
Lecture Notes in Software Engineering 95

A An RSL Primer 263

This is an ultra-short introduction to the RAISE Specification Language, RSL. Examples
follow and expand on the examples of earlier sections.

A.1 Types

The reader is kindly asked to study first the decomposition of this section into its sub-parts
and sub-sub-parts.

A.1.1 Type Expressions

Type expressions are expressions whose values are types, that is, possibly infinite sets of
values (of “that” type).

Atomic Types Atomic types have (atomic) values. That is, values which we consider to
have no proper constituent (sub-)values, i.e., cannot, to us, be meaningfully “taken apart”.

RSL has a number of built-in atomic types. There are the Booleans, integers, natural
numbers, reals, characters, and texts. 264

Basic Types

type

[1] Bool

[2] Int

[3] Nat

[4] Real

[5] Char

[6] Text

1. The Boolean type of truth values false

and true.

2. The integer type on integers ..., –2, –1,
0, 1, 2,

3. The natural number type of positive
integer values 0, 1, 2, ...

4. The real number type of real values,

i.e., values whose numerals can be
written as an integer, followed by a pe-
riod (“.”), followed by a natural num-
ber (the fraction).

5. The character type of character values
′′a′′, ′′b′′, ...

6. The text type of character string val-
ues ′′aa′′, ′′aaa′′, ..., ′′abc′′, ...

265

Example 1 .Basic Net Attributes:

• For safe, uncluttered traffic, hubs and links can ‘carry’ a maximum of vehicles.

• Links have lengths. (We ignore hub (traversal) lengths.)

• One can calculate whether a link is a two-way link.

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

96 CoMet 1

266

type

MAX = Nat

LEN = Real

is Two Way Link = Bool

value

obs Max: (H|L) → MAX
obs Len: L → LEN
is two way link: L → is Two Way Link
is two way link(l) ≡ ∃ lσ:LΣ • lσ ∈ obs HΣ(l)∧card lσ=2

. .End of Example 1

Composite Types 267

Composite types have composite values. That is, values which we consider to have proper
constituent (sub-)values, i.e., can, to us, be meaningfully “taken apart”.

From these one can form type expressions: finite sets, infinite sets, Cartesian products,
lists, maps, etc.

Let A, B and C be any type names or type expressions, then:

Composite Type Expressions

[7] A-set

[8] A-infset

[9] A × B × ... × C
[10] A∗

[11] Aω

[12] A →m B
[13] A → B

[14] A
∼

→ B
[15] (A)
[16] A | B | ... | C
[17] mk id(sel a:A,...,sel b:B)
[18] sel a:A ... sel b:B

7. The set type of finite cardinality set values.

8. The set type of infinite and finite cardinality
set values.

9. The Cartesian type of Cartesian values.

10. The list type of finite length list values.

11. The list type of infinite and finite length list
values.

12. The map type of finite definition set map val-
ues.

13. The function type of total function values.

14. The function type of partial function values.

15. In (A) A is constrained to be:

• either a Cartesian B × C × ... × D, in
which case it is identical to type expres-
sion kind 9,

• or not to be the name of a built-in type
(cf., 1–6) or of a type, in which case
the parentheses serve as simple delim-
iters, e.g., (A →m B), or (A∗)-set, or
(A-set)list, or (A|B) →m (C|D|(E →m F)),
etc.

16. The postulated disjoint union of types A, B,
. . . , and C.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

An RSL Primer 97

17. The record type of mk id-named record values
mk id(av,...,bv), where av, . . . , bv, are values
of respective types. The distinct identifiers
sel a, etc., designate selector functions.

18. The record type of unnamed record values
(av,...,bv), where av, . . . , bv, are values of re-
spective types. The distinct identifiers sel a,
etc., designate selector functions.

268

Example 2 .Composite Net Type Expressions:

The type clauses of function signatures:

value

f: A → B

often have the type expressions A and/or B be composite type expressions:

value

obs HIs: L → HI-set
obs LIs: H → LI-set
obs HΣ: H → HT-set

set HΣ: H × HΣ → H

269

Right-hand sides of type definitions often have composite type expressions:

type

N = H-set × L-set
HT = LI × HI × LI
LT′ = HI × LI × HI

. .End of Example 2

A.1.2 Type Definitions 270

Concrete Types Types can be concrete in which case the structure of the type is specified
by type expressions:

Type Definition

type

A = Type expr
schematic examples:

A1 = B1-set, A2 = B1-infset

A3 = B2 × C1 × D1
B1 = E∗, B2 = Eω

C1 = F →m G

D1 = H → J, D2 = H
∼

→ J
K = L | M

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

98 CoMet 1

271

Example 3 . Composite Net Types:

There are many ways in which nets can be concretely modelled:

• Sorts + Observers + Axioms: First we show an example of type definitions without
right-hand side, that is, of sort definitions.

From a net one can observe many things.

Of the things we focus on are the hubs and the links.

A net contains two or more hubs and one or more links. Possibly other entities and net
attributes may also be observable, but we shall not consider those here.

type

[sorts] Nα, H, L, HI, LI
value

obs Hs: Nα → H-set

obs Ls: Nα → L-set
axiom

∀ n:Nα
• card obs Hs(n)>0 ⇒ card obs Ls(n)≥1 ∧ ...

272

• Cartesians + Wellformedness: A net can be considered as a Cartesian of sets of two
or more hubs and sets of one or more links.

type

[sorts] H, L
Nβ = H-set × L-set

value

wf Nβ: Nβ → Bool

wf Nβ(hs,ls) ≡ card hs>1 ⇒ card ls>0

inject Nβ : Nα
∼

→ Nβ pre: wf Nβ(hs,ls)
inject Nβ(nα) ≡ (obs Hs(nα),obs Ls(nα))

273

• Cartesians + Maps + Wellformedness: Or a net can be described

a as a triple of b-c-d:

b hubs (modelled as a map from hub identfiers to hubs),

c links (modelled as a map from link identfiers to links), and

d a graph from hub hi identifiers hii to maps from identfiers liji
of hub hi connected

links lij to the identfiers hji
of link connected hubs hj .

274

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

An RSL Primer 99

type

[sorts] H, HI, L, LI
[a] Nγ = HUBS × LINKS × GRAPH
[b] HUBS = HI →m H
[c] LINKS = LI →m L
[d] GRAPH = HI →m (LI −m> HI)

– [b,c] hs:HUBS and ls:LINKS are maps from hub (link) identifiers to hubs (links)
where one can still observe these identfiers from these hubs (link).

• Example 12 on page 117 defines the well-formedness predicates for the above map types.

. .End of Example 3
275

Variety of Type Definitions

[1] Type name = Type expr /∗ without | s or subtypes ∗/
[2] Type name = Type expr 1 | Type expr 2 | ... | Type expr n
[3] Type name ==

mk id 1(s a1:Type name a1,...,s ai:Type name ai) |
... |
mk id n(s z1:Type name z1,...,s zk:Type name zk)

[4] Type name :: sel a:Type name a ... sel z:Type name z
[5] Type name = {| v:Type name′ • P(v) |}

where a form of [2–3] is provided by combining the types: 276

Record Types

Type name = A | B | ... | Z
A == mk id 1(s a1:A 1,...,s ai:A i)
B == mk id 2(s b1:B 1,...,s bj:B j)
...
Z == mk id n(s z1:Z 1,...,s zk:Z k)

Types A, B, ..., Z are disjoint, i.e., shares no values, provided all mk id k are distinct and
due to the use of the disjoint record type constructor ==.

axiom

∀ a1:A 1, a2:A 2, ..., ai:Ai •

s a1(mk id 1(a1,a2,...,ai))=a1 ∧ s a2(mk id 1(a1,a2,...,ai))=a2 ∧
... ∧ s ai(mk id 1(a1,a2,...,ai))=ai ∧

∀ a:A • let mk id 1(a1′,a2′,...,ai′) = a in

a1′ = s a1(a) ∧ a2′ = s a2(a) ∧ ... ∧ ai′ = s ai(a) end

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

100 CoMet 1

277

Example 4 . Net Record Types: Insert Links:

19. To a net one can insert a new link in either of three ways:

a) Either the link is connected to two existing hubs — and the insert operation must
therefore specify the new link and the identifiers of two existing hubs;

b) or the link is connected to one existing hub and to a new hub — and the insert
operation must therefore specify the new link, the identifier of an existing hub, and
a new hub;

c) or the link is connected to two new hubs — and the insert operation must therefore
specify the new link and two new hubs.

d) From the inserted link one must be able to observe identifier of respective hubs.

20. From a net one can remove a link.13 The removal command specifies a link identifier.

278

type

19 Insert == Ins(s ins:Ins)
19 Ins = 2xHubs | 1x1nH | 2nHs
19a 2xHubs == 2oldH(s hi1:HI,s l:L,s hi2:HI)
19b 1x1nH == 1oldH1newH(s hi:HI,s l:L,s h:H)
19c 2nHs == 2newH(s h1:H,s l:L,s h2:H)
20 Remove == Rmv(s li:LI)

axiom

19d ∀ 2oldH(hi′,l,hi′′):Ins • hi′6=hi′′ ∧ obs LIs(l)={hi′,hi′′} ∧
∀ 1old1newH(hi,l,h):Ins • obs LIs(l)={hi,obs HI(h)} ∧
∀ 2newH(h′,l,h′′):Ins • obs LIs(l)={obs HI(h′),obs HI(h′′)}

RSL Explanation

• 19: The type clause type Ins = 2xHubs | 1x1nH | 2nHs introduces the type name Ins
and defines it to be the union (|) type of values of either of three types: 2xHubs, 1x1nH
and 2nHs.

– 19a): The type clause type 2xHubs == 2oldH(s hi1:HI, s l:L, s hi2:HI) defines the
type 2xHubs to be the type of values of record type 2oldH(s hi1:HI,s l:L,s hi2:HI),
that is, Cartesian-like, or “tree”-like values with record (root) name 2oldH and with
three sub-values, like branches of a tree, of types HI, L and HI. Given a value,
cmd, of type 2xHubs, applying the selectors s hi1, s l and s hi2 to cmd yield the
corresponding sub-values.

13– provided that what remains is still a proper net

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

An RSL Primer 101

– 19b): Reading of this type clause is left as exercise to the reader.

– 19c): Reading of this type clause is left as exercise to the reader.

– 19d): The axiom axiom has three predicate clauses, one for each category of Insert
commands.

♦ The first clause: ∀ 2oldH(hi′,l,hi′′):Ins • hi′6=hi′′ ∧ obs HIs(l) = {hi′, hi′′} reads
as follows:

◦ For all record structures, 2oldH(hi′,l,hi′′), that is, values of type Insert (which
in this case is the same as of type 2xHubs),

◦ that is values which can be expressed as a record with root name 2oldH
and with three sub-values (“freely”) named hi′, l and hi′′

◦ (where these are bound to be of type HI, L and HI by the definition of
2xHubs),

◦ the two hub identifiers hi′ and hi′′ must be different,

◦ and the hub identifiers observed from the new link, l, must be the two
argument hub identifiers hi′ and hi′′.

♦ Reading of the second predicate clause is left as exercise to the reader.

