
0 From Domains to Requirements

Start of Lecture 1: COVER & INTRODUCTION

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering: From Domains to Requirements

Dines Bjørner

Fredsvej 11, DK-2840 Holte, Denmark

bjorner@gmail.com – www.imm.dtu.dk/~db

Begun: Tuesday June 22, 2010. Compiled: November 12, 2010: 11:34

1

2 From Domains to Requirements

0. Abstract

• We present “standard” domain description and requirements pre-
scription examples using the RAISE [RaiseMethod] Specification Language,
RSL [RSL].

• The illustrated example is that of transportation networks.

– These notes shalll serve as lecture notes for my lectures at Uppsala,
Nov.8-19, 2010.

– The present document is the ordinary “book-form”-like notes.

– A separate document, compiled from the same files, present 11
sets of lecture slides.

– The “funny” small numbers you see in the present document, in
margins and at almost end of display lines refer to slide page
numbers of the slides document.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 3

Lecture Notes

A Tentative Lecture Schedule

Lecture 1: Introduction Mo.8.11.2010 5–8

Lecture 2: Specification Ontology Mo.8.11.2010 9–52

Entities: Simple Entities, Actions, Events, Behaviours

Lecture 3: Domain Facets I Tu.9.11.2010 53–99

Intrinsics, Support Technologies, Rules & Regulations

Lecture 4: Domain Facets II We.10.11.2010 100–165

Scripts, Management & Organisation, Human Behaviour

Lecture 5: Requirements Facets I Th.11.11.2010 166–208

Domain Requirements I: Projection, Instantiation, Determiniation

Lecture 6: Requirements Facets II Fr.12.11.2010 209–247

Domain Requirements II: Extension, Fitting
Interface Requirements
Machine Requirements

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

4 From Domains to Requirements

Lecture 7: RSL I Mo.15.11.2010 266–290

Types

Lecture 8: RSL II Tu.16.11.2010 291–321

Values and Operations

Lecture 9: RSL III We.17.11.2010 322–361

Logic, Λ-Calculus, Other Applicative Constructs

Lecture 10: RSL IV Th.18.11.2010 362–397

Imperative Constructs, Process Constructs, Specifications

Lecture 11: Conclusion Fr.19.11.2010 248–265

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 5

1. Introduction

1. Introduction
1.1. The Problem

• The problem to be solved by this technical note is to present in one
specific formal specification language, RSL [RaiseMethod],

– a domain description and

– a requirements prescription developed according to the “triptych
approach” [TheSEBook3].

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

6 From Domains to Requirements

1. Introduction 1.2. The Triptych Approach

1.2. The Triptych Approach

• The “triptych approach” calls for

– a thorough description (cum analysis) of the domain

– before one attempts prescribing requirements for specific software.

• As part of the triptych approach to domain engineering one starts
by exploring the description ontology of specification entities:

– simple entities,

– actions,

– events and

– behaviours

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 7

1. Introduction 1.2. The Triptych Approach

• before delving into the description ontology of facets:

– intrinsics,

– support technologies,

– rules & regulations,

– scripts (licenses and contracts),

– management & organisation and

– human behaviour.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

8 From Domains to Requirements

1. Introduction 1.2. The Triptych Approach

• And, as part of the triptych approach to requirements engineering

– one starts by exploring the reengineering of business processes

– before delving into domain requirements concepts of

∗ projection,

∗ instantiation,

∗ determination,

∗ extension and

∗ fitting –

followed by a number of interface requirements stages.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

8 From Domains to Requirements

End of Lecture 1: COVER & INTRODUCTION

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

8 From Domains to Requirements

Start of Lecture 2: ONTOLOGY

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 9

2. An Ontology of Specification Entities

2. An Ontology of Specification Entities
Definition: Ontology.

• In philosophy: A systematic account of Existence.

• To us:

– An explicit formal specification of how to represent the phe-
nomena and concepts

– that are assumed to exist in some area of interest (some uni-
verse of discourse)

– and the relationships that hold among them.

Further clarification:

– An ontology is a catalogue of concepts and their relationships
—

– including properties as relationships to other concepts.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

10 From Domains to Requirements

2. An Ontology of Specification Entities

Definition: Specification.

• We use the term ‘specification’

• to cover the concepts of domain descriptions, requirements prescrip-
tions and software designs.

• More specifically a specification is a definition, usually consisting
of many definitions.

Definition: Entity. By an entity we shall understand

• either a simple entity,

• an action,

• an event

• or a behaviour.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 11

2. An Ontology of Specification Entities 2.1. Simple Entities

2.1. Simple Entities
Definition: Simple Entity. By a simple entity we shall loosely
understand

• an individual, static or inert dynamic and that simple entities
“roughly correspond” to what we shall think of as values.

• We shall further allow simple entities to be

– either atomic

– or composite, i.e., in the latter case having decomposable sub-
entities.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

12 From Domains to Requirements

2. An Ontology of Specification Entities 2.1. Simple Entities

• Simple entities have attributes.

• Composite entities have

– attributes,

– sub-entities and

– a mereology, the latter explains how the sub-entities are formed
into the simple entity.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 13

2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.1. Net, Hubs and Links

2.1.1. Net, Hubs and Links

1. There are nets, hubs and links.

2. A net contains zero, one or more hubs.

3. A net contains zero, one or more links.

type

1. N, H, L
value

2. obs Hs: N → H-set

3. obs Ls: N → L-set

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

14 From Domains to Requirements

2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.2. Unique Hub and Link Identifiers

2.1.2. Unique Hub and Link Identifiers

4. There are hub identifiers and there are link identifiers.

5. From a hub one can observe its hub identifier.

6. From a link one can observe its link identifier.

7. Hubs of a net have unique hub identifiers.

8. Links of a net have unique hub identifiers.

type

4. HI, LI
value

5. obs HI: H → HI
6. obs LI: L → LI

axiom

7. ∀ n:N, h,h′:H • {h,h′}⊆obs Hs(n) ∧ h 6=h′ ⇒ obs HI(h) 6=obs HI(h′)
8. ∀ n:N, l,l′:L • {l,l′}⊆obs Ls(n) ∧ l6=l′ ⇒ obs LI(l) 6=obs LI(l′)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 15
2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.3. Observability of Hub and Link Identifiers

2.1.3. Observability of Hub and Link Identifiers

9. From every hub (of a net) we can observe the identifiers of the zero,
one or more distinct links (of that net) that the hub is connected to.

value

9. obs LIs: H → LI-set
axiom

9. ∀ n:N,h:H•h ∈ obs Hs(n) ⇒ ∀ li:LI•li ∈ obs LIs(h) ⇒ L exists(li)(n)
value

L exists: LI → N → Bool

L exists(li)(n) ≡ ∃ l:L•l ∈ obs Ls(n)∧obs LI(l)=li

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

16 From Domains to Requirements

2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.3. Observability of Hub and Link Identifiers

10. From every link (of a net) we can observe the identifiers of the exactly
two (distinct) hubs (of that net) that the link is connected to.

value

10. obs HIs: L → HI-set
axiom

10. ∀ n:N,l:L•l ∈ obs Ls(n) ⇒
10. card obs HIs(l)=2 ∧ ∀ hi:HI•hi ∈ obs HIs(l) ⇒ H exists(hi)(n)

value

H exists: HI → N → Bool

H exists(hi)(n) ≡ ∃ h:H•h ∈ obs Hs(n)∧obs HI(h)=hi

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 17

2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.4. A Theorem

2.1.4. A Theorem
2.1.4.1. Links implies Hubs

11. It follows from the above that if a net has at least one link then it
has at least two hubs.

theorem:

11. ∀ n:N • card obs Ls(n)≥1 ⇒ card obs Hs(n)≥2

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

18 From Domains to Requirements

2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.5. Hub and Link Attributes

2.1.5. Hub and Link Attributes
In preparation for later descriptions, narrative and formal, we make a
slight detour to deal with hub and link attributes – but we omit, at
present, from describing these attributes.

12. hub and link attributes, HAtrs and LAtrs, include the hub and link
identifiers that can be observed from hubs and links, respecively.

13. These can be observed from hubs and links of nets.

14. And these can be provided as arguments when construction hubs
and links.

type

12. HAtrs, LAtrs
value

13. obs HAtrs: H → HAtrs
14. obs LAtrs: L → LAtrs

13. obs HI: HAtrs → HI
13. obs LIs: HAtrs → LI-set
14. obs LI: LAtrs → LI
14. obs HIs: LAtrs → HI-set

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 19

2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.6. Hub and Link Generators

2.1.6. Hub and Link Generators

15. From [a (full) set of] hub attributes

(a) including an empty set of observable link identifiers

one can generate a hub with

(a) the hub identifier being that of the argument hub attributes,

(b) the link identifiers of the hub being argument the empty set of
link identifiers of the hub attributes and

(c) the argument hub attributes being those of the resulting hub,

15. genH: HAtrs → H
15. genH(hatrs) as h
15(a). pre obs LIs(hatrs)={}
15(a). post obs HI(h)=obs HI(hatrs)
15(b). ∧ obs LIs(h)={}
15(c). ∧ obs HAtrs(h)=hatrs

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

20 From Domains to Requirements

2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.6. Hub and Link Generators

16. From the set of hub attributes and a net one can “similarly” generate
a hub which is not a hub of the net.

17. From the set of link attributes one can “similarly” generate a link.

18. From the set of link attributes and a net one can “similarly” generate
a link which is not a link of the net.

where the reader is to narrate and formalise the “similarities”!

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 21

2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.6. Hub and Link Generators

16. genH: HAtrs → N → H
16. genH(hatrs)(n) as h
16. pre obs LIs(hatrs)={}
16. ∧ ∼∃ h′:H•h′ ∈ obs Hs(n) ∧ obs HI(h′)=obs HI(hatrs)
16. post h 6∈ obs Hs(n)
16. ∧ obs HI(h)=obs HI(hatrs)
16. ∧ obs LIs(h)={}
16. ∧ obs HAtrs(h)=hatrs

17. genL: LAtrs → L
17. genL(latrs) as l
17. pre card obs HIs(latrs)=2
17. post obs LI(l)=obs LI(latrs)
17. ∧ obs LI(l)=obs LI(latrs)
17. ∧ obs HIs(l)=obs HIs(latrs)

18. genL: LAtrs → N → L

18. genL(latrs)(n) as l
18. pre card obs LIs(latrs)=2
18. ∧ obs LIs(latrs)⊆xtr LIs(n)
18. post l 6∈ obs Ls(n)
18. ∧ obs LI(l)=obs LI(latrs)
18. ∧ obs HIs(l)⊆obs HIs(latrs)
18. ∧ obs LAtrs(l)=latrs

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

22 From Domains to Requirements

2. An Ontology of Specification Entities 2.2. States

2.2. States
Definition: State. By a state we shall understand

• a collection of one or more simple entities.

2.3. Actions
Definition: Action. By an action we shall understand

• something which potentially changes a state,

• that is, a function application to a state

• which potentially changes that state.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 23

2. An Ontology of Specification Entities 2.3. Actions 2.3.1. Insert Hubs

2.3.1. Insert Hubs

19. One can insert a hub, h, into a net, n.

The hub to be inserted

20. must not be a hub of the net and

21. h cannot already be connected to any links.

That is, we can only insert “isolated” hubs.

The result of inserting a hub, h, into a net, n, is a new net, n′,

22. which is like n except that it now also has the hub h.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

24 From Domains to Requirements

2. An Ontology of Specification Entities 2.3. Actions 2.3.1. Insert Hubs

value

19. insertH: HAtrs → N
∼
→ N

19. insertH(hatrs)(n) as n′

19. let h = genH(hatrs)(n) in

20. pre h 6∈ obs Hs(n)
21. ∧ obs LIs(h) = {}
22. post obs Ls(n)=obsLs(n′)
22. ∧ obs Hs(n′)=obs Hs(n)∪{h}
22. ∧ obs HAtrs(h)=hatrs
19. end

Theorem:

• Inserting a proper hub in a well-formed net

• that is, a net satisfying all relevant axioms,

• results in a likewise well-formed net.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 25

2. An Ontology of Specification Entities 2.3. Actions 2.3.2. Remove Hubs

2.3.2. Remove Hubs

23. One can remove a hub, h, from a net, n.

The hub to be removed

24. must be a hub of the net and

25. h cannot be connected to any links.

That is, the hub, h, may earlier – in is membership of the net – have
been connected to links, but these must already, at the time of hub
removal, have been removed, see below.

That is, we can only remove “isolated” hubs.

26. The result of removing a hub, h, from a net, n, is a new net, n′,

27. which is like n

28. except that it now no longer has hub h.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

26 From Domains to Requirements

2. An Ontology of Specification Entities 2.3. Actions 2.3.2. Remove Hubs

value

23. removeH: H → N
∼
→ N

26. removeH(h)(n) as n′

24. pre h ∈ obs Hs(n)
25. ∧ obs LIs(h) = {}
27. post obs Ls(n)=obsLs(n′)
28. ∧ obs Hs(n′)=obs Hs(n)\{h}

• Please note the almost line-by-line similarity of the insert and remove
hub descriptions

• and that the only difference between these descriptions are the

• membership, union, respectively set difference operations (6∈, ∈, ∪
respectively \).

