
Lecture Notes in Software Engineering 13

2 An Ontology of Specification Entities 9

Definition: Ontology. In philosophy: A systematic account of Existence. To us: An
explicit formal specification of how to represent the phenomena and concepts that are
assumed to exist in some area of interest (some universe of discourse) and the relationships
that hold among them. Further clarification: An ontology is a catalogue of concept[152]s and
their relationships — including properties as relationships to other concepts. 10

Definition: Specification. We use the term ‘specification’ to cover the concepts of do-

main description[243]s, requirements prescription[615]s and software design[688]s. More specifically
a specification is a definition[210], usually consisting of many definitions.
Definition: Entity. By an entity we shall understand either a simple entity[681]3, an
action[12], an event[281] or a behaviour[79].

2.1 Simple Entities 11

Definition: Simple Entity. By a simple entity we shall loosely understand an individual,
static[708] or inert[367] dynamic[260] and that simple entities “roughly correspond” to what we
shall think of as value[802]s. We shall further allow simple entities to be either atomic[63] or
composite[133], i.e., in the latter case having decomposable sub-entities. Simple entities have 12

attribute[69]s. Composite entities have attribute[69]s, sub-entities and a mereology[451], the latter
explains how the sub-entities are formed into the simple entity.

2.1.1 Net, Hubs and Links 13

1. There are nets, hubs and links.

2. A net contains zero, one or more hubs.

3. A net contains zero, one or more links.

type

1. N, H, L
value

2. obs Hs: N → H-set

3. obs Ls: N → L-set

2.1.2 Unique Hub and Link Identifiers 14

4. There are hub identifiers and there are link identifiers.

5. Hubs of a net have unique hub identifiers.

6. Links of a net have unique hub identifiers.

3The superscript [bracketed numbers] refer to Sect. B’s Item 681 on page 216.

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

14 From Domains to Requirements

type

4. HI, LI
value

5. obs HI: H → HI
6. obs LI: H → LI

axiom

5. ∀ n:N, h,h′:H • {h,h′}⊆obs Hs(n) ∧ h6=h′ ⇒ obs HI(h) 6=obs HI(h′)
6. ∀ n:N, l,l′:L • {l,l′}⊆obs Ls(n) ∧ l6=l′ ⇒ obs LI(l) 6=obs LI(l′)

2.1.3 Observability of Hub and Link Identifiers 15

7. From every hub (of a net) we can observe the identifiers of the zero, one or more
distinct links (of that net) that the hub is connected to.

value

7. obs LIs: H → LI-set
axiom

7. ∀ n:N,h:H•h ∈ obs Hs(n) ⇒ ∀ li:LI•li ∈ obs LIs(h) ⇒ L exists(li)(n)
value

L exists: LI → N → Bool

L exists(li)(n) ≡ ∃ l:L•l ∈ obs Ls(n)∧obs LI(l)=li
16

8. From every link (of a net) we can observe the identifiers of the exactly two (distinct)
hubs (of that net) that the link is connected to.

value

8. obs HIs: L → HI-set
axiom

8. ∀ n:N,l:L•l ∈ obs Ls(n) ⇒
8. card obs HIs(l)=2 ∧ ∀ hi:HI•hi ∈ obs HIs(l) ⇒ H exists(hi)(n)

value

H exists: HI → N → Bool

H exists(hi)(n) ≡ ∃ h:H•h ∈ obs Hs(n)∧obs HI(h)=hi

2.1.4 A Theorem 17

Links implies Hubs

9. It follows from the above that if a net has at least one link then it has at least two
hubs.

theorem:

9. ∀ n:N • card obs Ls(n)≥1 ⇒ card obs Hs(n)≥2

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

Lecture Notes in Software Engineering 15

2.1.5 Hub and Link Attributes 18

In preparation for later descriptions, narrative and formal, we make a slight detour to deal
with hub and link attributes – but we omit, at present, from describing these attributes.

