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4 An Ontology of Requirements Constructions 164

Definition: Requirements. A condition or capability needed by a user to solve a prob-
lem or achieve an objective [134].

Definition: Machine. By the machine we understand the hardware[331] plus software[685]

that implements some requirements[605], i.e., a computing system[151]. 165

Definition: Requirements Unit. By a requirements unit[618] we mean a single sentence
which expresses an “isolated” requirements. (We omit charaterising “single sentence” and
“isolated”.)

Definition: Requirements Prescription. By a requirements[605] prescription[540] we mean
just that: the prescription of some requirements. Sometimes, by requirements prescrip-
tion, we mean a relatively complete and consistent specification of all requirements, and
sometimes just a requirements unit[618]. 166

Definition: Requirements Engineering. The engineering of the development of a
requirements prescription[615], from identification of requirements[605] stake-holders, via require-

ments acquisition[606], requirements analysis[607], and requirements prescription[615] to require-
ments validation[800] and requirements verification[807].

We shall just focus on requirements prescription[615], that is, the modelling of requirements [605].

4.1 Business Process Re-engineering 167

Definition: Business Process. By a business process we shall understand a behaviour[79]

of an enterprise, a business, an institution, a factory. A business process reflects the ways
in which a business conducts its affairs, and is a facet[285] of the domain[239]. Other facets
of an enterprise are those of its intrinsics[399], support technology[725], rules and regulations[640],
management and organisation[445] (a facet closely related to business processes), and human

behaviour[345]. 168

Definition: Business Process Engineering. By business process engineering[100] we shall
understand the design[221], the determination, of business process[99]es. In doing business pro-
cess engineering one is basically designing, i.e., prescribing entirely new business processes.

169

Definition: Business Process Re-engineering. By business process reengineering[101]

we shall understand the re-design[221], the change, of business process[99]es. In doing business
process re-engineering one is basically carrying out change management[109].

4.1.1 The Kinds of Requirements 170

We distinguish between three kinds of requirements: (Sect. 4.2) the domain requirements

are those requirements which can be expressed solely using terms of the domain; (Sect. 4.4)
the machine requirements are those requirements which can be expressed solely using
terms of the machine, and (Sect. 4.3) the interface requirements are those requirements
which must use terms from both the domain and the machine in order to be expressed.
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58 From Domains to Requirements

4.1.2 Goals Versus Requirements 171

Whereas a domain description presents a domain as it is, a requirements prescription
presents a domain as it would be if some required machine was implemented (from these
requirements). The machine is the hardware plus software to be designed from the
requirements. That is, the machine is what the requirements are about.172

We make a distinction between goals and requirements. Goals are what we expect
satisfied by the software implemented from the requirements. But goals could also be of the
system for which the software is required. First we exemplify the latter, then the former.

Goals of a Toll Road System 173

• A goal for a toll road system may be

– to decrease the travel time between certain hubs and

– to lower the number of traffic accidents between certain hubs,

Goals of Toll Road System Software 174

• The goal of the toll road system software is to help automate

– the recording of vehicles entering, passing and leaving the toll road system

– and collecting the fees for doing so.

Goals are usually expressed in terms of properties. Requirements can then be proved to
satisfy the Goals: D,R |= G. [149, Lamsweerde] focus on goals.

Arguing Goal-satisfaction of a Toll Road System 175

• By endowing links and hubs with average traversal times for both ordinary road and
for toll road links and hubs

– one can calculate traversal times between hubs

– and thus argue that the toll road system satisfies [significantly] “quicker” traver-
sal times.

• By endowing links and hubs with traffic accident statistics (real, respectively esti-
mated)

– for both ordinary road and for toll road links and hubs

– one can calculate estimated traffic accident statistics between all hubs

– and thus argue that the combined ordinary road plus toll road system satisfies
[significantly] lower traffic fatalities.
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Arguing Goal-satisfaction of Toll Road System Software 176

• By recording

– tickets issued and collected at toll booths and

– toll road hubs and links entered and left

– as per the requirements specification brought in forthcoming examples (Sects. 4.2.1–
4.2.4),

• we can eventually argue that

– the requirements of the forthcoming examples (Sects. 4.2.1–4.2.4)

– help satisfy the goal of the example ?? on page ??.
177

We shall assume that the (goal and) requirements engineer elicit both Goals and Requirements
from requirements stake-holders.