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 27

2. An Ontology of Specification Entities 2.3. Actions 2.3.3. Insert Links

2.3.3. Insert Links

29. One can insert a link, ℓ, into a net, n.

The link to be inserted must

30. not be a link of the net,

31. but the observable hub identifiers must be those of hubs of the net.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

28 From Domains to Requirements

2. An Ontology of Specification Entities 2.3. Actions 2.3.3. Insert Links

The result of inserting a link, ℓ, into a net,

32. n, is a new net, n′,

33. in which ℓ is now a member.

34. Let hji, hki
be the two (distinct) hub identifiers of ℓ and

35. let hj, hk be the two (distinct) hubs of n which are identified by
hji, hki

.

36. All hubs of net n except hj, hk are the same as in n and are un-
changed in n′.

37. The two hubs hj, hk of n become hubs h′j, h
′
k of n′

38. such that only the observable identifiers of connected links have
changed to now also include the identifier of link ℓ,

39. and such that the observed attributes are those of the argument.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 29

2. An Ontology of Specification Entities 2.3. Actions 2.3.3. Insert Links

value

29. insertL: L × LAtrs → N
∼
→ N

32. insertL(l,latrs)(n) as n′

30. pre l 6∈ obs Ls(n)
31. ∧ obs HIs(l)⊆xtrHIs(n)
33. post obs Ls(n′) = obs Ls(n) ∪ {l}
34. ∧ let {hji,hki}=obs HIs(l) in

35. let (hj,hk) = (getH(hji)(n),getH(hki)(n)) in

31. {hj,hk}⊆obs Hs(n)
36. ∧ obs Hs(n)\{hj,hk} = obs Hs(n′)\{hj,hk}
37. ∧ let (hj′,hk′) = (getH(hji)(n′),getH(hki)(n′)) in

38. obs LIs(hk′) = obs LIs(hk′) ∪ {obs LI(l)}
38. ∧ obs LIs(hj′) = obs LIs(hj′) ∪ {obs LI(l)} end end end

39. ∧ obs LAtrs(l) = latrs

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

30 From Domains to Requirements

2. An Ontology of Specification Entities 2.3. Actions 2.3.3. Insert Links

xtrHIs: N → HI-set
xtrHIs(n) ≡ {obs HI(h)|h:H•h ∈ obs Hs(n)}

getH: HI → N
∼
→ H

getH(hi)(n) ≡ let h:H • h ∈ obs Hs(n) ∧ obs HI(h)=hi in h end

pre ∃ h:H • h ∈ obs Hs(n) ∧ obs HI(h)=hi

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 31

2. An Ontology of Specification Entities 2.3. Actions 2.3.4. Remove Links

2.3.4. Remove Links

40. One can remove a link, ℓ, from a net, n.

The link to be removed must

41. be a link of the net.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

32 From Domains to Requirements

2. An Ontology of Specification Entities 2.3. Actions 2.3.4. Remove Links

The result of removing a link, ℓ, from a net,

42. n, is a new net, n′,

43. in which ℓ is no longer a member.

44. Let hji, hki
be the two (distinct) hub identifiers of ℓ and

45. let hj, hk be the two (distinct) hubs of n which are identified by
hji, hki

.

46. hj, hk are in n′.

47. All hubs of net n except hj, hk are the same as in n and are un-
changed in n′.

48. The two hubs hj, hk of n become hubs h′j, h
′
k of n′

49. such that only the observable identifiers of connected links have
changed to now no longer include the identifier of link ℓ.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 33

2. An Ontology of Specification Entities 2.3. Actions 2.3.4. Remove Links

value

40. removeL: L → N
∼
→ N

42. removeL(l)(n) as n′

41. pre l ∈ obs Ls(n)
43. post obs Ls(n′) = obs Ls(n) \ {l}
44. ∧ let {hji,hki}=obs HIs(l) in

45. let (hj,hk) = (getH(hji)(n),getH(hki)(n)) in

46. {hj,hk}⊆obs Hs(n)
47. ∧ obs Hs(n)\{hj,hk} = obs Hs(n′)\{hj,hk}
48. ∧ let (hj′,hk′) = (getH(hji)(n′),getH(hki)(n′)) in

49. obs LIs(hk′) = obs LIs(hk′) \ {obs LI(l)}
49. ∧ obs LIs(hj′) = obs LIs(hj′) \ {obs LI(l)} end end end

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

34 From Domains to Requirements

2. An Ontology of Specification Entities 2.3. Actions 2.3.5. Two Theorems

2.3.5. Two Theorems
2.3.5.1. Idempotency

• With the preconditions satisfied by the insert and remove actions

• one can prove that first inserting a hub (link) into a net and

• then removing that hub (link) from the resulting net restores the
original net:

theorem

∀ n,n′:N,h:H,l:L •

pre insertH(h)(n) ∧ removeH(h)(n′) ∧ insertL(l)(n) ∧ removeL(l)(n′) ⇒
removeH(h)(insertH(h)(n)) = n ∧ removeL(l)(insertL(l)(n))

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 35

2. An Ontology of Specification Entities 2.3. Actions 2.3.5. Two Theorems 2.3.5.2. Reachability

2.3.5.2. Reachability

• Any net that satisfies the axioms above

• can be constructed by sequences of insert hub and link actions.

theorem

let n nil:N • obs Hs(n nil)=obs Ls(n nil)={} in

∀ n:N ⊢ axioms 7. and 8 on page 14.; 9 on page 15. 10 on page 16. •

∃ hl:H∗, ll:L∗
• let n′ = insertHs(hl)(n nil) in insertHs(ll)(n′)=n end

end

insertHs: H∗ → N
∼
→ N

insertLs: L∗ → N
∼
→ N

insertHs(hl)(n) ≡ case hl of 〈〉 → n, 〈h〉̂hl′ → insertHs(hl′)(insertH(h)(n)) end

insertLs(ll)(n) ≡ case ll of 〈〉 → n, 〈l〉̂ll′ → insertLs(ll′)(insertL(l)(n)) end

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

36 From Domains to Requirements

2. An Ontology of Specification Entities 2.3. Actions 2.3.5. Two Theorems 2.3.5.2. Reachability

Informal proof: An informal proof goes like this:

• Take a net.

• For every hub, h, in that net,

– let h′ be a version of h which has

∗ the same hub identifier,

∗ an empty set of observable link identifiers (of connected links),

∗ and otherwise all other attributes of h,

– let h′ be a member of the list of hubs – and only such hubs.

– Let every and only such links in n be members of the list of links.

• Performing first the insertion of all hubs and then the insertions of
all links will “turn the trick” !

end of informal proof.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 37

2. An Ontology of Specification Entities 2.4. Events

2.4. Events
Definition: Event.

• An event is something that occurs instantaneously.

• Events are manifested by certain state changes, and by certain
interactions between behaviours or processes.

• The occurrence of events may “trigger” [further] actions.

• How the triggering, i.e., the invocation of functions are brought
about is usually left implied, or unspecified.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

38 From Domains to Requirements

2. An Ontology of Specification Entities 2.4. Events

• A mudslide across a railway track or a road segment (i.e., a link)
represents an event

– that effectively “removes” the link, or at least a segment of a link.

• Similarly if

– a train and/or automobile bridge collapses or

– a tunnel gets flooded or catches fire.

How are we to model such, and other events?

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 39

2. An Ontology of Specification Entities 2.4. Events

50. We choose to model the event” “disappearance” of a segment of a
link identified by li:LI as the composition of the following actions:

(a) the removal of link l:L being affected, where li:LI identifies the
link in the network;

(b) the insertion of two hubs, h′,h′′:H , corresponding to “points” (on
link l:L) on either side of the mudslide or bridge – or other; and

(c) the insertion of two links, l′,l′′:L, between the hubs of the original
link and the new hubs.

(d) li:LI must identify a link l:L of net n:N .

50(b). newH: N → H-set → H
50(b). newH(n)(hs) ≡ let h:H • h 6∈ hs ∧ obs LIs(h)={} in h end

50(c). newL: N → L-set → (HI×HI) → L
50(c). newL(n)(ls)(hi′,hi′′) ≡ let l:L • l 6∈ ls ∧ obs HIs(l)={hi′,hi′′} in l end

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

40 From Domains to Requirements

2. An Ontology of Specification Entities 2.4. Events

value

50. event link disappearance: LI → N
∼
→ N

50(a). let l = xtrL(li)(n) in

50(a). let {hi′,hi′′} = obs HIs(l) in

50(a). let n′ = removeL(l)(n) in

50(b). let h′= newH(n)(obs Hs(n)) in

50(b). let h′′ = newH(n)(obs Hs(n)∪{h′}) in

50(b). let n′′ = insertH(h′)(insertH(h′′)(n)) in

50(c). let l′ = newL(n)(obs Ls(n))(obs HI(h′),hi′) in

50(c). let l′′ = newL(n)(obs Ls(n)∪{l′})(obs HI(h′′),hi′′) in

50(c). insertL(l′)(insertL(l′′)(n′′)) end end end end end end end end

50(d). pre li ∈ xtrLIs(n)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 41

2. An Ontology of Specification Entities 2.5. Behaviours

2.5. Behaviours
Definition: Behaviour.

• By behaviour we shall understand the way in which something
functions or operates.

• In the context of domain engineering behaviour is a concept as-
sociated with phenomena, in particular manifest entities.

• And then behaviour is that which can be observed about the
value of the entity and its interaction with an environment.

• A simple, sequential behaviour is a sequence of zero, one or more
actions and events.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

42 From Domains to Requirements

2. An Ontology of Specification Entities 2.5. Behaviours 2.5.1. Behaviour Prescriptions

2.5.1. Behaviour Prescriptions

• Usually behaviours follow a prescription.

• In the case of net construction we refer to the prescription as a
construction plan.

2.5.1.1. Construction Plans

51. The plan for constructing a net can be abstracted as

(a) a map, PLAN, which to each hub identifier associates

(b) a link-to-hub identifier map, LHIM, from the identifiers of links
emanating from the hub to identifiers of connected hubs.

type

51(a). PLAN = HI →m LHIM
51(b). LHIM = LI →m HI

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 43

2. An Ontology of Specification Entities 2.5. Behaviours 2.5.1. Behaviour Prescriptions 2.5.1.2. Wellformedness of Construction Plans

2.5.1.2. Wellformedness of Construction Plans

52. Wellformed net construction plans satisfy three conditions:

(a) All Links are Two-way Links:

i. Let hk be any hub identifier of the construction plan.

ii. For all link identifiers, lj, of the LIHM, lhimk, mapped into by
hk,

iii. let hℓ be the hub identifier mapped into by lj in lhimk,

iv. then lj is in the link-to-hub-identifier map, lhimℓ, mapped into
by hℓ,

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

44 From Domains to Requirements

2. An Ontology of Specification Entities 2.5. Behaviours 2.5.1. Behaviour Prescriptions 2.5.1.2. Wellformedness of Construction Plans

(b) Using Hub Identifier Occurrences are Defined:

i. Let lhim be any link-to-hub-identifier map of a construction
plan.

ii. For every hub identifier, hi, mapped to by a link identifier, lj,
in lhim

iii. there exists a hub identifier, hk, that maps into lj; and

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 45

2. An Ontology of Specification Entities 2.5. Behaviours 2.5.1. Behaviour Prescriptions 2.5.1.2. Wellformedness of Construction Plans

(c) No Junk:

• To secure consistency between hub and link identifiers of a con-
struction plan we impose:

– all the defined hub identifiers of a construction plan are in the
range of some link to hub identifier map of that plan;

– and each of the hub identifiers of some link to hub identifier
map are defined in the construction plan are in the range of
some link to hub identifier map of that plan.

value

52. wf PLAN: PLAN → Bool

52. wf PLAN(plan) ≡
52(a). all links are two way links(plan) ∧
52(b). hub identifier occurrences are defined(plan) ∧
52(c). no junk(plan)

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

46 From Domains to Requirements

2. An Ontology of Specification Entities 2.5. Behaviours 2.5.1. Behaviour Prescriptions 2.5.1.2. Wellformedness of Construction Plans

52(a). all links are two way links: PLAN → Bool

52(a). all links are two way links(plan) ≡
52((a))i. ∀ hk:HI • hk ∈ dom plan ⇒
52((a))ii. ∀ lj:LI • lj ∈ dom plan(hk) ⇒
52((a))iii. let hl = (plan(hk))(lj) in

52((a))iv. lj ∈ dom plan(hl) end

52(b). hub identifier occurrences are defined: PLAN → Bool

52(b). hub identifier occurrences are defined(plan) ≡
52((b))i. ∀ hlim:HLIM•hlim ∈ rng plan
52((b))ii. ∀ lj:LI • lj ∈ dom lhim ⇒
52((b))iii. ∃ hk:HI • hk ∈ dom plan ∧ lj ∈ dom plan(hk)

52(c). no junk: PLAN → Bool

52(c). no junk(plan) ≡ dom plan = ∪{rng(plan(hi))|hi:HI•hi ∈ dom plan}

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 47

2. An Ontology of Specification Entities 2.5. Behaviours 2.5.2. Augmented Construction Plans

2.5.2. Augmented Construction Plans

• Hubs and links in nets possess attributes (cf. Item 4 on page 14.).

