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3 An Ontology of Domain Facets 53

Definition: Domain. An area of activity which some software[685] is to support (or sup-
ports) or partially or fully automate (resp. automates).

The term ‘application domain’ is considered synonymous with the term ‘domain’.

Definition: Domain Description. A textual, informal or formal document which de-
scribes a domain as it is.54

Usually a domain description is a set of documents with many parts recording many facets
of the domain: The business process [99]es, intrinsics [399], support technology [725], rules and

regulations [640], management and organisation[445], and the human behaviour [345]s.55

Definition: Domain Engineering. The engineering of the development of a domain

description[243], from identification of domain[239] stakeholder[703]s, via domain acquisition[240],
domain analysis[241], terminologisation, and domain description[243] to domain validation[256] and
domain verification[257].56

Definition: Domain Facet. By a domain facet we understand one amongst a finite set
of generic ways of analysing a domain: A view of the domain, such that the different facets
cover conceptually different views, and such that these views together cover the domain.

We consider here the following domain facets: business process [99]es, intrinsics [399], sup-

port technology [725], rules and regulations [640], management and organisation[445], and human

behaviour [345].

3.1 What Can Be Observed 57

• “Whether you can observe a thing or not depends on the theory which you use. It is the
theory which decides what can be observed.”

• Albert Einstein objecting to the placing of observables at the heart of the new
quantum mechanics, during Heisenberg’s 1926 lecture at Berlin; related by Heisen-
berg, quoted in Unification of Fundamental Forces (1990) by Abdus Salam ISBN
0521371406.

3.2 Intrinsics 58

Definition: Intrinsics. By the intrinsics of a domain[239] we shall understand those phe-
nomena and concepts of a domain which are basic to any of the other facets, with such a
domain intrinsics initially covering at least one stakeholder[703] view.

3.2.1 Net Topology Descriptors 59

Instead of dealing with the entire phenomenon of a net, that is, the real, physical, geo-
graphic “thing”, we can describe essentials of a net, for example how its hub and links are
connected.
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52. One way of abstractly modelling a net descriptor is as a map, nd, from hub identifiers
to simple maps, lihis, from link identifiers to hub identifiers,

53. such that

a) for all hi in (the definition set of) nd it is the case that

b) if hi maps to lihi,

c) and in that link identifier to hub identifier map, li maps to hi′,

d) then hi′ is different from hi and

e) hi′ maps to an lihi′ in which li is defined and maps to hi.

f) And there are only such pairings.

60

type

52. ND′ = HI →m (LI →m HI)
52. ND = {|nd′:ND•wf ND(nd′)|}
value

53. wf ND: ND′ → Bool

53. wf ND(nd) ≡
53a. ∀ hi:HI•hi ∈ dom nd ⇒
53b. let lihi = nd(hi) in

53c. ∀ li:LI • li ∈ dom lihi ⇒
53c. let hi′ = (nd(hi))(li) in

53d. hi 6= hi′ ∧
53e. hi′ ∈ dom nd ∧ li ∈ dom(nd(hi′)) ∧ hi=(nd(hi′))(li)
53f. end end

61

From a net one can construct its net descriptor:

value

conND: N → ND
conND(n) ≡

[ hi7→[ li7→hi′|li:LI,hi′:HI•li ∈ obs LIs(getH(hi,n))∧{hi,hi′}=obs HIs(getL(li,n)) ]|
hi:HI•hi ∈ xtrHIs(n) ]

3.2.2 Link States and Link State Spaces 62

Links are (one of the) means of transport6. Hubs allow movement along one (hub-
connected) link to be diverted onto another (hub-connected) link.

6Other means are vehicles moving along links and crossing hubs and the locomotive force that drives
the vehicles. Freight, including people, are what is being transported.
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28 From Domains to Requirements

We introduce the notions of the state of a link, the state of a hub, the state space of a
link and the state space of a hub. States abstract directions of movement.

Links are, by our previous definitions, bi-directional: from one of the connected hubs
to the other, and vice versa. And hubs are multi-directional: from potentially any link via
the hub to potentially any link.63

Let the observed hub identifiers of a link ℓ be {hj , hk}, then link ℓ can potentially be in
any one of the four link states: {{(hj, hk), (hk, hj)}, {(hj, hk)}, {(hk, hj)} and {{}}}. Any
one particular link may always remain in one and the same state, or it may from time to
time undergo transitions between any subset of the potential link state space.64

54. Link states, lσ:LΣ, are set of pairs of hub identifiers.

55. Link state spaces are set of link states.

56. From a link one can generate the link state space of all potential link states.

57. From a link one can observe the current link state lσ:LΣ.

58. From a link one can observe the link state space lω:LΩ.
65

type

54. LΣ = (HI×HI)-set
55. LΩ = LΣ-set

value

56. generate full LΣ: L → LΣ
56. generate full LΣ(l) ≡
56. {}∪{(hi′,hi′′)|hi′,hi′′:HI•hi′6=hi′′∧{hi′,hi′′}=obs HIs(l)}

56. generate LΩ: L → LΩ
56. let fullLσ = generate full LΣ(l) in

56. {{},∪{σ|σ:LΣ•σ⊆fullLσ}} end

57. obs LΣ: L → LΣ
58. obs LΩ: L → LΣ-set

3.2.3 Hub States and Hub State Spaces 66

59. Hub states, hσ:HΣ, are sets of pairs of link identifiers ((li, lk)), designating that
if (li, lk) is in the current hub state then movement can take place from the link
designated by li (via hub h) to the link designated by lk.

60. Hub state spaces are set of hub states.

61. From a hub one can generate the hub state space of all potential hub states.
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62. From a hub one can observe the current hub state hσ:HΣ.

63. From a hub one can observe the hub state space hω:HΩ.

67

type

59. HΣ = (LI×LI)-set
60. HΩ = HΣ-set

value

61. generate full HΣ: H → HΣ
61. generate full HΣ(h) ≡
61. {}∪{(li′,li′′)|li′,li′′:LI•{li′,li′′}⊆obs LIs(h)}

56. generate HΩ: H → HΩ
56. let fullHσ = generate full HΣ(h) in

56. {{}∪{σ|σ:HΣ•σ⊆fullHσ}} end

62. obs HΣ: H → HΣ
62. obs HΩ: H → HΣ-set

3.2.4 State and State Space Wellformedness 68

64. States must be in appropriate state spaces.

65. State spaces must be subsets of all potential appropriate states.

axiom

∀ n:N,l:L,h:H • l ∈ obs Ls(n) ∧ h ∈ obs Hs(n) ⇒
54. obs LΣ(l) ∈ obs LΩ(l) ∧
55. obs LΩ(l) ⊆ generate full LΣ(l) ∧
54. obs HΣ(h) ∈ obs HΩ(h) ∧
55. obs HΩ(h) ⊆ generate full HΣ(h)

theorems:

∀ n:N,l:L,h:H • l ∈ obs Ls(n) ∧ h ∈ obs Hs(n) ⇒
obs LΣ(l) ⊆ {(hi′,hi′′)|hi′,hi′′:H•{hi′,hi′′}⊆obs HIs(l)} ∧
obs HΣ(h) ⊆ {(li′,li′′)|li′,li′′:L•{li′,li′′}⊆obs LIs(h)}
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30 From Domains to Requirements

3.2.5 Concrete Types for Simple Entities 69

As an alternative for, or as a step of refinement from the earlier sorts of nets, hubs and
links one can simplify matters by concrete types for these simple entities.