10. Besides hub and link identifiers we can speak of additional hub and link attributes,
HAtrs and LAtrs.

11. These can be observed from hubs and links of nets..

12. And these can be provided as arguments when construction hubs and links.

type

10. HAtrs, LAtrs
value

11. obs HAtrs: H → HAtrs
12. obs LAtrs: L → LAtrs

2.1.6 Hub and Link Generators 19

13. From a hub identifier and a set of hub attributes one can generate a hub.

14. From a hub identifier, a set of hub attributes and a net one can generate a hub which
is not a hub of the net.

15. From a link identifier, a pair of known, distinct hub identifiers and a set of link
attributes one can generate a link.

16. From a link identifier, a set of hub attributes and a net one can generate a link which
is not a link of the net.

20

13. genH: HI × HAtrs → H
13. genH(hi,hatrs) as h
13. post obs HI(h)=hi ∧ obs LIs(h)={} ∧ obs HAtrs(h)=hatrs

14. genH: HI × HAtrs → N → H
14. genH(hi,hatrs)(n) as h
14. pre h 6∈ obs Hs(n)
14. post obs HI(h)=hi ∧ obs LIs(h)={} ∧ obs HAtrs(h)=hatrs

15. genL: LI × (HI×HI) × LAtrs → L
15. genL(li,(hi′,hi′′),latrs) as l
15. pre hi′ 6=hi′′ ∧ {hi′,hi′′}⊆xtrHIs(n)
15. post obs LI(h)=li ∧ obs HIs(l)={hi′,hi′′} ∧ obs LAtrs(h)=latrs

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

16 From Domains to Requirements

16. genL: LI × (HI×HI) × LAtrs → N → L
16. genL(li,(hi′,hi′′),latrs)(n) as l
16. pre hi′ 6=hi′′∧ {hi′,hi′′}⊆xtrHIs(n)
16. post obs LI(l)=li ∧ obs HIs(l)={hi′,hi′′} ∧ obs LAtrs(h)=latrs ∧ l 6∈ obs Ls(n)

2.2 States 21

Definition: State. By a state we shall understand a collection of one or more simple
entities.

2.3 Actions

Definition: Action. By an action we shall understand something which potentially
changes a state[705], that is, a function application to a state which potentially changes that
state.

2.3.1 Insert Hubs 22

17. One can insert a hub, h, into a net, n.

The hub to be inserted

18. must not be a hub of the net and

19. h cannot already be connected to any links.

That is, we can only insert “isolated” hubs.

The result of inserting a hub, h, into a net, n, is a new net, n′,

20. which is like n except that it now also has the hub h.
23

value

17. insertH: H × HAtrs → N
∼

→ N
17. insertH(h,hatrs)(n) as n′

18. pre h 6∈ obs Hs(n) ∧
19. obs LIs(h) = {}
20. post obs Ls(n)=obsLs(n′) ∧
20. obs Hs(n′)=obs Hs(n)∪{h} ∧
20. obs HAtrs(h)=hatrs

The argument hub h in insertH(h,hatrs)(n) may have been “concocted” from using either
genH(hi,hatrs) or genH(hi,hatrs)(n).

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

Lecture Notes in Software Engineering 17

2.3.2 Remove Hubs 24

21. One can remove a hub, h, from a net, n.

The hub to be removed

22. must be a hub of the net and

23. h cannot be connected to any links.

That is, the hub, h, may earlier – it is membership of the net – have been connected
to links, but these must already, at the time or hub removal, have been removed, see
below.

That is, we can only remove “isolated” hubs.

The result of removing a hub, h, from a net, n, is a new net, n′,

24. which is like n except that it now no longer has the h.
25

value

21. removeH: H → N
∼

→ N
21. removeH(h)(n) as n′

22. pre h ∈ obs Hs(n) ∧
23. obs LIs(h) = {}
24. post obs Ls(n)=obsLs(n′) ∧ obs Hs(n′)=obs Hs(n)\{h}

Please note the almost line-by-line similarity of the insert and remove hub descriptions and
that the only difference between these descriptions are the membership, union, respectively
set difference operations (6∈, ∈, ∪ respectively \).