• Some attributes have already been dealt with:

– the identifiers of hubs and links that can be observed from hubs,
respectively links (cf. Items 4. and 5 on page 14.) and

– the identifiers of hubs that can be observed from links and the
identifiers of links that can be observed from hubs (cf. Items 9.
and 10 on page 16.).

• In addition hubs and links in nets possess further attributes:

• spatial location of hubs and links,

• (locally ascribed) names of hubs and links,

• lengths of links,

• etcetera.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

48 From Domains to Requirements

2. An Ontology of Specification Entities 2.5. Behaviours 2.5.2. Augmented Construction Plans

We therefore augment construction plans to also reveal these attributes.

type

APLAN = PLAN × HInfo × LInfo
HInfo = HI →m HAtrs
LInfo = LI →m LAtrs

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 49

2. An Ontology of Specification Entities 2.5. Behaviours 2.5.2. Augmented Construction Plans

53. The wellformedness of an augmented plan secures that

(a) all hubs identifiers defined in the construction plan are “detailed”
in the hub information component, and that

(b) all links identifiers used in the construction plan are “detailed” in
the in the link information component.

value

53. wf APLAN: APLAN → Bool

53. wf APLAN(plan,hinfo,linfo) ≡
53(a). dom plan = dom hinfo ∧
53(b). ∪{dom lhim|lhim:LHIM•lhim ∈ rang plan}=dom linfo

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

50 From Domains to Requirements

2. An Ontology of Specification Entities 2.5. Behaviours 2.5.3. Sequential Construction Behaviours

2.5.3. Sequential Construction Behaviours

54. From an augmented construction plan one can “extract” initial in-
formation about

(a) all hubs and

(b) all links.

value

54(a). xtrH: HI → APLAN → HI × HAtrs, xtrH(hi)(,hinfo,) ≡ hinfo(hi)
54(b). xtrL: LI → APLAN → LAtrs, xtrL(li)(, ,linfo) ≡ linfo(li)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 51

2. An Ontology of Specification Entities 2.5. Behaviours 2.5.3. Sequential Construction Behaviours

55. A net construction behaviour can be (functionally and non-deterministically)
modelled as

(a) a sequence of hub insertions followed by

(b) a sequence of link insertions.

value

55. net construction: HInfo×LInfo → (HI-set×LI-set) → N → N
55. net construction(hinfo,linfo)(his,lis)(n) ≡
55. case (his,lis) of

55(a). ({hi}∪ his′,) →
55(a). net construction(hinfo,linfo)(his′,lis)(insertH(hinfo(hi))(n)),
55(b). ({},{li}∪ lis′) →
55(b). net construction(hinfo,linfo)({},lis′)(insertL(linfo(li))(n)),
55. ({},{}) → n
55. end

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

52 From Domains to Requirements

2. An Ontology of Specification Entities 2.5. Behaviours 2.5.3. Sequential Construction Behaviours

The net construction function is initialised with the full sets of hub and
link identifiers and with an empty net:

net construction(hinfo,linfo)(dom hinfo,dom linfo)(n nil)
value

n nil:N • obs Hs(n nil) = {} = obs Ls(n nil)

• The net construction behaviour shown above defines only a subset
of all the valid behaviours that will construct a net according to the
augmented plan (plan,hinfo,linfo).

• Other valid behaviours would start with constructing at least two
hubs but could then go onto construct some of the (zero, one or more)
links that connect some of the already constructed hubs, etcetera.

• We challenge the reader to precise narrate and formally define such
net construction behaviours.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

52 From Domains to Requirements

End of Lecture 2: ONTOLOGY

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

52 From Domains to Requirements

Start of Lecture 3: DOMAINS: Intrinsics – Rules & Regulations

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 53

3. An Ontology of Domain Facets

3. An Ontology of Domain Facets
3.0.1. Definitions

Definition: Domain. An area of activity which some software
is to support (or supports) or partially or fully automate (resp.
automates).

• The term ‘application domain’ is considered synonymous with the
term ‘domain’.

Definition: Domain Description. A textual, informal or formal
document which describes a domain as it is.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

54 From Domains to Requirements

3. An Ontology of Domain Facets

Usually a domain description is a set of documents with many parts
recording many facets of the domain: The

• business processes,

• intrinsics,

• support technology,

• rules and regulations,

• management and organisation, and the

• human behaviours.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 55

3. An Ontology of Domain Facets

Definition: Domain Engineering.

• The engineering of the development of a domain description, from

– identification of domain stakeholders, via

– domain acquisition,

– domain analysis,

– terminologisation,

and

– domain description

to

– domain validation and

– domain verification.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

56 From Domains to Requirements

3. An Ontology of Domain Facets

Definition: Domain Facet.

• By a domain facet we understand

– one amongst a finite set of generic ways of analysing a domain:

– A view of the domain, such that the different facets cover
conceptually different views,

– and such that these views together cover the domain.

• We consider here the following domain facets:

– business processes,

– intrinsics,

– support technology,

– rules and regulations,

– management and organisation,
and

– human behaviour.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 57

3. An Ontology of Domain Facets

3.0.2. What Can Be Observed

• “Whether you can observe a thing or not depends on the theory which
you use. It is the theory which decides what can be observed.”

• Albert Einstein objecting to the placing of observables at the heart
of the new quantum mechanics, during Heisenberg’s 1926 lecture at
Berlin; related by Heisenberg, quoted in Unification of Fundamen-
tal Forces (1990) by Abdus Salam ISBN 0521371406.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

58 From Domains to Requirements

3. An Ontology of Domain Facets

3.0.3. Business Processes
3.0.3.1. A Characterisation

• By a business process we shall understand

– a behaviour

– of an enterprise, a business, an institution, a factory.

3.0.3.2. An Example

• The business processes of transportation evolves around

– freights or passengers

– being transported along routes

– by a vehicle (car, train, aircraft, ship)

– “propelled” by some locomotive force.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 59

3. An Ontology of Domain Facets 3.1. Intrinsics

3.1. Intrinsics
Definition: Intrinsics.

• By the intrinsics of a domain we shall understand

– those phenomena and concepts of a domain

– which are basic to any of the other facets,

– with such a domain intrinsics initially covering at least one
stakeholder view.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

60 From Domains to Requirements

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.1. Net Topology Descriptors

3.1.1. Net Topology Descriptors
Instead of dealing with the entire phenomenon of a net, that is, the
real, physical, geographic “thing”, we can describe essentials of a net,
for example how its hub and links are connected.

56. One way of abstractly modelling a net descriptor is as a map, nd,
from hub identifiers to simple maps, lihis, from link identifiers to hub
identifiers,

57. such that

(a) for all hi in (the definition set of) nd it is the case that

(b) if hi maps to lihi,

(c) and in that link identifier to hub identifier map, li maps to hi′,

(d) then hi′ is different from hi and

(e) hi′ maps to an lihi′ in which li is defined and maps to hi.

(f) And there are only such pairings.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 61

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.1. Net Topology Descriptors

type

56. ND′ = HI →m (LI →m HI)
56. ND = {|nd′:ND•wf ND(nd′)|}
value

57. wf ND: ND′ → Bool

57. wf ND(nd) ≡
57(a). ∀ hi:HI•hi ∈ dom nd ⇒
57(b). let lihi = nd(hi) in

57(c). ∀ li:LI • li ∈ dom lihi ⇒
57(c). let hi′ = (nd(hi))(li) in

57(d). hi 6= hi′ ∧
57(e). hi′ ∈ dom nd ∧ li ∈ dom(nd(hi′)) ∧ hi=(nd(hi′))(li)
57(f). end end

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

62 From Domains to Requirements

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.1. Net Topology Descriptors

From a net one can construct its net descriptor:

value

conND: N → ND
conND(n) ≡

[hi7→[li7→hi′|li:LI,hi′:HI•li ∈ obs LIs(getH(hi,n))∧{hi,hi′}=obs HIs(getL(li,n))]|
hi:HI•hi ∈ xtrHIs(n)]

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 63
3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.2. Link States and Link State Spaces

3.1.2. Link States and Link State Spaces

• We introduce the notions of

– the state of a link,

– the state of a hub,

– the state space of a link and

– the state space of a hub.

• States abstract directions of movement.

• Links are, by our previous definitions, bi-directional:

– from one of the connected hubs to the other,

– and vice versa.

• And hubs are multi-directional:

– from potentially any link via the hub to potentially any link.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

64 From Domains to Requirements

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.2. Link States and Link State Spaces

• Let

– the observed hub identifiers of a link ℓ be {hj, hk},

– then link ℓ can potentially be in any one of the four link states:

– {{(hj, hk), (hk, hj)}, {(hj, hk)}, {(hk, hj)} and {{}}}.

• Any one particular link may

– always remain in one and the same state,

– or it may from time to time undergo transitions between any
subset of the potential link state space.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 65

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.2. Link States and Link State Spaces

58. Link states, lσ:LΣ, are set of pairs of hub identifiers.

59. Link state spaces are set of link states.

60. From a link one can generate the link state space of all potential link
states.

61. From a link one can observe the current link state lσ:LΣ.

62. From a link one can observe the link state space lω:LΩ.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

66 From Domains to Requirements

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.2. Link States and Link State Spaces

type

58. LΣ = (HI×HI)-set
59. LΩ = LΣ-set

value

60. generate full LΣ: L → LΣ
60. generate full LΣ(l) ≡
60. {}∪{(hi′,hi′′)|hi′,hi′′:HI•hi′6=hi′′∧{hi′,hi′′}=obs HIs(l)}

60. generate LΩ: L → LΩ
60. let fullLσ = generate full LΣ(l) in

60. {{},∪{σ|σ:LΣ•σ⊆fullLσ}} end

61. obs LΣ: L → LΣ
62. obs LΩ: L → LΣ-set

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 67

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.3. Hub States and Hub State Spaces

3.1.3. Hub States and Hub State Spaces

63. Hub states, hσ:HΣ, are sets of pairs of link identifiers ((li, lk)),
designating that if (li, lk) is in the current hub state then movement
can take place from the link designated by li (via hub h) to the link
designated by lk.

64. Hub state spaces are set of hub states.

65. From a hub one can generate the hub state space of all potential hub
states.

66. From a hub one can observe the current hub state hσ:HΣ.

67. From a hub one can observe the hub state space hω:HΩ.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

68 From Domains to Requirements

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.3. Hub States and Hub State Spaces

type

63. HΣ = (LI×LI)-set
64. HΩ = HΣ-set

value

65. generate full HΣ: H → HΣ
65. generate full HΣ(h) ≡
65. {}∪{(li′,li′′)|li′,li′′:LI•{li′,li′′}⊆obs LIs(h)}

60. generate HΩ: H → HΩ
60. let fullHσ = generate full HΣ(h) in

60. {{}∪{σ|σ:HΣ•σ⊆fullHσ}} end

66. obs HΣ: H → HΣ
66. obs HΩ: H → HΣ-set

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 69

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.4. State and State Space Wellformedness

3.1.4. State and State Space Wellformedness

68. States must be in appropriate state spaces.

69. State spaces must be subsets of all potential appropriate states.

axiom

∀ n:N,l:L,h:H • l ∈ obs Ls(n) ∧ h ∈ obs Hs(n) ⇒
58. obs LΣ(l) ∈ obs LΩ(l) ∧
59. obs LΩ(l) ⊆ generate full LΣ(l) ∧
58. obs HΣ(h) ∈ obs HΩ(h) ∧
59. obs HΩ(h) ⊆ generate full HΣ(h)

theorems:

∀ n:N,l:L,h:H • l ∈ obs Ls(n) ∧ h ∈ obs Hs(n) ⇒
obs LΣ(l) ⊆ {(hi′,hi′′)|hi′,hi′′:H•{hi′,hi′′}⊆obs HIs(l)} ∧
obs HΣ(h) ⊆ {(li′,li′′)|li′,li′′:L•{li′,li′′}⊆obs LIs(h)}

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

70 From Domains to Requirements

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.5. Concrete Types for Simple Entities

3.1.5. Concrete Types for Simple Entities

• As an alternative for, or as a step of refinement from the earlier sorts
of nets, hubs and links

• one can simplify matters by concrete types for these simple entities.

70. Nets are Cartesians of sets of hubs and links.

71. A link is a Cartesian of a link identifier, a set of exactly two hub
identifiers, a link state, a link state space, and a number of presently
further unspecified link attributes.

72. A hub is a Cartesian of a hub identifier, a set of zero, one or more link
identifiers, a hub state, a hub state space, and a number of presently
further unspecified hub attributes.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 71

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.5. Concrete Types for Simple Entities

type

70. N = H-set × L-set

71. L :: obs LI:LI × obs HIs:HI-set × LΣ × LΩ × LAtrs
72. H :: obs HI:HI × obs LIs:LI-set × HΣ × HΩ × HAtrs

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

72 From Domains to Requirements

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.5. Concrete Types for Simple Entities

We leave it to the reader to narrate the wellformedness constraints.

axiom

∀ (hs,ls):N • ls6={} ⇒ card hs ≥ 2 ∧
∀ l′,l′′:L • {l′,l′′}⊆ls ∧ l′6=l′′ ⇒ obs LI(l′)6=obs LI(l′′) ∧
∀ h′,h′′:H • {h′,h′′}⊆hs ∧ h′6=h′′ ⇒ obs HI(h′)6=obs HI(h′′) ∧
∀ l:(li,his,lσ,lω,latrs):L • l ∈ ls ⇒
card his=2 ∧ his⊆{obs HI(h′′)|h′′′:H • h′′′ ∈ hs} ∧
lσ ∈ generate full LΣ(l) ∧
lσ ∈ lω ⊆ generate full LΣ(l) ∧

∀ h:(hi,lis,hσ,hω,hatrs):H • h ∈ hs ⇒
lis⊆{obs LI(l′′′)|l′′′:L • l′′′ ∈ ls} ∧
hσ ∈ generate full HΣ(h) ∧
hσ ∈ hω ⊆ generate full HΣ(h)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 73

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.6. Example Hub Crossings

3.1.6. Example Hub Crossings

1. 2.

