2 An Ontology of Specification Entities

Definition: Ontology. In philosophy: A systematic account of Existence. To us: An explicit formal specification of how to represent the phenomena and concepts that are assumed to exist in some area of interest (some universe of discourse) and the relationships that hold among them. Further clarification: An ontology is a catalogue of concept[s] and their relationships — including properties as relationships to other concepts.

Definition: Specification. We use the term ‘specification’ to cover the concepts of domain description[s], requirements prescription[s] and software design[s]. More specifically a specification is a definition, usually consisting of many definitions.

Definition: Entity. By an entity we shall understand either a simple entity[s], an action[s], an event[s] or a behaviour[s].

2.1 Simple Entities

Definition: Simple Entity. By a simple entity we shall loosely understand an individual, static or inert dynamic and that simple entities “roughly correspond” to what we shall think of as value[s]. We shall further allow simple entities to be either atomic or composite, i.e., in the latter case having decomposable sub-entities. Simple entities have attribute[s]. Composite entities have attribute[s], sub-entities and a mereology, the latter explains how the sub-entities are formed into the simple entity.

2.1.1 Net, Hubs and Links

1. There are nets, hubs and links.
2. A net contains zero, one or more hubs.
3. A net contains zero, one or more links.

- type
 - N, H, L
- value
 - obs_Hs: N → H-set
 - obs_Ls: N → L-set

2.1.2 Unique Hub and Link Identifiers

4. There are hub identifiers and there are link identifiers.
5. Hubs of a net have unique hub identifiers.
6. Links of a net have unique hub identifiers.

3 The superscript [bracketed numbers] refer to Sect. B’s Item 681 on page 216.
2.1.3 Observability of Hub and Link Identifiers

7. From every hub (of a net) we can observe the identifiers of the zero, one or more distinct links (of that net) that the hub is connected to.

value
7. \(\text{obs}_{\text{LIs}}: \text{H} \rightarrow \text{LI-set} \)

axiom
7. \(\forall n:N, h:h' \in \text{obs}_{\text{Hs}}(n) \Rightarrow \forall li:LI, li' \in \text{obs}_{\text{LIs}}(h) \Rightarrow \text{L-exists}(li)(n) \)

value
\[\text{L-exists}: \text{LI} \rightarrow \text{N} \rightarrow \text{Bool} \]
\[\text{L-exists}(li)(n) \equiv \exists l:L \cdot l \in \text{obs}_{\text{Ls}}(n) \land \text{obs}_{\text{LI}}(l) = li \]

8. From every link (of a net) we can observe the identifiers of the exactly two (distinct) hubs (of that net) that the link is connected to.

value
8. \(\text{obs}_{\text{HIs}}: \text{L} \rightarrow \text{HI-set} \)

axiom
8. \(\forall n:N, l:l' \in \text{obs}_{\text{Ls}}(n) \Rightarrow \text{card obs}_{\text{HIs}}(l) = 2 \land \forall hi:HI, hi' \in \text{obs}_{\text{HIs}}(l) \Rightarrow \text{H-exists}(hi)(n) \)

value
\[\text{H-exists}: \text{HI} \rightarrow \text{N} \rightarrow \text{Bool} \]
\[\text{H-exists}(hi)(n) \equiv \exists h:H \cdot h \in \text{obs}_{\text{Hs}}(n) \land \text{obs}_{\text{HI}}(h) = hi \]

2.1.4 A Theorem

Links implies Hubs

9. It follows from the above that if a net has at least one link then it has at least two hubs.

theorem:
9. \(\forall n:N \cdot \text{card obs}_{\text{Ls}}(n) \geq 1 \Rightarrow \text{card obs}_{\text{Hs}}(n) \geq 2 \)
2.1.5 Hub and Link Attributes

In preparation for later descriptions, narrative and formal, we make a slight detour to deal with hub and link attributes – but we omit, at present, from describing these attributes.