D,R |= G The Goals can be argued to hold by reasoning over the Requirements and
the Domain.

But we shall focus only on domain and interface requirements such as “derived” from
domain descriptions.

4.1.3 Re-engineered Nets 178

The nets defined in Sect. 3 could be of any topology. They could consist of two or more
nets that were not linked to one another; they could consist of connected nets or nets that
were acyclic; etc.; and the nets were not specifically road, rail, sea lane or air lane nets.
We shall now consider a special kind of road nets: basically the road nets we have in mind 179

are linear sequences of pairs of links of opposite direction link “states”, where these links,
let us call them toll road links, are connected to toll road hubs; where, in addition, these
toll road hubs are linked, via toll plazas (i.e., “special” hubs) to toll road hubs by means
of on/off links. 180
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Figure 3: A Toll Road System
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60 From Domains to Requirements

We do not consider the general nets that are (possibly) connected to the toll plazas. The
pragmatics behind these nets is the following: Drivers enter and leave the toll road nets at
toll road plazas; collect tickets from toll road plaza ticket-issuing booths when entering the
toll road net and present these at toll road plaza ticket-collection booths and pay according
to some function of the time and length (from entry to exit plaza) driven on the toll road
net when leaving the net; drivers are otherwise free to “circle” the toll road net as they see
fit: multiple times “up and down” the net, circling toll road hubs, etc. Our sketch centers182

around a toll road net with toll booth plazas. The BPR focuses first on entities, actions,
events and behaviours (Sect. 2), then on the six domain facets (Sect. 3).183

125. Re-engineered Entities: We shall focus on a linear sequence of toll road intersec-
tions (i.e., hubs) connected by pairs of one-way (opposite direction) toll roads (i.e.,
links). Each toll road intersection is connected by a two way road to a toll plaza.
Each toll plaza contains a pair of sets of entry and exit toll booths. (Sect. 4.2.2 brings
more details.)184

126. Re-engineered Actions: Cars enter and leave the toll road net through one of
the toll plazas. Upon entering, car drivers receive, from the entry booth, a plas-
tic/paper/electronic ticket which they place in a special holder in the front window.
Cars arriving at intermediate toll road intersections choose, on their own, to turn
either “up” the toll road or “down” the toll road — with that choice being registered
by the electronic ticket. Cars arriving at a toll road intersection may choose to “cir-
cle” around that intersection one or more times — with that choice being registered
by the electronic ticket. Upon leaving, car drivers “return” their electronic ticket to
the exit booth and pay the amount “asked” for.185

127. Re-engineered Events: A car entering the toll road net at a toll both plaza entry
booth constitutes an event. A car leaving the toll road net at a toll both plaza entry
booth constitutes an event. A car entering a toll road hub constitutes an event. A
car entering a toll road link constitutes an event.186

128. Re-engineered Behaviours: The journey of a car,from entering the toll road net
at a toll booth plaza, via repeated visits to toll road intersections interleaved with
repeated visits to toll road links to leaving the toll road net at a toll booth plaza,
constitutes a behaviour — withreceipt of tickets, return of tickets and payment of
fees being part of these behaviours. Notice that a toll road visitor is allowed to cruise
“up” and “down” the linear toll road net – while (probably) paying for that pleasure
(through the recordings of “repeated” hub and link entries).187

129. Re-engineered Intrinsics: Toll plazas and abstracted booths are added to domain
intrinsics.

130. Re-engineered Support Technologies: There is a definite need for domain-
describing the failure-prone toll plaza entry and exit booths.
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131. Re-engineered Rules and Regulations: Rules for entering and leaving toll booth
entry and exit booths must be described as must related regulations. Rules and
regulations for driving around the toll road net must be likewise be described. 188

132. Re-engineered Scripts: No need.

133. Re-engineered Management and Organisation: There is a definite need for
domain describing the management and possibly distributed organisation of toll
booth plazas.

134. Re-engineered Human Behaviour: Humans, in this case car drivers, may
not change their behaviour in the spectrum from diligent and accurate via sloppy
and delinquent to outright traffic-law breaking – so we see no need for any “re-
engineering”.