5.

A

B

C

D

Partial Link

Hub

Link Identifier

3. 4.

Figure 1: Four “Safe” Flows

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

74 From Domains to Requirements

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.6. Example Hub Crossings

The top left hub/link diagram (1.) thus can be claimed to depict hub state {(A, B),
(A,C), (A, D), (B,C), (C,D), (D,A)}.

Photo 2 shows a semaphore which seems to be able to display all kinds of states.

Figure 2: A General Purpose Traffic Light

The point of this example is to show that a hub may take on many states, that not all
hub states may be desirable (viz., lead to crossing traffic if so interpreted), and that
to reach from one hub state to another one must change the state.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 75

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.7. Actions Continued

3.1.7. Actions Continued

73. The action change HΣ takes a hub, h, in some state, and a desired
next state, hσ′, and results in a hub, h′, which

(a) has the same hub identifier as h,

is connected to the same links as h,

has the same hub state space as h,

has the same attributes (names and values) as h,

(b) but whose state may have changed.

73(b). The new state of h′ ought be hσ′, but electro-mechanical or other
failures in setting the state may set the new state to any state of the
potential states of h (i.e., h′), not just to any state in the hub state
space of h.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

76 From Domains to Requirements

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.7. Actions Continued

value

73. change HΣ: H × HΣ → H
73. change HΣ((hi,lis,hσ,hω,hatrs),hσ′) ≡
73(b). let hσ′′′ ∈ generate full HΣs in

73(a). (hi,lis,hσ′′′,hω,hatrs) end

• Had we specified that the resulting state must be hσ′

• then we had prescribed a requirements to a change operation.

• As it is now we have described a domain phenomenon, namely that
operations may fail.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 77

3. An Ontology of Domain Facets 3.2. Support Technologies

3.2. Support Technologies
Definition: Support Technology. By a support technology we
understand

• a facet of a domain,

• one which reflects its (current) dependency on

– human,

– mechanical,

– electro-mechanical,

– electronic and/or

– other technologies

(i.e., tools) in order to carry out its business processes.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

78 From Domains to Requirements

3. An Ontology of Domain Facets 3.2. Support Technologies 3.2.1. Traffic Signals

3.2.1. Traffic Signals
A traffic signal represents a technology in support of visualising hub
states and in effecting state changes.

74. A hub state is now modelled as a triple: the link identifier li (“coming
from”), a colour (red, yellow, and green), and another the link
identifier lj (“going to”).

75. Signalling is now a sequence of one or more pairs of next hub states
and time intervals:

< (hσ1, ti1), (hσ2, ti2), ..., (hσn−1, tin−1), (hσn, tin) >,n > 0

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 79

3. An Ontology of Domain Facets 3.2. Support Technologies 3.2.1. Traffic Signals

• The idea of a signalling is

– to first change the designated hub to state hσ1,

– then wait ti1 time units,

– then set the designated hub to state hσ2,

– then wait ti2 time units,

– etcetera, ending with final state σn

– and a (supposedly) long time interval tin
– before any decisions are to be made as to another signalling.

• The set of hub states {hσ1, hσ2, ..., hσn−1} of

< (hσ1, ti1), (hσ2, ti2), ..., (hσn−1, tin−1), (hσn, tin) >,n > 0

are called intermediate states.

• Their purpose is to secure an orderly vehicle-wise safe signal tran-
sitions from red to green etc.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

80 From Domains to Requirements

3. An Ontology of Domain Facets 3.2. Support Technologies 3.2.1. Traffic Signals

76. A street signal (a semaphore) is now abstracted as a map from pairs
of hub states to signalling sequences.

The idea is that given a hub one can observe its semaphore, and given
the state, hσ (not in the above set), of the hub “to be signalled” and
the state hσn into which that hub is to be signalled “one looks up”
under that pair in the semaphore and obtains the desired signalling.

type

74. HΣ = LI × Colour × LI
74. Colour == red | yellow | green
75. Signalling = (HΣ × TI)∗

75. TI
76. Sempahore = (HΣ×HΣ) →m Signalling
value

76. obs Semaphore: H → Sempahore

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 81

3. An Ontology of Domain Facets 3.2. Support Technologies 3.2.1. Traffic Signals

77. A hub semaphore, sema, contains only such hub states as are ob-
served in the hub state space.

(a) Let hsps be the set of “from/to” hub state pairs in sema.

(b) Then hs is the set of all hub states mentioned in hsps.

(c) To hs join all the hub states mentioned in any signalling, sg, of
sema.

77. hub state space: Sempahore → HΣ-set

77. hub state space(sema) ≡
77(a). let hsps={hsp|hsp:(HΣ×HΣ)•hsp ∈ dom sema} in

77(b). let hs={hσ′,hσ′′|hσ′,hσ′′:HΣ•(hσ′,hσ′′)∈ hsps} in

77(c). hs ∪ ∪{{hσ|(hσ,ti):(HΣ×TI)•(hσ,ti)∈ elems sg}|sg:Signalling•sg ∈ rng

77. end end

axiom

77. ∀ h:H • ∪ obs HΩ(h) = hub state space(obs Semaphore(h))

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

82 From Domains to Requirements

3. An Ontology of Domain Facets 3.2. Support Technologies 3.2.2. Traffic “Control”

3.2.2. Traffic “Control”

78. Given two hub states, hσinit and hσend, where hσinit designates
a present hub state and hσend designates a desired next hub state
after signalling.

79. Now signalling is a sequence of one or more successful hub state
changes.

value

78. signalling: HΣ × HΣ → H → H
79. signalling(hσinit,hσend)(h) ≡
79. let sema = obs Semaphore(h) in

79. let sg = sema(hσinit,hσend) in

79. signal sequence(sg)(h) end end

79. pre (hσinit,hσend) ∈ dom obs Semaphore(h)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 83

3. An Ontology of Domain Facets 3.2. Support Technologies 3.2.2. Traffic “Control”

79. signal sequence(〈〉)(h) ≡ h
79. signal sequence(〈(hσ,ti)〉̂sg)(h) ≡
79. let hσ′ = change HΣ(h)(hσ) in

79. if hσ′ 6= hσ then chaos

79. else wait(ti); signal sequence(sg)(h) end end

• If a desired hub state change fails (chaos) then we do not define the
outcome of signalling.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

84 From Domains to Requirements

3. An Ontology of Domain Facets 3.3. Rules and Regulations

3.3. Rules and Regulations
Definition: Rule. A rule stipulates a regulating principle.

• In the context of modelling domain rules we shall understand a
domain rule

– as some text

– whose meaning is a predicate

– over a pair of suitably chosen domain states.

• We may assume that

– a domain action or a domain event

– takes place in the first of these states and

– results in the second of these states.

• If the predicate is true

– then we say that the rule has been obeyed,
c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 85

– otherwise that it has been violated.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

86 From Domains to Requirements

3. An Ontology of Domain Facets 3.3. Rules and Regulations

Usually a domain rule is paired with a possibly remedying regulation.
Definition: Regulation.

• A regulation stipulates that

– an action be taken

– in order to remedy a previous action which violated a rule.

• That is,

– a regulation is some text

– which designates a possibly composite action,

– that is, a state-to-state change

– which ostensibly results in a state

– in which the rule, “attached” to the regulation, now holds.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 87

3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.1. Vehicles

3.3.1. Vehicles

80. Vehicles are further undefined quantities except that

(a) vehicles have unique identifiers,

(b) vehicles are either positioned

i. at/in hubs

ii. or on links, in some fractional (non-zero) distance from a hub
toward the connecting hub.

81. From a net (sort) one can observe all the vehicles of the net.1

82. No two vehicles so observed have the same identifier.

1Thus a concrete net type, in addition to hubs and links (now) also contains vehicles.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

88 From Domains to Requirements

3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.1. Vehicles

type

80. V
80(a). VI
80(b). VP = HP | LP
80((b))i. HP == atH(hi:HI)
80((b))ii. LP == onL(li:LI,fhi:HI,f:F,thi:HI)
80((b))ii. F = {|f:F•0<f<1|}
value

80(a). obs VI: V → VI
80(b). obs VP: V → VP
81. obs Vs: N → V-set

axiom

82. ∀ v:V • v ∈ obs Vs(n) ⇒
82. ∃ onL(li,fhi,f,thi):VP • onL(li,fhi,f,thi)=obs VP(v) ⇒
82. ∃ l:L•l ∈ obs Ls(n)∧li=obs LI(l)∧{fhi,thi}=obs HIs(l) ∨
82. ∃ atH(hi):VP • atH(hi)=obs VP(v) ⇒
82. ∃ h:H•h ∈ obs Hs(n)∧hi=obs HI(h)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 89
3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.2. Traffic

3.3.2. Traffic

83. By traffic we understand a continuous function from time to a pair
of nets and position of vehicles.

84. By time we understand a dense set of points with dense and points
being mathematical concepts [wayne.d.blizard.90,J.van.Benthem.Logic.Time91].

type

83. TF = T → (sel net:N × sel veh pos:(V →m VP))
84. T

3.3.2.1. Wellformedness of Traffic

• Expressing the wellformedness of traffic is not a simple matter.

• We shall approach this task in a number of “small steps”.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

90 From Domains to Requirements

3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.2. Traffic 3.3.2.1. Wellformedness of Traffic 3.3.2.1.1 Static Wellformedness

3.3.2.1.1. • Static Wellformedness•

85. We define a predicate over vehicle positions.

(a) Every vehicle in the traffic has a proper position on the net, either at a hub or
along a link.

(b) No two vehicles of the traffic can occupy exactly the same link position. (That
is, the link positions onL(li,hi,f,hi′) and onL(li,hi,f’,hi′) must have the two frac-
tions (f, f ′) differ – be it ever so “minutely”).

We first define two auxiliary functions:2

value

obs HIs: N → HI-set
obs HIs(n) ≡ {obs HI(h)|h:H•h ∈ obs Hs(n)}
obs LIs: N → LI-set
obs LIs(n) ≡ {obs LI(h)|l:L•l ∈ obs Ls(n)}

2They really ought to have been defined much earlier!

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 91
3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.2. Traffic 3.3.2.1. Wellformedness of Traffic 3.3.2.1.1 Static Wellformedness

85. proper vehicle positions: TF → Bool

85. proper vehicle positions(tf) ≡
85. ∀ t:T • t ∈ DOMAIN tf •

85. let (n,vps) = tf(t) in

85(a). ∀ v:V•v ∈ dom vp•is net position(vps(v))(n)

85(b). ∀ v′:V•v′ ∈ dom vp ∧ v 6=v′⇒diff net pos(vps(v),vps(v′))

85. end

85(a). is net position: VP → N → Bool

85(a). is net position(vp)(n) ≡
85(a). case vp of

85(a). atH(hi) → hi ∈ obs HIs(n),

85(a). onL(li,fhi,f,thi) → li ∈ obs LIs(n)∧{fhi,thi}⊆obs HIs(n)

85(a). end

85(b). diff net pos: VP × VP → Bool

85(b). diff net pos(vp,vp′) ≡
85(b). case (vp,vp′) of

85(b). (atH(hi),atH(hi)) → true,

85(b). (onL(li,fhi,f,thi),onL(li,fhi,f′,thi)) → f 6=f′,

85(b). → true

85(b). end

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

92 From Domains to Requirements
3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.2. Traffic 3.3.2.1. Wellformedness of Traffic 3.3.2.1.1 Static Wellformedness

3.3.2.1.2. • Dynamic Wellformedness•

86. Vehicles, when moving, move monotonically, that is,

(a) if a vehicle, at some time, t, is at a link position onL(li,hi,f,hi′)
where f is not infinitesimally close to 1, then that vehicle will, at
some later time t′, infinitesimally close to t, be at link position
onL(li,hi,f′,hi′) where f ′ is infinitesimally close to f ;

(b) if the vehicle, at some time, t, is at a link position onL(li,hi,f,hi′)
where f is indeed infinitesimally close to 1, then that vehicle will,
at some infinitesimally later time t′, be at hub position atH(hi′);

(c) and if the vehicle, at some time, t, is at a hub position atHP(hi)
then the vehicle will at some infinitesimally later time t′ either be
at hub position atHP(hi) or at some link position onL(li,hi,f,hi′)
where f is infinitesimally close to 0.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 93