66. Nets are Cartesians of sets of hubs and links.

67. A link is a Cartesian of a link identifier, a set of exactly two hub identifiers, a link
state, a link state space, and a number of presently further unspecified link attributes.

68. A hub is a Cartesian of a hub identifier, a set of zero, one or more link identifiers,
a hub state, a hub state space, and a number of presently further unspecified hub
attributes.

70

type

66. N = H-set × L-set

67. L :: obs LI:LI × obs HIs:HI-set × LΣ × LΩ × LAtrs
68. H :: obs HI:HI × obs LIs:LI-set × HΣ × HΩ × HAtrs

71

We leave it to the reader to narrate the wellformedness constraints.

axiom

∀ (hs,ls):N • ls6={} ⇒ card hs ≥ 2 ∧
∀ l′,l′′:L • {l′,l′′}⊆ls ∧ l′6=l′′ ⇒ obs LI(l′) 6=obs LI(l′′) ∧
∀ h′,h′′:H • {h′,h′′}⊆hs ∧ h′ 6=h′′ ⇒ obs HI(h′) 6=obs HI(h′′) ∧
∀ l:(li,his,lσ,lω,latrs):L • l ∈ ls ⇒

card his=2 ∧ his⊆{obs HI(h′′)|h′′′:H • h′′′ ∈ hs} ∧
lσ ∈ generate full LΣ(l) ∧
lσ ∈ lω ⊆ generate full LΣ(l) ∧

∀ h:(hi,lis,hσ,hω,hatrs):H • h ∈ hs ⇒
lis⊆{obs LI(l′′′)|l′′′:L • l′′′ ∈ ls} ∧
hσ ∈ generate full HΣ(h) ∧
hσ ∈ hω ⊆ generate full HΣ(h)

3.2.6 Example Hub Crossings 72

Figure 1 shows four hub/partial link corner diagrams (1.–4.). These are intended to show
four distinct hub states. Let the center diagram (5.) of Fig. 1 indicate the link identifiers
of the four partial links of each of the four hub/partial link diagrams.73

The top left hub/link diagram (1.) thus can be claimed to depict hub state {(A, B),
(A, C), (A, D), (B, C), (C, D), (D, A)}.

Photo 2 on page 32 shows a semaphore which seems to be able to display all kinds of
states.
The point of this example is to show that a hub may take on many states, that not all hub
states may be desirable (viz., lead to crossing traffic if so interpreted), and that to reach
from one hub state to another one must change the state.
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1. 2.

5.

A

B

C

D

Partial Link

Hub

Link Identifier

3. 4.

Figure 1: Four “Safe” Flows

3.2.7 Actions Continued 74

69. The action change HΣ takes a hub, h, in some state, and a desired next state, hσ′,
and results in a hub, h′, which

a) has the same hub identifier as h,

is connected to the same links as h,

has the same hub state space as h,

has the same attributes (names and values) as h,

b) but whose state may have changed.

69b. The new state of h′ ought be hσ′, but electro-mechanical or other failures in setting
the state may set the new state to any state of the potential states of h (i.e., h′), not
just to any state in the hub state space of h.

75

value

69. change HΣ: H × HΣ → H
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32 From Domains to Requirements

Figure 2: A General Purpose Traffic Light

69. change HΣ((hi,lis,hσ,hω,hatrs),hσ′) ≡
69b. let hσ′′′ ∈ generate full HΣs in

69a. (hi,lis,hσ′′′,hω,hatrs) end

Had we specified that the resulting state must be hσ′ then we had prescribed a requirements
to a change operation. As it is now we have described a domain phenomenon, namely that
operations may fail.

3.3 Support Technologies 76

Definition: Support Technology. By a support technology we understand a facet[285] of
a domain[239], one which reflects its (current) dependency on human, mechanical, electro-
mechanical, electronic and/or other technologies (i.e., tools) in order to carry out its
business process[99]es.

3.3.1 Traffic Signals 77

A traffic signal represents a technology in support of visualising hub states and in effecting
state changes.

70. A hub state is now modelled as a triple: the link identifier li (“coming from”), a
colour (red, yellow, and green), and another the link identifier lj (“going to”).
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71. Signalling is now a sequence of one or more pairs of next hub states and time intervals:

< (hσ1, ti1), (hσ2, ti2), ..., (hσn−1, tin−1), (hσn, tin) >, n > 0
78

The idea of a signalling is to first change the designated hub to state hσ1, then wait
ti1 time units, then set the designated hub to state hσ2, then wait ti2 time units,
etcetera, ending with final state σn and a (supposedly) long time interval tin before
any decisions are to be made as to another signalling.

The set of hub states {hσ1, hσ2, ..., hσn−1} of

< (hσ1, ti1), (hσ2, ti2), ..., (hσn−1, tin−1), (hσn, tin) >, n > 0

are called intermediate states.

Their purpose is to secure an orderly phase out of green via yellow to red and phase
in of red via yellow to green in some order for the various directions.

We leave it to the reader to devise proper wellformedness conditions for signaling
sequences as they depend on the hub topology. 79

72. A street signal (a semaphore) is now abstracted as a map from pairs of hub states to
signalling sequences.

The idea is that given a hub one can observe its semaphore, and given the state, hσ

(not in the above set), of the hub “to be signalled” and the state hσn into which that
hub is to be signalled “one looks up” under that pair in the semaphore and obtains
the desired signalling.

type

70. HΣ = LI × Colour × LI
70. Colour == red | yellow | green
71. Signalling = (HΣ × TI)∗

71. TI
72. Sempahore = (HΣ×HΣ) →m Signalling
value

72. obs Semaphore: H → Sempahore

80

73. A hub semaphore, sema, contains only such hub states as are observed in the hub
state space.

a) Let hsps be the set of “from/to” hub state pairs in semaphore sema.

b) Then hs is the set of all hub states mentioned in hsps.

c) To hs join all the hub states mentioned in any signalling, sg, of sema.
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73. hub state space: Sempahore → HΣ-set

73. hub state space(sema) ≡
73a. let hsps={hsp|hsp:(HΣ×HΣ)•hsp ∈ dom sema} in

73b. let hs={hσ′,hσ′′|hσ′,hσ′′:HΣ•(hσ′,hσ′′)∈ hsps} in

73c. hs ∪ ∪{{hσ|(hσ,ti):(HΣ×TI)•(hσ,ti)∈ elems sg}|sg:Signalling•sg ∈ rng sema}
73. end end

axiom

73. ∀ h:H • ∪ obs HΩ(h) = hub state space(obs Semaphore(h))

3.3.2 Traffic “Control” 81

74. Given two hub states, hσinit and hσend, where hσinit designates a present hub state
and hσend designates a desired next hub state after signalling.