2.3.3 Insert Links 26

25. One can insert a link, ℓ, into a net, n.

The link to be inserted must

26. not be a link of the net,

27. but the observable hub identifiers must be those of hubs of the net.
27

The result of inserting a link, ℓ, into a net,

28. n, is a new net, n′,

29. in which ℓ is now a member.

30. Let hji
, hki

be the two (distinct) hub identifiers of ℓ and

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

18 From Domains to Requirements

31. let hj, hk be the two (distinct) hubs of n which are identified by hji
, hki

.

32. All hubs of net n except hj, hk are the same as in n and are unchanged in n′.

33. The two hubs hj, hk of n become hubs h′

j , h
′

k of n′

34. such that only the observable identifiers of connected links have changed to now also
include the identifier of link ℓ,

35. and such that the observed attributes are those of the argument.
28

value

25. insertL: L × LAtrs → N
∼

→ N
28. insertL(l,latrs)(n) as n′

26. pre l 6∈ obs Ls(n) ∧
27. obs HIs(l)⊆xtrHIs(n)
29. post obs Ls(n′) = obs Ls(n) ∪ {l} ∧
30. let {hji,hki}=obs HIs(l) in

31. let (hj,hk) = (getH(hji)(n),getH(hki)(n)) in

27. {hj,hk}⊆obs Hs(n) ∧
32. obs Hs(n)\{hj,hk} = obs Hs(n′)\{hj,hk} ∧
33. let (hj′,hk′) = (getH(hji)(n′),getH(hki)(n′)) in

34. obs LIs(hk′) = obs LIs(hk′) ∪ {obs LI(l)}
34. obs LIs(hj′) = obs LIs(hj′) ∪ {obs LI(l)} end end end

35. obs LAtrs(l) = latrs

29

xtrHIs: N → HI-set
xtrHIs(n) ≡ {obs HI(h)|h:H•h ∈ obs Hs(n)}

getH: HI → N
∼

→ H
getH(hi)(n) ≡ let h:H • h ∈ obs Hs(n) ∧ obs HI(h)=hi in h end

pre ∃ h:H • h ∈ obs Hs(n) ∧ obs HI(h)=hi

2.3.4 Remove Links 30

36. One can remove a link, ℓ, from a net, n.

The link to be removed must

37. be a link of the net.
31

The result of removing a link, ℓ, from a net,

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

Lecture Notes in Software Engineering 19

38. n, is a new net, n′,

39. in which ℓ is no longer a member.

40. Let hji
, hki

be the two (distinct) hub identifiers of ℓ and

41. let hj, hk be the two (distinct) hubs of n which are identified by hji
, hki

.

42. hj , hk are in n′.

43. All hubs of net n except hj, hk are the same as in n and are unchanged in n′.

44. The two hubs hj, hk of n become hubs h′

j , h
′

k of n′

45. such that only the observable identifiers of connected links have changed to now no
longer include the identifier of link ℓ.

32

value

36. removeL: L → N
∼

→ N
38. removeL(l)(n) as n′

37. pre l ∈ obs Ls(n)
39. post obs Ls(n′) = obs Ls(n) \ {l} ∧
40. let {hji,hki}=obs HIs(l) in

41. let (hj,hk) = (getH(hji)(n),getH(hki)(n)) in

42. {hj,hk}⊆obs Hs(n) ∧
43. obs Hs(n)\{hj,hk} = obs Hs(n′)\{hj,hk} ∧
44. let (hj′,hk′) = (getH(hji)(n′),getH(hki)(n′)) in

45. obs LIs(hk′) = obs LIs(hk′) \ {obs LI(l)}
45. obs LIs(hj′) = obs LIs(hj′) \ {obs LI(l)} end end end

Please note the almost line-by-line similarity of the insert and remove link descriptions and
that the only difference between these descriptions are the union, respectively set difference
operations (∪ respectively \).