3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.2. Traffic 3.3.2.1. Wellformedness of Traffic 3.3.2.1.2 Dynamic Wellformedness

value

86. monotonic: TF → Bool

86. monotonic(tf) ≡
86. ∀ t,t′:T • {t,t′}⊆DOMAIN tf •

86. let (n,vps) = tf(t),(n′,vps′)=tf(t′) in

86. INFINITESIMALLY CLOSE (t,t′)∧t<t′⇒
86. ∀ v:V•v ∈ dom vps ∩ dom vps′

•

86. case (vps(v),vps′(v)) of

86(a). (onL(li,fhi,f,thi),onL(li,fhi,f′,thi)) →
86(a). f<f′ ∧ INFINITESIMALLY CLOSE (f,f′),
86(b). (onL(li,fhi,f,thi),atH(thi)) →
86(b). INFINITESIMALLY CLOSE (f,1),
86(c). (atH(hi),atH(hi)) → true,
86(c). (atH(hi),onL(li,hi,f,thi)) →
86(c). INFINITESIMALLY CLOSE (0,f),
86. → true

86. end end

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

94 From Domains to Requirements

3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.2. Traffic 3.3.2.1. Wellformedness of Traffic 3.3.2.1.2 Dynamic Wellformedness

87. If a vehicle is (has been) moving along a link li and is now,

• at time t, at position onL(li, hj, f, hk), that is, moving from hj
to hk,

• then it cannot at a subsequent, infinitesimally close time, t′, be at
a position

• onL(li, hk, f
′, hj), that is, moving in the opposite direction, hk to

hj.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 95

3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.2. Traffic 3.3.2.1. Wellformedness of Traffic 3.3.2.1.2 Dynamic Wellformedness

value

87. God does not play dice3: TF → Bool

87. God does not play dice(tf) ≡
87. ∀ t,t′:T • {t,t′}⊆DOMAIN tf ∧ t<t′ ∧ INFINITESIMALLY CLOSE (t,t′)⇒
87. let (n,vps) = tf(t),(n′,vps′)=tf(t′) in

87. ∀ v:V • v ∈ dom vps ∩ dom vps′ ⇒
87. case (vps(v),vps′(v)) of

87. (onL(li,fhi, ,thi),onL(li,thi, ,fhi))→false,
87. → true

87. end end

3Albert Einstein: “I, at any rate, am convinced that He does not throw dice.” Letter to Max Born (4

December 1926); The Born-Einstein Letters (translated by Irene Born) (Walker and Company, New

York, 1971) ISBN 0-8027-0326-7. Reflects Einstein’s view of Quantum Mechanics at the time.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

96 From Domains to Requirements

3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.2. Traffic 3.3.2.1. Wellformedness of Traffic 3.3.2.1.2 Dynamic Wellformedness

88. If a vehicle is (has been) moving along and has,

• at time t, been at some position p, and

• at time t′, later than t, is at some position p′,

• then it must at all times t′′ between t and t′ have been somewhere
on the net.

value

88. no ghost vehicles: TF → Bool

88. no ghost vehicles(tf) ≡
88. ∀ t,t′:T • {t,t′}⊆DOMAIN tf ∧ t<t′ ⇒
88. let (n,vps) = tf(t),(n′,vps′)=tf(t′) in

88. ∀ v:V•v ∈ dom vps ∩ dom vps′ ⇒
88. ∀ t′′:T • t<t′′<t′ ⇒
88. let (n′′,vps′′) = tf(t′′) in v ∈ dom vps′′ end

88. end

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 97

3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.3. Traffic Rules (I of II)

3.3.3. Traffic Rules (I of II)

89. A vehicle must not move from a hub, hi, into a link ℓ (from hub (identified by)
hi to hub (identified by) hj) which is closed in direction (hi, hj), that is, where
(hi, hj) is not in the current state of link.

rule:

89. ∀ tf:TF,t:T • t ∈ DOMAIN(tf) ⇒
89. let (n,tp) = tf(t) in

89. ∀ v:V • v ∈ dom tp ⇒
89. case tp(v) of

89. atH(hi) →
89. let t′:T • t′>t ∧ t′ ∈ DOMAIN(tr′) ∧ INFINITESIMALLY CLOSE(t,t′) in

89. let (n′,tp′) = tf(t′) in

89. ∃ li:LI,hi′:HI,f:F,hi′′:HI •

89. hi′=hi ∧ INFINITIEIMALLY CLOSE(f,0) ∧
89. tp′(v) = onL(li,hi′,f′,hi′′) ∧(hi,hi′′) 6∈ obs LΣ(getL(li,n′))
89. → ...
89. end end end end

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

98 From Domains to Requirements

3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.4. Another Traffic Regulator

3.3.4. Another Traffic Regulator

• We present an abstraction of a more conventional traffic signal than
modelled in Items 74 on page 78 to 77 on page 81.

90. A traffic signal now simply shows an entry permit: either red, yellow
or green at the hub when “leaving” any link, i.e., at the entry to a
hub from any link.

type

90. EP == red | yellow | green
90. HΣ = LI →m EP
axiom

90. ∀ h:H • obs LIs(h)=dom obs HΣ(h)

• We leave it to the reader to express a constraint over hub state spaces
as to how there must be hub states such that entry from any link is
possible.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 99

3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.5. Traffic Rules (II of II)

3.3.5. Traffic Rules (II of II)

91. Vehicles must not enter a hub if entry permission is not green.

rule:

91. ∀ tf:TF,t:T : t ∈ DOMAIN(tf) ⇒
91. let (n,vps) = tf(t) in

91. ∀ v:V • v ∈ dom vps ⇒
91. case vps(v) of

91. onL(li,hi,f,hi′) →
91. INFINITESIMALLY CLOSE(f,1) ∧
91. let hσ = obs HΣ(getH(hi′,n)),
91. t′:T • t′>t ∧ INFINITESIMALLY CLOSE(t,t′) in

91. let (n′,vps′) = vps(t′) in

91. hσ(li) 6= green ∧ vps′(v) 6= atH(hi′) assert: vps′(v) = onL(li,hi,f,hi′)
91. end end

91. → ...
91. end end

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

Lecture Notes in Software Engineering 99

End of Lecture 3: DOMAINS: Intrinsics – Rules & Regulations

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

Lecture Notes in Software Engineering 99

Start of Lecture 4: DOMAINS: Scripts – Human Behaviour

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

100 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.4. Scripts

3.4. Scripts
Definition: Scripts.

• A script is plan of action.

• By a domain script we shall, more specifically, understand

– the structured, almost, if not outright,

– formally expressed, wording of a set of

– rules and regulations.

• See also

– license and

– contract.

Definitions follow.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 101

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.1. Routes as Scripts

3.4.1. Routes as Scripts
3.4.1.1. Paths

92. A path is a triple:

(a) a hub identifier, hi, a link identifier, lj, and another hub identifier,
hk, distinct from hi,

(b) such that there is a link ℓ with identifier lj in a net n such that
{hi, hk} are the hub identifiers that can be observed from ℓ.

type

92. Pth = HI × LI × HI
axiom

92(a). ∀ (hi,li,hi′):Pth • ∃ n:N,l:L • l ∈ obs Ls(n) ⇒
92(b). obs LI(l)=li ∧ obs HIs(l)={hi,hi′}

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

102 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.1. Routes as Scripts 3.4.1.1. Paths

93. From a net one can extract all its paths:

(a) if l is a link of the net,

(b) lj its identifier,

(c) {hi, hk} the identifiers of its connected hubs,

(d) then (hi, lj, hk) and (hk, lj, hj) are paths of the net.

value

93. paths: N → Pth-set
93(a). paths(n) ≡
93(d). {(hi,lj,hk),(hk,lj,hi)|l:L,lj:LI,hi,hk:HI•l ∈ obs Ls(n) ∧
93(b). lj=obs LI(l) ∧
93(c). {hi,hk}=obs HIs(l)}

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 103

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.1. Routes as Scripts 3.4.1.1. Paths

94. From a net descriptor one can (likewise) extract all its paths:

(a) Let hi, hk be any two distinct hub identifiers of the net descriptor
(definition set),

(b) such that they both map into a link identifier lj,

(c) then (hi, lj, hk) and (hk, lj, hj) are paths of the net.

value

93. paths: ND → Pth-set
93. paths(nd) ≡
94(a). {(hi,lj,hk),(hk,lj,hi)|hi,hk:HI,lj:LI • hi 6=hk ∧ {hi,hk}⊆dom nd ⇒
94(b). lj ∈ dom nd(hi)∩ dom nd(hk)}

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

104 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.1. Routes as Scripts 3.4.1.2. Routes

3.4.1.2. Routes

95. A route of a net is a sequence of zero, one or more paths such that

(a) all paths of a route are paths of the net and

(b) adjacent paths in the sequence “share” hub identifiers.

type

95. R = Pth∗

axiom

95. ∀ r:R, ∃ n:N •

95(a). elems r ⊆ paths(n) ∧
95(b). ∀ i:Nat • {i,i+1}⊆inds r ⇒
95(b). let (, ,hi)=r(i), (hi′, ,)=r(i+1) in hi=hi′ end

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 105

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.1. Routes as Scripts 3.4.1.2. Routes

96. From a net, n, we can generate the possibly infinite set of finite and
possibly infinite routes:

(a) <> is a path (basis clause 1);

(b) if p is a path of n then < p > is a path of n (basis clause 2);

(c) if r and r′ are non-empty routes of n

i. and the last hi of r is the same as the first hj of r′

ii. then the concatenation of r and r′ is a route

(induction clause).

(d) Only such routes which can be formed by a (finite, respectively
infinite) application of basis clauses Items 96(a) and 96(b) and
induction clause Item 96(c) are routes (extremal clause).

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

106 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.1. Routes as Scripts 3.4.1.2. Routes

value

96. routes: N|ND → R-infset

96. routes(nond) ≡
96(a). let rs = {〈〉} ∪
96(b). {〈p〉|p:Pth•p ∈ paths(nond)} ∪
96((c))ii. {r̂r′|r,r′:R • r ∈ rs ∧ r′ ∈ rs ∧
96((c))i. ∃ hi,hi′,hi′′,hi′′′:H,li:LI •

96((c))i. r=r′′

̂〈(hi,li,hi′)〉∧r′=〈(hi′′,li′,hi′′′)〉̂r′′′ ∧
96((c))i. hi′=hi′′} in

96(d). rs end

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 107

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.2. Bus Timetables as Scripts

3.4.2. Bus Timetables as Scripts
3.4.2.1. Buses

97. Buses are vehicles,

98. with bus identifiers being the same as vehicle identifiers.

type

97. B
98. BI ⊆ VI

3.4.2.2. Bus Stops

99. A link bus stop indicates the link (by its identifier), the from and to
hub identifiers, and the fraction “down the link” from the from to
the to hub identifiers.

type

99. BS = mkL BS(sel fhi:HI,sel li:LI,sel f:F,sel thi:HI)

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

108 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.2. Bus Timetables as Scripts 3.4.2.3. Bus Routes

3.4.2.3. Bus Routes

100. A bus stop list is a sequence of two or more bus stops, bsl.

101. A bus route, br, is a pair of a net route, r, and a bus stop list , bsl,
such that route r is a route of n and such that bsl is embedded in
r. If

(a) there exists an index list, il, of ascending indices of the route r
and of the length of bsl

(b) such that the ith path of r

(c) share from and to hub identifiers and link identifier with the il(i)th
bus stop of bsl

then bsl is embedded in r.

102. We must allow for two or more stops along a bus route to be adjacent
on the same link — in which case the corresponding fractions must
likewise be ascending.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 109

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.2. Bus Timetables as Scripts 3.4.2.3. Bus Routes

value

n:N

type

100. BSL = BS∗

101. BR = {|(r,bsl):(R×BSL)•wf BR(r,bsl)|}
value

101. wf BR: BR → Bool

101. wf BR(r,bsl) ≡ ∃ n:N,r:R•r ∈ routes(n) ∧ is embedded in(r,bsl)

101(a). is embedded in: BR → Bool

101(a). is embedded in(r,bsl) ≡
101(b). ∃ il:Nat∗ • len il=len bsl∧inds il⊆inds r∧ascending(il) ⇒
101(c). ∀ i:Nat • i ∈ inds il ⇒
101(c). let (hi,lj,hk) = r(il(i)),(hi′,lj′,f,hk′) = bsl(i) in

101(c). hi=hi′ ∧ lj=lj′ ∧ hk=hk′ end ∧
102. ∀ i:Nat • {i,i+1}⊆inds il ⇒
102. let (hi,lj,f,hk)=bsl(i),(hi′,lj′,f′,hk′)=bsl(i+1) in

102. hi=hi′ ∧ lj=lj′ ∧ hk=hk′ ⇒ f<f′ end

ascending: Nat∗ → Bool, ascending(il) ≡ ∀ i:Nat•{i,i+1}⊆inds il ⇒ il(i)≤il(i+1)

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

110 From Domains to Requirements
3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.2. Bus Timetables as Scripts 3.4.2.4. Bus Schedule

3.4.2.4. Bus Schedule

103. A timed bus stop is a pair of a time and a bus stop.

104. A timed bus stop list is a sequence of timed bus stops.

105. A bus schedule is a pair of a route and a timed bus stop list such
that

• there is a net of which the routes is indeed a route,

• the bus stop list of the timed bus stop list is embedded in the
route, and

• ‘later” listed bus stops register later times.