4.2 Domain Requirements 189

Definition: Domain Requirements. By domain requirements[605] we understand such
requirements (save those of business process reengineering[101]) which can be expressed sôlely
by using professional terms of the domain[239]. 190

Definition: Domain Requirements Facet. By domain requirements[258] facets we
understand such domain requirements that basically arise from either of the following op-
erations on domain description[243]s (cum requirements prescription[615]s): domain projection[255],
domain determination[245], domain extension[249], domain instantiation[253] and domain fitting[251].

4.2.1 Projection 191

Definition: Projection. By projection we shall here, in a somewhat narrow sense, mean a
technique that applies to domain description[243]s and yields requirements prescription[615]s. Ba-
sically projection “reduces” a domain description by “removing” (or, but rarely, hiding[337])
entities[272], function[310]s, event[281]s and behaviour[79]s from the domain description. If the do- 192

main description is an informal one, say in English, it may have expressed that certain
entities, functions, events and behaviours might be in (some instantiations of) the domain.
If not “projected away” the similar, i.e., informal requirements prescription will express
that these entities, functions, events and behaviours shall be in the domain and hence will
be in the environment of the machine[436] being requirements prescribed.
Keep the following parts (items) of the domain:

• from Item 1 on page 13 to and including Item 9 on page 14,

• from Item 47a on page 22 to and including Item 48c on page 22,

• from Item 52 on page 27 to and including Item 68 on page 30 and

• from Item 76 on page 35 to and including Item 87 on page 39.

That is, omit these parts:

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



62 From Domains to Requirements

• Sect. 2.1.5,

• Sects. 2.3–2.4,

• Sects. 2.5.2–2.5.3,

• Sect. 3.2.7 and

• Sects. 3.3–3.7.

and keep these:

• N, H, L,

• obs Hs,

• obs Ls,

• HI, LI,

• obs HI,

• obs LI,

• obs LIs,

• obs HIs,

• PLAN, LHIM,

• wf PLAN,

• ND, wf ND,

• LΣ, LΩ,

• obs LΣ, obs LΣ,

• HΣ, HΩ,

• obs HΣ, obs HΣ,

• V, VI, VP,

• obs VI, obs VP,

• TF, T and

• wf TF.

4.2.2 Instantiation 193

Definition: Instantiation. ‘To represent (an abstraction) by a concrete instance[384]’ [214]. Domain
instantiation is a domain requirements facet[259]. It is an operation performed on a domain description[243]

(cum requirements prescription[615]). Where, in a domain description certain entities and function[310]s are left
undefined, domain instantiation means that these entities or functions are now instantiated into constant
value[802]s.

Example 194 The following instantiation prescription only covers the static aspects of the toll
road net, i.e., simple entities. That is, the states of hubs and links will first be dealt with in Sect. 4.2.3.

135. A toll road net (a subnet of a larger previously described net) consists of a pair: toll road links and
toll road to plaza hubs and links.

a) The toll road links component is a linear sequence of one or more pairs of toll road links.

b) The toll road to plaza hubs and links component is a linear sequence of two or more triples of
a plaza, a (plaza to toll road hub) link and a toll road hub.195

c) The wellformedness of toll road nets are expressed next.

i. The length of the toll road links sequence is one less than the length of the toll road to
plaza hubs and links sequence. The idea is that the toll road links at position i connect
the toll road hubs at positions i and i+1 of the toll road to plaza hubs and links sequence
— i being the indexes of the toll road links sequence.

ii. All links have distinct link identifiers.

iii. All hubs and plazas have distinct hub identifiers.

iv. From the links in the pairs of links, (li, l
′

i), of position i in the toll road links component
one observes exactly the same two element set of hub identifiers,

v. and these are the identifiers of the hubs at positions i and i + 1 of the toll road to plaza
hubs and links sequence.

vi. The plaza to toll road hub links are indeed connected to these plazas and hubs; and

vii. the plaza and toll road hubs are connected only to the links as mentioned above.
196

d) A toll road plaza is like a hub, with an observable hub identifier (and equipped with ticket-
issuing tool booths and ticket-collection and payment toll booths).
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type