75. Now signalling is a sequence of one or more successful hub state changes.

value

74. signalling: HΣ × HΣ → H → H
75. signalling(hσinit,hσend)(h) ≡
75. let sema = obs Semaphore(h) in

75. let sg = sema(hσinit,hσend) in

75. signal sequence(sg)(h) end end

75. pre (hσinit,hσend) ∈ dom obs Semaphore(h)

82

75. signal sequence(〈〉)(h) ≡ h
75. signal sequence(〈(hσ,ti)〉̂sg)(h) ≡
75. let hσ′ = change HΣ(h)(hσ) in

75. if hσ′ 6= hσ then chaos

75. else wait(ti); signal sequence(sg)(h) end end

If a desired hub state change fails (chaos) then we do not define the outcome of signalling.

3.4 Rules and Regulations 83

Definition: Rule. A rule stipulates a regulating principle. In the context of modelling
domain rules we shall understand a domain rule as some text whose meaning is a predicate[536]

over a pair of suitably chosen domain state[705]s. We may assume that a domain action[12] or
a domain event[281] takes place in the first of these states and results in the second of these
states. If the predicate is true then we say that the rule has been obeyed, otherwise that it
has been violated.84

Usually a domain rule is paired with a possibly remedying regulation.
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Definition: Regulation. A regulation stipulates that an action[12] be taken in order to
remedy a previous action which violated a rule[638]. That is, a regulation is some text which
designates a possibly composite action[12], that is, a state-to-state change which ostensibly
results in a state in which the rule, “attached” to the regulation, now holds.

3.4.1 Vehicles 85

In preparation for examples of transportation rules and regulations we introduce vehicles.

76. Vehicles are further undefined quantities except that

a) vehicles have unique identifiers,

b) vehicles are either positioned

i. at/in hubs

ii. or on links, in some fractional (non-zero) distance from a hub toward the
connecting hub.

77. From a net (sort) one can observe all the vehicles of the net.7

78. No two vehicles so observed have the same identifier.
86

type

76. V
76a. VI
76b. VP = HP | LP
76(b)i. HP == atH(hi:HI)
76(b)ii. LP == onL(li:LI,fhi:HI,f:F,thi:HI)
76(b)ii. F = {|f:F•0<f<1|}
value

76a. obs VI: V → VI
76b. obs VP: V → VP
77. obs Vs: N → V-set

axiom

78. ∀ v:V • v ∈ obs Vs(n) ⇒
78. ∃ onL(li,fhi,f,thi):VP • onL(li,fhi,f,thi)=obs VP(v) ⇒
78. ∃ l:L•l ∈ obs Ls(n)∧li=obs LI(l)∧{fhi,thi}=obs HIs(l) ∨
78. ∃ atH(hi):VP • atH(hi)=obs VP(v) ⇒
78. ∃ h:H•h ∈ obs Hs(n)∧hi=obs HI(h)

more to come

7Thus a concrete net type, in addition to hubs and links (now) also contains vehicles.
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3.4.2 Traffic 87

79. By traffic we understand a continuous function from time to a pair of nets and
position of vehicles.

80. By time we understand a dense set of points with dense and points being mathemat-
ical concepts [57, 222].

type

79. TF = T → (sel net:N × sel veh pos:(V →m VP))
80. T

Wellformedness of Traffic
Expressing the wellformedness of traffic is not a simple matter. We shall approach this
task in a number of “small steps”.

88

• Static Wellformedness

81. We define a predicate over vehicle positions.

a) Every vehicle in the traffic has a proper position on the net, either at a hub or
along a link.

b) No two vehicles of the traffic can occupy exactly the same link position. (That is,
the link positions onL(li,hi,f,hi′) and onL(li,hi,f’,hi′) must have the two fractions
(f, f ′) differ – be it ever so “minutely”).

We first define two auxiliary functions:8

value

obs HIs: N → HI-set
obs HIs(n) ≡ {obs HI(h)|h:H•h ∈ obs Hs(n)}
obs LIs: N → LI-set
obs LIs(n) ≡ {obs LI(h)|l:L•l ∈ obs Ls(n)}

89

81. proper vehicle positions: TF → Bool

81. proper vehicle positions(tf) ≡
81. ∀ t:T • t ∈ DOMAIN tf •

81. let (n,vps) = tf(t) in

81a. ∀ v:V•v ∈ dom vp•is net position(vps(v))(n)
81b. ∀ v′:V•v′ ∈ dom vp ∧ v6=v′⇒diff net pos(vps(v),vps(v′))
81. end

8They really ought to have been defined much earlier!
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81a. is net position: VP → N → Bool

81a. is net position(vp)(n) ≡
81a. case vp of

81a. atH(hi) → hi ∈ obs HIs(n),
81a. onL(li,fhi,f,thi) → li ∈ obs LIs(n)∧{fhi,thi}⊆obs HIs(n)
81a. end

81b. diff net pos: VP × VP → Bool

81b. diff net pos(vp,vp′) ≡
81b. case (vp,vp′) of

81b. (atH(hi),atH(hi)) → true,
81b. (onL(li,fhi,f,thi),onL(li,fhi,f′,thi)) → f 6=f′,
81b. → true

81b. end

90

• Dynamic Wellformedness

82. Vehicles, when moving, move monotonically, that is,

a) if a vehicle, at some time, t, is at a link position onL(li,hi,f,hi′) where f is not
infinitesimally close to 1, then that vehicle will, at some later time t′, infinites-
imally close to t, be at link position onL(li,hi,f′,hi′) where f ′ is infinitesimally
close to f ;

b) if the vehicle, at some time, t, is at a link position onL(li,hi,f,hi′) where f is
indeed infinitesimally close to 1, then that vehicle will, at some infinitesimally
later time t′, be at hub position atH(hi′);

c) and if the vehicle, at some time, t, is at a hub position atHP(hi) then the vehicle
will at some infinitesimally later time t′ either be at hub position atHP(hi) or at
some link position onL(li,hi,f,hi′) where f is infinitesimally close to 0.

91

value

82. monotonic: TF → Bool

82. monotonic(tf) ≡
82. ∀ t,t′:T • {t,t′}⊆DOMAIN tf •

82. let (n,vps) = tf(t),(n′,vps′)=tf(t′) in

82. INFINITESIMALLY CLOSE (t,t′)∧t<t′⇒
82. ∀ v:V•v ∈ dom vps ∩ dom vps′ •

82. case (vps(v),vps′(v)) of

82a. (onL(li,fhi,f,thi),onL(li,fhi,f′,thi)) →
82a. f<f′ ∧ INFINITESIMALLY CLOSE (f,f′),
82b. (onL(li,fhi,f,thi),atH(thi)) →
82b. INFINITESIMALLY CLOSE (f,1),

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



38 From Domains to Requirements

82c. (atH(hi),atH(hi)) → true,
82c. (atH(hi),onL(li,hi,f,thi)) →
82c. INFINITESIMALLY CLOSE (0,f),
82. → true

82. end end

92

83. If a vehicle is (has been) moving along a link li and is now,

• at time t, at position onL(li, hj , f, hk), that is, moving from hj to hk,

• then it cannot at a subsequent, infinitesimally close time, t′, be at a position

• onL(li, hk, f
′, hj), that is, moving in the opposite direction, hk to hj .