2.3.5 Two Theorems 33

Idempotency With the preconditions satisfied by the insert and remove actions one can
prove that first inserting a hub (link) into a net and then removing that hub (link) from
the resulting net restores the original net:

theorem

∀ n,n′:N,h:H,l:L •

pre insertH(h)(n) ∧ removeH(h)(n′) ∧ insertL(l)(n) ∧ removeL(l)(n′) ⇒
removeH(h)(insertH(h)(n)) = n ∧ removeL(l)(insertL(l)(n))

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

20 From Domains to Requirements

Reachability 34 Any net that satisfies the axioms above can be constructed by
sequences of insert hub and link actions.

theorem

let n nil:N • obs Hs(n nil)=obs Ls(n nil)={} in

∀ n:N ⊢ axioms 5. and 6 on page 13.; 7 on page 14. 8 on page 14. •

∃ hl:H∗, ll:L∗ • let n′ = insertHs(hl)(n nil) in insertHs(hl)(n′)=n end

end

insertHs: H∗ → N
∼

→ N

insertLs: L∗ → N
∼

→ N

insertHs(hl)(n) ≡ case hl of 〈〉 → n, 〈h〉̂hl′ → insertHs(hl′)(insertH(h)(n)) end

insertLs(ll)(n) ≡ case ll of 〈〉 → n, 〈l〉̂ll′ → insertLs(ll′)(insertL(l)(n)) end

35

Informal proof: An informal proof goes like this: Take a net. For every hub, h, in that
net, let h′ be a version of h which has the same hub identifier, an empty set of observable
link identifiers (of connected links), and otherwise all other attributes of h, let h′ be a
member of the list of hubs – and only such hubs. Let every and only such links in n

be members of the list of links. Performing first the insertion of all hubs and then the
insertions of all links will “turn the trick” ! end of informal proof.

2.4 Events 36

Definition: Event. An event is something that occurs instantaneously. Events are man-
ifested by certain state[705] changes, and by certain interaction[392]s between behaviour[79]s or
process[544]es. The occurrence of events may “trigger” [further] actions. How the triggering,
i.e., the invocation[402] of functions are brought about is usually left implied, or unspecified.37

A mudslide across a railway track or a road segment (i.e., a link) represents an event
that effectively “removes” the link, or at least a segment of a link. Similarly if a train
and/or automobile bridge collapses or a tunnel gets flooded or catches fire.

How are we to model such, and other events?38

46. We choose to model the event” “disappearance” of a segment of a link identified by
li:LI as the composition of the following actions:

a) the removal of link l:L being affected, where li:LI identifies the link in the
network;

b) the insertion of two hubs, h′,h′′:H , corresponding to “points” (on link l:L) on
either side of the mudslide or bridge – or other; and

c) the insertion of two links, l′,l′′:L, between the hubs of the original link and the
new hubs.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

Lecture Notes in Software Engineering 21

d) li:LI must identify a link l:L of net n:N .

46b. newH: N → H-set → N
46b. newH(n)(hs) ≡ let h:H • h 6∈ hs ∧ obs LIs(h)={} in h end

46c. newL: N → L-set → (HI×HI) → L
46c. newL(n)(ls)(hi′,hi′′) ≡ let l:L • l 6∈ ls ∧ obs HIs(l)={hi′,hi′′} in l end

39

value

46. event link disappearance: LI → N
∼

→ N
46a. let l = xtrL(li)(n) in

46a. let {hi′,hi′′} = obs HIs(l) in

46a. let n′ = removeL(l)(n) in

46b. let h′= newH(n)(obs Hs(n)) in

46b. let h′′ = newH(n)(obs Hs(n)∪{h′}) in

46b. let n′′ = insertH(h′)(insertH(h′′)(n)) in

46c. let l′ = newL(n)(obs Ls(n))(obs HI(h′),hi′) in

46c. let l′′ = newL(n)(obs Ls(n)∪{l′})(obs HI(h′′),hi′′) in

46c. insertL(l′)(insertL(l′′)(n′′)) end end end end end end end end

46d. pre li ∈ xtrLIs(n)