135. TRN′ = TRLs × PHLs
135. TRN = {|trn:TRN′•wf TRN(trn)|}
135a. TRLs = (L × L)∗

135b. PHLs = (PZ × L × H)∗

197

value

135c. wf TRN: TRN′ → Bool

135c. wf TRN(trn:(trls,phls)) ≡
135(c)i. len trls +1 = len phls ∧
135(c)ii. card xtr Hs(trn) = card xtr HIs(trn) ∧
135(c)iii. card xtr Ls(trn) = card xtr LIs(trn)
135(c)iv. ∀ i:Nat•i ∈ inds trls ⇒
135(c)iv. let (l,l′)=trsl(i),(p,l′′,hi)=phls(i),( ,l′′′,hj)=phls(i+1) in

135(c)iv. obs HIs(l) = obs HIs(l′) =
135(c)v. {obs HI(hi),obs HI(hj)} ∧
135(c)vii. case i of

135(c)vii. 1 → obs LIs(hi) = xtr LIs({l,l′,l′′}),
135(c)vii. len trsl − 1 → obs LIs(hj) = xtr LIs({l,l′,l′′′}),
135(c)vii. → let (l′′′′,l′′′′′)=trsl(i) in obs LIs(hi)=xtr LIs({l,l′,l′′,l′′′′,l′′′′′}) end

135(c)vii. end end ∧
135(c)vii. ∀ i:Nat•i ∈ inds phls ⇒
135(c)vii. let (p,l,h)=phls(i) in obs HIs(l)=xtr HIs({p,h}) ∧
135(c)vii. obs LIs(p) = {obs LI(l)} end

198

type

135d. PZ
value

135d. obs HI: PZ → HI

xtr Hs: TRN → H-set

xtr Hs( ,phls) ≡ {pz,h|(pz,l,h):(PZ×L×H)•(pz,l,h)∈ elems phls}
xtr Ls: TRN → L-set

xtr Ls(trls,phls) ≡
{l,l′|l,l′:L•(l,l′)∈ elems trls} ∪ {l|(pz,l,h):(PZ×L×H)•(pz,l,h)∈ elems phls}

xtr HIs: TRN → HI-set, xtr HIs(trn) ≡ {obs HI(h)|h:(H|PZ)•h ∈ xtr Hs(trn)}
xtr LIs: TRN → LI-set, xtr LIs(trn) ≡ {obs LI(l)|l:L•l ∈ xtr Ls(trn)}
xtr HIs: H-set → HI-set, xtr HIs(hs) = {obs LI(h)|h:H•h ∈ hs}
xtr LIs: L-set → LI-set, xtr LIs(ls) = {obs LI(l)|l:L•l ∈ ls}

Abstraction: From Concrete Toll Road Nets to Abstract Nets 199

136. From concrete toll road nets, trn:TRN, one can abstract the nets, n:N, of Items 1–9.

a) the abstract net contains the hubs of the concrete net,

b) and the links likewise.
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value

136. abs N: TRN → N
136. abs N(trn) as n
136a. obs Hs(n) = xtr Hs(trn) ∧
136b. obs Ls(n) = xtr Ls(trn)

Theorem 200

137. One can prove the following theorem: If trn satisfies wf TRN(trn) then abs N(trn) satisfies Axioms
2–3 and 5–8 (Page 13).

137. ∀ trn:TRN • wf TRN(trn) |=
abs N(trn) satisfies axioms 2.–3.

∧ axioms 5.–8.

4.2.3 Determination 201

Definition: Determination. Domain determination is a domain requirements facet[259]. It is an operation
performed on a domain description[243] cum requirements prescription[615]. Any nondeterminism[482] expressed
by either of these specifications which is not desirable for some required software design must be made
deterministic (by this requirements engineer[612] performed operation).

Example 202 We shall focus on making more specific the rather generically defined
nets, hubs and links. There are no traffic signals within the toll road net and pairs of toll road links are
“one way, opposite direction” links.
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Figure 4: Four example hub states: plaza, end hubs, “middle” hub
203

138. Pairs of toll road links, l, l′, connecting adjacent hubs hj, hk, of identifiers hji, hki, respectively,
always and only allow traffic in opposite directions, that is, are always in respective states {(hji, hki)}
and {(hki, hji)}.
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139. Hub, h, states, hσ, are constant and allow traffic onto connected links not closed for traffic in
directions from hub h.