10. Besides hub and link identifiers we can speak of additional hub and link attributes, HAtrs and LAtrs.

11. These can be observed from hubs and links of nets.

12. And these can be provided as arguments when construction hubs and links.

type
10. HAtrs, LAtrs

value
11. obs_HAtrs: H → HAtrs
12. obs_LAtrs: L → LAtrs

2.1.6 Hub and Link Generators

13. From a hub identifier and a set of hub attributes one can generate a hub.

14. From a hub identifier, a set of hub attributes and a net one can generate a hub which is not a hub of the net.

15. From a link identifier, a pair of known, distinct hub identifiers and a set of link attributes one can generate a link.

16. From a link identifier, a set of hub attributes and a net one can generate a link which is not a link of the net.

13. genH: HI × HAtrs → H
13. genH(hi,hatrs) as h

13. post obs_HI(h)=hi ∧ obs_LIs(h)=∅ ∧ obs_HAtrs(h)=hatrs

14. genH: HI × HAtrs → N → H
14. genH(hi,hatrs)(n) as h

14. pre h /∈ obs_Hs(n)
14. post obs_HI(h)=hi ∧ obs_LIs(h)=∅ ∧ obs_HAtrs(h)=hatrs

15. genL: LI × (HI×HI) × LAtrs → L
15. genL(li,(hi',hi''),latrs) as l

15. pre hi'≠hi'' ∧ {hi',hi''} ⊆ xtrHIs(n)
15. post obs_LI(h)=li ∧ obs_HIs(l)={hi',hi''} ∧ obs_LAtrs(h)=latrs
From Domains to Requirements

16. \(\text{genL: LI} \times (HI \times HI) \times \text{LAtrs} \rightarrow N \rightarrow L \)
16. \(\text{genL}(li,(hi',hi''),\text{latrs})(n) \text{ as } l \)
16. \(\text{pre } hi' \neq hi'' \wedge \{hi',hi''\} \subseteq \text{extrHIs}(n) \)
16. \(\text{post } \text{obs}_L LI(l) = li \wedge \text{obs}_H HIs(l) = \{hi',hi''\} \wedge \text{obs}_L \text{LAtrs}(h) = \text{latrs} \wedge l \not\in \text{obs}_L Ls(n) \)

2.2 States

Definition: State. By a state we shall understand a collection of one or more simple entities.

2.3 Actions

Definition: Action. By an action we shall understand something which potentially changes a state\(^{705}\), that is, a function application to a state which potentially changes that state.

2.3.1 Insert Hubs

17. One can insert a hub, \(h \), into a net, \(n \).

The hub to be inserted

18. must not be a hub of the net and

19. \(h \) cannot already be connected to any links.

That is, we can only insert “isolated” hubs.

The result of inserting a hub, \(h \), into a net, \(n \), is a new net, \(n' \),

20. which is like \(n \) except that it now also has the hub \(h \).

value

17. \(\text{insertH: H} \times \text{HAtrs} \rightarrow N \sim N \)
17. \(\text{insertH}(h,\text{hatrs})(n) \text{ as } n' \)
18. \(\text{pre } h \not\in \text{obs}_H Hs(n) \wedge \)
19. \(\text{obs}_L LIs(h) = \{\} \)
20. \(\text{post } \text{obs}_L Ls(n') = \text{obs}_L Ls(n) \cup \{h\} \wedge \)
20. \(\text{obs}_H \text{HAtrs}(h) = \text{hatrs} \)

The argument hub \(h \) in \(\text{insertH}(h,\text{hatrs})(n) \) may have been “concocted” from using either \(\text{genH}(hi,\text{hatrs}) \) or \(\text{genH}(hi,\text{hatrs})(n) \).
2.3.2 Remove Hubs

21. One can remove a hub, h, from a net, n.

 The hub to be removed

22. must be a hub of the net and

23. h cannot be connected to any links.

 That is, the hub, h, may earlier – it is membership of the net – have been connected to links, but these must already, at the time or hub removal, have been removed, see below.

 That is, we can only remove “isolated” hubs.