93

value

83. God does not play dice9: TF → Bool

83. God does not play dice(tf) ≡
83. ∀ t,t′:T • {t,t′}⊆DOMAIN tf ∧ t<t′ ∧ INFINITESIMALLY CLOSE (t,t′)⇒
83. let (n,vps) = tf(t),(n′,vps′)=tf(t′) in

83. ∀ v:V • v ∈ dom vps ∩ dom vps′ ⇒
83. case (vps(v),vps′(v)) of

83. (onL(li,fhi, ,thi),onL(li,thi, ,fhi))→false,
83. → true

83. end end

94

84. If a vehicle is (has been) moving along and has,

• at time t, been at some position p, and

• at time t′, later than t, is at some position p′,

• then it must at all times t′′ between t and t′ have been somewhere on the net.

value

84. no ghost vehicles: TF → Bool

84. no ghost vehicles(tf) ≡
84. ∀ t,t′:T • {t,t′}⊆DOMAIN tf ∧ t<t′ ⇒
84. let (n,vps) = tf(t),(n′,vps′)=tf(t′) in

84. ∀ v:V•v ∈ dom vps ∩ dom vps′ ⇒
84. ∀ t′′:T • t<t′′<t′ ⇒
84. let (n′′,vps′′) = tf(t′′) in v ∈ dom vps′′ end

84. end

9Albert Einstein: “I, at any rate, am convinced that He does not throw dice.” Letter to Max Born (4
December 1926); The Born-Einstein Letters (translated by Irene Born) (Walker and Company, New York,
1971) ISBN 0-8027-0326-7. Reflects Einstein’s view of Quantum Mechanics at the time.
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3.4.3 Traffic Rules (I of II) 95

85. A vehicle must not move from a hub, hi, into a link ℓ (from hub (identified by) hi to
hub (identified by) hj) which is closed in direction (hi, hj), that is, where (hi, hj) is
not in the current state of link.

rule:

85. ∀ tf:TF,t:T • t ∈ DOMAIN(tf) ⇒
85. let (n,tp) = tf(t) in

85. ∀ v:V • v ∈ dom tp ⇒
85. case tp(v) of

85. atH(hi) →
85. let t′:T • t′>t ∧ t′ ∈ DOMAIN(tr′) ∧ INFINITESIMALLY CLOSE(t,t′) in

85. let (n′,tp′) = tf(t′) in

85. ∃ li:LI,hi′:HI,f:F,hi′′:HI •

85. hi′=hi ∧ INFINITIEIMALLY CLOSE(f,0) ∧
85. tp′(v) = onL(li,hi′,f′,hi′′) ∧(hi,hi′′) 6∈ obs LΣ(getL(li,n′))
85. → ...

85. end end end end

We shall give another rule after the next section.

3.4.4 Another Traffic Regulator 96

We present an abstraction of a more conventional traffic signal than modelled in Items 70
on page 32 to 73 on page 33.

86. A traffic signal now simply shows an entry permit: either red, yellow or green at
the hub when “leaving” any link, i.e., at the entry to a hub from any link.

type

86. EP == red | yellow | green
86. HΣ = LI →m EP
axiom

86. ∀ h:H • obs LIs(h)=dom obs HΣ(h)

We leave it to the reader to express a constraint over hub state spaces as to how there
must be hub states such that entry from any link is possible.

3.4.5 Traffic Rules (II of II) 97

87. Vehicles must not enter a hub if entry permission is not green.
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rule:

87. ∀ tf:TF,t:T : t ∈ DOMAIN(tf) ⇒
87. let (n,vps) = tf(t) in

87. ∀ v:V • v ∈ dom vps ⇒
87. case vps(v) of

87. onL(li,hi,f,hi′) →
87. INFINITESIMALLY CLOSE(f,1) ∧
87. let hσ = obs HΣ(getH(hi′,n)),
87. t′:T • t′>t ∧ INFINITESIMALLY CLOSE(t,t′) in

87. let (n′,vps′) = vps(t′) in

87. hσ(li) 6= green ∧ vps′(v) 6= atH(hi′) assert: vps′(v) = onL(li,hi,f,hi′)
87. end end

87. → ...

87. end end

3.5 Scripts 98

Definition: Scripts. A script is plan of action. By a domain script we shall, more
specifically, understand the structured, almost, if not outright, formally expressed, wording
of a set of rules and regulations[640].
See also license [424] and contract [181]. Definitions follow.

3.5.1 Routes as Scripts 99

Paths

88. A path is a triple:

a) a hub identifier, hi, a link identifier, lj , and another hub identifier, hk, distinct
from hi,

b) such that there is a link ℓ with identifier lj in a net n such that {hi, hk} are the
hub identifiers that can be observed from ℓ.

type

88. Pth = HI × LI × HI
axiom

88a. ∀ (hi,li,hi′):Pth • ∃ n:N,l:L • l ∈ obs Ls(n) ⇒
88b. obs LI(l)=li ∧ obs HIs(l)={hi,hi′}

100

89. From a net one can extract all its paths:

a) if l is a link of the net,
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b) lj its identifier,

c) {hi, hk} the identifiers of its connected hubs,

d) then (hi, lj, hk) and (hk, lj, hj) are paths of the net.

value

89. paths: N → Pth-set
89a. paths(n) ≡
89d. {(hi,lj,hk),(hk,lj,hi)|l:L,lj:LI,hi,hk:HI•l ∈ obs Ls(n) ∧
89b. lj=obs LI(l) ∧
89c. {hi,hk}=obs HIs(l)}

101

90. From a net descriptor one can (likewise) extract all its paths:

a) Let hi, hk be any two distinct hub identifiers of the net descriptor (definition
set),

b) such that they both map into a link identifier lj ,

c) then (hi, lj, hk) and (hk, lj, hj) are paths of the net.

value

89. paths: ND → Pth-set
89. paths(nd) ≡
90a. {(hi,lj,hk),(hk,lj,hi)|hi,hk:HI,lj:LI • hi6=hk ∧ {hi,hk}⊆dom nd ⇒
90b. lj ∈ dom nd(hi)∩ dom nd(hk)}

Routes 102

91. A route of a net is a sequence of zero, one or more paths such that

a) all paths of a route are paths of the net and

b) adjacent paths in the sequence “share” hub identifiers.

type

91. R = Pth∗

axiom

91. ∀ r:R, ∃ n:N •

91a. elems r ⊆ paths(n) ∧
91b. ∀ i:Nat • {i,i+1}⊆inds r ⇒
91b. let ( , ,hi)=r(i), (hi′, , )=r(i+1) in hi=hi′ end

103
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92. From a net, n, we can generate the possibly infinite set of finite and possibly infinite
routes:

a) <> is a path (basis clause 1);

b) if p is a path of n then < p > is a path of n (basis clause 2);

c) if r and r′ are non-empty routes of n

i. and the last hi of r is the same as the first hj of r′

ii. then the concatenation of r and r′ is a route

(induction clause).

d) Only such routes which can be formed by a (finite, respectively infinite) appli-
cation of basis clauses Items 92a and 92b and induction clause Item 92c are
routes (extremal clause).