140. Plazas allow traffic only onto connected plaza to hub links of the toll road net. (Whatever other
links, “outside” the toll road net, the plazas may be connected to is covered in the last line of the
axiom below.)

204

axiom

∀ (trls,phls):TRN •

∀ i:Nat • i ∈ inds trls
let (l,l′) = trls(i), (p,l′′,h) = phls(i) in

case i of

1 → obs HΣ(h) = {(obs LI(l′′),obs LI(l)),
(obs LI(l′),obs LI(l′′)),(obs LI(l′),obs LI(l)),
(obs LI(l′′),obs LI(l′′))},

→ let (l′′′,l′′′′) = trls(i−1) in

obs HΣ(h) = {(obs LI(l′′),obs LI(l)),
(obs LI(l′′),obs LI(l′′′′)),(obs LI(l′′),obs LI(l′′)),
(obs LI(l′′),obs LI(l′′)),(obs LI(l′′′),obs LI(l)),
(obs LI(l′),obs LI(l′′′′)),(obs LI(l′′′),obs LI(l′′′′)),
(obs LI(l′),obs LI(l))} end end end ∧

let (l′′′,l′′′′) = trls(len trsl), (p,l′′,h) = phls(1 + len trsl) in

obs HΣ(h) = {(obs LI(l′′),obs LI(l′′′′)),
(obs LI(l′′′),obs LI(l′′)),(obs LI(l′′′),obs LI(l′′′′)),
(obs LI(l′′),obs LI(l′′))} end ∧

∀ (p,l′′, ):(PZ×L×H)•(p,l′′, ) ∈ elems phls ⇒
let lis = obs LIs(p) assert: obs LI(l′′) ∈ lis in

obs HΣ(p) = {(li,obs LI(l′′)),(obs LI(l′′),li)|li:LI•li ∈ lis} end

205
In the last line of the wellformedness axiom above we express that the plaza maybe connected to many
links not in the toll road net and that the plaza is open for all traffic from these into the net (via l′′), from
l′′ to these and that traffic may even reverse at the plazas, that is, decide to not enter the toll road net
after having just visited the plaza.

4.2.4 Extension 206

Definition: Extension. Domain extension is a domain requirements facet[259]. It is an operation
performed on a domain description[243] or a requirements prescription[615]. It effectively extends a domain

description[243] by entities, functions, events and/or behaviours conceptually possible, but not necessarily
humanly or technologically feasible in the domain (as it was).

Figure 5 on the following page abstracts some of the extensions to nets: the plaza entry and exit
booths. 207

208The following is a prolonged example. It contains three kinds of formalisations: a RAISE/CSP model,
a Duration Calculus model [236, 182] and a Timed Automata model [5, 182]. The narrative for all three
models are given when narrating the RAISE/CSP model.

Intuition 209 A toll road system is delimited by toll plazas with entry
and exit booths with their gates. To get access, from outside, to the roads within the toll road system, a
car must pass through an entry booth and its entry gate. To leave the roads within the toll road system
a car must pass through an exit booth and its exit gate. Cars collect tickets upon entry and return these
tickets upon exit and pay a fee for having driven on the toll roads. The gates help ensure that cars have
collected tickets and have paid their dues. 210
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Figure 5: Entry and Exit Tool Booths
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Figure 6: A toll plaza entry booth

Descriptions 211

• A RAISE/CSP Model We use the CSP property [32, 131] of RSL.

Toll Booth Plazas With respect to toll road systems we focus on just their plazas: that is, where
cars enter and leave the systems. The below description is grossly simplified: instead of plazas having one
or more entry and one or more exit booths (both with gates), we just assume one (pair: booth/gate) of
each.212

141. A toll plaza consists of a one pair of an entry booth and and entry gate and one pair of an exit
booth and an exit gate.