♦ Reading of the third predicate clause is left as exercise to the reader.

The three types 2xHubs, 1x1nH and 2nHs are disjoint: no value in one of them is the
same value as in any of the other merely due to the fact that the record names, 2oldH,
1oldH1newH and 2newH, are distinct. This is no matter what the “bodies” of their record
structure is, and they are here also distinct: (s hi1:HI,s l:L,s hi2:HI), (s hi:HI,s l:L,s h:H),
respectively (s h1:H,s l:L,s h2:H).

• 20; The type clause type Remove == Rmv(s li:LI)

– (as for Items 19b) and 19c))

– defines a type of record values, say rmv,

– with record name Rmv and with a single sub-value, say li of type LI

– where li can be selected from by rmv selector s li.

End of RSL Explanation

Example 17 on page 128 presents the semantics functions for int Insert and int Remove.

. .End of Example 4

Subtypes 279

In RSL, each type represents a set of values. Such a set can be delimited by means of
predicates. The set of values b which have type B and which satisfy the predicate P,
constitute the subtype A:

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

102 CoMet 1

Subtypes

type

A = {| b:B • P(b) |}

280

Example 5 .Net Subtypes:

In Example 3 on page 98 we gave three examples. For the first we gave an example, Sorts +
Observers + Axioms, “purely” in terms of sets, see Sorts — Abstract Types below. For the
second and third we gave concrete types in terms of Cartesians and Maps.281

• In the Sorts + Observers + Axioms part of Example 3

– a net was defined as a sort, and so were its hubs, links, hub identifiers and link
identifiers;

– axioms – making use of appropriate observer functions - make up the wellformedness
condition on such nets.

We now redefine this as follows:
282

type

[sorts] N′, H, L, HI, LI
N = {|n:N′

• wf N(n)|}
value

wf N: N′ → Bool

wf N(n) ≡
∀ n:N • card obs Hs(n)≥0 ∧ card obs Ls(n)≥0 ∧
axioms 2.–3., 5.–6., and 8., (Page 13)

283

• In the Cartesians + Wellformedness part of Example 3

– a net was a Cartesian of a set of hubs and a set of links

– with the wellformedness that there were at least two hubs and at least one link

– and that these were connected appropriately (treated as ...).

We now redefine this as follows:

type

N′ = H-set × L-set
N = {|n:N′

• wf N(n)|}

284

• In the Cartesians + Maps + Wellformedness part of Example 3

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

An RSL Primer 103

– a net was a triple of hubs, links and a graph,

– each with their wellformednes predicates.

We now redefine this as follows:
285

type

[sorts] L, H, LI, HI
N′ = HUBS × LINKS × GRAPH
N = {|(hs,ls,g):N′

• wf HUBS(hs)∧wf LINKS(ls)∧wf GRAPH(g)(hs,ls)|}
HUBS′ = HI →m H
HUBS = {|hs:HUBS′

• wf HUBS(hs)|}
LINKS′ = LI → L
LINKS = {|ls:LINKS′

• wf LINKS(ls)|}
GRAPH′ = HI →m (LI →m HI)
GRAPH = {|g:GRAPH′

• wf GRAPH(g)|}
value

wf GRAPH: GRAPH′ → (HUBS × LINKS) → Bool

wf GRAPH(g)(hs,ls) ≡ wf N(hs,ls,g)

Example 12 on page 117 presents a definition of wf GRAPH.
. .End of Example 5

Sorts — Abstract Types 286

Types can be (abstract) sorts in which case their structure is not specified:

Sorts

type

A, B, ..., C

287

Example 6 . Net Sorts:

In formula lines of Examples 3–5 we have indicated those type clauses which define sorts, by
bracketed [sorts] literals.
. .End of Example 6

A.2 Concrete RSL Types: Values and Operations 288

A.2.1 Arithmetic

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

104 CoMet 1

Arithmetic

type

Nat, Int, Real

value

+,−,∗: Nat×Nat→Nat | Int×Int→Int | Real×Real→Real

/: Nat×Nat
∼

→Nat | Int×Int
∼

→Int | Real×Real
∼

→Real

<,≤,=,6=,≥,> (Nat|Int|Real) × (Nat|Int|Real) → Bool

289

A.2.2 Set Expressions

Set Enumerations Let the below a’s denote values of type A, then the below designate
simple set enumerations:

Set Enumerations

{{}, {a}, {e1,e2,...,en}, ...} ⊆ A-set

{{}, {a}, {e1,e2,...,en}, ..., {e1,e2,...}} ⊆ A-infset

290

Example 7 . Set Expressions over Nets:

We now consider hubs to abstract cities, towns, villages, etcetera. Thus with hubs we can
associate sets of citizens.

Let c:C stand for a citizen value c being an element in the type C of all such. Let g:G stand
for any (group) of citizens, respectively the type of all such. Let s:S stand for any set of groups,
respectively the type of all such. Two otherwise distinct groups are related to one another if
they share at least one citizen, the liaisons. A network nw:NW is a set of groups such that for
every group in the network one can always find another group with which it shares liaisons.291

Solely using the set data type and the concept of subtypes, we can model the above:

type

C
G′ = C-set, G = {| g:G′

• g 6={} |}
S = G-set

L′ = C-set, L = {| ℓ:L′
• ℓ 6={} |}

NW′ = S, NW = {| s:S • wf S(s) |}
value

wf S: S → Bool

wf S(s) ≡ ∀ g:G • g ∈ s ⇒ ∃ g′:G • g′ ∈ s ∧ share(g,g′)
share: G×G → Bool

share(g,g′) ≡ g 6=g′ ∧ g ∩ g′ 6= {}
liaisons: G×G → L
liaisons(g,g′) = g ∩ g′ pre share(g,g′)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

An RSL Primer 105

292

Annotations: L stands for proper liaisons (of at least one liaison). G′, L′ and N′ are the “raw”
types which are constrained to G, L and N. {| binding:type expr • bool expr |} is the general
form of the subtype expression. For G and L we state the constraints “in-line”, i.e., as direct
part of the subtype expression. For NW we state the constraints by referring to a separately
defined predicate. wf S(s) expresses — through the auxiliary predicate — that s contains at
least two groups and that any such two groups share at least one citizen. liaisons is a “truly”
auxiliary function in that we have yet to “find an active need” for this function! 293

The idea is that citizens can be associated with more than one city, town, village, etc.
(primary home, summer and/or winter house, working place, etc.). A group is now a set
of citizens related by some “interest” (Rotary club membership, political party “grassroots”,
religion, et.). The reader is invited to define, for example, such functions as:The set of groups
(or networks) which are represented in all hubs [or in only one hub]. The set of hubs whose
citizens partake in no groups [respectively networks]. The group [network] with the largest
coverage in terms of number of hubs in which that group [network] is represented.
.
. .End of Example 7

Set Comprehension 294

The expression, last line below, to the right of the ≡, expresses set comprehension. The
expression “builds” the set of values satisfying the given predicate. It is abstract in the
sense that it does not do so by following a concrete algorithm.

Set Comprehension

type

A, B
P = A → Bool

Q = A
∼

→ B
value

comprehend: A-infset × P × Q → B-infset

comprehend(s,P,Q) ≡ { Q(a) | a:A • a ∈ s ∧ P(a)}

295

Example 8 .Set Comprehensions:

Item 48 on page 22, the wf N(hs,ls,g) wellformedness predicate definition, includes:

type

47a. PLAN = HI →m LHIM
47b. LHIM = LI →m HI-set
value

48c. no junk: PLAN → Bool

48c. no junk(plan) ≡ dom plan = ∪{rng(plan(hi))|hi:HI•hi ∈ dom plan}

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

106 CoMet 1

It expresses the distributed union of sets (rng (plan(li)) of hub identifiers (for each of the hi
indexed maps from (definition set, dom) link identiers to (range set, rng) hub identifiers,
where hi:HI ranges over dom plan).
. .End of Example 8

A.2.3 Cartesian Expressions 296

Cartesian Enumerations Let e range over values of Cartesian types involving A, B, . . .,
C, then the below expressions are simple Cartesian enumerations:

Cartesian Enumerations

type

A, B, ..., C
A × B × ... × C

value

(e1,e2,...,en)

297

Example 9 .Cartesian Net Types:

So far we have abstracted hubs and links as sorts. That is, we have not defined their types
concretely. Instead we have postulated some attributes such as: observable hub identifiers
of hubs and sets of observable link identifiers of links connected to hubs. We now claim the
following further attributes of hubs and links.298

• Concrete links have

– link identifiers,

– link names – where two or more connected links may have the same link name,

– two (unordered) hub identifiers,

– lenghts,

– locations – where we do not presently defined what we main by locations,

– etcetera

• Concrete hubs have

– hub identifiers,

– unique hub names,

– a set of one or more observable link identifiers,

– locations,

– etcetera.
299

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

An RSL Primer 107

type

LN, HN, LEN, LOC
cL = LI × LN × (HI × HI) × LOC × ...
cH = HI × HN × LI-set × LOC × ...

. .End of Example 9

A.2.4 List Expressions 300

List Enumerations Let a range over values of type A, then the below expressions are
simple list enumerations:

List Enumerations

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ...} ⊆ A∗

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ..., 〈e1,e2,...,en,... 〉, ...} ⊆ Aω

〈 a i .. a j 〉

The last line above assumes ai and aj to be integer-valued expressions. It then expresses
the set of integers from the value of ei to and including the value of ej . If the latter is
smaller than the former, then the list is empty.

List Comprehension 301

The last line below expresses list comprehension.

List Comprehension

type

A, B, P = A → Bool, Q = A
∼

→ B
value

comprehend: Aω × P × Q
∼

→ Bω

comprehend(l,P,Q) ≡
〈 Q(l(i)) | i in 〈1..len l〉 • P(l(i))〉

302

Example 10 . Routes in Nets:

• A phenomenological (i.e., a physical) route of a net is a sequence of one or more adjacent
links of that net.

• A conceptual route is a sequence of one or more link identifiers.

• An abstract route is a conceptual route

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

108 CoMet 1

– for which there is a phenomenological route of the net for which the link identifiers
of the abstract route map one-to-one onto links of the phenomenological route.

303

type

N, H, L, HI, LI
PR′ = L∗

PR = {| pr:PR′
• ∃ n:N • wf PR(pr)(n)|}

CR = LI∗

AR′ = LI∗

AR = {| ar:AR′
• ∃ n:N • wf AR(ar)(n) |}

value

wf PR: PR′ → N → Bool

wf PR(pr)(n) ≡
∀ i:Nat • {i,i+1}⊆inds pr ⇒

obs HIs(l(i)) ∩ obs HIs(l(i+1)) 6= {}
wf AR′: AR′ → N → Bool

wf AR(ar)(n) ≡
∃ pr:PR • pr ∈ routes(n) ∧ wf PR(pr)(n) ∧ len pr=len ar ∧

∀ i:Nat • i ∈ inds ar ⇒ obs LI(pr(i))=ar(i)

304

• A single link is a phenomenological route.

• If r and r′ are phenomenological routes

– such that the last link r

– and the first link of r′

– share observable hub identifiers,

then the concatenation r̂r′ is a route.