104

value

92. routes: N|ND → R-infset

92. routes(nond) ≡
92a. let rs = {〈〉} ∪
92b. {〈p〉|p:Pth•p ∈ paths(nond)} ∪
92(c)ii. {r̂r′|r,r′:R • r ∈ rs ∧ r′ ∈ rs ∧
92(c)i. ∃ hi,hi′,hi′′,hi′′′:H,li:LI •

92(c)i. r=r′′̂〈(hi,li,hi′)〉∧r′=〈(hi′′,li′,hi′′′)〉̂r′′′ ∧
92(c)i. hi′=hi′′} in

92d. rs end

3.5.2 Bus Timetables as Scripts 105

Buses

93. Buses are vehicles,

94. with bus identifiers being the same as vehicle identifiers.

type

93. B
94. BI ⊆ VI

Bus Stops

95. A link bus stop indicates the link (by its identifier), the from and to hub identifiers,
and the fraction “down the link” from the from to the to hub identifiers.

type

95. BS = mkL BS(sel fhi:HI,sel li:LI,sel f:F,sel thi:HI)
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Bus Routes 106

96. A bus stop list is a sequence of two or more bus stops, bsl.

97. A bus route, br, is a pair of a net route, r, and a bus stop list , bsl, such that route
r is a route of n and such that bsl is embedded in r. If

a) there exists an index list, il, of ascending indices of the route r and of the length
of bsl

b) such that the ith path of r

c) share from and to hub identifiers and link identifier with the il(i)th bus stop of
bsl

then bsl is embedded in r.

98. We must allow for two or more stops along a bus route to be adjacent on the same
link — in which case the corresponding fractions must likewise be ascending.

107

value

n:N
type

96. BSL = BS∗

97. BR = {|(r,bsl):(R×BSL)•wf BR(r,bsl)|}
value

97. wf BR: BR → Bool

97. wf BR(r,bsl) ≡ ∃ n:N,r:R•r ∈ routes(n) ∧ is embedded in(r,bsl)

97a. is embedded in: BR → Bool

97a. is embedded in(r,bsl) ≡
97b. ∃ il:Nat∗ • len il=len bsl∧inds il⊆inds r∧ascending(il) ⇒
97c. ∀ i:Nat • i ∈ inds il ⇒
97c. let (hi,lj,hk) = r(il(i)),(hi′,lj′,f,hk′) = bsl(i) in

97c. hi=hi′ ∧ lj=lj′ ∧ hk=hk′ end ∧
98. ∀ i:Nat • {i,i+1}⊆inds il ⇒
98. let (hi,lj,f,hk)=bsl(i),(hi′,lj′,f′,hk′)=bsl(i+1) in

98. hi=hi′ ∧ lj=lj′ ∧ hk=hk′ ⇒ f<f′ end

ascending: Nat∗ → Bool, ascending(il) ≡ ∀ i:Nat•{i,i+1}⊆inds il ⇒ il(i)≤il(i+1)

The ≤ of the ascending predicate allows for more than one stop along the same route
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Bus Schedule 108

99. A timed bus stop is a pair of a time and a bus stop.

100. A timed bus stop list is a sequence of timed bus stops.

101. A bus schedule is a pair of a route and a timed bus stop list such that

• there is a net of which the routes is indeed a route,

• the bus stop list of the timed bus stop list is embedded in the route, and

• ‘later” listed bus stops register later times.

102. SimpleBusSchedules remove routes from BusRoutes.
109

type

99. TBS :: sel T:T sel bs:BS
100. TBSL = TBS∗

101. BusSched = {|(r,tbsl):(R×TBSL)•wf BusSched(r,tbsl)|}
value

101. wf BusSched: BusSched → Bool

101. wf BusSched(r,tbsl) ≡
101. ∃ n:N•r ∈ routes(n)
101. ∧ let bsl:SBS = 〈sel BS(tbsl(i))|i:[ 1..len tbsl ]〉 in is embedded in(r,bsl) end

101. ∧ ∀ i:Nat•{i,i+1}⊆inds tbsl ⇒ sel T(tbsl(i))<sel T(tbsl(i+1))
type

102. SBS = {|bsl:BS∗•∃ n:N,r:R•r ∈ routes(n)∧is embedded in(r,bsl)|}

Timetable 110

The concept of a bus line captures all those bus schedules which ply the same bus route
but at different times. A timetable is made up from distinctly named bus lines.

103. A bus line has a unique bus line name.

104. We say that two bus schedules are the same if they are based on the same route and
if they differ only in their times.

105. Each of the different bus routes of a bus line has a unique bus number.

106. A route bus schedule pairs a route with simple bus schedules for each of a number of
busses (identified by their bus number).

107. A bus timetable (listing, map) maps bus line names to route bus schedules.

108. A timetable is a pair, a net and a table.
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109. A well-formed timetable must satisfy same bus schedules within each bus line

110. All bus numbers are distinct across bus lines.
111

type

103. BLNm
value

104. same bus schedule: BusSched × BusSched → Bool

104. same bus schedule((r1,btl1),(r2,btl2)) ≡
104. r1 = r2 ∧ len btl1 = btl2 ∧
104. 〈sel BS(btl1(i))|i:[ 1..len btl1 ]〉=〈sel BS(btl2(i))|i:[ 1..len btl2 ]〉
type

105. BNo
106. RBS :: sel R:R sel btbl:(BNo →m SBS)
107. TBL = BLNm →m RBS
108. TT′ = ND × TBL
109. TT = {|tt:TT′

•wf TT(tt)|}

112

value

109. wf TT: TT′ → Bool

109. wf TT( ,tbl) ≡
109. ∀ bln:BLNm•bln ∈ dom tbl ⇒
109. ∀ bno,bno′:BNo • {bno,bno′}⊆dom sel btbl(tbl(bln)) ⇒
109. same bus schedule(sel R(tbl(bln)),sel btbl(tbl(bln))(bno),
109. sel R(tbl(bln)),sel btbl(tbl(bln))(bno′)) ∧
110. ∀ bln′,bln′′:BLNm • {bln′,bln′′}⊆dom tbl ∧ bln′6=bln′′ ⇒
110. dom sel btbl(tbl(bln′)) ∩ dom sel btbl(tbl(bln′′)) = {}

3.5.3 Route and Bus Timetable Denotations 113

What are routes and bus timetables scripting ?
Routes (list of connected link traversal designations) script that one may transport

people or freight along the sequence of designated links.
Bus timetables script (at least) two things: the set of bus traffics on the net which

satisfy the bus timetable, and information that potential and actual bus passengers may,
within some measure of statistics (and probability), rely upon for their bus transport. 114

Here, we shall not develop the idea of bus timetables denoting certain traffics. Instead
we refer to our previously sketched model of traffics (Sect. 3.4.2, Pages 36–39).

Route (designations) and bus timetables script potential and actual route travels, re-
spectively script the dispatch of buses and their travelling.
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Bus timetables can also be seen as a form of contracts between the bus operators
offering the bus services and potential and actual passengers, with the contract promising
timely transport. In the next section, Sect. 3.5.4, we shall sketch a language of bus service
contracts and bus service actions implied by such contracts.