142. Entry booths consist of an entry sensor, a ticket dispenser and an exit sensor.

143. Exit booths consist of an entry sensor, a ticket collector, a payment display and a payment compo-
nent.
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type

141. PZ = (EB×G) × (XB×G)
142. EB = ...

143. XB = ...

Cars : 213

144. There are vehicles.

145. Vehicles have unique vehicle identifications.

type

144. V
145. VId
value

145. obs VId: V → VId
axiom

145. ∀ v,v′:V • v 6=v′ ⇒ obs VId(v) 6= obs VId(v′)

Entry Booths : 214

The description now given is an idealisation. It assumes that everything works: that the vehicles
behave as expected and that the electro-mechanics of booths and gates do likewise.

146. An entry sensor registers whether a car is entering the entry booth or not,

a) that is, for the duration of the car passing the entry sensor that sensor senses the car identifi-
cation cid

b) otherwise it senses “nothing”.
215

147. A ticket dispenser

a) either holds a ticket or does not hold a ticket, i.e., no ticket;

b) normally it does not hold a ticket;

c) the ticket dispenser holds a ticket soon after a car has passed the entry sensor;

d) the passing car collects the ticket –

e) after which the ticket dispenser no longer holds a ticket.

148. An exit sensor

a) registers the identification of a car leaving the toll booth

b) otherwise it senses “nothing”.

Gates : 216

149. A gate

a) is either closed or open;

b) it is normally closed;

c) if a car is entering it is secured set to close (as a security measure);

d) once a car has collected a ticket it is set to open;

e) and once a car has passed the exit sensor it is again set to close.
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The Entry Plaza System : 217

type

C, CI
G = open | close
TK == Ticket | no ticket

value

obs CI: (C|Ticket) → CI
channel

entry sensor:CI
ticket dispenser:Ticket
exit sensor:CI
gate ch:G

value

vs:V-set

eb:EB,xb:XB,eg,xg:G

218

system: G × EB × V-set × XB × G
system(eg,eb,vs,xb,xg) ≡

‖{car(obs CI(c),c)|c:C•c ∈ cs} ‖ entry booth(eb) ‖ entry gate(eg) ‖ ...

car: CI × C → out entry sensor,exit sensor
in ticket dispenser Unit

car(ci,c) ≡
entry sensor ! ci ;
let ticket = ticket dispenser ? assert: ticket 6= no ticket in

ticket dispenser ! no ticket ;
exit sensor ! ci ;
car(add(ticket,c)) end

219

entry booth: Unit → in entry sensor, exit sensor
out ticket dispenser
out gate ch Unit

entry booth(b) ≡
gate ch ! close ;
let ci = entry sensor ? in

ticket dispenser ! make ticket(cid) ;
let res = ticket dispenser ? in assert: res = no ticket ;
gate ch ! open ;
let ci′ = exit sensor ? in assert: ci′ = ci ;
gate ch ! close ;
entry booth(add Ticket(ticket,b)) end end end

220

entry gate: G → in gate Unit

entry gate(g) ≡
case gate ch ? of

close → exit gate(close) assert: g = open,
open → exit gate(open) assert: g = close
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end

add Ticket: Ticket × C
∼

→ C
pre add Ticket(t,c): ∼has Ticket(c)
post: add Ticket(t,c): has Ticket(c)

221

has Ticket: (C|B) → Bool

obs Ticket: (C|B)
∼

→ Ticket
pre obs Ticket(cb): has Ticket(cb)

rem Ticket: (C
∼

→ C) | (B
∼

→ B)
pre rem Ticket(cb): has Ticket(cb)
post rem Ticket(cb): ∼has Ticket(cb)

In the next section, “A Duration Calculus Model”, we shall start refining the descriptions given above.
We do so in order to handle failures of vehicles to behave as expected and of the electro-mechanics of
booths and gates.

222

• A Duration Calculus Model We use the Duration Calculus [236, 182] extension to RSL. We
abstract the channels of the RAISE/CSP model to now be Boolean-valued variables. 223

type

ES = Bool [ true=passing, false=not passing ]
TD = Bool [ true=ticket, false=no ticket ]
G = Bool [ true=open, false=closing⌈⌉closed⌈⌉opening ]
XS = Bool [ true=car has just passed, false=car passing⌈⌉no-one passing ]

variable

entry sensor:ES := false ;
ticket dispenser:TD := false ;
gate:G := false ;
exit sensor:XS := false ;

224

150. No matter its position, the gate must be closed within no more than δeg time units after the
entry sensor has registered that a car is entering the toll booth.