This inductive definition implies a recursive set comprehension.

• A circular phenomenological route is a phenomenological route whose first and last links
are distinct but share hub identifiers.

• A looped phenomenological route is a phenomenological route where two distinctly posi-
tions (i.e., indexed) links share hub identifiers.

305

value

routes: N → PR-infset

routes(n) ≡
let prs = {〈l〉|l:L•obs Ls(n)} ∪

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

An RSL Primer 109

∪ {pr̂pr′|pr,pr′:PR•{pr,pr′}⊆prs∧obs HIs(r(len pr))∩obs HIs(pr′(1))6={}}
prs end

is circular: PR → Bool

is circular(pr) ≡ obs HIs(pr(1))∩obs HIs(pr(len pr)) 6={}

is looped: PR → Bool

is looped(pr) ≡ ∃ i,j:Nat • i 6=j∧{i,j}⊆index pr ⇒ obs HIs(pr(i))∩obs HIs(pr(j)) 6={}

306

• Straight routes are Phenomenological routes without loops.

• Phenomenological routes with no loops can be constructed from phenomenological routes
by removing suffix routes whose first link give rise to looping.

value

straight routes: N → PR-set

straight routes(n) ≡
let prs = routes(n) in {straight route(pr)|pr:PR•ps ∈ prs} end

straight route: PR → PR
straight route(pr) ≡

〈pr(i)|i:Nat•i:[1..len pr] ∧ pr(i) 6∈ elems〈pr(j)|j:Nat•j:[1..i]〉〉

. End of Example 10

A.2.5 Map Expressions 307

Map Enumerations Let (possibly indexed) u and v range over values of type T1 and T2,
respectively, then the below expressions are simple map enumerations:

Map Enumerations

type

T1, T2
M = T1 →m T2

value

u,u1,u2,...,un:T1, v,v1,v2,...,vn:T2
{[], [u7→v], ..., [u1 7→v1,u2 7→v2,...,un7→vn],...} ⊆ M

Map Comprehension 308

The last line below expresses map comprehension:

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

110 CoMet 1

Map Comprehension

type

U, V, X, Y
M = U →m V

F = U
∼

→ X

G = V
∼

→ Y
P = U → Bool

value

comprehend: M×F×G×P → (X →m Y)
comprehend(m,F,G,P) ≡

[F(u) 7→ G(m(u)) | u:U • u ∈ dom m ∧ P(u)]

309

Example 11 .Concrete Net Type Construction:

• We Define a function con[struct] Nγ (of the Cartesians + Maps + Wellformedness
part of Example 3.

– The base of the construction is the fully abstract sort definition of Nα in the Sorts
+ Observers + Axioms part of Example 3 – where the sorts of hub and link
identifiers are taken from earlier examples.

– The target of the construction is the Nγ of the Cartesians + Maps + Well-
formedness part of Example 3.

– First we recall the ssential types of that Nγ .
310

type

Nγ = HUBS × LINKS × GRAPH
HUBS = HI →m H
LINKS = LI →m L
GRAPH = HI →m (LI →m HI)

value

con Nγ : Nα → Nγ

con Nγ(nα) ≡
let hubs = [obs HI(h) 7→ h | h:H • h ∈ obs Hs(nα)],

links = [obs LI(h) 7→ l | l:L • l ∈ obs Ls(nα)],
graph = [obs HI(h) 7→ [obs LI(l) 7→ ι(obs HIs(l)\{obs HI(h)})

| l:L • l ∈ obs Ls(nα)∧li ∈ obs LIs(h)]
| H:h • h ∈ obs Hs(nα)] in

(hubs.links,graph) end

ι: A-set
∼

→ A [A could be LI-set]
ι(as) ≡ if card as=1 then let {a}=as in a else chaos end end

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

An RSL Primer 111

311

theorem:

nα satisfies axioms 2.–3., 5.–6., and 8. (Page 13) ⇒ wf Nγ(con Nγ(nα))

. End of Example 11

A.2.6 Set Operations 312

Set Operator Signatures

Set Operations

value

21 ∈: A × A-infset → Bool

22 6∈: A × A-infset → Bool

23 ∪: A-infset × A-infset → A-infset

24 ∪: (A-infset)-infset → A-infset

25 ∩: A-infset × A-infset → A-infset

26 ∩: (A-infset)-infset → A-infset

27 \: A-infset × A-infset → A-infset

28 ⊂: A-infset × A-infset → Bool

29 ⊆: A-infset × A-infset → Bool

30 =: A-infset × A-infset → Bool

31 6=: A-infset × A-infset → Bool

32 card: A-infset
∼

→ Nat

Set Examples 313

Set Examples

examples

a ∈ {a,b,c}
a 6∈ {}, a 6∈ {b,c}
{a,b,c} ∪ {a,b,d,e} = {a,b,c,d,e}
∪{{a},{a,b},{a,d}} = {a,b,d}
{a,b,c} ∩ {c,d,e} = {c}
∩{{a},{a,b},{a,d}} = {a}
{a,b,c} \ {c,d} = {a,b}
{a,b} ⊂ {a,b,c}
{a,b,c} ⊆ {a,b,c}
{a,b,c} = {a,b,c}
{a,b,c} 6= {a,b}
card {} = 0, card {a,b,c} = 3

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

112 CoMet 1

Informal Explication 314

21. ∈: The membership operator expresses that an element is a member of a set.

22. 6∈: The non-membership operator expresses that an element is not a member of a
set.

23. ∪: The infix union operator. When applied to two sets, the operator gives the set
whose members are in either or both of the two operand sets.

24. ∪: The distributed prefix union operator. When applied to a set of sets, the operator
gives the set whose members are in some of the operand sets.

25. ∩: The infix intersection operator. When applied to two sets, the operator gives the
set whose members are in both of the two operand sets.

26. ∩: The prefix distributed intersection operator. When applied to a set of sets, the
operator gives the set whose members are in some of the operand sets.315

27. \: The set complement (or set subtraction) operator. When applied to two sets, the
operator gives the set whose members are those of the left operand set which are not
in the right operand set.

28. ⊆: The proper subset operator expresses that all members of the left operand set are
also in the right operand set.

29. ⊂: The proper subset operator expresses that all members of the left operand set are
also in the right operand set, and that the two sets are not identical.

30. =: The equal operator expresses that the two operand sets are identical.

31. 6=: The non-equal operator expresses that the two operand sets are not identical.

32. card: The cardinality operator gives the number of elements in a finite set.

Set Operator Definitions 316

The operations can be defined as follows (≡ is the definition symbol):

Set Operation Definitions

value

s′ ∪ s′′ ≡ { a | a:A • a ∈ s′ ∨ a ∈ s′′ }
s′ ∩ s′′ ≡ { a | a:A • a ∈ s′ ∧ a ∈ s′′ }
s′ \ s′′ ≡ { a | a:A • a ∈ s′ ∧ a 6∈ s′′ }
s′ ⊆ s′′ ≡ ∀ a:A • a ∈ s′ ⇒ a ∈ s′′

s′ ⊂ s′′ ≡ s′ ⊆ s′′ ∧ ∃ a:A • a ∈ s′′ ∧ a 6∈ s′

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

An RSL Primer 113

s′ = s′′ ≡ ∀ a:A • a ∈ s′ ≡ a ∈ s′′ ≡ s⊆s′ ∧ s′⊆s
s′ 6= s′′ ≡ s′ ∩ s′′ 6= {}
card s ≡

if s = {} then 0 else

let a:A • a ∈ s in 1 + card (s \ {a}) end end

pre s /∗ is a finite set ∗/
card s ≡ chaos /∗ tests for infinity of s ∗/

A.2.7 Cartesian Operations 317

Cartesian Operations

type

A, B, C
g0: G0 = A × B × C
g1: G1 = (A × B × C)
g2: G2 = (A × B) × C
g3: G3 = A × (B × C)

value

va:A, vb:B, vc:C, vd:D

(va,vb,vc):G0,
(va,vb,vc):G1
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decomposition expressions

let (a1,b1,c1) = g0,
(a1′,b1′,c1′) = g1 in .. end

let ((a2,b2),c2) = g2 in .. end

let (a3,(b3,c3)) = g3 in .. end

A.2.8 List Operations 318

List Operator Signatures

List Operations

value

hd: Aω ∼

→ A

tl: Aω ∼

→ Aω

len: Aω ∼

→ Nat

inds: Aω → Nat-infset

elems: Aω → A-infset

.(.): Aω × Nat
∼

→ A
̂: A∗ × Aω → Aω

=: Aω × Aω → Bool

6=: Aω × Aω → Bool

List Operation Examples 319

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

114 CoMet 1

List Examples

examples

hd〈a1,a2,...,am〉=a1
tl〈a1,a2,...,am〉=〈a2,...,am〉
len〈a1,a2,...,am〉=m
inds〈a1,a2,...,am〉={1,2,...,m}
elems〈a1,a2,...,am〉={a1,a2,...,am}
〈a1,a2,...,am〉(i)=ai
〈a,b,c〉̂〈a,b,d〉 = 〈a,b,c,a,b,d〉
〈a,b,c〉=〈a,b,c〉
〈a,b,c〉 6= 〈a,b,d〉

Informal Explication 320

• hd: Head gives the first element in a nonempty list.

• tl: Tail gives the remaining list of a nonempty list when Head is removed.

• len: Length gives the number of elements in a finite list.

• inds: Indices give the set of indices from 1 to the length of a nonempty list. For
empty lists, this set is the empty set as well.

• elems: Elements gives the possibly infinite set of all distinct elements in a list.

• ℓ(i): Indexing with a natural number, i larger than 0, into a list ℓ having a number
of elements larger than or equal to i, gives the ith element of the list.321

• ̂: Concatenates two operand lists into one. The elements of the left operand list
are followed by the elements of the right. The order with respect to each list is
maintained.

• =: The equal operator expresses that the two operand lists are identical.

