result. (By appropriate static [708] typing [788] of declara-
tions of variables of a programming language [551] or a specification language [699] one can
perform static type checking (i.e., at compile time [127]).)

784. Type constructor: A type constructor is an operation that applies to types and
yields a type [782]. (The type constructors of RSL include the power set constructors:
-set and -infset, the Cartesian constructor: ×, the list constructors: ∗ and ω, the
map constructor: →m , the total and partial function space constructors: → and

∼

→,
the union type constructor: |, and others.)

785. Type definition: A type definition semantically associates a type name [787] with a
type [782]. Syntactically, as, for example, in RSL, a type definition is either a sort [694]

definition or is a definition[210] whose right-hand side is a type expression[786].

786. Type expression: A type expression semantically denotes a type [782]. Syntactically,
as, for example, in RSL, a type expression is an expression involving type names and
type constructors, and, rarely, terminals.

787. Type name: A type name is usually just a simple identifier [351].

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 229

788. Typing: By typing we mean the association of types with variables. (Usually such
an association is afforded by pairing a variable [803] identifier [351] with a type name [787]

in the variable declaration[201]. See also dynamic typing [261] and static typing [710].)

. .U

789. UML: Universal Modelling Language. A hodgepodge of notations for expressing
requirements and designs of computing systems. (Vol. 2, Chaps. 10, and 12–14
outlines our attempt to “UML”-ize formal techniques.)

790. Universal algebra: A universal algebra[26] is an abstract algebra[2] where we leave the
postulates (axioms, laws) unspecified. (The universal level of abstract, the viewpoint
of universal algebras, represents for us [158], the high water mark of abstraction in
the treatment of algebraic systems [28].)

791. Underspecify: By an underspecified expression, typically an identifier, we mean
one which for repeated occurrences in a specification text always yields the same
value, but what the specific value is, is not knowable. (Cf. nondeterministic [481] or
loose specification[435].)

792. Undecidable: A formal logic system is undecidable if there is no algorithm[31] which
prescribes computation[144]s that can determine whether any given sentence in the
system is a theorem.

793. Universe of discourse: That which is being talked about; that which is being dis-
cussed; that which is the subject of our concern. (The four most prevalent universes
of discourse of this book, this series of volumes on software engineering, are: software
development [690] methodology [457], domains, requirements [605] and software design[688].)

794. Update: By an update we shall understand a change of value of a variable, including
also the parts, or all, of a database [195].

795. Update problem: By the update problem we shall understand that data stored
in a database [195] usually reflect some state of a domain, but that changes in the
external state of that domain are not always properly, including timely, reflected in
the database.

796. User: By a user we shall understand a person who uses a computing system[151], or a
machine [436] (i.e., another computing system) which interfaces with the former. (Not
to be confused with client [116] or stakeholder [703].)

797. User-friendly: A “lofty” term that is often used in the following context: “A
computing system, a machine, a software package, is required to be user-friendly” —
without the requestor further prescribing the meaning of that term. Our definition
of the term user-friendly is as follows: A machine [436] (software + hardware) is said
to be user-friendly (i) if the shared phenomena of the application domain[239] (and

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

230 CoMet 1

machine [436]) are each implemented in a transparent, one-to-one manner, and such
that no IT jargon, but common application domain[239] terminology [752] is used in their
(i.1) accessing, (i.2) invocation[402] (by a human user [796]), and (i.3) display (by the
machine); i.e., (ii) if the interface requirements [394] have all been carefully expressed
(commensurate, in further detailed ways: ..., with the user psyche) and correctly
implemented; and (iii) if the machine otherwise satisfies a number of performance
and dependability requirements [605] that are commensurate, in further detailed ways:
..., with the user psyche.

798. User manual: A document [237] which a regular user of a computing system[151] refers
to when in doubt concerning the use of some features of that system. (See also
installation manual [386] and training manual [767].)

. V

799. Valid: A predicate [536] is said to be valid if it is true for all interpretation[397]s. (In
this context think of an interpretation as a binding [88] of all free [305] variable [803]s of the
predicate expression to value [802]s; cf. satisfiable [644].)

800. Validation: (Let, in the following universe of discourse [793] stand consistently for
either domain[239], requirements [605] or software design[688].) By universe of discourse
validation we understand the assurance, with universe of discourse stakeholders, that
the specifications produced as a result of universe of discourse acquisition, universe
of discourse analysis and concept formation[153], and universe of discourse domain
modelling are commensurate with how the stakeholder views the universe of discourse.
(Domain and requirements validation[619] is treated in Vol. 3, Chaps. 14 and 22.)