The newH and newL generator (or constructor) functions are simplified versions of more
realistic such functions. Hubs and links, as we shall see, have attributes beyond those
obs HI, obs LI, obs LIs and obs HIs. Proper newH and newL generator definitions must
express that initial values be ascribed to these other attributes. Examples of further hub
and link attributes are: spatial location, name4, mode5, length for links, etcetera. So,
eventually, the definitions of the newH and newL constructors will have to be redefined.

There will be very many other kinds of events in connection with transportation.

More to come

2.5 Behaviours 40

Definition: Behaviour. By behaviour we shall understand the way in which something
functions or operates. In the context of domain engineering[248] behaviour is a concept
associated with phenomena, in particular manifest entities[272]. And then behaviour is that
which can be observed about the value[802] of the entity[272] and its interaction[392] with an
environment[275]. A simple, sequential behaviour is a sequence of zero, one or more actions
and events.

4Names of hubs and links must not be confused with hub and link identifiers: Two or more hubs
and/or links may have the same name. Hub and link identifiers may be thought of as abstractions of
some composition of locations and names in that no two hubs and/or links can “occupy” “overlapping”
locations, that is, locations are unique.

5whether road, railway, shipping or air traffic hubs and links, or, even combinations of these

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

22 From Domains to Requirements

2.5.1 Behaviour Prescriptions 41

Usually behaviours follow a prescription.
In the case of net construction we refer to the prescription as a construction plan.

Construction Plans

47. The plan for constructing a net can be abstracted as

a) a map, PLAN, which to each hub identifier associates

b) a link-to-hub identifier map, LHIM, from the identifiers of links emanating from
the hub to identifiers of connected hubs.

type

47a. PLAN = HI →m LHIM
47b. LHIM = LI →m HI-set

The hub identifiers of the definition set of construction plans are called the defining occur-
rences of hub identifiers.

The hub identifiers of the ranges of link-to-hub identifier map are called the using
occurrences of hub identifiers.

Wellformedness of Construction Plans 42

48. Wellformed net construction plans satisfy three conditions:

a) All Links are Two-way Links:

i. Let hk be any hub identifier of the construction plan.

ii. For all link identifiers, lj , of the LIHM, lhimk, mapped into by hk,

iii. let hℓ be the hub identifier mapped into by lj in lhimk,

iv. then lj is in the link-to-hub-identifier map, lhimℓ, mapped into by hℓ,
43

b) Using Hub Identifier Occurrences are Defined:

i. Let lhim be any link-to-hub-identifier map of a construction plan.

ii. For every hub identifier, hi, mapped to by a link identifier, lj, in lhim

iii. there exists a hub identifier, hk, that maps into lj ; and
44

c) No Junk: To secure consistency between hub and link identifiers of a construc-
tion plan we impose: all the defined hub identifiers of a construction plan are
in the range of some link to hub identifier map of that plan; and each of the
hub identifiers of some link to hub identifier map are defined in the construction
plan are in the range of some link to hub identifier map of that plan.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

Lecture Notes in Software Engineering 23

value

48. wf PLAN: PLAN → Bool

48. wf PLAN(plan) ≡
48a. all links are two way links(plan) ∧
48b. hub identifier occurrences are defined(plan) ∧
48c. no junk(plan)

45

48a. all links are two way links: PLAN → Bool

48a. all links are two way links(plan) ≡
48(a)i. ∀ hk:HI • hk ∈ dom plan ⇒
48(a)ii. ∀ lj:LI • lj ∈ dom plan(hk) ⇒
48(a)iii. let hl = (plan(hk))(lj) in