• 6=: The non-equal operator expresses that the two operand lists are not identical.
322

The operations can also be defined as follows:

List Operator “Definitions”

value

is finite list: Aω → Bool

len q ≡
case is finite list(q) of

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

An RSL Primer 115

true → if q = 〈〉 then 0 else 1 + len tl q end,
false → chaos end

inds q ≡
case is finite list(q) of

true → { i | i:Nat • 1 ≤ i ≤ len q },
false → { i | i:Nat • i6=0 } end

elems q ≡ { q(i) | i:Nat • i ∈ inds q }

323

q(i) ≡
case (q,i) of

(〈〉,1) → chaos,
(,1) → let a:A,q′:Q • q=〈a〉̂q′ in a end

→ q(i−1)
end

fq ̂ iq ≡
〈 if 1 ≤ i ≤ len fq then fq(i) else iq(i − len fq) end

| i:Nat • if len iq6=chaos then i ≤ len fq+len end 〉
pre is finite list(fq)

iq′ = iq′′ ≡
inds iq′ = inds iq′′ ∧ ∀ i:Nat • i ∈ inds iq′ ⇒ iq′(i) = iq′′(i)

iq′ 6= iq′′ ≡ ∼(iq′ = iq′′)

A.2.9 Map Operations 324

Map Operator Signatures and Map Operation Examples

value

m(a): M → A
∼

→ B, m(a) = b

dom: M → A-infset [domain of map]
dom [a1 7→b1,a2 7→b2,...,an7→bn] = {a1,a2,...,an}

rng: M → B-infset [range of map]
rng [a1 7→b1,a2 7→b2,...,an7→bn] = {b1,b2,...,bn}

†: M × M → M [override extension]
[a 7→b,a′7→b′,a′′7→b′′] † [a′7→b′′,a′′7→b′] = [a 7→b,a′7→b′′,a′′7→b′]

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

116 CoMet 1

325

∪: M × M → M [merge ∪]
[a 7→b,a′7→b′,a′′7→b′′] ∪ [a′′′7→b′′′] = [a 7→b,a′7→b′,a′′7→b′′,a′′′7→b′′′]

\: M × A-infset → M [restriction by]
[a 7→b,a′7→b′,a′′7→b′′]\{a} = [a′7→b′,a′′7→b′′]

/: M × A-infset → M [restriction to]
[a 7→b,a′7→b′,a′′7→b′′]/{a′,a′′} = [a′7→b′,a′′7→b′′]

=,6=: M × M → Bool

◦: (A →m B) × (B →m C) → (A →m C) [composition]
[a 7→b,a′7→b′] ◦ [b7→c,b′ 7→c′,b′′7→c′′] = [a 7→c,a′7→c′]

Map Operation Explication

• m(a): Application gives the element that a maps to in the map m.

• dom: Domain/Definition Set gives the set of values which maps to in a map.

• rng: Range/Image Set gives the set of values which are mapped to in a map.

• †: Override/Extend. When applied to two operand maps, it gives the map which is
like an override of the left operand map by all or some “pairings” of the right operand
map.

• ∪: Merge. When applied to two operand maps, it gives a merge of these maps.

• \: Restriction. When applied to two operand maps, it gives the map which is a
restriction of the left operand map to the elements that are not in the right operand
set.

• /: Restriction. When applied to two operand maps, it gives the map which is a
restriction of the left operand map to the elements of the right operand set.

• =: The equal operator expresses that the two operand maps are identical.

• 6=: The non-equal operator expresses that the two operand maps are not identical.

• ◦: Composition. When applied to two operand maps, it gives the map from definition
set elements of the left operand map, m1, to the range elements of the right operand
map, m2, such that if a is in the definition set of m1 and maps into b, and if b is in
the definition set of m2 and maps into c, then a, in the composition, maps into c.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

An RSL Primer 117

Example 12 .Miscellaneous Net Expressions: Maps:

Example 3 on page 98 left out defining the well-formedness of the map types:

type

GRAPH = HI →m (LI →m HI-set)
HUBS = HI →m H
LINKS = LI →m L
Nγ = HUBS × LINKS × GRAPH

value

wf HUBS: H-set → Bool

wf HUBS(hubs) ≡ ∀ hi:HI • hi ∈ dom hubs ⇒ obs HI(hubs(hi))=hi
wf LINKS: L-set → Bool

wf LINKS(links) ≡ ∀ li:LI • li ∈ dom links ⇒ obs LI(links(li))=li
wf Nγ: Nγ → Bool

wf Nγ(hs,ls,g) ≡
dom hs = dom g ∧
∪ {dom g(hi)|hi:HI • hi ∈ dom g} = dom links ∧
∪ {rng g(hi)|hi:HI • hi ∈ dom g} = dom g ∧
∀ hi:HI • hi ∈ dom g ⇒ ∀ li:LI • li ∈ dom g(hi) ⇒ (g(hi))(li) 6=hi
∀ hi:HI • hi ∈ dom g ⇒ ∀ li:LI • li ∈ dom g(hi) ⇒

∃ hi′:HI • hi′ ∈ dom g ⇒ ∃ ! li:LI • li ∈ dom g(hi) ⇒ (g(hi))(li) = hi′ ∧ (g(hi′))(li) = hi

326

• Hubs record the same hubs as do the net corresponding GRAPH (dom hs = dom g ∧).

• GRAPH record the same links as do the net corresponding LINKS (∪ {dom g(hi)|hi:HI
• hi ∈ dom g} = dom links).

• The target (or range) hub identifiers of graphs are the same as the domain of the graph
(∪ {rng g(hi)|hi:HI • hi ∈ dom g} = dom g), that is none missing, no new ones !

• No links emanate from and are incident upon the same hub (∀ hi:HI • hi ∈ dom g ⇒ ∀
li:LI • li ∈ dom g(hi) ⇒ (g(hi))(li) 6=hi).

• If there is a link from one hub to another in the GRAPH, then the same link also connects
the other hub to the former (∀ hi:HI • hi ∈ dom g ⇒ ∀ li:LI • li ∈ dom g(hi) ⇒ ∃ hi′:HI
• hi′ ∈ dom g ⇒ ∃ ! li:LI • li ∈ dom g(hi) ⇒ (g(hi))(li) = hi′ ∧ (g(hi′))(li) = hi).

. End of Example 12

Map Operation “Redefinitions” 327

The map operations can also be defined as follows:

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

118 CoMet 1

value

rng m ≡ { m(a) | a:A • a ∈ dom m }

m1 † m2 ≡
[a 7→b | a:A,b:B •

a ∈ dom m1 \ dom m2 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a)]

m1 ∪ m2 ≡ [a 7→b | a:A,b:B •

a ∈ dom m1 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a)]

328

m \ s ≡ [a 7→m(a) | a:A • a ∈ dom m \ s]
m / s ≡ [a 7→m(a) | a:A • a ∈ dom m ∩ s]

m1 = m2 ≡
dom m1 = dom m2 ∧ ∀ a:A • a ∈ dom m1 ⇒ m1(a) = m2(a)

m1 6= m2 ≡ ∼(m1 = m2)

m◦n ≡
[a 7→c | a:A,c:C • a ∈ dom m ∧ c = n(m(a))]
pre rng m ⊆ dom n

A.3 The RSL Predicate Calculus 329

A.3.1 Propositional Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values (true or
false [or chaos]). Then:

Propositional Expressions

false, true

a, b, ..., c ∼a, a∧b, a∨b, a⇒b, a=b, a 6=b

are propositional expressions having Boolean values. ∼, ∧, ∨, ⇒, = and 6= are Boolean
connectives (i.e., operators). They can be read as: not, and, or, if then (or implies), equal

and not equal.

A.3.2 Simple Predicate Expressions 330

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values, let x, y, ...,
z (or term expressions) designate non-Boolean values and let i, j, . . ., k designate number
values, then:

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

An RSL Primer 119

Simple Predicate Expressions

false, true

a, b, ..., c
∼a, a∧b, a∨b, a⇒b, a=b, a 6=b
x=y, x6=y,
i<j, i≤j, i≥j, i6=j, i≥j, i>j

are simple predicate expressions.

A.3.3 Quantified Expressions 331

Let X, Y, . . ., C be type names or type expressions, and let P(x), Q(y) and R(z) designate
predicate expressions in which x, y and z are free. Then:

Quantified Expressions

∀ x:X • P(x)
∃ y:Y • Q(y)
∃ ! z:Z • R(z)

are quantified expressions — also being predicate expressions.
They are “read” as: For all x (values in type X) the predicate P(x) holds; there exists

(at least) one y (value in type Y) such that the predicate Q(y) holds; and there exists a
unique z (value in type Z) such that the predicate R(z) holds. 332

Example 13 .Predicates Over Net Quantities:

From earlier examples we show some predicates:

• Example 1: Right hand side of function definition is two way link(l):

∃ lσ:LΣ • lσ ∈ obs HΣ(l)∧card lσ=2 333

• Example 3:

– The Sorts + Observers + Axioms part:

∗ Right hand side of the wellformedness function wf N(n) definition:
∀ n:N • card obs Hs(n)≥2 ∧ card obs Ls(n)≥1 ∧ axioms 2.–3., 5.–6., and
8., (Page 13)

∗ Right hand side of the wellformedness function wf N(hs,ls) definition:
card hs≥2 ∧ card ls≥1 ...

334

– The Cartesians + Maps + Wellformedness part:

∗ Right hand side of the wf HUBS wellformedness function definition:
∀ hi:HI • hi ∈ dom hubs ⇒ obs HIhubs(hi)=hi

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

120 CoMet 1

∗ Right hand side of the wf LINKS wellformedness function definition:
∀ li:LI • li ∈ dom links ⇒ obs LIlinks(li)=li

∗ Right hand side of the wf N(hs,ls,g) wellformedness function definition:
[c] dom hs = dom g ∧
[d] ∪ {dom g(hi)|hi:HI • hi ∈ dom g} = dom links ∧
[e] ∪ {rng g(hi)|hi:HI • hi ∈ dom g} = dom g ∧
[f] ∀ hi:HI • hi ∈ dom g ⇒ ∀ li:LI • li ∈ dom g(hi) ⇒ (g(hi))(li) 6=hi
[g] ∀ hi:HI • hi ∈ dom g ⇒ ∀ li:LI • li ∈ dom g(hi) ⇒

∃ hi′:HI • hi′ ∈ dom g ⇒ ∃ ! li:LI • li ∈ dom g(hi) ⇒
(g(hi))(li) = hi′ ∧ (g(hi′))(li) = hi

. End of Example 13

A.4 λ-Calculus + Functions 335

A.4.1 The λ-Calculus Syntax

λ-Calculus Syntax

type /∗ A BNF Syntax: ∗/
〈L〉 ::= 〈V〉 | 〈F〉 | 〈A〉 | (〈A〉)
〈V〉 ::= /∗ variables, i.e. identifiers ∗/
〈F〉 ::= λ〈V〉 • 〈L〉
〈A〉 ::= (〈L〉〈L〉)

value /∗ Examples ∗/
〈L〉: e, f, a, ...
〈V〉: x, ...
〈F〉: λ x • e, ...
〈A〉: f a, (f a), f(a), (f)(a), ...

A.4.2 Free and Bound Variables 336

Free and Bound Variables Let x, y be variable names and e, f be λ-expressions.

• 〈V〉: Variable x is free in x.

• 〈F〉: x is free in λy •e if x 6= y and x is free in e.

• 〈A〉: x is free in f(e) if it is free in either f or e (i.e., also in both).

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

An RSL Primer 121

A.4.3 Substitution 337

In RSL, the following rules for substitution apply:
Substitution of an expression N for all free free x in M is expressed: subst([N/x]M).

Substitution

• subst([N/x]x) ≡ N;

• subst([N/x]a) ≡ a,

for all variables a 6= x;

• subst([N/x](P Q)) ≡ (subst([N/x]P) subst([N/x]Q));

• subst([N/x](λx•P)) ≡ λy•P;

• subst([N/x](λy•P)) ≡ λy• subst([N/x]P),

if x 6=y and y is not free in N or x is not free in P;

• subst([N/x](λy•P)) ≡ λz•subst([N/z]subst([z/y]P)),

if y 6=x and y is free in N and x is free in P

(where z is not free in (N P)).