801. Valuation: Same as evaluation[280].

802. Value: From (assumed) Vulgar Latin valuta, from feminine of valutus, past par-
ticiple of Latin valere to be of worth, be strong [213]. (Commensurate with that
definition, value, to us, in the context of programming (i.e., of software engineering),
is whatever mathematically founded abstraction[3] can be captured by our type [782] and
axiom[75] systems. (Hence numbers, truth values, tokens, sets, Cartesians, lists, maps,
functions, etc., of, or over, these.))

803. Variable: (i) From Latin variabilis, from variare to vary; (ii) able or apt to vary;
(iii) subject to variation or changes [213]. (Commensurate with that definition, a
variable, to us, in the context of programming (i.e., of software engineering), is a
placeholder, for example, a storage [715] location[431] whose contents may change. A
variable, further, to us, has a name, the variable’s identifier, by which it can be
referred.)

804. VDM: VDM stands for the Vienna Development Method [52, 53]. (VDM-SL (SL for
Specification Language) was the first formal specification language to have an inter-
national standard: VDM-SL, ISO/IEC 13817-1: 1996. The author of this book

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

Terminology 231

coined the name VDM in 1974 while working with Hans Bekič, Cliff B. Jones, Wolf-
gang Henhapl and Peter Lucas, on what became the VDM description of PL/I. The
IBM Vienna Laboratory, in Austria, had, in the 1960s, researched and developed se-
mantics descriptions [17, 18, 19, 162] of PL/I, a programming language of that time.
“JAN” (John A.N.) Lee [153] is believed to have coined the name VDL [154, 161] for
the notation (the Vienna Definition Language) used in those semantics definitions.
So the letter M follows, lexicographically, the letter L, hence VDM.)

805. VDM–SL: VDM-SL stands for the VDM Specification Language. (See entry VDM above.
Between 1974 and the late 1980s VDM-SL was referred to by the acronym Meta-IV:
the fourth metalanguage (for language definition) conceived at the IBM Vienna Lab-
oratory during the 1960s and 1970s.)

806. Verb: A word [814] that characteristically is the grammatical centre of a sentence and
expresses an act, occurrence or mode of being that in various languages is inflected
for agreement with the subject, for tense, for voice, for mood, or for aspect, and
that typically has rather full descriptive meaning and characterizing quality but is
sometimes nearly devoid of these especially when used as an auxiliary or linking verb
[213]. (We shall often find, in modelling, that we model verbs as functions (incl.
predicates).)

807. Verification: By verification we mean the process of determining whether or not a
specification (a description, a prescription) fulfills a stated property. (That stated
property could (i) either be a property of the specification itself, or (ii) that the spec-
ification relates, somehow, i.e., is correct with respect to some other specification.)

808. Verify: Same, for all practical purposes, as verification[807].

809. Vertex: Same as an node [479].

. W

810. Waterfall diagram: By a waterfall diagram is understood a two-dimensional dia-
gram with a number of boxes placed, say, on a diagonal, from a top left corner of
the diagram to a lower right corner, such that the individual boxes are sufficiently
spaced apart, i.e., do not overlap, and such that arrows (i.e., “the water”) infix ad-
jacent boxes along a perceived diagonal line. (The idea is then that a preceding
box, from which an arrow emanates, designates a software development activity that
must, somehow, be concluded before activity can start on the software development
activity designated by the box upon which the infix arrow is incident.)

811. Weakest pre-condition: The condition that characterizes the set of all initial
states, such that activation will certainly result in a properly terminating happening
leaving the system in a final state satisfying a given post-condition, is called “the
weakest pre-condition corresponding to that post-condition”. (We call it “weakest”,

November 12, 2010, 11:28, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

232 CoMet 1

because the weaker a condition, the more states satisfy it and we aim here at char-
acterising all possible starting states that are certain to lead to a desired final state.)

812. Well-formedness: By well-formedness we mean a concept related to the way in
which information[373] or data structure [199] definitions may be given. Usually these
are given in terms of type definition[785]s. And sometimes it is not possible, due to
the context-free [173] nature of type definitions. (Well-formedness is here seen separate
from the invariant [400] over an information[373] or a data structure [199]. We refer to the
explication of invariant [400]!)

813. Wildcard: A special symbol that stands for one or more characters. (Many operat-
ing systems and applications support wildcards for identifying files and directories.
This enables you to select multiple files with a single specification. Typical wildcard
designators are * (asterisk) and (underscore).)

814. Word: A speech sound or series of speech sounds or a character or series of juxta-
posed characters that symbolizes and communicates a meaning without being divis-
ible into smaller units capable of independent use [213].

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:28