24. The result of removing a hub, h, from a net, n, is a new net, n',

value

21. removeH: $H \rightarrow N \xrightarrow{\sim} N$
22. removeH(h)(n) as n'
23. pre $h \in \text{obs}_H$(n) \land
24. post obs_L(n)$=\text{obs}_L$(n') \land obs_H(n')$=\text{obs}_H$(n)$\setminus \{h\}$

Please note the almost line-by-line similarity of the insert and remove hub descriptions and that the only difference between these descriptions are the membership, union, respectively set difference operations (\notin, \in, \cup respectively \setminus).

2.3.3 Insert Links

25. One can insert a link, ℓ, into a net, n.

The link to be inserted must

26. not be a link of the net,

27. but the observable hub identifiers must be those of hubs of the net.

The result of inserting a link, ℓ, into a net,

28. n, is a new net, n',

29. in which ℓ is now a member.

30. Let h_{j_1}, h_{k_1} be the two (distinct) hub identifiers of ℓ and
31. let h_j, h_k be the two (distinct) hubs of n which are identified by h_{ji}, h_{ki}.

32. All hubs of net n except h_j, h_k are the same as in n and are unchanged in n'.

33. The two hubs h_j, h_k of n become hubs h'_j, h'_k of n'

34. such that only the observable identifiers of connected links have changed to now also include the identifier of link ℓ,

35. and such that the observed attributes are those of the argument.

value

25. insertL: $L \times LAtrs \rightarrow N \sim N$

28. insertL(l,latrs)(n) as n'

26. pre $1 \notin $ obs$_{LS}(n)$ \land

27. obs$_{HIs}(l) \subseteq xtrHIs(n)$

29. post obs$_{LS}(n') = obs_{LS}(n) \cup \{l\}$ \land

30. let $\{h_{ji}, h_{ki}\} = obs_{HIs}(l)$ in

31. let $(h_j, h_k) = (getH(h_{ji})(n), getH(h_{ki})(n))$ in

27. $\{h_j, h_k\} \subseteq obs_{Hs}(n)$ \land

32. $obs_{Hs}(n) \setminus \{h_j, h_k\} = obs_{Hs}(n') \setminus \{h_j, h_k\}$ \land

33. let $(h'_j, h'_k) = (getH(h_{ji})(n'), getH(h_{ki})(n'))$ in

34. obs$_{LIs}(h'_k) = obs_{LIs}(h_k') \cup \{obs_{LI}(l)\}$

34. obs$_{LIs}(h'_j) = obs_{LIs}(h_j') \cup \{obs_{LI}(l)\}$ end end end

35. obs$_{LAttrs}(l) = latrs$

$xtrHIs: N \rightarrow HI-set$

$xtrHIs(n) \equiv \{obs_{HI}(h) | h:H \cdot h \in obs_{Hs}(n)\}$

$getH: HI \rightarrow N \sim H$

$getH(h)(n) \equiv let h:H \cdot h \in obs_{Hs}(n) \land obs_{HI}(h)=hi$ in h end

pre $\exists h:H \cdot h \in obs_{Hs}(n) \land obs_{HI}(h)=hi$

2.3.4 Remove Links

36. One can remove a link, ℓ, from a net, n.

The link to be removed must

37. be a link of the net.

The result of removing a link, ℓ, from a net,
38. \(n \), is a new net, \(n' \),
39. in which \(\ell \) is no longer a member.
40. Let \(h_{j_i}, h_{k_i} \) be the two (distinct) hub identifiers of \(\ell \) and
41. let \(h_j, h_k \) be the two (distinct) hubs of \(n \) which are identified by \(h_{j_i}, h_{k_i} \).
42. \(h_j, h_k \) are in \(n' \).
43. All hubs of net \(n \) except \(h_j, h_k \) are the same as in \(n \) and are unchanged in \(n' \).
44. The two hubs \(h_j, h_k \) of \(n \) become hubs \(h'_j, h'_k \) of \(n' \),
45. such that only the observable identifiers of connected links have changed to now no longer include the identifier of link \(\ell \).