151. A ticket must be in the ticket dispenser within δet time units after the entry sensor has registered
that a car is entering the toll booth.

152. The ticket is in the ticket dispenser at most δtdc time units

153. The gate must be open within δgo time units after a ticket has been collected.

154. The exit sensor is registering (i.e., is on) the identification of exiting cars and is not registering
anything when no car is passing (i.e., is off).

225

150. ∼(⌈entry sensor⌉ ; (ℓ = δeg ∧ ⌈gate⌉))
151. ∼(⌈entry sensor⌉ ; (ℓ = δet ∧ ⌈∼ticket dispenser⌉))
152. �(⌈∼ticket dispenser⌉ ⇒ ℓ < δtdc)
153. ∼(⌈ticket dispenser⌉ ; (⌈∼ticket dispenser ∧ ∼gate⌉ ∧ ℓ ≥ δgo))
154. �(⌈gate=closing⌉ ⇒ ⌈∼ exit sensor⌉)
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226
• A Timed Automata Model A timed automaton [5, 182] for a configuration of an entry gate, its
entry booth and a car is shown in Fig. 7. Figure 8 on the facing page shows the a car, an exit booth and
its exit gate interactions. They are more-or-less “derived” from the example of Sect. 7.5 of [5, Alur & Dill,
1994] (Pages 42–45). The right half of the car timed automaton of Fig. 7 is to be thought of as the same

as the left half of the car timed automaton of Fig. 8 on the facing page, cf. the vertical dotted (
...) line.227
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Figure 7: A timed automata model of gate, entry booth and car interactions

228

value

eg,xg:G, eb:EB, xb:XB, vs:V-set

System: G×EV×V-set×XB×G → Unit

System(eg,eb,vs,xb,xg) ≡
Entry Gate(eg) ‖ Entry Booth(eb) ‖
‖{Car(obs CId(c),c)|ci:C,v:C•c ∈ cs} ‖
Exit Booth(xb) ‖ Exit Gate(xg)

229

4.2.5 Fitting 230

Definition: Fitting. By domain requirements fitting we understand an operation which takes n

domain requirements prescriptions, dri
(i = {1..n}), claimed to share m independent sets of tightly related
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Figure 8: A timed automata model of car, exit booth and gate interactions

sets of simple entities, actions, events and/or behaviours and map these into n+m domain requirements
prescriptions, δrj

(j = {1..n+m}), where m of these, δrn+k
(k = {1..m}) capture the m shared phenomena

and concepts and the other n prescriptions, δrℓ
(ℓ = {1..n}), are like the n “input” domain requirements

prescriptions, dri
(i = {1..n}), except that they now,(instead of the “more-or-less” shared prescriptions,

that are now consolidated in δrn+k
)prescribe interfaces between δri

and δrn+k
for i : {1..n}.

Examples 231

to be written

4.3 Interface Requirements 232

Definition: Interface Requirements. Interface requirements are those requirements[605] which can on
be expressed using professional terms from both the domain[239] and the machine[436]. Thus, by interface
requirements we understand the expression of expectations as to which software-software, or software-
hardware interface[393] places (i.e., channel[110]s), input[382]s and output[502]s (including the semiotics[658] of
these input/outputs) there shall be in some contemplated computing system[151]. Interface requirements can 233

often, usefully, be classified in terms of shared data initialisation requirements[671], shared data refreshment

requirements[673], computational data+control requirements[146], man-machine dialogue requirements[447], man-

machine physiological requirements[448] and machine-machine dialogue requirements[437]. Interface requirements
constitute one requirements facet[285]. Other requirements facets are: business process reengineering[101],
domain requirements[258] and machine requirements[438].
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4.3.1 But First: On Shared Phenomena and Concepts 234

Definition: Shared Phenomenon or Concept. A shared phenomenon (or concept) is a phenomenon
(respectively a concept) which is present in some domain[239] (say in the form of facts, knowledge[407] or
information[373]) and which is also represented in the machine[436] (say in the form of some entity[272], simple,
action, event or behaviour). A phenomenon of a domain, when shared, becomes a concept of the machine.

