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5 Conclusion 226

We discuss a number of issues.

5.1 What Have We Omitted

Our coverage of domain and requirements engineering has focused on modelling techniques
for domain and requirements facets. We have omitted the important software engineering
tasks of stakeholder identification and liaison, domain and, to some extents also require-
ments, especially goal acquisition and analysis, terminologisation, and techniques for
domain and requirements and goal validation and [goal] verification (D,R |= G).

We refer, instead, to [32, Vol.3, Part IV (Chaps. 9, 12–14) and Part V (Chaps. 18,
20–23)].

5.2 Domain Descriptions Are Not Normative 227

A description of, for example, “the” domain of the New York Stock Exchange would
describe the set of rules and regulations governing the submission of sell offers and buy
bids as well as rules and regulations for clearing (‘matching’) sell offers and buy bids.
These rules and regulations appears to be quite different from those of the Tokyo Stock

Exchange [218]. A normative description of stock exchanges would abstract these rules so
as to be rather un-informative. And, anyway, rules and regulations changes and business
process re-engineering changes entities, actions, events and behaviours. For any given
software development one may thus have to rewrite parts of existing domain descriptions,
or construct an entirely new such description.

5.3 “Requirements Always Change” 228

This claim is often used as a hidden excuse for not doing a proper, professional job of
requirements prescription, let alone “deriving” them, as we advocate, from domain de-
scriptions. Instead we now make the following counterclaims [1] “domains are far more
stable than requirements” and [2] “requirements changes arise more as a result of business
process re-engineering than as a result of changing stakeholder ideas”.229

Closer studies of a number of domain descriptions, for example of a financial service

industry, reveals that the domain in terms of which an “ever expanding” variety of financial
products are offered, are, in effect, based on a small set of very basic domain functions
which have been offered for well-nigh centuries !

We thus claim that thoroughly developed domain descriptions and thoroughly “derived”
requirements prescriptions tend to stabilise the requirements re-design, but never alleviate
it.
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5.4 What Can Be Described and Prescribed 230

The issue of “what can be described” has been a constant challenge to philosophers. In
[205, 1919] Bertrand Russell covers his first Theory of Descriptions, and in [204, Philosophy
of Mathematics] a revision, as The Philosophy of Logical Atomism. The issue is not that
straightforward. In [40, 41] we try to broach the topic from the point of view of the kind
of domain engineering presented in this paper.

Our approach is simple; perhaps too simple ! We can describe what can be observed.
We do so, first by postulating types of observable phenomena and of derived concepts; then 231

by the introduction of observer functions and by axioms over these, that is, over values
of postulated types and observers. To this we add defined functions; usually described by
pre/post-conditions. The narratives refer to the “real” phenomena whereas the formalisa-
tions refer to related phenomenological concepts. The narrative/formalisation problem is
that one can ‘describe’ phenomena without always knowing how to formalise them.

5.5 What Have We Achieved – and What Not 232

Section 1.2.3 made some claims. We think we have substantiated them all, albeit ever so
briefly.

Each of the domain facets (intrinsics, support technologies, rules and regulations, scripts
[licenses and contracts], management and organisation and human behaviour) and each
of the requirements facets (projection, instantiation, determination, extension and fitting)
provide rich grounds for both specification methodology studies and and for more theoret-
ical studies [35, ICTAC 2007].

5.6 Relation to Other Work 233

The most obvious ‘other’ work is that of [140, Problem Frames]. In [140] Jackson, like
is done here, departs radically from conventional requirements engineering. In his ap-
proach understandings of the domain, the requirements and possible software designs are
arrived at, not hierarchically, but in parallel, interacting streams of decomposition. Thus 234

the ‘Problem Frame’ development approach iterates between concerns of domains, require-
ments and software design. “Ideally” our approach pursues domain engineering prior to
requirements engineering, and, the latter, prior to software design. But see next. 235

The recent book [149, Axel van Lamsweerde] appears to represent the most definitive
work on Requirements Engineering today. Much of its requirements and goal acquisition
and analysis techniques carries over to main aspects of domain acquisition and analysis
techniques and the goal-related techniques of [149] apply to determining which projections,
instantiation, determination and extension operations to perform on domain descriptions.
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5.7 “Ideal” Versus Real Developments 236

The term ‘ideal’ has been used in connection with ‘ideal development’ from domain to
requirements. We now discuss that usage. Ideally software development could proceed
from developing domain descriptions via “deriving” requirements prescriptions to software
design, each phase involving extensive formal specifications, verifications (formal testing,
model checking and theorem proving) and validation.237

More realistically less comprehensive domain description development (D) may alter-
nate with both requirements development (R) work and with software design (S) – in some
controlled, contained iterated and “spiralling” manner and such that it is at all times clear
which development step is what: D, R or S!

5.8 Description Languages 238

We have used the RSL specification language, [110, 32], for the formalisations of this report,
but any of the model-oriented approaches and languages offered by Alloy [138], B, Event

B [3], RAISE [112], VDM [107] and Z [234], should work as well.239

No single one of the above-mentioned formal specification languages, however, suffices.
Often one has to carefully combine the above with elements of Petri Nets [200], CSP [128],
MSC [137], Statecharts [120], and/or some temporal logic, for example either DC [236] or
TLA+ [148]. Research into how such diverse textual and diagrammatic languages can be
combined is ongoing [9].

5.9 Entailments 240

D,R |= G[*] From the Domain and the Requirements we can reason that the Goals are
met.

D,S |= R[*] In a proof of correctness of Software design with respect to Requirements
prescriptions one often has to refer to assumptions about the Domain. [*] Formalising our
understandings of the Domain, the Requirements and the Software design enables proofs
that the software is right and the formalisation of the “derivation” of Requirements from
Domain specifications help ensure that it is the right software [58].

5.10 Domain Versus Ontology Engineering 241

In the information science community an ontology is a “formal, explicit specification of
a shared conceptualisation”. Most of the information science ontology work seems aimed
primarily at axiomatisations of properties of entities. Apart from that there are many issues
of “ontological engineering” that are similar to the triptych kind of domain engineering;
but then, we claim, that domain engineering goes well beyond ontological engineering and
makes free use of whatever formal specification languages are needed, cf. Sect. 6.1.
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6 Bibliographical Notes 242

6.1 Description Languages

Besides using as precise a subset of a national language, as here English, as possible,
and in enumerated expressions and statements, we have “paired” such narrative elements
with corresponding enumerated clauses of a formal specification language. We have been
using the RAISE Specification Language, RSL, [112], in our formal texts. But any of the
model-oriented approaches and languages offered by

• Alloy [138],

• CafeOBJ [109],

• Event B [3],

• VDM [107] and

• Z [234],

should work as well. 243

No single one of the above-mentioned formal specification languages, however, suffices.
Often one has to carefully combine the above with elements of

• Petri Nets [200],

• CSP: Communicating Sequential Processes [128],

• MSC: Message Sequence Charts [137],

• Statecharts [120],

• and some temporal logic, for example

– DC: Duration Calculus [236]

– or TLA+ [148].

Research into how such diverse textual and diagrammatic languages can be meaning-
fully and proof-theoretically combined is ongoing [9]. And even then !
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