value
36. \(\text{removeL}: L \rightarrow N \leadsto N \)
38. \(\text{removeL}(l)(n) \) as \(n' \)
37. \(\text{pre} \ 1 \in \text{obs}_L(n) \)
39. \(\text{post} \ \text{obs}_L(n') = \text{obs}_L(n) \setminus \{l\} \land \)
40. \(\text{let} \ \{h_{j_i}, h_{k_i}\} = \text{obs}_H(l) \) in
41. \(\text{let} \ (h_j, h_k) = (\text{getH}(h_{j_i})(n), \text{getH}(h_{k_i})(n)) \) in
42. \(\{h_j, h_k\} \subseteq \text{obs}_H(n) \land \)
43. \(\text{obs}_H(n) \setminus \{h_j, h_k\} = \text{obs}_H(n') \setminus \{h_{j_i}, h_{k_i}\} \land \)
44. \(\text{let} \ (h'_j, h'_k) = (\text{getH}(h_{j_i})(n'), \text{getH}(h_{k_i})(n')) \) in
45. \(\text{obs}_LIs(h'_k) = \text{obs}_LIs(h'_j) \setminus \{\text{obs}_LI(l)\} \) end end

Please note the almost line-by-line similarity of the insert and remove link descriptions and that the only difference between these descriptions are the union, respectively set difference operations (\(\cup \) respectively \(\setminus \)).

2.3.5 Two Theorems

Idempotency With the preconditions satisfied by the insert and remove actions one can prove that first inserting a hub (link) into a net and then removing that hub (link) from the resulting net restores the original net:

theorem
\[\forall n, n', h:H, l:L \cdot \]
\[\text{pre} \ \text{insertH}(h)(n) \land \text{removeH}(h)(n') \land \text{insertL}(l)(n) \land \text{removeL}(l)(n') \Rightarrow \]
\[\text{removeH}(h)(\text{insertH}(h)(n)) = n \land \text{removeL}(l)(\text{insertL}(l)(n)) \]
Reachability

Any net that satisfies the axioms above can be constructed by sequences of insert hub and link actions.

Theorem

\[
\begin{align*}
\text{let } \text{Hs}(\text{n-nil}) &= \text{obs} \text{ in } \\
\forall n \vdash \text{axioms } 5. \text{ and } 6 \text{ on page 13.; } 7 \text{ on page 14. } 8 \text{ on page 14. } \cdot \\
\exists \text{hl:H, ll:L } \cdot \text{let } n' = \text{insertHs(hl)(n-nil) in } \text{insertHs(hl)(n')=n end
end}
\end{align*}
\]

\begin{align*}
\text{insertHs: H}^* &\rightarrow N \sim N \\
\text{insertLs: L}^* &\rightarrow N \sim N
\end{align*}

\[
\begin{align*}
\text{insertHs(hl)(n)} &\equiv \text{case hl of } \langle \rangle \rightarrow n, \langle h \rangle \rightarrow \text{insertHs(hl')(insertH(h)(n)) end} \\
\text{insertLs(ll)(n)} &\equiv \text{case ll of } \langle \rangle \rightarrow n, \langle l \rangle \rightarrow \text{insertLs(ll')(insertL(l)(n)) end}
\end{align*}
\]

Informal proof: An informal proof goes like this: Take a net. For every hub, \(h \), in that net, let \(h' \) be a version of \(h \) which has the same hub identifier, an empty set of observable link identifiers (of connected links), and otherwise all other attributes of \(h \), let \(h' \) be a member of the list of hubs – and only such hubs. Let every and only such links in \(n \) be members of the list of links. Performing first the insertion of all hubs and then the insertions of all links will “turn the trick”!

end of informal proof.

2.4 **Events**

Definition: Event. An event is something that occurs instantaneously. Events are manifested by certain state changes, and by certain interaction between behaviour and processes. The occurrence of events may “trigger” [further] actions. How the triggering, i.e., the invocation of functions are brought about is usually left implied, or unspecified.

A mudslide across a railway track or a road segment (i.e., a link) represents an event that effectively “removes” the link, or at least a segment of a link. Similarly if a train and/or automobile bridge collapses or a tunnel gets flooded or catches fire.

How are we to model such, and other events?