A.4.4 α-Renaming and β-Reduction 338

α and β Conversions

• α-renaming: λx•M

If x, y are distinct variables then replacing x by y in λx•M results in λy•subst([y/x]M).
We can rename the formal parameter of a λ-function expression provided that no free
variables of its body M thereby become bound.

• β-reduction: (λx•M)(N)

All free occurrences of x in M are replaced by the expression N provided that no free
variables of N thereby become bound in the result. (λx•M)(N) ≡ subst([N/x]M)

339

Example 14 .Network Traffic:

We model traffic by introducing a number of model concepts. We simplify, without loosing the
essence of this example, namely to show the use of λ–functions, by omitting consideration of
dynamically changing nets. These are introduced next:

• Let us assume a net, n:N.

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

122 CoMet 1

• There is a dense set, T, of times – for which we omit giving an appropriate definition.

• There is a sort, V, of vehicles.

• TS is a dense subset of T.

• For each ts:TS we can define a minimum and a maximum time.340

• The MIN and MAX functions are meta-linguistic, that is, are not defined in our formal
specification language RSL, but can be given a satisfactory meaning.

• At any moment some vehicles, v:V, have a pos:Pos ition on the net and VP records those.

• A Pos ition is either on a link or at a hub.

• An onLink position can be designated by the link identifier, the identifiers of the from
and to hubs, and the fraction, f:F, of the distance down the link from the from hub to
the to hub.

• An atHub position just designates the hub (by its identifier).

• Traffic, tf:TF, is now a continuous function from T ime to NP (“recordings”).

• Modelling traffic in this way, in fact, in whichever way, entails a (“serious”) number of
well-formedness conditions. These are defined in wf TF (omitted: ...).

341

value

n:N
type

T, V
TS = T-infset

axiom

∀ ts:TS • ∃ tmin,tmax:T: tmin ∈ ts ∧ tmax ∈ ts ∧ ∀ t:T • t ∈ ts ⇒ tmin ≤ t ≤ tmax
[that is: ts = {MIN (ts)..MAX (ts)}]

type

VP = V →m Pos
TF′ = T → VP, TF = {|tf:TF′

•wf TF(tf)(n)|}
Pos = onL | atH
onL == mkLPos(hi:HI,li:LI,f:F,hi:HI), atH == mkHPos(hi:HI)

value

wf TF: TF→ N → Bool

wf TF(tf)(n) ≡ ...
DOMAIN : TF → TS
MIN ,MAX : TS → T

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

An RSL Primer 123

342

We have defined the continuous, composite entity of traffic. Now let us define an operation of
inserting a vehicle in a traffic.

• To insert a vehicle, v, in a traffic, tf , is prescribable as follows:

– the vehicle, v, must be designated;

– a time point, t, “inside” the traffic tf must be stated;

– a traffic, vtf , from time t of vehicle v must be stated;

– as well as traffic, tf , into which vtf is to be “merged”.

• The resulting traffic is referred to as tf ′.

value

insert V: V × T × TF → TF → TF
insert V(v,t,vtf)(tf) as tf′

343

• The function insert V is here defined in terms of a pair of pre/post conditions.

• The pre-condition can be prescribed as follows:

– The insertion time t must be within to open interval of time points in the traffic tf
to which insertion applies.

– The vehicle v must not be among the vehicle positions of tf .

– The vehicle must be the only vehicle “contained” in the “inserted” traffic vtf .

pre: MIN (DOMAIN (tf)≤t≤MAX (DOMAIN (tf)) ∧
∀ t′:T • t′ ∈ DOMAIN (tf) ⇒ v 6∈ dom tf(t′) ∧
MIN (DOMAIN (vtf)) = t ∧
∀ t′:T•t′ ∈ DOMAIN (vtf) ⇒ dom vtf(t′)={v}

344

• The post condition “defines” tf ′, the traffic resulting from merging vtf with tf :

– Let ts be the time points of tf and vtf , a time interval.

– The result traffic, tf ′, is defines as a λ-function.

– For any t′′ in the time interval

– if t′′ is less than t, the insertion time, then tf ′ is as tf ;

– if t′′ is t or larger then tf ′ applied to t′′, i.e., tf ′(t′′)

∗ for any v′ : V different from v yields the same as (tf(t))(v′),

∗ but for v it yields (vtf(t))(v).

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

124 CoMet 1

345

post: tf′ = λt′′•

let ts = DOMAIN (tf) ∪ DOMAIN (vtf) in

if MIN (ts) ≤ t′′ ≤ MAX (ts)
then

((t′′<t) → tf(t′′),
(t′′≥t) → [v′7→ if v′6=v then (tf(t))(v′) else (vtf(t))(v) end

|v′:V•v′ ∈ vehicles(tf)])
else chaos end

end

assumption: wf TF(vtf)∧wf TF(tf)
theorem: wf TF(tf′)

value

vehicles: TF → V-set

vehicles(tf) ≡ {v|t:T,v:V•t ∈ DOMAIN (tf)∧v ∈ dom tf(t)}

We leave it as an exercise for the reader to define functions for: removing a vehicle from a
traffic, changing to course of a vehicle from an originally (or changed) vehicle traffic to another.
etcetera.
. .End of Example 14

A.4.5 Function Signatures 346

For sorts we may want to postulate some functions:

Sorts and Function Signatures

type

A, B, ..., C
value

obs B: A → B
...
obs C: A → C

These functions cannot be defined. Once a domain is presented in which sort A and sorts
or types B, ... and C occurs these observer functions can be demonstrated.347

Example 15 .Hub and Link Observers:

Let a net with several hubs and links be presented. Now observer functions obs Hs and obs Ls
can be demonstrated: one simply “walks” along the net, pointing out this hub and that link,
one-by-one until all the net has been visited.348

The observer functions obs HI and obs LI can be likewise demonstrated, for example: when
a hub is “visited” its unique identification can be postulated (and “calculated”) to be the unique

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

An RSL Primer 125

geographic position of the hub one which is not overlapped by any other hub (or link), and
likewise for links.

. End of Example 15

A.4.6 Function Definitions 349

Functions can be defined explicitly:

type

A, B
value

f: A → B [a total function]
f(a expr) ≡ b expr

g: A
∼

→ B [a partial function]
g(a expr) ≡ b expr
pre P(a expr)
P: A → Bool

a expr, b expr are A, respectively B valued expressions of any of the kinds illustrated in
earlier and later sections of this primer. 350

Or functions can be defined implicitly:

value

f: A→B
f(a expr) as b
post P(a expr,b)
P: A×B→Bool

g: A
∼

→B
g(a expr) as b
pre P′(a expr)
post P(a expr,b)
P′: A→Bool

where b is just an identifier.

The symbol
∼

→ indicates that the function is partial and thus not defined for all arguments.
Partial functions should be assisted by preconditions stating the criteria for arguments to
be meaningful to the function. 351

Finally functions, f, g, ..., h, can be defined in terms of axioms over function identifiers,
f, g, ..., h, and over identifiers of function arguments and results.

type

A, B, ..., C, D
value

f: A → B, g: B → C, ..., h: C → D
axiom

∀ a:A, b:B, ..., c:C, d:D
P1(f,g,...,h,a,b,...,c,d) ∧ ... ∧ Pn(f,g,...,h,a,b,...,c,d)

where P1, . . . , Pm and Q1, . . . , Qn designate suitable predicate expressions. 352

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

126 CoMet 1

Example 16 . Axioms over Hubs, Links and Their Observers:

The axioms displayed in Items 2–3 and 5–8 on Page 13 of Sect. 2.1 demonstrates how a num-
ber of entities and observer functions are constrained (that is, partially defined) by function
signatures.

. .End of Example 16

A.5 Other Applicative Expressions 353

A.5.1 Simple let Expressions

Simple (i.e., nonrecursive) let expressions:

Let Expressions

let a = Ed in Eb(a) end

is an “expanded” form of:

(λa.Eb(a))(Ed)

A.5.2 Recursive let Expressions 354

Recursive let expressions are written as:

Recursive let Expressions

let f = λa•E(f,a) in B(f,a) end

let f = (λg•λa•E(g,a))(f) in B(f.a) end

let f = F(f) in E(f,a) end where F ≡ λg•λa•E(g,a)
let f = YF in B(f,a) end where YF = F(YF)

We read f = YF as “f is a fix point of F”.

A.5.3 Non-deterministic let Clause 355

The non-deterministic let clause:

let a:A • P(a) in B(a) end

expresses the non-deterministic selection of a value a of type A which satisfies a predicate
P(a) for evaluation in the body B(a). If no a:A • P(a) the clause evaluates to chaos.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

An RSL Primer 127

A.5.4 Pattern and “Wild Card” let Expressions 356

Patterns and wild cards can be used:

Patterns

let {a} ∪ s = set in ... end

let {a, } ∪ s = set in ... end

let (a,b,...,c) = cart in ... end

let (a, ,...,c) = cart in ... end

let 〈a〉̂ℓ = list in ... end

let 〈a, ,b〉̂ℓ = list in ... end

let [a 7→b] ∪ m = map in ... end

let [a 7→b,] ∪ m = map in ... end

A.5.5 Conditionals 357

Various kinds of conditional expressions are offered by RSL:

Conditionals

if b expr then c expr else a expr
end

if b expr then c expr end ≡ /∗ same as: ∗/
if b expr then c expr else skip end

if b expr 1 then c expr 1
elsif b expr 2 then c expr 2
elsif b expr 3 then c expr 3
...
elsif b expr n then c expr n end

case expr of

choice pattern 1 → expr 1,
choice pattern 2 → expr 2,
...
choice pattern n or wild card → expr n end

358

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

128 CoMet 1

Example 17 .Choice Pattern Case Expressions: Insert Links:

We consider the meaning of the Insert operation designators.

33. The insert operation takes an Insert command and a net and yields either a new net
or chaos for the case where the insertion command “is at odds” with, that is, is not
semantically well-formed with respect to the net.

34. We characterise the “is not at odds”, i.e., is semantically well-formed, that is:

• pre int Insert(op)(hs,ls),

as follows: it is a propositional function which applies to Insert actions, op, and nets,
(hs.ls), and yields a truth value if the below relation between the command arguments
and the net is satisfied. Let (hs,ls) be a value of type N.359

35. If the command is of the form 2oldH(hi′,l,hi′) then

⋆1 hi′ must be the identifier of a hub in hs,

⋆s2 l must not be in ls and its identifier must (also) not be observable in ls, and

⋆3 hi′′ must be the identifier of a(nother) hub in hs.

36. If the command is of the form 1oldH1newH(hi,l,h) then

⋆1 hi must be the identifier of a hub in hs,

⋆2 l must not be in ls and its identifier must (also) not be observable in ls, and

⋆3 h must not be in hs and its identifier must (also) not be observable in hs.
360

37. If the command is of the form 2newH(h′,l,h′′) then

⋆1 h′ — left to the reader as an exercise (see formalisation !),

⋆2 l — left to the reader as an exercise (see formalisation !), and

⋆3 h′′ — left to the reader as an exercise (see formalisation !).