3.5.4 Licenses and Contracts 115

Definition: License. A license is a script[651] specifically expressing a permission to act; is
freedom of action; is a permission granted by competent authority to engage in a business
or occupation or in an activity otherwise unlawful; a document, plate, or tag evidencing
a license granted; a grant by the holder of a copyright or patent to another of any of the
rights embodied in the copyright or patent short of an assignment of all rights.
Licenses appear more to have morally than legally binding poser.116

Definition: Contract. A contract is a script[651] specifically expressing a legally binding
agreement between two or more parties — hence a document describing the conditions of
the contract; a contract is business arrangement for the supply of goods or services at fixed
prices, times and locations. In software development a contract specifies what is to be117

developed: (1) a domain description[243], (2) a requirements prescription[615], or (3) a software

design[688]; or a combination of these (1–2, 2–3, 1–3). A contract further specifies how it118

might, or must be developed; criteria for acceptance of what has been developed; delivery
dates for the developed items; who the “parties” to the contract are: the client[116] and the
developer[227], etc.119

For a comprehensive treatment of licenses and contracts we refer to [48, Chapter 10,
Sect. 10.6 (Pages 309–326) [84]].

We shall illustrate fragments of a language for bus service contracts.
The background for the bus contract language is the following. In many large cities

around Europe the city or provincial government secures public transport in the form of
bus services operated by many different private companies. Section 3.5.2 illustrated the
concept of bus (service) timetables. The bus services implied by such a timetable, for a city
area — with surrounding suburbs etc. — need not be implemented by just one company,
but can be contracted, by the city government public transport office, to several companies,
each taking care of a subset of the timetable. Different bus operators then take care of120

non-overlapping parts and all take care of the full timetable. It may even be that extra
buses need be scheduled, on the fly, in connection with major sports or concert or other
events. Bus operators may experience vehicle breakdowns or bus driver shortages and may
be forced to subcontract other, even otherwise competing bus operators to “step in” and
alleviate the problem.

Contracts 121 Schematically we may represent a bus contract as follows:

Contract cn between contractee ci and contractor cj:
This contract contracts cj in the period [ t,t′ ] to

perform the following services with respect to timetable tt:
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operate bus lines {blj1,blj2,...,bljn}
subject to the following occasional exceptions:

cancellation of bus tours:

{(blja,{bnoa1 ,...,bnoam
}),...} subject to conditions cbt

insertion of bus tours on lines

{bljα,bljβ,...,bljγ} subject to conditions ibt
subcontracting bus tours on lines

{bljδ,bljφ,...,bljω} subject to conditions scbt.

122

111. A bus contract has a header with the distinct names of a contractee and a contractor
and a time interval.

112. A bus contract presents a timetable.

113. A bus contract presents a set of bus lines (by their identifiers) such that these are in
the timetable.

114. And a bus contract may list one or more of three kinds of “exceptions”:

a) cancellation of one or more named bus tours on one or more bus lines subject
to certain (specified) conditions;

b) insertion of one or more extra bus tours on one or more bus lines subject to
certain (specified) conditions;

c) subcontracting one or more unspecified bus tours on one or more bus lines
subject to certain (specified) conditions — to further unspecified contractors.

123

We abstract the above quoted “one or more of three kinds of exceptions” as one
possibly empty clause for each of these alternatives.

115. A bus contract now contains a header, a timetable, the subject bus lines and the
exceptions,

116. such that

a) line names mentioned in the contract are those of the bus lines of the timetable,
and

b) bus (tour) numbers are those of the appropriate bus lines in the timetable.

117. The calendar period is for at least one full day, midnight to midnight.

118. A named contract is a pair of a contract name and a contract.

124
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type

111. CNm, CId, D, T, CON
111. CH = CId × CId × (D×D)
112. CT = TT
113. CLs = BLNm-set

114. CE = (CA × IN × SC) × CON
114a. CA = BLNm →m BNo-set
114b. IN = BLNm →m BNo-set
114c. SC = BLNm-set

115. CO′ = CH × CT × CLs × CE
116. CO = {|co:CO′

•wf CO(co)|}
118. NCO = CNm × CO

125

value

116. wf CO: CO′ → Bool

116. wf CO((ce,cr,(d,d′)),(nd,tbl),cls,((blns,blns′,bls),con)) ≡
113. ce 6= cr ∧
116a. cls ⊆ dom tbl ∧
116b. ∀ bli,bli′:BLNm • bli ∈ dom blns ∧ bli′ ∈ dom blns′ ⇒
116a. {bli,bli′} ⊆ dom tbl ∧
116b. blns(bli) ∪ blns′(bli′) ⊆ dom sel btbtl(tbl(bli)) ∧
116a. bls ⊂ dom tbl ∧
117. d < d′

Contractual Actions 126 An bus operator can now perform a number of actions
according to a contract. We schematise these:

For contract cn commence bus tour, line: bli and bus no.: bno

For contract cn cancel bus tour, line: bli and bus no.: bno

For contract cn insert extra bus tour, line: bli and bus no.: bno

Subcontract with respect to contract cn the following:

Contract cn′: for the calendar period [ d,d′ ] contractee ci contracts contractor cj
to perform the following services with respect to timetable tt:

operate bus lines {blj1,blj2,...,bljn}
subject to the following occasional exceptions:

cancellation of bus tours:

{(bljc,{bnoc1 ,...,bnocm
}),...} subject to conditions cbt

insertion of bus tours on lines
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{(blji,{bnoi1 ,...,bnoin}),...} subject to conditions ibt
subcontracting bus tours on lines

{bljδ,bljφ,...,bljω} subject to conditions scbt.

127

119. A bus operator action is either a commence, a cancellation, an insertion or a subcon-
tracting action. All actions refer to the (name of) the contract with respect to which
the action is contracted.

a) A commence action designator states the bus line concerned and the bus number
of that line.

b) A cancellation action designator states the bus line concerned and the bus num-
ber of that line.

c) An insertion action designator states the bus line concerned and the bus number
of that line — for which an extra bus is to be inserted.10

d) A subcontracting action designator, besides the name of the contract with re-
spect to which the subcontract is a subcontract, state a named contract (whose
contract name is unique).

128

type

119. Act = Com | Can | Ins | Sub
119a. Com == mkCom(sel cn:CNm,sel bli:BLNm,sel bno:BNo)
119b. Can == mkCan(sel cn:CNm,sel bli:BLNm,sel bno:BNo)
119c. Ins == mkIns(sel cn:CNm,sel bli:BLNm,sel bno:BNo)
119d. Sub == mkSub(sel cn:CNm,sel con:NCO)

Wellformedness of Contractual Actions 129

120. In order to express wellformedness conditions, that is, pre-conditions, for the action
designators we introduce a context which map contract names to contracts.

121. Wellformedness of a contract is now expressed with respect to a context.

type

120. CTX = CNm →m CO
value

121. wf Act: Act → CTX → Bool

130

10The insertion of buses in connection with either unscheduled or extraordinary (sports, concerts, etc.)
events can be handled by special, initial contracts.
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• Let a defined cnm entry in ctx be a contract: ((ce,cr),(nd,tbl),cls,(blns,bls,bls′),(d,d′)).