48(a)iv. lj ∈ dom plan(hl) end

48b. hub identifier occurrences are defined: PLAN → Bool

48b. hub identifier occurrences are defined(plan) ≡
48(b)i. ∀ hlim:HLIM•hlim ∈ rng plan
48(b)ii. ∀ lj:LI • lj ∈ dom lhim ⇒
48(b)iii. ∃ hk:HI • hk ∈ dom plan ∧ lj ∈ dom plan(hk)

48c. no junk: PLAN → Bool

48c. no junk(plan) ≡ dom plan = ∪{rng(plan(hi))|hi:HI•hi ∈ dom plan}

2.5.2 Augmented Construction Plans 46

Hubs and links in nets possess attributes (cf. Item 4 on page 13.). Some attributes have
already been dealt with: the identifiers of hubs and links that can be observed from hubs,
respectively links (cf. Items 4. and 5 on page 13.) and the identifiers of hubs that can be
observed from links and the identifiers of links that can be observed from hubs (cf. Items 7.
and 8 on page 14.).

In addition hubs and links in nets possess further attributes:

• spatial location of hubs and links,

• (locally ascribed) names of hubs and links,

• lengths of links,

• etcetera.
47

We therefore augment construction plans to also reveal these attributes.

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

24 From Domains to Requirements

type

APLAN = PLAN × HInfo × LInfo
HInfo = HI →m HAtrs
LInfo = LI →m LAtrs

48

49. The wellformedness of an augmented plan secures that

a) all hubs identifiers defined in the construction plan are “detailed” in the hub
information component, and that

b) all links identifiers used in the construction plan are “detailed” in the in the link
information component.

value

49. wf APLAN: APLAN → Bool

49. wf APLAN(plan,hinfo,linfo) ≡
49a. dom plan = dom hinfo ∧
49b. ∪{dom lhim|lhim:LHIM•lhim ∈ rang plan}=dom linfo

2.5.3 Sequential Construction Behaviours 49

50. From an augmented construction plan one can “extract” initial information about

a) all hubs and

b) all links.

value

50a. xtrH: HI → APLAN → HI × HAtrs, xtrH(hi)(,hinfo,) ≡ hinfo(hi)
50b. xtrL: LI → APLAN → LAtrs, xtrL(li)(, ,linfo) ≡ linfo(li)

50

51. A net construction behaviour can be (functionally and non-deterministically) mod-
elled as

a) a sequence of hub insertions followed by

b) a sequence of link insertions.

value

51. net construction: HInfo×LInfo → (HI-set×LI-set) → N → N
51. net construction(hinfo,linfo)(his,lis)(n) ≡
51. case (his,lis) of

51a. ({hi}∪ his′,) →
51a. net construction(hinfo,linfo)(his′,lis)(insertH′(hi,hinfo(hi))(n)),

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

Lecture Notes in Software Engineering 25

51b. ({},{li}∪ lis′) →
51b. net construction(hinfo,linfo)({},lis′)(insertL′(li,linfo(li))(n)),
51. ({},{}) → n
51. end

51

insertH′: HI × HATRS → N → N
insertH′(hi,hatrs)(n) ≡

insertH(genH(hi,hatrs)(n),hatrs)(n)

insertL′: LI × (HI×HI) × LATRS → N → N
insertL′(li,(hi′,hi′′),latrs)(n) ≡

insertL(genL(li,{hi′,hi′′},latrs)(n),latrs)(n)

52

The net construction function is initialised with the full sets of hub and link identifiers and
with an empty net:

net construction(plan,hinfo,linfo)(dom hinfo,dom linfo)(n nil)
value

n nil:N • obs Hs(n nil) = {} = obs Ls(n nil)

The net construction behaviour shown above defines only a subset of all the valid be-
haviours that will construct a net according to the augmented plan (plan,hinfo,linfo). Other
valid behaviours would start with constructing at least two hubs but could then go onto
construct some of the (zero, one or more) links that connect some of the already con-
structed hubs, etcetera. We challenge the reader to precise narrate and formally define
such net construction behaviours.

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