106. SimpleBusSchedules remove routes from BusRoutes.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 111

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.2. Bus Timetables as Scripts 3.4.2.4. Bus Schedule

type

103. TBS :: sel T:T sel bs:BS
104. TBSL = TBS∗

105. BusSched = {|(r,tbsl):(R×TBSL)•wf BusSched(r,tbsl)|}
value

105. wf BusSched: BusSched → Bool

105. wf BusSched(r,tbsl) ≡
105. ∃ n:N•r ∈ routes(n)
105. ∧ let bsl:SBS = 〈sel BS(tbsl(i))|i:[1..len tbsl]〉 in is embedded in(r,bsl) end

105. ∧ ∀ i:Nat•{i,i+1}⊆inds tbsl ⇒ sel T(tbsl(i))<sel T(tbsl(i+1))
type

106. SBS = {|bsl:BS∗
•∃ n:N,r:R•r ∈ routes(n)∧is embedded in(r,bsl)|}

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

112 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.2. Bus Timetables as Scripts 3.4.2.5. Timetable

3.4.2.5. Timetable
The concept of a bus line captures all those bus schedules which ply the same bus
route but at different times. A timetable is made up from distinctly named bus lines.

107. A bus line has a unique bus line name.

108. We say that two bus schedules are the same if they are based on the same route
and if they differ only in their times.

109. Each of the different bus routes of a bus line has a unique bus number.

110. A route bus schedule pairs a route with simple bus schedules for each of a number
of busses (identified by their bus number).

111. A bus timetable (listing, map) maps bus line names to route bus schedules.

112. A timetable is a pair, a net and a table.

113. A well-formed timetable must satisfy same bus schedules within each bus line

114. All bus numbers are distinct across bus lines.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 113

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.2. Bus Timetables as Scripts 3.4.2.5. Timetable

type

107. BLNm
value

108. same bus schedule: BusSched × BusSched → Bool

108. same bus schedule((r1,btl1),(r2,btl2)) ≡
108. r1 = r2 ∧ len btl1 = btl2 ∧
108. 〈sel BS(btl1(i))|i:[1..len btl1]〉=〈sel BS(btl2(i))|i:[1..len btl2]〉
type

109. BNo
110. RBS :: sel R:R sel btbl:(BNo →m SBS)
111. TBL = BLNm →m RBS
112. TT′ = ND × TBL
113. TT = {|tt:TT′

•wf TT(tt)|}

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

114 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.2. Bus Timetables as Scripts 3.4.2.5. Timetable

value

113. wf TT: TT′ → Bool

113. wf TT(,tbl) ≡
113. ∀ bln:BLNm•bln ∈ dom tbl ⇒
113. ∀ bno,bno′:BNo • {bno,bno′}⊆dom sel btbl(tbl(bln)) ⇒
113. same bus schedule(sel R(tbl(bln)),sel btbl(tbl(bln))(bno),
113. sel R(tbl(bln)),sel btbl(tbl(bln))(bno′)) ∧
114. ∀ bln′,bln′′:BLNm • {bln′,bln′′}⊆dom tbl ∧ bln′6=bln′′ ⇒
114. dom sel btbl(tbl(bln′)) ∩ dom sel btbl(tbl(bln′′)) = {}

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 115

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.3. Route and Bus Timetable Denotations

3.4.3. Route and Bus Timetable Denotations

• What are routes and bus timetables scripting ?

• Routes (list of connected link traversal designations) script that one
may transport people or freight along the sequence of designated
links.

• Bus timetables script (at least) two things:

– the set of bus traffics on the net which satisfy the bus timetable,
and

– information that potential and actual bus passengers may, within
some measure of statistics (and probability), rely upon for their
bus transport.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

116 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.3. Route and Bus Timetable Denotations

• Here, we shall not develop the idea of bus timetables denoting certain
traffics.

– Instead we refer to our previously sketched model of traffics (Sect. ,
Pages 89–97).

• Route (designations) and bus timetables

– script potential and actual route travels, respectively

– script the dispatch of buses and their travelling.

• Bus timetables can also be seen as a form of contracts

– between the bus operators offering the bus services

– and potential and actual passengers,

– with the contract promising timely transport.

• In the next section, Sect. , we shall sketch a language of bus service
contracts and bus service actions implied by such contracts.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 117

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts

3.4.4. Licenses and Contracts
Definition: License.

• A license is

– a script

– specifically expressing a permission to act;

– is freedom of action;

– is a permission granted by competent authority to engage in
a business or occupation or in an activity otherwise unlawful;

– a document, plate, or tag evidencing a license granted;

– a grant by the holder of a copyright or patent to another of
any of the rights embodied in the copyright or patent short
of an assignment of all rights.

Licenses appear more to have morally than legally binding poser.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

118 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts

Definition: Contract.

• A contract

– is a special kind of license

– specifically expressing a legally binding agreement between
two or more parties —

– hence a document describing the conditions of the contract;

– a contract is business arrangement for the supply of goods or
services at fixed prices, times and locations.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 119

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts

• In software development a contract specifies what is to be de-
veloped:

– (1) a domain description,

– (2) a requirements prescription, or

– (3) a software design;

or a combination of these (1–2, 2–3, 1–3).

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

120 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts

• A contract further specifies

– how it might, or must be developed;

– criteria for acceptance of what has been developed;

– delivery dates for the developed items;

– who the “parties” to the contract are:

∗ the client and

∗ the developer, etc.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 121

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts

• For a comprehensive treatment of licenses and contracts we refer to
[Chapter 10, Sect. 10.6 (Pages 309--326) [jaist-db10]][jaist-mono].

• We shall illustrate fragments of a language for bus service contracts.

• The background for the bus contract language is the following.

– In many large cities around Europe the city or provincial govern-
ment secures public transport in the form of bus services operated
by many different private companies.

– Earlier lectures illustrated the concept of bus (service) timetables.

– The bus services implied by such a timetable, for a city area —
with surrounding suburbs etc. — need not be implemented by
just one company, but can be contracted, by the city government
public transport office, to several companies, each taking care of
a subset of the timetable.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

122 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts

– Different bus operators then take care of non-overlapping parts
and all take care of the full timetable.

– It may even be that extra buses need be scheduled, on the fly, in
connection with major sports or concert or other events.

– Bus operators may experience vehicle breakdowns or bus driver
shortages and may be forced to subcontract other, even otherwise
competing bus operators to “step in” and alleviate the problem.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 123

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.1. Contracts

3.4.4.1. Contracts
Schematically we may represent a bus contract as follows:

Contract cn between contractee ci and contractor cj:
This contract contracts cj in the period [t,t′] to

perform the following services with respect to timetable tt:
operate bus lines {blj1,blj2,...,bljn}
subject to the following occasional exceptions:

cancellation of bus tours:

{(blja,{bnoa1
,...,bnoam}),...} subject to conditions cbt

insertion of bus tours on lines

{bljα,bljβ,...,bljγ} subject to conditions ibt
subcontracting bus tours on lines

{bljδ,bljφ,...,bljω} subject to conditions scbt.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

124 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.1. Contracts

115. A bus contract has a header with the distinct names of a contractee
and a contractor and a time interval.

116. A bus contract presents a timetable.

117. A bus contract presents a set of bus lines (by their identifiers) such
that these are in the timetable.

118. And a bus contract may list one or more of three kinds of “excep-
tions”:

(a) cancellation of one or more named bus tours on one or more bus lines subject
to certain (specified) conditions;

(b) insertion of one or more extra bus tours on one or more bus lines subject to
certain (specified) conditions;

(c) subcontracting one or more unspecified bus tours on one or more bus lines
subject to certain (specified) conditions — to further unspecified contractors.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 125

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.1. Contracts

We abstract the above quoted “one or more of three kinds of excep-
tions” as one possibly empty clause for each of these alternatives.

119. A bus contract now contains a header, a timetable, the subject bus
lines and the exceptions,

120. such that

(a) line names mentioned in the contract are those of the bus lines of
the timetable, and

(b) bus (tour) numbers are those of the appropriate bus lines in the
timetable.

121. The calendar period is for at least one full day, midnight to midnight.

122. A named contract is a pair of a contract name and a contract.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

126 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.1. Contracts

type

115. CNm, CId, D, T, CON
115. CH = CId × CId × (D×D)
116. CT = TT
117. CLs = BLNm-set

118. CE = (CA × IN × SC) × CON
118(a). CA = BLNm →m BNo-set
118(b). IN = BLNm →m BNo-set
118(c). SC = BLNm-set

119. CO′ = CH × CT × CLs × CE
120. CO = {|co:CO′

•wf CO(co)|}
122. NCO = CNm × CO

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 127

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.1. Contracts

value

120. wf CO: CO′ → Bool

120. wf CO((ce,cr,(d,d′)),(nd,tbl),cls,((blns,blns′,bls),con)) ≡
117. ce 6= cr ∧
120(a). cls ⊆ dom tbl ∧
120(b). ∀ bli,bli′:BLNm • bli ∈ dom blns ∧ bli′ ∈ dom blns′ ⇒
120(a). {bli,bli′} ⊆ dom tbl ∧
120(b). blns(bli) ∪ blns′(bli′) ⊆ dom sel btbtl(tbl(bli)) ∧
120(a). bls ⊂ dom tbl ∧
121. d < d′

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

128 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.2. Contractual Actions

3.4.4.2. Contractual Actions

For contract cn commence bus tour, line: bli and bus no.: bno

For contract cn cancel bus tour, line: bli and bus no.: bno

For contract cn insert extra bus tour, line: bli and bus no.: bno

Subcontract with respect to contract cn the following:

Contract cn′: for the calendar period [d,d′] contractee ci contracts contractor cj

to perform the following services with respect to timetable tt:

operate bus lines {blj1,blj2,...,bljn}
subject to the following occasional exceptions:

cancellation of bus tours:

{(bljc,{bnoc1,...,bnocm}),...} subject to conditions cbt

insertion of bus tours on lines

{(blji,{bnoi1,...,bnoin}),...} subject to conditions ibt

subcontracting bus tours on lines

{bljδ,bljφ,...,bljω} subject to conditions scbt.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 129
3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.2. Contractual Actions

123. A bus operator action is either a commence, a cancellation, an inser-
tion or a subcontracting action. All actions refer to the (name of)
the contract with respect to which the action is contracted.

(a) A commence action designator states the bus line concerned and
the bus number of that line.

(b) A cancellation action designator states the bus line concerned and
the bus number of that line.

(c) An insertion action designator states the bus line concerned and
the bus number of that line — for which an extra bus is to be
inserted.4

(d) A subcontracting action designator, besides the name of the con-
tract with respect to which the subcontract is a subcontract, state
a named contract (whose contract name is unique).

4The insertion of buses in connection with either unscheduled or extraordinary (sports, concerts, etc.) events can be handled by special, initial contracts.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

130 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.2. Contractual Actions

type

123. Act = Com | Can | Ins | Sub
123(a). Com == mkCom(sel cn:CNm,sel bli:BLNm,sel bno:BNo)
123(b). Can == mkCan(sel cn:CNm,sel bli:BLNm,sel bno:BNo)
123(c). Ins == mkIns(sel cn:CNm,sel bli:BLNm,sel bno:BNo)
123(d). Sub == mkSub(sel cn:CNm,sel con:NCO)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 131

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.3. Wellformedness of Contractual Actions

3.4.4.3. Wellformedness of Contractual Actions

124. In order to express wellformedness conditions, that is, pre-conditions,
for the action designators we introduce a context which map contract
names to contracts.

125. Wellformedness of a contract is now expressed with respect to a
context.

type

124. CTX = CNm →m CO
value

125. wf Act: Act → CTX → Bool

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

132 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.3. Wellformedness of Contractual Actions

• Let a defined cnm entry in ctx be a contract:
((ce,cr),(nd,tbl),cls,(blns,bls,bls′),(d,d′)).

126. If cmd is a commence command mkCom(cnm,bln,bno), then

(a) contract name cnm must be defined in context ctx;

(b) bus line name bln must be defined in the contract, that is, in cls,
and

(c) bus number bno must be defined in the bus table part of table tbl.

126. wf Act(mkCom(cnm,bln,bno))(ctx) ≡
126(a). cnm ∈ dom ctx ∧
126. let ((ce,cr),(nd,tbl),cls,(blns,bls,bls′),(d,d′)) = ctx(cnm) in

126(b). bln ∈ cls ∧
126(c). bno ∈ dom sel btbl(tbl(bln)) end

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 133

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.3. Wellformedness of Contractual Actions

127. cancellation and insertion commands have the same static wellformed-
ness conditions as have commence command.

127. wf Act(mkCan(cnm,bln,bno))(ctx) ≡ wf Act(mkCom(cnm,bln,bno))(ctx)
127. wf Act(mkIns(cnm,bln,bno))(ctx) ≡ wf Act(mkCom(cnm,bln,bno))(ctx)

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

134 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.3. Wellformedness of Contractual Actions

128. If cmd is a subcontract command then

Let the subcontract command and the cnm named contract in ctx
be

mkSub(cnm,nco:(cnm′,(ce′,cr′,(d′′,d′′′)),(nd′,tbl′),cls′,(blns′,bls′′,bls′′′)))

respectively ((ce,cr,(d,d′)), (nd,tbl), cls, (blns,bls,bls′)).