122. If cmd is a commence command mkCom(cnm,bln,bno), then

a) contract name cnm must be defined in context ctx;

b) bus line name bln must be defined in the contract, that is, in cls, and

c) bus number bno must be defined in the bus table part of table tbl.

122. wf Act(mkCom(cnm,bln,bno))(ctx) ≡
122a. cnm ∈ dom ctx ∧
122. let ((ce,cr),(nd,tbl),cls,(blns,bls,bls′),(d,d′)) = ctx(cnm) in

122b. bln ∈ cls ∧
122c. bno ∈ dom sel btbl(tbl(bln)) end

131

123. cancellation and insertion commands have the same static wellformedness conditions
as have commence command.

123. wf Act(mkCan(cnm,bln,bno))(ctx) ≡ wf Act(mkCom(cnm,bln,bno))(ctx)
123. wf Act(mkIns(cnm,bln,bno))(ctx) ≡ wf Act(mkCom(cnm,bln,bno))(ctx)

132

124. If cmd is a subcontract command then

Let the subcontract command and the cnm named contract in ctx be

mkSub(cnm,nco:(cnm′,(ce′,cr′,(d′′,d′′′)),(nd′,tbl′),cls′,(blns′,bls′′,bls′′′)))

respectively ((ce,cr,(d,d′)), (nd,tbl), cls, (blns,bls,bls′)).

a) contract name cnm must be defined in context ctx;

b) contract name cnm′ must not be defined in context ctx;

c) the calendar period of the subcontract must be within that of the contract from
which it derives;

d) the net descriptors nd and nd′ must be identical;

e) the tables tbl and tbl′ and must be identical and

f) the set, cls′, of bus line names that are the scope of the subcontracting must be
a subset of bls′.

133

124. wf Act(mkSub(cnm,nco:(cnm′,co:((ce′,cr′,(d′′,d′′′)),(nd′,tbl′),cls′,(blns′,blns′′,bls′′′)))))(ctx)
124a. cnm ∈ dom ctx ∧
124. let co′ = ((ce,cr,(d,d′)),(nd,tbl),cls,(blns,blns′,bls′)) = ctx(cnm) in

124b. cnm′ 6∈ dom tbl ∧
124c. d ≤ d′′ ≤ d′′′ ≤ d′ ∧
124d. nd′ = nd ∧
124e. tbl′ = tbl ∧
124f. cls′ ⊆ bls′ end
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Wellformedness of contracts, wf CO(co) and wf CO(co′), secures other constraints.134

We do not here bring any narrated or formalised description of the semantics of con-
tracts and actions. First such a description would be rather lengthy. Secondly a specifica-
tion would be more of a requirements prescription.

3.6 Management and Organisation 135

Definition: Management. Management is about resource[620]s: their acquisition[11], scheduling[646]

(over time), allocation[33] (over locations), deployment (in performing actions) and disposal
(“retirement”). We distinguish between board-directed, strategic, tactical and opera-
tional actions. Board-directed actions target mainly financial resources: obtaining new 136

funds through conversion of goodwill into financial resources, acquiring and selling “com-
peting” or “supplementary” business units. Strategic actions (see Item 716 on page 220)
convert financial resources into production, service supplies and resources and vice-versa
— and in this these actions schedule availability of such resources. Tactical actions (see
Item 741 on page 222) mainly allocate resources. Operational actions order, monitor and
control the deployment of resources in the performance of actions. 137

Definition: Organisation. Organisation is about the “grand scale”, executive and strate-
gic national, continental or global (world wide) (i) allocation of major resource (e.g., busi-
ness) units, whether in a hierarchical, in a matrix, or in some other organigram-specified
structure, (ii) as well as the clearly defined relations (which information, decisions and
actions are transferred) between these units, and (iii) organisational dynamics. 138

Definition: Management & Organisation. The composite term management and
organisation applies in connection with management[444] as outlined just above and with
organisation[500] also outlined above. The term then emphasises the relations between the
organisation and management of an enterprise.

• • •

The borderlines within management actions and across organisation “layouts” are fuzzy.

3.6.1 Transport System Examples 139

We shall only present sketchy examples of management and organsation.11

11Two remarks: (1) From an albeit superficial study of curricula of a number of business schools it seems,
to this author, that the decomposition in management and organisation and into executive, strategic,

tactical and operational actions is not quite the way the financial, market, sales, product and production

(business administration) aspects of enterprises are looked upon in these schools. (2) We have, in [30],
studied issues of management and organisation, and we shall elsewhere study these from the point of
view of the signatures of Executive, Strategic, T actical and Operational functions as they apply to and
results in one or more of the resource types: Finance, Resource, spatial Location and Temporal notions
of “business environments” (ρ : ENV which binds resource names to SCHEDules) and “business states”
(σ : Σ which binds resource names to resource values) — and where SCHEDules binds resource names to
time intervals and [al]locations.
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• Executive actions: Deciding on major re-organisation of a transport net (for example
introduction of toll roads or freeways, road pricing, major bridges across wide waters
[potentially connecting two hitherto unconnected nets], and their management) are
executive actions. So are decisions on merging or splitting transport from or into
several transport services. Reorganising an enterprise from one characterised by a140

“deep” hierarchy of management layers (a hierarchy which may very well exemplify
highly centralised both administrative and functional monitoring and control) into
a matrix of two “shallow” hierarchies, one which addresses tactical and operational
management and one which addresses executive and strategic management — with
the former (the operations) being replicated across geographical areas while the latter
applies “globally” — such reorganisations reflect executive actions (but are carried
out by strategic and tactical management).141

• Strategic actions: Adding or removing transport links, or major reorganisation of bus
timetables are strategic actions. Splitting a(n own) contract into what is still to be
operated and subcontracting other parts, for definite, to other bus operators are also
strategic actions.

• Tactical actions: Insertion and cancellation of bus services are tactical actions. Sub-
contracting some parts of a timetable demanded service, for a short while, to other
bus operators could be considered tactical actions.

• Operational actions: Commencing and thus, in general, allocating drivers to and
sending these off on bus services are operational actions. So are announcing insertion
of new (unscheduled) and cancellation of scheduled routes.

3.7 Human Behaviour 142

Definition: Human Behaviour. By human behaviour we shall here understand the
way a human follows the enterprise rules and regulations[640] as well as interacts with a
machine[436]: dutifully honouring specified (machine dialogue[230] or) protocol[561]s, or negligently

so, or sloppily not quite so, or even criminally not so! Human behaviour is a facet[285] of the
domain[239]. We shall thus model human behaviour also in terms of it failing to react
properly, i.e., humans as non-deterministic agent[24]s!143

3.8 Towards Theories of Domain Facets 144

3.8.1 A Theory of Intrinsics 145

3.8.2 Theories of Support Technologies 146

An Example Traffic (tf:TF), intrinsically, is a total function over some time interval, from
time (t:T) to continuously positioned (p:P) vehicles (tn:TN).
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Conventional optical sensors sample, at regular intervals, the intrinsic train traffic. The
result is a sampled traffic (stf:sTF). Hence the collection of all optical sensors, for any given
net, is a partial function from intrinsic (itf) to sampled train traffics (stf).