46. We choose to model the event “disappearance” of a segment of a link identified by \(l_i;LI \) as the composition of the following actions:

a) the removal of link \(l:L \) being affected, where \(l_i;LI \) identifies the link in the network;

b) the insertion of two hubs, \(h',h'':H \), corresponding to “points” (on link \(l:L \)) on either side of the mudslide or bridge – or other; and

c) the insertion of two links, \(l',l'':L \), between the hubs of the original link and the new hubs.
46b. newH: N \rightarrow H-set \rightarrow N
46b. newH(n)(hs) \equiv \text{let } h:H \cdot h \not\in hs \wedge \text{obs}_{LIs}(h)=\{\} \in h \text{ end}
46c. newL: N \rightarrow L-set \rightarrow (HI \times HI) \rightarrow L
46c. newL(n)(ls)(hi',hi'') \equiv \text{let } l:L \cdot l \not\in ls \wedge \text{obs}_{HIs}(l)=\{hi',hi''\} \in l \text{ end}

value
46. event _link_disappearance: LI \rightarrow N \sim \rightarrow N
46a. let l = xtrL(li)(n) in
46a. let \{hi',hi''\} = \text{obs}_{HIs}(l) in
46a. let n' = removeL(l)(n) in
46b. let hi' = newH(n)(\text{obs}_{Hs}(n)) in
46b. let hi'' = newH(n)(\text{obs}_{Hs}(n) \cup \{hi'\}) in
46b. let n'' = \text{insertH}(hi')(\text{insertH}(hi'')(n)) in
46c. let l' = newL(n)(\text{obs}_{Ls}(n))(\text{obs}_{HI}(hi',hi'')) in
46c. let l'' = newL(n)(\text{obs}_{Ls}(n) \cup \{l'\})(\text{obs}_{HI}(hi'',hi''')) in
46c. \text{insertL}(l')(\text{insertL}(l'')(n'')) \text{ end end end end end end end end end end}
46d. \text{pre } li \in xtrLIs(n)

The newH and newL generator (or constructor) functions are simplified versions of more realistic such functions. Hubs and links, as we shall see, have attributes beyond those \text{obs}_{HI}, \text{obs}_{L}, \text{obs}_{Ls} and \text{obs}_{HIs}. Proper newH and newL generator definitions must express that initial values be ascribed to these other attributes. Examples of further hub and link attributes are: spatial location, name4, mode5, length for links, etcetera. So, eventually, the definitions of the newH and newL constructors will have to be redefined.

There will be very many other kinds of events in connection with transportation.

2.5 Behaviours

Definition: Behaviour. By behaviour we shall understand the way in which something functions or operates. In the context of domain engineering248 behaviour is a concept associated with phenomena, in particular manifest entities272. And then behaviour is that which can be observed about the value280 of the entity272 and its interaction389 with an environment273. A simple, sequential behaviour is a sequence of zero, one or more actions and events.

4Names of hubs and links must not be confused with hub and link identifiers: Two or more hubs and/or links may have the same name. Hub and link identifiers may be thought of as abstractions of some composition of locations and names in that no two hubs and/or links can “occupy” “overlapping” locations, that is, locations are unique.

5whether road, railway, shipping or air traffic hubs and links, or, even combinations of these
2.5.1 **Behaviour Prescriptions**

Usually behaviours follow a prescription.

In the case of net construction we refer to the prescription as a construction plan.

Construction Plans

47. The plan for constructing a net can be abstracted as

a) a map, \(\text{PLAN} \), which to each hub identifier associates

b) a link-to-hub identifier map, \(\text{LHIM} \), from the identifiers of links emanating from
the hub to identifiers of connected hubs.

\[
\text{PLAN} = \text{HI} \rightarrow \text{LHIM} \\
\text{LHIM} = \text{LI} \rightarrow \text{HI}\-	ext{set}
\]

The hub identifiers of the definition set of construction plans are called the defining occurrences of hub identifiers.

The hub identifiers of the ranges of link-to-hub identifier map are called the using occurrences of hub identifiers.