Conditions concerning the new link (second ⋆s, ⋆2, in the above three cases) can be expressed
independent of the insert command category.361

value

33 int Insert: Insert → N
∼

→ N
34′ pre int Insert: Ins → N → Bool

34′′ pre int Insert(Ins(op))(hs,ls) ≡
⋆2 s l(op) 6∈ ls ∧ obs LI(s l(op)) 6∈ iols(ls) ∧

case op of

35) 2oldH(hi′,l,hi′′) → {hi′,hi′′}∈ iohs(hs),

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

An RSL Primer 129

36) 1oldH1newH(hi,l,h) →
hi ∈ iohs(hs) ∧ h6∈ hs ∧ obs HI(h) 6∈ iohs(hs),

37) 2newH(h′,l,h′′) →
{h′,h′′}∩ hs={} ∧ {obs HI(h′),obs HI(h′′)}∩ iohs(hs)={}

end

RSL Explanation

• 33: The value clause value int Insert: Insert → N
∼

→ N names a value, int Insert, and
defines its type to be Insert → N

∼

→ N, that is, a partial function (
∼

→) from Insert
commands and nets (N) to nets.
(int Insert is thus a function. What that function calculates will be defined later.)

• 34′: The predicate pre int Insert: Insert → N → Bool function (which is used in con-
nection with int Insert to assert semantic well-formedness) applies to Insert commands
and nets and yield truth value true if the command can be meaningfully performed on
the net state.

• 34′′: The action pre int Insert(op)(hs,ls) (that is, the effect of performing the function
pre int Insert on an Insert command and a net state is defined by a case distinction over
the category of the Insert command. But first we test the common property:

• ⋆2: s l(op) 6∈ls∧obs LI(s l(op)) 6∈iols(ls), namely that the new link is not an existing net
link and that its identifier is not already known.

– 35): If the Insert command is of kind 2oldH(hi’,l,hi”) then {hi′,hi′′}∈ iohs(hs), that
is, then the two distinct argument hub identifiers must not be in the set of known
hub identifiers, i.e., of the existing hubs hs.

– 36): If the Insert command is of kind 1oldH1newH(hi,l,h) then ... exercise left as
an exercises to the reader.

– 37): If the Insert command is of kind 2newH(h’,l,h”) ... exercise left as an exercises
to the reader. The set intersection operation is defined in Sect. A.2.6 on page 111
Item 25 on page 112.

End of RSL Explanation
362

38. Given a net, (hs,ls), and given a hub identifier, (hi), which can be observed from some
hub in the net, xtr H(hi)(hs,ls) extracts the hub with that identifier.

39. Given a net, (hs,ls), and given a link identifier, (li), which can be observed from some
link in the net, xtr L(li)(hs,ls) extracts the hub with that identifier.

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

130 CoMet 1

value

38: xtr H: HI → N
∼

→ H
38: xtr H(hi)(hs,) ≡ let h:H•h ∈ hs ∧ obs HI(h)=hi in h end

pre hi ∈ iohs(hs)

39: xtr L: HI → N
∼

→ H
39: xtr L(li)(,ls) ≡ let l:L•l ∈ ls ∧ obs LI(l)=li in l end

pre li ∈ iols(ls)

RSL Explanation

• 38: Function application xtr H(hi)(hs,) yields the hub h, i.e. the value h of type H,
such that (•) h is in hs and h has hub identifier hi.

• 38: The wild-card, , expresses that the extraction (xtr H) function does not need the
L-set argument.

• 39: Left as an exercise for the reader.

End of RSL Explanation
363

40. When a new link is joined to an existing hub then the observable link identifiers of that
hub must be updated to reflect the link identifier of the new link.

41. When an existing link is removed from a remaining hub then the observable link identifiers
of that hub must be updated to reflect the removed link (identifier).

value

aLI: H × LI → H, rLI: H × LI
∼

→ H
40: aLI(h,li) as h′

pre li 6∈ obs LIs(h)
post obs LIs(h′) = {li} ∪ obs LIs(h) ∧ non I eq(h,h′)

41: rLI(h′,li) as h
pre li ∈ obs LIs(h′) ∧ card obs LIs(h′)≥2
post obs LIs(h) = obs LIs(h′) \ {li} ∧ non I eq(h,h′)

RSL Explanation

• 40: The add link identifier function aLI:

– The function definition clause aLI(h,li) as h′ defines the application of aLI to a pair
(h,li) to yield an update, h′ of h.

– The pre-condition pre li 6∈ obs LIs(h) expresses that the link identifier li must not
be observable h.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

An RSL Primer 131

– The post-condition post obs LIs(h) = obs LIs(h′) \ {li} ∧ non I eq(h,h′) expresses
that the link identifiers of the resulting hub are those of the argument hub except
(\) that the argument link identifier is not in the resulting hub.

• 41: The remove link identifier function rLI:

– The function definition clause rLI(h′,li) as h defines the application of rLI to a pair
(h′,li) to yield an update, h of h′.

– The pre-condition clause pre li ∈ obs LIs(h′) ∧ card obs LIs(h′)≥2 expresses that
the link identifier li must not be observable h.

– post-condition clause post obs LIs(h) = obs LIs(h′) \ {li} ∧ non I eq(h,h′) expresses
that the link identifiers of the resulting hub are those of the argument hub except
that the argument link identifier is not in the resulting hub.

End of RSL Explanation
364

42. If the Insert command is of kind 2newH(h’,l,h”) then the updated net of hubs and links,
has

• the hubs hs joined, ∪, by the set {h′,h′′} and

• the links ls joined by the singleton set of {l}.

43. If the Insert command is of kind 1oldH1newH(hi,l,h) then the updated net of hubs and
links, has

43.1 : the hub identified by hi updated, hi′, to reflect the link connected to that hub.

43.2 : The set of hubs has the hub identified by hi replaced by the updated hub hi′ and
the new hub.

43.2 : The set of links augmented by the new link.

44. If the Insert command is of kind 2oldH(hi’,l,hi”) then

44.1–.2 : the two connecting hubs are updated to reflect the new link,

44.3 : and the resulting sets of hubs and links updated.

365

int Insert(op)(hs,ls) ≡
⋆i case op of

42 2newH(h′,l,h′′) → (hs ∪ {h′,h′′},ls ∪ {l}),
43 1oldH1newH(hi,l,h) →
43.1 let h′ = aLI(xtr H(hi,hs),obs LI(l)) in

43.2 (hs\{xtr H(hi,hs)}∪{h,h′},ls ∪{l}) end,
44 2oldH(hi′,l,hi′′) →

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

132 CoMet 1

44.1 let hsδ = {aLI(xtr H(hi′,hs),obs LI(l)),
44.2 aLI(xtr H(hi′′,hs),obs LI(l))} in

44.3 (hs\{xtr H(hi′,hs),xtr H(hi′′,hs)}∪ hsδ,ls ∪{l}) end

⋆j end

⋆k pre pre int Insert(op)(hs,ls)

RSL Explanation

• ⋆i–⋆j: The clause case op of p1 → c1, p2 → c2, . . . pn → cn end is a conditional clause.

• ⋆k: The pre-condition expresses that the insert command is semantically well-formed —
which means that those reference identifiers that are used are known and that the new
link and hubs are not known in the net.

• ⋆i + 42: If op is of the form 2newH(h′,l,h′′ then — the narrative explains the rest;

else

• ⋆i + 43: If op is of the form 1oldH1newH(hi,l,h) then

– 43.1: h′ is the known hub (identified by hi) updated to reflect the new link being
connected to that hub,

– 43.2: and the pair [(updated hs,updated ls)] reflects the new net: the hubs have the
hub originally known by hi replaced by h′, and the links have been simple extended
(∪) by the singleton set of the new link;

else

• ⋆i + 44: 44: If op is of the form 2oldH(hi′,l,hi′′) then

– 44.1: the first element of the set of two hubs (hsδ) reflect one of the updated hubs,

– 44.2: the second element of the set of two hubs (hsδ) reflect the other of the updated
hubs,

– 44.3: the set of two original hubs known by the argument hub identifiers are removed
and replaced by the set hsδ;

else — well, there is no need for a further ‘else’ part as the operator can only be of either
of the three mutually exclusive forms !

End of RSL Explanation
366

45. The remove command is of the form Rmv(li) for some li.

46. We now sketch the meaning of removing a link:

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

An RSL Primer 133

a) The link identifier, li, is, by the pre int Remove pre-condition, that of a link, l, in
the net.

b) That link connects to two hubs, let us refer to them as h′ and h′.

c) For each of these two hubs, say h, the following holds wrt. removal of their con-
necting link:

i. If l is the only link connected to h then hub h is removed. This may mean that

• either one

• or two hubs

are also removed when the link is removed.

ii. If l is not the only link connected to h then the hub h is modified to reflect that
it is no longer connected to l.

d) The resulting net is that of the pair of adjusted set of hubs and links.

367

value

45 int Remove: Rmv → N
∼

→ N
46 int Remove(Rmv(li))(hs,ls) ≡
46a) let l = xtr L(li)(ls), {hi′,hi′′} = obs HIs(l) in

46b) let {h′,h′′} = {xtr H(hi′,hs),xtr H(hi′′,hs)} in

46c) let hs′ = cond rmv(h′,hs) ∪ cond rmv H(h′′,hs) in

46d) (hs\{h′,h′′} ∪ hs′,ls\{l}) end end end

46a) pre li ∈ iols(ls)

cond rmv: LI × H × H-set → H-set

cond rmv(li,h,hs) ≡
46(c)i) if obs HIs(h)={li} then {}
46(c)ii) else {sLI(li,h)} end

pre li ∈ obs HIs(h)

RSL Explanation

• 45: The int Remove operation applies to a remove command Rmv(li) and a net (hs,ls)
and yields a net — provided the remove command is semantically well-formed.

• 46: To Remove a link identifier by li from the net (hs,ls) can be formalised as follows:

– 46a): obtain the link l from its identifier li and the set of links ls, and

– 46a): obtain the identifiers, {hi′,hi′′}, of the two distinct hubs to which link l is
connected;

– 46b): then obtain the hubs {h′,h′′} with these identifiers;

– 46c): now examine cond rmv each of these hubs (see Lines 46(c)i)–46(c)ii)).

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

134 CoMet 1

◦ The examination function cond rmv either yields an empty set or the singleton
set of one modified hub (a link identifier has been removed).

◦ 46c) The set, hs′, of zero, one or two modified hubs is yielded.

◦ That set is joined to the result of removing the hubs {h′,h′′}

◦ and the set of links that result from removing l from ls.

The conditional hub remove function cond rmv

– 46(c)i): either yields the empty set (of no hubs) if li is the only link identifier inh,

– 46(c)ii): or yields a modification of h in which the link identifier li is no longer
observable.

End of RSL Explanation

. End of Example 17

A.5.6 Operator/Operand Expressions 368

Operator/Operand Expressions

〈Expr〉 ::=
〈Prefix Op〉 〈Expr〉
| 〈Expr〉 〈Infix Op〉 〈Expr〉
| 〈Expr〉 〈Suffix Op〉
| ...