We shall give some examples – but they are just illustrative. Proper narration and formalisation is left to
the reader !

4.3.2 Shared Simple Entities 235

Definition: Shared Simple Entity. By a shared simple entity we mean a simple entitywhich both
occurs in the domain[239] (as a phenomenon or a concept) and in themachine[436]. Simple entities that are
shared between the domain and the machine must initially be input to the machine. Dynamically arising
simple entities must likewise be inputand all such machine entities must have their attributes updated,
when need arise. Requirements for shared simple entitiesthus entail requirements for their representation
and for their human/machine and/or machine/machine transfer dialogue.

Example 236 Main shared entities are those of hubs and links. Representations of
hubs and links “within” the machine necessarily abstracts many of the properties of hubs and links; some
(such) attributes may not be represented altogether.

As for human input, some man/machine dialogue based around a set of visual display unit screens
with fields for the input of hub, respectively link attributes can then be devised. Etc.

4.3.3 Shared Actions 237

Definition: Shared Action. By a shared action we mean an action that can only be partly computed
by the machine[436]. That is, the machine[436], in order to complete an action, may have to inquire with the
domain[239] (in order, say, to extract some measurable, time-varying simple entity attribute value) in order
to proceed in its computation.

Example 238 In order for a car driver to leave an exit toll booth the following
component actions must take place: (a) the driver inserts the electronic pass into the exit toll booth; (b)
the exit toll booth scans and accepts the ticket andcalculates the fee for the car journey from entry booth
via the toll road net to the exit booth; (c) exit toll booth alerts the driver as to the cost and is requested
to pay this amount; (d) once the driver has paid (e) the exit booth toll gate is raised. Actions (a,d) are
driver actions, (b,c,e) are machine actions.

4.3.4 Shared Events 239

Definition: Shared Event. By a shared event we mean an event whose occurrence in the domain[239]

need be communicated to the machine[436] and, vice-versa, an event whose occurrence in the machine[436]

need be communicated to the domain[239].

Examples 240 The arrival of a car at a toll plaza entry booth is an event that must be
communicated to the machine so that the entry booth may issue a proper pass (ticket). Similarly for the
arrival of a car at a toll plaza exit booth is an event that must be communicated to the machine so that
the machine may request the return of the pass and compute the fee. The end of that computation is an
event that is communicated to the driver (in the domain) requesting that person to pay a certain fee after
which the exit gate is opened.
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4.3.5 Shared Behaviours 241

Definition: Shared Behaviour. By a shared behaviour we mean a behaviour many of whose actions
and events occur both in the domain[239] and in the machine[436] (in some encoded form, and in the same
squence).

Example 242 A typical toll road net use behaviour is as follows: Entry at some
toll plaza: receipt of electronic ticket, placement of ticket in special ticket “pocket” in front window, the
raising of the entry booth toll gate; drive up to [first] toll road hub (with electronic registration of time of
occurrence), drive down a selected link (with electronic registration of time of occurrence of entry to and
exit from link), then a repeated number of zero, one or more toll road hub and link visits – some of which
may be “repeats” – ending with a drive down from a toll road hub to a toll plaza with the return of the
electronic ticket, etc. – cf. Sect, 4.3.4.

4.4 Machine Requirements 243

Definition: Machine Requirements. Machine requirements are those requirements[605] which, in
principle, can be expressed without using professional domain terms (for which these requirements are
established).
Thus, by machine [436] requirements [605], we understand requirements [605] put specifically to, i.e., expected
specifically from, the machine [436]. We normally analyse machine requirements into performance require-

ments [521], dependability requirements [218], maintenance requirements [443], platform requirements [527] and doc-

umentation requirements [238].

4.4.1 An Enumeration of Classes of Machine Requirements 244

We shall in these lecture notes not go into any detail about machine requirements. But we shall classify
machine requirements into a long list of specific kinds of machine requirements.

• Performance

– Storage

– Time

– Software Size

• Dependability

– Accessability

– Availability

– Reliability

– Robustness

– Safety

– Security

• Maintenance

– Adaptive

– Corrective

– Perfective

– Preventive

• Platforms

– Development

– Demonstration

– Execution

– Maintenance

• Documentation

• Other
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