Wellformedness of Construction Plans

48. Wellformed net construction plans satisfy three conditions:

a) **All Links are Two-way Links:**

 i. Let \(h_k \) be any hub identifier of the construction plan.
 ii. For all link identifiers, \(l_j \), of the LIHM, \(\text{lhim}_{k} \), mapped into by \(h_k \),
 iii. let \(h_{\ell} \) be the hub identifier mapped into by \(l_j \) in \(\text{lhim}_{k} \),
 iv. then \(l_j \) is in the link-to-hub-identifier map, \(\text{lhim}_{\ell} \), mapped into by \(h_{\ell} \),

b) **Using Hub Identifier Occurrences are Defined:**

 i. Let \(\text{lhim} \) be any link-to-hub-identifier map of a construction plan.
 ii. For every hub identifier, \(h_i \), mapped to by a link identifier, \(l_j \), in \(\text{lhim} \)
 iii. there exists a hub identifier, \(h_k \), that maps into \(l_j \); and

c) **No Junk:** To secure consistency between hub and link identifiers of a construction plan we impose: all the defined hub identifiers of a construction plan are in the range of some link to hub identifier map of that plan; and each of the hub identifiers of some link to hub identifier map are defined in the construction plan are in the range of some link to hub identifier map of that plan.
value
48. \(\text{wf}_\text{PLAN}: \text{PLAN} \rightarrow \text{Bool} \)
48. \(\text{wf}_\text{PLAN}(\text{plan}) \equiv \)
48a. all_links_are_two_way_links(\text{plan}) \land
48b. hub_identifier_occurrences_are_defined(\text{plan}) \land
48c. no_junk(\text{plan})

48a. all_links_are_two_way_links: \text{PLAN} \rightarrow \text{Bool}
48a. all_links_are_two_way_links(\text{plan}) \equiv
48(a)i. \(\forall \, \text{hk} : \text{HI} \cdot \text{hk} \in \text{dom} \, \text{plan} \Rightarrow \)
48(a)ii. \(\forall \, \text{lj} : \text{LI} \cdot \text{lj} \in \text{dom} \, \text{plan(hk)} \Rightarrow \)
48(a)iii. \(\text{let} \, \text{hl} = (\text{plan(hk)})(\text{lj}) \text{ in} \)
48(a)iv. \(\text{lj} \in \text{dom} \, \text{plan(hl)} \text{ end} \)

48b. hub_identifier_occurrences_are_defined: \text{PLAN} \rightarrow \text{Bool}
48b. hub_identifier_occurrences_are_defined(\text{plan}) \equiv
48(b)i. \(\forall \, \text{hlim} : \text{HLIM} \cdot \text{hlim} \in \text{rng} \, \text{plan} \)
48(b)ii. \(\forall \, \text{lj} : \text{LI} \cdot \text{lj} \in \text{dom} \, \text{lhim} \Rightarrow \)
48(b)iii. \(\exists \, \text{hk} : \text{HI} \cdot \text{hk} \in \text{dom} \, \text{plan} \land \text{lj} \in \text{dom} \, \text{plan(hk)} \)

48c. no_junk: \text{PLAN} \rightarrow \text{Bool}
48c. no_junk(\text{plan}) \equiv \text{dom} \, \text{plan} = \bigcup \{ \text{rng}((\text{plan(hi)})|\text{hi} : \text{HI} \cdot \text{hi} \in \text{dom} \, \text{plan}) \}

2.5.2 Augmented Construction Plans

Hubs and links in nets possess attributes (cf. Item 4 on page 13.). Some attributes have already been dealt with: the identifiers of hubs and links that can be observed from hubs, respectively links (cf. Items 4. and 5 on page 13.) and the identifiers of hubs that can be observed from links and the identifiers of links that can be observed from hubs (cf. Items 7. and 8 on page 14.).

In addition hubs and links in nets possess further attributes:

- spatial location of hubs and links,
- (locally ascribed) names of hubs and links,
- lengths of links,
- etcetera.