(a) contract name cnm must be defined in context ctx;

(b) contract name cnm′ must not be defined in context ctx;

(c) the calendar period of the subcontract must be within that of the
contract from which it derives;

(d) the net descriptors nd and nd′ must be identical;

(e) the tables tbl and tbl′ and must be identical and

(f) the set, cls′, of bus line names that are the scope of the subcon-
tracting must be a subset of bls′.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 135

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.3. Wellformedness of Contractual Actions

128. wf Act(mkSub(cnm,nco:(cnm′,co:((ce′,cr′,(d′′,d′′′)),(nd′,tbl′),cls′,(blns′,blns′′,bls′′′)))))(ctx)

128(a). cnm ∈ dom ctx ∧
128. let co′ = ((ce,cr,(d,d′)),(nd,tbl),cls,(blns,blns′,bls′)) = ctx(cnm) in

128(b). cnm′ 6∈ dom tbl ∧
128(c). d ≤ d′′ ≤ d′′′ ≤ d′ ∧
128(d). nd′ = nd ∧
128(e). tbl′ = tbl ∧
128(f). cls′ ⊆ bls′ end

• Wellformedness of contracts, wf CO(co) and wf CO(co′), secures other constraints.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

136 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.3. Wellformedness of Contractual Actions

• We do not here bring any narrated or formalised description of the
semantics of contracts and actions.

• First such a description would be rather lengthy.

• Secondly a specification would be more of a requirements prescrip-
tion.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 137

3. 3. An Ontology of Domain Facets 3.5. Management and Organisation

3.5. Management and Organisation
Definition: Management.

• Management is about resources:

– their acquisition,

– scheduling (over time),

– allocation (over locations),

– deployment (in performing actions) and

– disposal (“retirement”).

• We distinguish between

– board-directed,

– strategic,

– tactical and

– operational

actions.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

138 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.5. Management and Organisation

• Board-directed actions target mainly financial resources: obtain-
ing new funds through conversion of goodwill into financial re-
sources, acquiring and selling “competing” or “supplementary”
business units.

• Strategic actions convert financial resources into production, ser-
vice supplies and resources and vice-versa — and in this these
actions schedule availability of such resources.

• Tactical actions mainly allocate resources.

• Operational actions order, monitor and control the deployment
of resources in the performance of actions.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 139

3. 3. An Ontology of Domain Facets 3.5. Management and Organisation

Definition: Organisation.

• Organisation is about

– the “grand scale”,

∗ executive and strategic

∗ national, continental or global (world wide)

– (i) allocation of major resource (e.g., business) units, whether
in a hierarchical, in a matrix, or in some other organigram-
specified structure,

– (ii) as well as the clearly defined relations (which information,
decisions and actions are transferred) between these units,
and

– (iii) organisational dynamics.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

140 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.5. Management and Organisation

Definition: Management & Organisation.

• The composite term management and organisation

– applies in connection with management as outlined just above
and

– with organisation also outlined above.

• The term then emphasises the relations between the organisa-
tion and management of an enterprise.

• • •

The borderlines within management actions and across organisation
“layouts” are fuzzy.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 141

3. 3. An Ontology of Domain Facets 3.5. Management and Organisation 3.5.1. Transport System Examples

3.5.1. Transport System Examples
We shall only present sketchy examples of management and organsation.

• Executive actions:

– Deciding on major re-organisation of a transport net

∗ (for example introduction of toll roads or freeways,

∗ road pricing,

∗ major bridges across wide waters [potentially connecting two
hitherto unconnected nets],

∗ and their management)

are executive actions.

– So are decisions on merging or splitting transport from or into
several transport services.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

142 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.5. Management and Organisation 3.5.1. Transport System Examples

– Reorganising an enterprise

∗ from one characterised by a “deep” hierarchy of management
layers (a hierarchy which may very well exemplify highly cen-
tralised both administrative and functional monitoring and con-
trol)

∗ into a matrix of two “shallow” hierarchies, one which addresses
tactical and operational management and one which addresses
executive and strategic management — with the former (the
operations) being replicated across geographical areas while the
latter applies “globally” —

such reorganisations reflect executive actions (but are carried out
by strategic and tactical management).

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 143

3. 3. An Ontology of Domain Facets 3.5. Management and Organisation 3.5.1. Transport System Examples

• Strategic actions: Adding or removing transport links, or major reor-
ganisation of bus timetables are strategic actions. Splitting a(n own)
contract into what is still to be operated and subcontracting other
parts, for definite, to other bus operators are also strategic actions.

• Tactical actions: Insertion and cancellation of bus services are tac-
tical actions. Subcontracting some parts of a timetable demanded
service, for a short while, to other bus operators could be considered
tactical actions.

• Operational actions: Commencing and thus, in general, allocating
drivers to and sending these off on bus services are operational ac-
tions. So are announcing insertion of new (unscheduled) and cancel-
lation of scheduled routes.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

144 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.6. Human Behaviour

3.6. Human Behaviour
Definition: Human Behaviour.

• By human behaviour we shall here understand

– the way a human follows the enterprise rules and regulations

– as well as interacts with a machine:

∗ dutifully honouring specified (machine dialogue or) protocols,

∗ or negligently so,

∗ or sloppily not quite so,

∗ or even criminally not so!

• Human behaviour is a facet of the domain.

– We shall thus model human behaviour also in terms of it
failing to react properly,

– i.e., humans as non-deterministic agents!

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 145

3. 3. An Ontology of Domain Facets 3.6. Human Behaviour

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

146 From Domains to Requirements3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets

3.7. Towards Theories of Domain Facets

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 147

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.1. A Theory of Intrinsics

3.7.1. A Theory of Intrinsics

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

148 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.2. Theories of Support Technologies

3.7.2. Theories of Support Technologies
3.7.2.1. An Example

• Traffic (tf:TF), intrinsically, is a total function over some time in-
terval, from time (t:T) to continuously positioned (p:P) vehicles
(tn:TN).

• Conventional optical sensors sample, at regular intervals, the intrinsic
train traffic.

• The result is a sampled traffic (stf:sTF).

• Hence the collection of all optical sensors, for any given net, is a
partial function from intrinsic (itf) to sampled train traffics (stf).

• We need to express quality criteria that any optical sensor technology
should satisfy — relative to a necessary and sufficient description of
a closeness predicate.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 149

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.2. Theories of Support Technologies 3.7.2.1. An Example

• For all intrinsic traffics, itf, and for all optical sensor technologies,
og, the following must hold:

– Let stf be the traffic sampled by the optical gates.

– For all time points, t, in the sampled traffic,

– those time points must also be in the intrinsic traffic,

– and, for all trains, tn, in the intrinsic traffic at that time,

– the train must be observed by the optical gates, and

– the actual position of the train and the sampled position must
somehow be checkable to be close, or identical to one another.

Since hubs change state with time, n:N, the net needs to be part of any
model of traffic.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

150 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.2. Theories of Support Technologies 3.7.2.1. An Example

type

T, TN
P = HP | LP
NetTraffic :: net:N × trf:(V →m P)
iTF = T → NetTraffic
sTF = T →m NetTraffic

oG = iTF
∼
→ sTF

value

[close] c: NetTraffic × TN × NetTraffic
∼
→ Bool

axiom

∀ itt:iTF, og:OG • let stt = og(itt) in

∀ t:T • t ∈ dom stt •

t ∈ DOM itt ∧ ∀ Tn:TN • tn ∈ dom trf(itt(t))
⇒ tn ∈ dom trf(stt(t)) ∧ c(itt(t),tn,stt(t)) end

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 151

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.2. Theories of Support Technologies 3.7.2.2. General

3.7.2.2. General

• The formal requirements can be narrated:

– Let Θi and Θa designate the spaces of intrinsic and actual-world configurations
(contexts and states).

– For each intrinsic configuration model — that we know is support technology
assisted —

– there exists a support technology solution,

– that is, a total function from all intrinsic configurations to corresponding actual
configurations.

• If we are not convinced that there is such a function then there is little hope that
we can trust this technology

type

Θi, Θa

ST = Θi → Θa

axiom

∀ sts:ST-set, st:ST • st ∈ sts ⇒ ∀ θi:Θi, ∃ θa:Θa • st(θi) = θa

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

152 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.3. A Theory of Rules & Regulations

3.7.3. A Theory of Rules & Regulations

• There are, abstractly speaking, usually three kinds of languages in-
volved wrt. (i.e., when expressing) rules and regulations (respectively
when invoking actions that are subject to rules and regulations).

– Two languages, Rules and Reg, exist for describing rules, respec-
tively regulations; and

– one, Stimulus, exists for describing the form of the [always current]
domain action stimuli.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 153

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.3. A Theory of Rules & Regulations

• A syntactic stimulus, sy sti, denotes a function, se sti:STI: Θ → Θ,
from any configuration to a next configuration

• A syntactic rule, sy rul:Rule, has as its semantics, its meaning,
rul:RUL,

– a predicate over current and next configurations, (Θ × Θ) →
Bool,

– where these next configurations have been caused, by the stimuli.
These stimuli express:

– If the predicate holds then the stimulus will result in a valid next
configuration.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

154 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.3. A Theory of Rules & Regulations

type

Stimulus, Rule, Θ
STI = Θ → Θ
RUL = (Θ × Θ) → Bool

value

meaning: Stimulus → STI
meaning: Rule → RUL

valid: Stimulus × Rule → Θ → Bool

valid(sy sti,sy rul)(θ) ≡ meaning(sy rul)(θ,(meaning(sy sti))(θ))

valid: Stimulus × RUL → Θ → Bool

valid(sy sti,se rul)(θ) ≡ se rul(θ,(meaning(sy sti))(θ))

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 155

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.3. A Theory of Rules & Regulations

• A syntactic regulation, sy reg:Reg (related to a specific rule), stands
for, i.e., has as its semantics, its meaning,

– a semantic regulation, se reg:REG,

– which is a pair.

– This pair consists of

∗ a predicate, pre reg:Pre REG, where Pre REG = (Θ × Θ) →
Bool,

∗ and a domain configuration-changing function, act reg:Act REG,
where Act REG = Θ → Θ,

∗ that is, both involving current and next domain configurations.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

156 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.3. A Theory of Rules & Regulations

– The two kinds of functions express:

∗ If the predicate holds,

∗ then the action can be applied.

• The predicate is almost the inverse of the rules functions.

• The action function serves to undo the stimulus function.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 157

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.3. A Theory of Rules & Regulations

type

Reg
Rul and Reg = Rule × Reg
REG = Pre REG × Act REG
Pre REG = Θ × Θ → Bool

Act REG = Θ → Θ
value

interpret: Reg → REG

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

158 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.3. A Theory of Rules & Regulations

• The idea is now the following:

– Any action of the system, i.e., the application of any stimulus,

∗ may be an action in accordance with the rules,

∗ or it may not.

– Rules therefore express whether stimuli are valid or not in the
current configuration.

– And regulations therefore express whether they should be applied,
and, if so, with what effort.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 159

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.3. A Theory of Rules & Regulations

• More specifically,

– there is usually, in any current system configuration, given a set
of pairs of rules and regulations.

– Let (sy rul,sy reg) be any such pair.

– Let sy sti be any possible stimulus.

– And let θ be the current configuration.

– Let the stimulus, sy sti, applied in that configuration result in a
next configuration, θ′, where θ′ = (meaning(sy sti))(θ).

– Let θ′ (= (meaning(sy sti))(θ)) violate the rule, i.e., ∼valid(sy sti,sy rul)(θ

– then if predicate part, pre reg, of the meaning of the regulation,
sy reg, holds in that violating next configuration, pre reg(θ,θ′

– then the action part, act reg, of the meaning of the regulation,
sy reg, must be applied, act reg(θ′), to remedy the situation.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

160 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.3. A Theory of Rules & Regulations

axiom

∀ (sy rul,sy reg):Rul and Regs •

let se rul = meaning(sy rul),
(pre reg,act reg) = meaning(sy reg) in

∀ sy sti:Stimulus, θ:Θ •

∼valid(sy sti,se rul)(θ)
⇒ let θ′ = (meaning(sy sti))(θ) in

pre reg(θ,θ′)
⇒ ∃ nθ:Θ • act reg(θ′)=nθ ∧ se rul(θ,nθ)

end end

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 161

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.3. A Theory of Rules & Regulations

• It may be that the regulation predicate fails to detect applicability
of regulations actions.

• That is, the interpretation of a rule differs, in that respect, from the
interpretation of a regulation.

• Such is life in the domain, i.e., in actual reality

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

162 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.4. A Theory of Management & Organisation

3.7.4. A Theory of Management & Organisation

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 163

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.5. A Theory of Human Behaviour

3.7.5. A Theory of Human Behaviour

• Commensurate with the above, humans interpret rules and regula-
tions differently,

• and not always “consistently” — in the sense of repeatedly applying
the same interpretations.

• Our final specification pattern is therefore:

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

164 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.5. A Theory of Human Behaviour

type

Action = Θ
∼
→ Θ-infset

value

hum int: Rule → Θ → RUL-infset

action: Stimulus → Θ → Θ

hum beha: Stimulus × Rules → Action → Θ
∼
→ Θ-infset

hum beha(sy sti,sy rul)(α)(θ) as θset
post

θset = α(θ) ∧ action(sy sti)(θ) ∈ θset
∧ ∀ θ′:Θ•θ′ ∈ θset ⇒
∃ se rul:RUL•se rul ∈ hum int(sy rul)(θ)⇒se rul(θ,θ′)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 165

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.5. A Theory of Human Behaviour

• The above is, necessarily, sketchy:

– There is a possibly infinite variety of ways of interpreting some
rules.