We need to express quality criteria that any optical sensor technology should satisfy —
relative to a necessary and sufficient description of a closeness predicate. 147

For all intrinsic traffics, itf, and for all optical sensor technologies, og, the
following must hold: Let stf be the traffic sampled by the optical gates. For
all time points, t, in the sampled traffic, those time points must also be in the
intrinsic traffic, and, for all trains, tn, in the intrinsic traffic at that time, the
train must be observed by the optical gates, and the actual position of the train
and the sampled position must somehow be checkable to be close, or identical
to one another.

Since hubs change state with time, n:N, the net needs to be part of any model of traffic. 148

type

T, TN
P = HP | LP
NetTraffic :: net:N × trf:(V →m P)
iTF = T → NetTraffic
sTF = T →m NetTraffic

oG = iTF
∼

→ sTF
value

[ close ] c: NetTraffic × TN × NetTraffic
∼

→ Bool

axiom

∀ itt:iTF, og:OG • let stt = og(itt) in

∀ t:T • t ∈ dom stt •

t ∈ DOM itt ∧ ∀ Tn:TN • tn ∈ dom trf(itt(t))
⇒ tn ∈ dom trf(stt(t)) ∧ c(itt(t),tn,stt(t)) end

DOM is not an RSL operator. It is a mathematical way of expressing the definition set of
a general function. Hence it is not a computable function.

Checkability is an issue of testing the optical sensors when delivered for conformance
to the closeness predicate, i.e., to the axiom.

General 149 The formal requirements can be narrated:Let Θi

and Θa designate the spaces of intrinsic and actual-world configurations (contexts and states).
For each intrinsic configuration model — that we know is support technology assisted — there
exists a support technology solution, that is, a total function from all intrinsic configurations
to corresponding actual configurations. If we are not convinced that there is such a function
then there is little hope that we can trust this technology
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type

Θi, Θa

ST = Θi → Θa

axiom

∀ sts:ST-set, st:ST • st ∈ sts ⇒ ∀ θi:Θi, ∃ θa:Θa
• st(θi) = θa

3.8.3 A Theory of Rules & Regulations 150

There are, abstractly speaking, usually three kinds of languages involved wrt. (i.e., when
expressing) rules and regulations (respectively when invoking actions that are subject to
rules and regulations). Two languages, Rules and Reg, exist for describing rules, respec-
tively regulations; and one, Stimulus, exists for describing the form of the [always current]
domain action stimuli.151

A syntactic stimulus, sy sti, denotes a function, se sti:STI: Θ → Θ, from any configura-
tion to a next configuration, where configurations are those of the system being subjected to
stimulations. A syntactic rule, sy rul:Rule, stands for, i.e., has as its semantics, its meaning,
rul:RUL, a predicate over current and next configurations, (Θ × Θ) → Bool, where these
next configurations have been brought about, i.e., caused, by the stimuli. These stimuli
express: If the predicate holds then the stimulus will result in a valid next configuration.152

type

Stimulus, Rule, Θ
STI = Θ → Θ
RUL = (Θ × Θ) → Bool

value

meaning: Stimulus → STI
meaning: Rule → RUL

valid: Stimulus × Rule → Θ → Bool

valid(sy sti,sy rul)(θ) ≡ meaning(sy rul)(θ,(meaning(sy sti))(θ))

valid: Stimulus × RUL → Θ → Bool

valid(sy sti,se rul)(θ) ≡ se rul(θ,(meaning(sy sti))(θ))

153

A syntactic regulation, sy reg:Reg (related to a specific rule), stands for, i.e., has as its
semantics, its meaning, a semantic regulation, se reg:REG, which is a pair. This pair
consists of a predicate, pre reg:Pre REG, where Pre REG = (Θ × Θ) → Bool, and a domain
configuration-changing function, act reg:Act REG, where Act REG = Θ → Θ, that is, both
involving current and next domain configurations. The two kinds of functions express: If154

the predicate holds, then the action can be applied.
The predicate is almost the inverse of the rules functions. The action function serves

to undo the stimulus function.155
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type

Reg
Rul and Reg = Rule × Reg
REG = Pre REG × Act REG
Pre REG = Θ × Θ → Bool

Act REG = Θ → Θ
value

interpret: Reg → REG

156

The idea is now the following: Any action of the system, i.e., the application of any
stimulus, may be an action in accordance with the rules, or it may not. Rules therefore
express whether stimuli are valid or not in the current configuration. And regulations
therefore express whether they should be applied, and, if so, with what effort. 157

More specifically, there is usually, in any current system configuration, given a set of
pairs of rules and regulations. Let (sy rul,sy reg) be any such pair. Let sy sti be any possible
stimulus. And let θ be the current configuration. Let the stimulus, sy sti, applied in that
configuration result in a next configuration, θ′, where θ′ = (meaning(sy sti))(θ). Let θ′

violate the rule, ∼valid(sy sti,sy rul)(θ), then if predicate part, pre reg, of the meaning of the
regulation, sy reg, holds in that violating next configuration, pre reg(θ,(meaning(sy sti))(θ)),
then the action part, act reg, of the meaning of the regulation, sy reg, must be applied,
act reg(θ), to remedy the situation. 158

axiom

∀ (sy rul,sy reg):Rul and Regs •

let se rul = meaning(sy rul),
(pre reg,act reg) = meaning(sy reg) in

∀ sy sti:Stimulus, θ:Θ •

∼valid(sy sti,se rul)(θ)
⇒ pre reg(θ,(meaning(sy sti))(θ))

⇒ ∃ nθ:Θ • act reg(θ)=nθ ∧ se rul(θ,nθ)
end

159

It may be that the regulation predicate fails to detect applicability of regulations actions.
That is, the interpretation of a rule differs, in that respect, from the interpretation of a
regulation. Such is life in the domain, i.e., in actual reality

3.8.4 A Theory of Management & Organisation 160

3.8.5 A Theory of Human Behaviour 161

Commensurate with the above, humans interpret rules and regulations differently, and not
always “consistently” — in the sense of repeatedly applying the same interpretations.

Our final specification pattern is therefore: 162
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type

Action = Θ
∼

→ Θ-infset

value

hum int: Rule → Θ → RUL-infset

action: Stimulus → Θ → Θ

hum beha: Stimulus × Rules → Action → Θ
∼

→ Θ-infset

hum beha(sy sti,sy rul)(α)(θ) as θset
post

θset = α(θ) ∧ action(sy sti)(θ) ∈ θset
∧ ∀ θ′:Θ•θ′ ∈ θset ⇒
∃ se rul:RUL•se rul ∈ hum int(sy rul)(θ)⇒se rul(θ,θ′)

163

The above is, necessarily, sketchy: There is a possibly infinite variety of ways of interpreting
some rules. A human, in carrying out an action, interprets applicable rules and chooses one
which that person believes suits some (professional, sloppy, delinquent or criminal) intent.
“Suits” means that it satisfies the intent, i.e., yields true on the pre/post-configuration
pair, when the action is performed — whether as intended by the ones who issued the rules
and regulations or not. We do not cover the case of whether an appropriate regulation is
applied or not
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