We therefore augment construction plans to also reveal these attributes.
type
 APLAN = PLAN \times HInfo \times LInfo
 HInfo = HI \rightarrow HAtrs
 LInfo = LI \rightarrow LAtrs

49. The wellformedness of an augmented plan secures that
 a) all hubs identifiers defined in the construction plan are “detailed” in the hub
 information component, and that
 b) all links identifiers used in the construction plan are “detailed” in the link
 information component.

value
49. \text{wf}_{\text{APLAN}}: \text{APLAN} \rightarrow \text{Bool}
49. \text{wf}_{\text{APLAN}}(\text{plan},\text{hinfo},\text{linfo}) \equiv
49a. \text{dom} \text{ plan} = \text{dom} \text{ hinfo} \wedge
49b. \bigcup\{\text{dom} \text{ lhim}| \text{lim}:\text{LHIM}\} \cup \text{rang} \text{ plan} = \text{dom} \text{ linfo}

2.5.3 Sequential Construction Behaviours

50. From an augmented construction plan one can “extract” initial information about
 a) all hubs and
 b) all links.

value
50a. \text{xtrH}: \text{HI} \rightarrow \text{APLAN} \rightarrow \text{HI} \times \text{HAtrs}, \text{xtrH}(\text{hi})(_,\text{hinfo},_,_) \equiv \text{hinfo}(\text{hi})
50b. \text{xtrL}: \text{LI} \rightarrow \text{APLAN} \rightarrow \text{LAtrs}, \text{xtrL}(\text{li})(_,_,\text{linfo}) \equiv \text{linfo}(\text{li})

51. A net construction behaviour can be (functionally and non-deterministically) modelled as
 a) a sequence of hub insertions followed by
 b) a sequence of link insertions.

value
51. \text{net_construction}: \text{HInfo}\times\text{LInfo} \rightarrow (\text{HI-set}\times\text{LI-set}) \rightarrow \text{N} \rightarrow \text{N}
51. \text{net_construction}(\text{hinfo},\text{linfo})(\text{his},\text{lis})(\text{n}) \equiv
51. \text{case} (\text{his},\text{lis}) \text{ of}
51a. (\{\text{hi}\} \cup \text{his}',_) \rightarrow
51a. \text{net_construction}(\text{hinfo},\text{linfo})(\text{his}',\text{lis})(\text{insertH}'(\text{hi},\text{hinfo}(\text{hi}))(\text{n})),

© Dines Bjørner 2010, Fredsvej 11, DK-2840 Holte, Denmark
51b. \((\{\},\{li\} \cup lis') \rightarrow \)
51b. \[\text{net_construction(hinfo,linfo)(\{\},lis')(insertL'(li,linfo(li))(n)),} \]
51. \((\{\},\{\}) \rightarrow n \)
51. \[\text{end} \]

\[
\text{insertH'}: \text{HI} \times \text{HATRS} \rightarrow N \rightarrow N
\]
\[
\text{insertH'}(hi,hatrs)(n) \equiv
\text{insertH(genH(hi,hatrs)(n),hatrs)(n)}
\]

\[
\text{insertL'}: \text{LI} \times \text{(HI} \times \text{HI)} \times \text{LATRS} \rightarrow N \rightarrow N
\]
\[
\text{insertL'}(li,(hi',hi''),latrs)(n) \equiv
\text{insertL(genL(li,\{hi',hi''\},latrs)(n),latrs)(n)}
\]

The \text{net_construction} function is initialised with the full sets of hub and link identifiers and with an empty net:

\[
\text{net_construction(plan,hinfo,linfo)(dom hinfo,dom linfo)(n,nil)}
\]
value

\[n_{nil}:N \cdot \text{obs_Hs(n_{nil})} = \{\} = \text{obs_Ls(n_{nil})} \]

The \text{net_construction} behaviour shown above defines only a subset of all the valid behaviours that will construct a net according to the augmented plan \((\text{plan,hinfo,linfo})\). Other valid behaviours would start with constructing at least two hubs but could then go onto construct some of the (zero, one or more) links that connect some of the already constructed hubs, etcetera. We challenge the reader to precise narrate and formally define such \text{net_construction} behaviours.