〈Prefix Op〉 ::=
− | ∼ | ∪ | ∩ | card | len | inds | elems | hd | tl | dom | rng

〈Infix Op〉 ::=
= | 6= | ≡ | + | − | ∗ | ↑ | / | < | ≤ | ≥ | > | ∧ | ∨ | ⇒
| ∈ | 6∈ | ∪ | ∩ | \ | ⊂ | ⊆ | ⊇ | ⊃ | ̂ | † | ◦

〈Suffix Op〉 ::= !

A.6 Imperative Constructs 369

A.6.1 Statements and State Changes

Often, following the RAISE method, software development starts with highly abstract,
sorts and applicative constructs which, through stages of refinements, are turned into
concrete types and imperative constructs.

Imperative constructs are thus inevitable in RSL.

Unit

value

stmt: Unit → Unit

stmt()

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

An RSL Primer 135

• The Unit clause, in a sense, denotes “an underlying state”

– which we, for simplicity, can consider as

– a mapping from identifiers of declared variables into their values.

• Statements accept no arguments and, usually, operate on the state

– through “reading” the value(s) of declared variables and

– through “writing”, i.e., assigning values to such declared variables.

• Statement execution thus changes the state (of declared variables).

• Unit → Unit designates a function from states to states.

• Statements, stmt, denote state-to-state changing functions.

• Affixing () as an “only” arguments to a function “means” that () is an argument of
type Unit.

A.6.2 Variables and Assignment 370

Variables and Assignment

0. variable v:Type := expression
1. v := expr

A.6.3 Statement Sequences and skip

Sequencing is expressed using the ‘;’ operator. skip is the empty statement having no
value or side-effect.

2. skip

3. stm 1;stm 2;...;stm n

A.6.4 Imperative Conditionals

4. if expr then stm c else stm a end

5. case e of: p 1→S 1(p 1),...,p n→S n(p n) end

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

136 CoMet 1

A.6.5 Iterative Conditionals 371

6. while expr do stm end

7. do stmt until expr end

A.6.6 Iterative Sequencing

8. for i in list • P(list(i)) do S(list(i)) end

9. for e in set • P(e) do S(e) end

A.7 Process Constructs 372

A.7.1 Process Channels

Let A, B and C stand for three types of (channel) messages and i:IIdx, j:JIdx for channel
array indexes, then:

Process Channels

channel

c:A
channel

{k[i]|i:IIdx}:B
{ch[i,j]i:IIdx,j:JIdx}:C

declare a channel, c, and a set (an array) of channels, k[i], capable of communicating values
of the designated types (A and B).373

Example 18 .Modelling Connected Links and Hubs:

Examples (18–21) of this section, i.e., Sect. A.7 are building up a model of one form of meaning
of a transport net. We model the movement of vehicles around hubs and links. We think of each
hub, each link and each vehicle to be a process. These processes communicate via channels.374

• We assume a net, n : N , and a set, vs, of vehicles.

• Each vehicle can potentially interact

– with each hub and

– with each link.

• Array channel indices (vi,hi):IVH and (vi,li):IVL serve to effect these interactions.

• Each hub can interact with each of its connected links and indices (hi,li):IHL serves these
interactions.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

An RSL Primer 137

type

N, V, VI
value

n:N, vs:V-set

obs VI: V → VI
type

H, L, HI, LI, M
IVH = VI×HI, IVL = VI×LI, IHL = HI×LI

375

• We need some auxiliary quantities in order to be able to express subsequent channel
declarations.

• Given that we assume a net, n : N and a set of vehicles, vs : V S, we can now define the
following (global) values:

– the sets of hubs, hs, and links, ls of the net;

– the set, ivhs, of indices between vehicles and hubs,

– the set, ivls, of indices between vehicles and links, and

– the set, ihls, of indices between hubs and links.

value

hs:H-set = obs Hs(n), ls:L-set = obs Ls(n)
his:HI-set = {obs HI(h)|h:H•h ∈ hs}, lis:LI-set = {obs LI(h)|l:L•l ∈ ls},
ivhs:IVH-set = {(obs VI(v),obs HI(h))|v:V,h:H•v ∈ vs∧h ∈ hs}
ivls:IVL-set = {(obs VI(v),obs LI(l))|v:V,l:L•v ∈ vs∧l ∈ ls}
ihls:IHL-set = {(hi,li)|h:H,(hi,li):IHL• h ∈ hs∧hi=obs HI(h)∧li ∈ obs LIs(h)}

376

• We are now ready to declare the channels:

– a set of channels, {vh[i]|i:IVH•i∈ivhs} between vehicles and all potentially traversable
hubs;

– a set of channels, {vh[i]|i:IVH•i∈ivhs} between vehicles and all potentially traversable
links; and

– a set of channels, {hl[i]|i:IHL•i∈ihls}, between hubs and connected links.

channel

{vh[i] | i:IVH • i ∈ ivhs} : M
{vl[i] | i:IVL • i ∈ ivls} : M
{hl[i] | i:IHL • i ∈ ihls} : M

. End of Example 18

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

138 CoMet 1

A.7.2 Process Definitions 377

A process definition is a function definition. The below signatures are just examples. They
emphasise that process functions must somehow express, in their signature, via which
channels they wish to engage in input and output events.

Processes P and Q are to interact, and to do so “ad infinitum”. Processes R and S are
to interact, and to do so “once”, and then yielding B, respectively D values.378

value

P: Unit → in c out {k[i]|i:IIdx} Unit

Q: i:KIdx → out c in k[i] Unit

P() ≡ ... c ? ... k[i] ! e ... ; P()
Q(i) ≡ ... c ! e ... k[i] ? ... ; Q(i)

k[i]!v k[i]?

c? c!e

P() Q(i)

Figure 9: The P —— Q Process

379

Example 19 .Communicating Hubs, Links and Vehicles:

• Hubs interact with links and vehicles:

– with all immediately adjacent links,

– and with potentially all vehicles.

• Links interact with hubs and vehicles:

– with both adjacent hubs,

– and with potentially all vehicles.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

An RSL Primer 139

• Vehicles interact with hubs and links:

– with potentially all hubs.

– and with potentially all links.

380

value

hub: hi:HI × h:H → in,out {hl[(hi,li)|li:LI•li ∈ obs LIs(h)]}
in,out {vh[(vi,hi)|vi:VI•vi ∈ vis]} Unit

link: li:LI × l:L → in,out {hl[(hi,li)|hi:HI•hi ∈ obs HIs(l)]}
in,out {vl[(vi,li)|vi:VI•vi ∈ vis]} Unit

vehicle: vi:VI → (Pos × Net) → v:V → in,out {vh[(vi,hi)|hi:HI•hi ∈ his]} Unit

in,out {vl[(vi,li)|li:LI•li ∈ lis]} Unit

. End of Example 19

A.7.3 Process Composition 381

Let P and Q stand for names of process functions, i.e., of functions which express will-
ingness to engage in input and/or output events, thereby communicating over declared
channels. Let P and Q stand for process expressions, and let Pi stand for an indexed
process expression, then:

P ‖ Q Parallel composition
P ⌈⌉⌊⌋ Q Nondeterministic external choice (either/or)
P ⌈⌉ Q Nondeterministic internal choice (either/or)
P –‖ Q Interlock parallel composition
O { Pi | i:Idx } Distributed composition, O = ‖,⌈⌉⌊⌋,⌈⌉,–‖

express the parallel (‖) of two processes, or the nondeterministic choice between two pro-
cesses: either external (⌈⌉⌊⌋) or internal (⌈⌉). The interlock (–‖) composition expresses that
the two processes are forced to communicate only with one another, until one of them
terminates. 382

Example 20 .Modelling Transport Nets:

• The net, with vehicles, potential or actual, is now considered a process.

• It is the parallel composition of

– all hub processes,

– all link processes and

– all vehicle processes.

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

140 CoMet 1

value

net: N → V-set → Unit

net(n)(vs) ≡
‖ {hub(obs HI(h))(h)|h:H•h ∈ obs Hs(n)} ‖
‖ {link(obs LI(l))(l)|l:L•l ∈ obs Ls(n)} ‖
‖ {vehicle(obs VI(v))(obs PN(v))(v)|v:V•v ∈ vs}

obs PN: V → (Pos×Net)

383

• We illustrate a schematic definition of simplified hub processes.

• The hub process alternates, internally non-deterministically, ⌈⌉, between three sub-processes

– a sub-process which serves the link-hub connections,

– a sub-process which serves thos vehicles which communicate that they somehow
wish to enter or leave (or do something else with respect to) the hub, and

– a sub-process which serves the hub itself — whatever that is !

hub(hi)(h) ≡
⌈⌉⌊⌋{let m = hl[(hi,li)] ? in hub(hi)(Ehℓ

(li)(m)(h)) end|i:LI•li ∈ obs LI(h)}
⌈⌉ ⌈⌉⌊⌋{let m = vh[(vi,hi)] ? in hub(vi)(Ehv

(vi)(m)(h)) end|vi:VI•vi ∈ vis}
⌈⌉ hub(hi)(Ehown

(h))

384

• The three auxiliary processes:

– Ehℓ
update the hub with respect to (wrt.) connected link, li, information m,

– Ehv
update the hub with wrt. vehicle, vi, information m,

– Ehown
update the hub with wrt. whatever the hub so decides. An example could be

signalling dependent on previous link-to-hub communicated information, say about
traffic density.

Ehℓ
: LI → M → H → H

Ehv
: VI → M → H → H

Ehown
: H → H

The reader is encouraged to sketch/define similarly schematic link and vehicle processes.
.
. .End of Example 20

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

An RSL Primer 141

A.7.4 Input/Output Events 385

Let c and k[i] designate channels of type A and e expression values of type A, then:

[1] c?, k[i]? input A value
[2] c!e, k[i]!e output A value

value

[3] P: ... → out c ..., P(...) ≡ ... c!e ... offer an A value,
[4] Q: ... → in c ..., Q(...) ≡ ... c? ... accept an A value
[5] S: ... → ..., S(...) = P(...)‖Q(...) synchronise and communicate

[5] expresses the willingness of a process to engage in an event that [1,3] “reads” an input,
respectively [2,4] “writes” an output. If process P reaches the c!e “program point before”
process Q ‘reaches program point’ c? then process P “waits” on Q — and vice versa.
Once both processes have reached these respective program points they “synchronise while
communicating the message vale e.

The process function definitions (i.e., their bodies) express possible [output/input]
events. 386

Example 21 . Modelling Vehicle Movements:

• Whereas hubs and links are modelled as basically static, passive, that is, inert, processes
we shall consider vehicles to be “highly” dynamic, active processes.

• We assume that a vehicle possesses knowledge about the road net.

– The road net is here abstracted as an awareness of

– which links, by their link identifiers,

– are connected to any given hub, designated by its hub identifier,

– the length of the link,

– and the hub to which the link is connected “at the other end”, also by its hub
identifier

387

• A vehicle is further modelled by its current position on the net in terms of either hub or
link positions

– designated by appropriate identifiers

– and, when “on a link” “how far down the link”, by a measure of a fraction of the
total length of the link, the vehicle has progressed.

type

Net = HI →m (LI →m HI)
Pos = atH | onL
atH == mk atH(hi:HI)
onL == mk onL(fhi:HI,li:LI,f:F,thi:HI)
F = {|f:Real•0≤f≤1|}

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

142 CoMet 1

388

• We first assume that the vehicle is at a hub.

• There are now two possibilities (1–2] versus [4–8]).

– Either the vehicle remains at that hub

∗ [1] which is expressed by some non-deterministic wait

∗ [2] followed by a resumption of being that vehicle at that location.

– [3] Or the vehicle (driver) decides to “move on”:

∗ [5] Onto a link, li,

∗ [4] among the links, lis, emanating from the hub,

∗ [6] and towards a next hub, hi′.

– [4,6] The lis and hi′ quantities are obtained from the vehicles own knowledge of the
net.

– [7] The hub and the chosen link are notified by the vehicle of its leaving the hub
and entering the link,

– [8] whereupon the vehicle resumes its being a vehicle at the initial location on the
chosen link.

389

• The vehicle chooses between these two possibilities by an internal non-deterministic choice
([3]).

type

M == mk L H(li:LI,hi:HI) | mk H L(hi:HI,li:LI)
value

vehicle: VI → (Pos × Net) → V → Unit

vehicle(vi)(mk atH(hi),net)(v) ≡
[1] (wait ;
[2] vehicle(vi)(mk atH(hi),net)(v))
[3] ⌈⌉
[4] (let lis=dom net(hi) in

[5] let li:LI•li ∈ lis in

[6] let hi′=(net(hi))(li) in

[7] (vh[(vi,hi)]!mk H L(hi,li)‖vl[(vi,li)]!mk H L(hi,li));
[8] vehicle(vi)(mk onL(hi,li,0,hi′),net)(v)
[9] end end end)

390

• We then assume that the vehicle is on a link and at a certain distance “down”, f, that
link.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

An RSL Primer 143

• There are now two possibilities ([1–2] versus [4–7]).

– Either the vehicle remains at that hub

∗ [1′] which is expressed by some non-deterministic wait

∗ [2′] followed by a resumption of being that vehicle at that location.

– [3′] Or the vehicle (driver) decides to “move on”.

– [4′] Either

∗ [5′] The vehicle is at the very end of the link and signals the link and the hub
of its leaving the link and entering the hub,

∗ [6′] whereupon the vehicle resumes its being a vehicle at hub h′.

– [7′] or the vehicle moves further down, some non-zero fraction down the link.

• The vehicle chooses between these two possibilities by an internal non-deterministic choice
([3]).

391

type

M == mk L H(li:LI,hi:HI) | mk H L(hi:HI,li:LI)
value

δ:Real = move(h,f) axiom 0<δ≪1
vehicle(vi)(mk onL(hi,li,f,hi′),net)(v) ≡
[1′] (wait ;
[2′] vehicle(vi)(mk onL(hi,li,f,hi′),net)(v))
[3′] ⌈⌉
[4′] (case f of

[5′] 1 → ((vl[vi,hi′]!mk L H(li,hi′)‖vh[vi,li]!mk L H(li,hi′));
[6′] vehicle(vi)(mk atH(hi′),net)(v)),
[7′] → vehicle(vi)(mk onL(hi,li,f+δ,hi′),net)(v)
[8′] end)
move: H × F → F

. End of Example 21

A.8 Simple RSL Specifications 392

Besides the above constructs RSL also possesses module-oriented scheme, class and object
constructs. We shall not cover these here. An RSL specification is then simply a sequence
of one or more clusters of zero, one or more sort and/or type definitions, zero, one or
more variable declarations, zero, one or more channel declarations, zero, one or more value
definitions (including functions) and zero, one or more and axioms. We can illustrate these
specification components schematically: 393

Simple RSL Specifications

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

144 CoMet 1

type

A, B, C, D, E, F, G

Hf = A-set, Hi = A-infset

J = B×C×...×D

Kf = E∗, Ki = Eω

L = F→m G

Mt = J → Kf, Mp = J
∼

→ Ki

N == alpha | beta | ... | omega

O == mk Hf(as:Hf)

| mk Kf(el:Kf) | ...
P = Hf | Kf | L | ...

variable

vhf:Hf := 〈〉
channel

chf:F, chg:G, {chb[i]|i:A}:B

value

va:A, vb:B, ..., ve:E

f1: A → B, f2: C
∼

→ D

f1(a) ≡ Ef1(a)

f2: E → in|out chf F

f2(e) ≡ Ef2(e)

f3: Unit → in chf out chg Unit

...
axiom

Pi(f1,va),

Pj(f2,vb),

...
Pk(f3,ve)

394

The ordering of these clauses is immaterial. Intuitively the meaning of these definitions
and declarations are the following.

The type clause introduces a number of user-defined type names; the type names are
visible anywhere in the specification; and either denote sorts or concrete types.

The variable clause declares some variable names; a variable name denote some value
of decalred type; the variable names are visible anywhere in the specification: assigned to
(‘written’) or values ‘read’.

The channel clause declares some channel names; either simple channels or arrays of
channels of some type; the channel names are visible anywhere in the specification.395

The value clause bind (constant) values to value names. These value names are visible
anywhere in the specification. The specification

type

A
value

a:A

non-deterministically binds a to a value of type A. Thuis includes, for example

type

A, B
value

f: A → B

which non-deterministically binds f to a function value of type A→B.396

The axiom clause is usually expressed as several “comma (,) separated” predicates:

Pi(Ai, fi, vi),Pj(Aj, fj , vj), . . .,Pk(Ak, fk, vk)

where (Ak, fℓ, vℓ) is an abbreviation for Aℓ1 , Aℓ2 , . . . , At, fℓ1 , fℓ2 , . . . , fℓf
, vℓ1 , vℓ2, . . . , vℓv

.
The indexed sort or type names, A and the indexed function names, d, are defined elsewhere
in the specification. The index value names, v are usually names of bound ‘variables’ of
universally or existentially quantified predicates of the indexed (“comma”-separated) P.397

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

An RSL Primer 145

Example 22 .A Neat Little “System”:

We present a self-contained specification of a simple system: The system models vehicles
moving along a net, vehicle, the recording of vehicles entering links, enter sensor, the recording
of vehicles leaving links, leave sensor, and the road pricing payment of a vehicle having traversed
(entered and left) a link. Note that vehicles only pay when completing a link traversal; that
‘road pricing’ only commences once a vehicle enters the first link after possibly having left
an earlier link (and hub); and that no road pricing payment is imposed on vehicles entering,
staying-in (or at) and leaving hubs. 398

We assume the following: that each link is somehow associated with two pairs of sensors:
a pair of enter and leave sensors at one end, and a pair of enter and leave sensors at the other
end; and a road pricing process which records pairs of link enterings and leavings, first one,
then, after any time interval, the other, with leavings leading to debiting of traversal fees; Our
first specification define types, assume a net value, declares channels and state signatures of
all processes. 399

• ves stand for vehicle entering (link) sensor channels,

• vls stand for vehicle leaving (link) sensor channels,

• rp stand for ‘road pricing’ channel

• enter sensor(hi,li) stand for vehicle entering [sensor] process from hub hi to link (li).

• leave sensor(li,hi) stand for vehicle leaving [sensor] process from link li to hub (hi).

• road pricing() stand for the unique ‘road pricing’ process.

• vehicle(vi)(...) stand for the vehicle vi process.

400

type

N, H, HI, LI, VI
RPM == mk Enter L(vi:VI,li:LI) | mk Leave L(vi:VI,li:LI)

value

n:N
channel

{ves[obs HI(h),li]|h:H•h ∈ obs Hs(n)∧li ∈ obs LIs(h)}:VI
{vls[li,obs HI(h)]|h:H•h ∈ obs Hs(n)∧li ∈ obs LIs(h)}:VI
rp:RPM

type

Fee, Bal
LVS = LI →m VI-set, FEE = LI →m Fee, ACC = VI →m Bal

value

link: (li:LI × L) → Unit

enter sensor: (hi:HI × li:LI) → in ves[hi,li],out rp Unit

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

146 CoMet 1

leave sensor: (li:LI × hi:HI) → in vls[li,hi],out rp Unit

road pricing: (LVS×FEE×ACC) → in rp Unit

401

To understand the sensor behaviours let us review the vehicle behaviour. In the vehicle behaviour
defined in Example 21, in two parts, Page 142 and Page 143 we focus on the events [7] where
the vehicle enters a link, respectively [5′] where the vehicle leaves a link. These are summarised
in the schematic reproduction of the vehicle behaviour description. We redirect the interactions
between vehicles and links to become interactions between vehicles and enter and leave sensors.

value

δ:Real = move(h,f) axiom 0<δ≪1
move: H × F → F

402 vehicle: VI → (Pos × Net) → V → Unit

vehicle(vi)(pos,net)(v) ≡
[1] (wait ;
[2] vehicle(vi)(pos,net)(v))
[3] ⌈⌉

case pos of

mk atH(hi) →
[4−6] (let lis=dom net(hi) in let li:LI•li ∈ lis in let hi′=(net(hi))(li) in

[7] ves[hi,li]!vi;
[8] vehicle(vi)(mk onL(hi,li,0,hi′),net)(v)
[9] end end end)

mk onL(hi,li,f,hi′) →
[4′] (case f of

[5′−6′] 1 → (vls[li,hi]!vi; vehicle(vi)(mk atH(hi′),net)(v)),
[7′] → vehicle(vi)(mk onL(hi,li,f+δ,hi′),net)(v)
[8′] end)

end

403

• As mentioned on Page 145 link behaviours are associated with two pairs of sensors:

– a pair of enter and leave sensors at one end, and

– a pair of enter and leave sensors at the other end;

value

link(li)(l) ≡
let {hi,hi′} = obs HIs(l) in

enter sensor(hi,li) ‖ leave sensor(li,hi) ‖
enter sensor(hi′,li) ‖ leave sensor(li,hi′) end

enter sensor(hi,li) ≡
let vi = ves[hi,li]? in rp!mk Enter LI(vi,li); enter sensor(hi,li) end

leave sensor(li,hi) ≡
let vi = ves[li,hi]? in rp!mk Leave LI(vi,li); enter sensor(li,hi) end

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 15:25

An RSL Primer 147

404

• The LVS component of the road pricing behaviour serves,

– among other purposes that are not mentioned here,

– to record whether the movement of a vehicles “originates” along a link or not.

• Otherwise we leave it to the reader to carefully read the formulas.

value

payment: VI × LI → (ACC × FEE) → ACC
payment(vi,li)(fee,acc) ≡

let bal′ = if vi ∈ dom acc then add(acc(vi),fee(li)) else fee(li) end

in acc † [vi 7→ bal′] end

add: Fee × Bal → Bal [add fee to balance]

405
road pricing(lvs,fee,acc) ≡ in rp

let m = rp? in

case m of

mk Enter LI(vi,li) →
road pricing(lvs†[li 7→lvs(li)∪{vi}],fee,acc),

mk Leave LI(vi,li) →
let lvs′ = if vi ∈ lvs(li) then lvs†[li 7→lvs(li)\{vi}] else lvs end,

acc′ = payment(vi,li)(fee,acc) in

road pricing(lvs′,fee,acc′)
end end end

. End of Example 22

November 1, 2010, 15:25, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