– A human, in carrying out an action, interprets applicable rules and
chooses one which that person believes suits some (professional,
sloppy, delinquent or criminal) intent.

– “Suits” means that it satisfies the intent,

∗ i.e., yields true on the pre/post-configuration pair,

∗ when the action is performed —

∗ whether as intended by the ones who issued the rules and reg-
ulations or not.

– We do not cover the case of whether an appropriate regulation is
applied or not

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

Lecture Notes in Software Engineering 165

End of Lecture 4: DOMAINS: Scripts – Human Behaviour

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

Lecture Notes in Software Engineering 165

Start of Lecture 5: REQUIREMENTS – up to and incl. Determination

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

166 From Domains to Requirements

4. An Ontology of Requirements Constructions

4. An Ontology of Requirements Constructions
Definition: Requirements.

• A condition or capability

• needed by a user

• to solve a problem or achieve an objective [IEEEStd.610.12].

Definition: Machine.

• By the machine we understand

• the hardware

• plus software

• that implements some requirements, i.e., a computing system.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 167

4. An Ontology of Requirements Constructions

Definition: Requirements Unit.

• By a requirements unit

– we mean a single sentence

– which expresses an “isolated” requirements.

– (We omit charaterising “single sentence” and “isolated”.)

Definition: Requirements Prescription.

• By a requirements prescription

– we mean just that: the prescription of some requirements.

• Sometimes, by requirements prescription,

– we mean a relatively complete and consistent specification of
all requirements,

– and sometimes just a requirements unit.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

168 From Domains to Requirements

4. An Ontology of Requirements Constructions

Definition: Requirements Engineering. The engineering of
the development of a requirements prescription,

• from identification of requirements stake-holders,

• via requirements acquisition,

• requirements analysis, and

• requirements prescription to

• requirements validation and

• requirements verification.

• We shall just focus on requirements prescription,

• that is, the modelling of requirements.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 169

4. An Ontology of Requirements Constructions 4.1. Business Process Re-engineering

4.1. Business Process Re-engineering
Definition: Business Process.

• By a business process we shall understand

– a behaviour of an enterprise, a business, an institution, a fac-
tory.

– A business process reflects the ways in which a business con-
ducts its affairs, and is a facet of the domain.

• Other facets of an enterprise are those of its

– intrinsics,

– support technology,

– rules and regulations,

– management and organisation , and

– human behaviour.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

170 From Domains to Requirements

4. An Ontology of Requirements Constructions 4.1. Business Process Re-engineering

Definition: Business Process Engineering.

• By business process engineering we shall understand

– the design,

– the determination,

of business processes.

• In doing business process engineering

– one is basically designing,

– i.e., prescribing entirely new business processes.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 171

4. An Ontology of Requirements Constructions 4.1. Business Process Re-engineering

Definition: Business Process Re-engineering.

• By business process reengineering we shall understand

– the re-design,

– the change,

of business processes.

• In doing business process re-engineering

– one is basically carrying out change management.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

172 From Domains to Requirements

4. An Ontology of Requirements Constructions 4.1. Business Process Re-engineering 4.1.1. The Kinds of Requirements

4.1.1. The Kinds of Requirements

• We distinguish between three kinds of requirements:

– the domain requirements are those requirements which can be
expressed solely using terms of the domain;

– the machine requirements are those requirements which can be
expressed solely using terms of the machine, and

– the interface requirements are those requirements which must
use terms from both the domain and the machine in order to be
expressed.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 173

4. An Ontology of Requirements Constructions 4.1. Business Process Re-engineering 4.1.2. Goals Versus Requirements

4.1.2. Goals Versus Requirements

• Whereas

– a domain description presents a domain as it is,

– a requirements prescription presents a domain

∗ as it would be

∗ if some required machine

∗ was implemented (from these requirements).

• The machine is the hardware plus software to be designed from
the requirements.

• That is, the machine is what the requirements are about.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

174 From Domains to Requirements

4. An Ontology of Requirements Constructions 4.1. Business Process Re-engineering 4.1.2. Goals Versus Requirements

• We make a distinction between goals and requirements.

• Goals are what we

– expect satisfied by the software

– implemented from the requirements.

• But goals could also be

– of the system

– for which the software is required.

• First we exemplify the latter, then the former.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 175

4. An Ontology of Requirements Constructions 4.1. Business Process Re-engineering 4.1.2. Goals Versus Requirements 4.1.2.1. Goals of a Toll Road System

4.1.2.1. Goals of a Toll Road System

• A goal for a toll road system may be

– to decrease the travel time between certain hubs and

– to lower the number of traffic accidents between certain hubs,

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

176 From Domains to Requirements

4. An Ontology of Requirements Constructions 4.1. Business Process Re-engineering 4.1.2. Goals Versus Requirements 4.1.2.2. Goals of Toll Road System Software

4.1.2.2. Goals of Toll Road System Software

• The goal of the toll road system software is to help automate

– the recording of vehicles entering, passing and leaving the toll road
system

– and collecting the fees for doing so.

• Goals are usually expressed in terms of properties.

• Requirements can then be proved to satisfy the Goals: D,R |= G.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 177

4. An Ontology of Requirements Constructions 4.1. Business Process Re-engineering 4.1.2. Goals Versus Requirements 4.1.2.3. Arguing Goal-satisfaction of a Toll Road System

4.1.2.3. Arguing Goal-satisfaction of a Toll Road System

• By endowing links and hubs with average traversal times for both
ordinary road and for toll road links and hubs

– one can calculate traversal times between hubs

– and thus argue that the toll road system satisfies “quicker” traversal times.

• By endowing links and hubs with traffic accident statistics (real,
respectively estimated)

– for both ordinary road and for toll road links and hubs

– one can calculate estimated traffic accident statistics between all hubs

– and thus argue that the combined ordinary road plus toll road system
satisfies lower traffic fatalities.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

178 From Domains to Requirements

4. An Ontology of Requirements Constructions 4.1. Business Process Re-engineering 4.1.2. Goals Versus Requirements 4.1.2.4. Arguing Goal-satisfaction of Toll Road System Software

4.1.2.4. Arguing Goal-satisfaction of Toll Road System Software

• By recording

– tickets issued and collected at toll booths and

– toll road hubs and links entered and left

– as per the requirements specification brought in
forthcoming examples (Sects. –),

• we can eventually argue that

– the requirements of the forthcoming examples (Sects. –)

– help satisfy the goal of the example ?? on page ??.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 179

4. An Ontology of Requirements Constructions 4.1. Business Process Re-engineering 4.1.2. Goals Versus Requirements 4.1.2.4. Arguing Goal-satisfaction of Toll Road System Software

• We shall assume that the (goal and) requirements engineer elicit both
Goals and Requirements from requirements stake-holders.

• D,R |= G

– The Goals can be argued to hold

– by reasoning over the Requirements

– and the Domain.

• But we shall focus only on

– domain and

– interface

requirements such as “derived” from domain descriptions.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

180 From Domains to Requirements

4. An Ontology of Requirements Constructions 4.1. Business Process Re-engineering 4.1.3. Re-engineered Nets

4.1.3. Re-engineered Nets

• The nets defined in Lecture 3 could be of any topology.

– They could consist of two or more nets that were not linked to
one another;

– they could consist of connected nets or nets that were acyclic; etc.;

– and the nets were not specifically road, rail, sea lane or air lane
nets.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 181

4. An Ontology of Requirements Constructions 4.1. Business Process Re-engineering 4.1.3. Re-engineered Nets

• We shall now consider a special kind of road nets: basically the road
nets we have in mind

– are linear sequences of pairs of links of opposite direction link
“states”,

– where these links, let us call them toll road links, are connected
to toll road hubs;

– where, in addition, these toll road hubs are linked, via toll plazas
(i.e., “special” hubs) to toll road hubs

– by means of on/off links.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

182 From Domains to Requirements

4. An Ontology of Requirements Constructions 4.1. Business Process Re-engineering 4.1.3. Re-engineered Nets

tp1 tp2 tp3 tpntpn−1tpj

l12

l32

l23 l34 lj−1j

ljj−1l43 lj+1j

ljj+1

ln−1n−2

ln−1n

lnn−1

ln−2n−1

l21

l1 l2 l3 lj ln−1 ln

h2h1 h3 hj hn−1 hn

tpi: toll plaza i, hi: hub i, li: toll plaza to hub link i, lij: hub i to hub j link

Figure 3: A Toll Road System

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 1834. An Ontology of Requirements Constructions 4.1. Business Process Re-engineering 4.1.3. Re-engineered Nets

• We do not consider the general nets that are (possibly) connected to
the toll plazas.

• The pragmatics behind these nets is the following:

– Drivers enter and leave the toll road nets at toll road plazas;

– collect tickets from toll road plaza ticket-issuing booths when en-
tering the toll road net and

– present these at toll road plaza ticket-collection booths and pay
according to some function of the time and length (from entry to
exit plaza) driven on the toll road net when leaving the net;

– drivers are otherwise free to “circle” the toll road net as they see
fit:

∗ multiple times “up and down” the net,

∗ circling toll road hubs,

∗ etc.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

184 From Domains to Requirements

4. An Ontology of Requirements Constructions 4.1. Business Process Re-engineering 4.1.3. Re-engineered Nets

• Our sketch centers around a toll road net with toll booth plazas.

• The BPR focuses

– first on entities, actions, events and behaviours,

– then on the six domain facets.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 185

4. An Ontology of Requirements Constructions 4.1. Business Process Re-engineering 4.1.3. Re-engineered Nets

129. Re-engineered Entities:

• We shall focus on a linear sequence of toll road intersections (i.e.,
hubs) connected by pairs of one-way (opposite direction) toll roads
(i.e., links).

• Each toll road intersection is connected by a two way road to a
toll plaza.

• Each toll plaza contains a pair of sets of entry and exit toll booths.

• (Sect. brings more details.)

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

186 From Domains to Requirements

4. An Ontology of Requirements Constructions 4.1. Business Process Re-engineering 4.1.3. Re-engineered Nets

130. Re-engineered Actions:

• Cars enter and leave the toll road net through one of the toll
plazas.

• Upon entering, car drivers receive, from the entry booth, a plas-
tic/paper/electronic ticket which they place in a special holder in
the front window.

• Cars arriving at intermediate toll road intersections choose, on
their own, to turn either “up” the toll road or “down” the toll
road — with that choice being registered by the electronic ticket.

• Cars arriving at a toll road intersection may choose to “circle”
around that intersection one or more times — with that choice
being registered by the electronic ticket.

• Upon leaving, car drivers “return” their electronic ticket to the
exit booth and pay the amount “asked” for.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 187

4. An Ontology of Requirements Constructions 4.1. Business Process Re-engineering 4.1.3. Re-engineered Nets

131. Re-engineered Events:

• A car entering the toll road net at a toll both plaza entry booth
constitutes an event.

• A car leaving the toll road net at a toll both plaza entry booth
constitutes an event.

• A car entering a toll road hub constitutes an event.

• A car entering a toll road link constitutes an event.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

188 From Domains to Requirements

4. An Ontology of Requirements Constructions 4.1. Business Process Re-engineering 4.1.3. Re-engineered Nets

132. Re-engineered Behaviours:

• The journey of a car,
– from entering the toll road net at a toll booth plaza,

– via repeated visits to toll road intersections

– interleaved with repeated visits to toll road links

– to leaving the toll road net at a toll booth plaza,

constitutes a behaviour — with
– receipt of tickets,

– return of tickets and

– payment of fees

being part of these behaviours.

• Notice that a toll road visitor is allowed to cruise “up” and “down”
the linear toll road net – while (probably) paying for that pleasure
(through the recordings of “repeated” hub and link entries).

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 189

4. An Ontology of Requirements Constructions 4.1. Business Process Re-engineering 4.1.3. Re-engineered Nets

133. Re-engineered Intrinsics:

• Toll plazas and abstracted booths are added to domain intrinsics.

134. Re-engineered Support Technologies:

• There is a definite need for domain-describing the failure-prone
toll plaza entry and exit booths.

135. Re-engineered Rules and Regulations:

• Rules for entering and leaving toll booth entry and exit booths
must be described as must related regulations.

• Rules and regulations for driving around the toll road net must
be likewise be described.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

190 From Domains to Requirements

4. An Ontology of Requirements Constructions 4.1. Business Process Re-engineering 4.1.3. Re-engineered Nets

136. Re-engineered Scripts:

• No need.

137. Re-engineered Management and Organisation:

• There is a definite need for domain describing

• the management and possibly distributed organisation

• of toll booth plazas.

138. Re-engineered Human Behaviour:

• Humans, in this case car drivers, may not change their behaviour
in the spectrum from diligent and accurate via sloppy and delin-
quent to outright traffic-law breaking – so we see no need for any
“re-engineering”.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 191

4. An Ontology of Requirements Constructions 4.2. Domain Requirements

4.2. Domain Requirements
Definition: Domain Requirements.

• By domain requirements we understand

– such requirements

– (save those of business process reengineering)

– which can be expressed sôlely by using professional terms of
the domain.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

192 From Domains to Requirements

4. An Ontology of Requirements Constructions 4.2. Domain Requirements

Definition: Domain Requirements Facet.

• By domain requirements facets we understand

– such domain requirements

– that basically arise from either of the following operations on
domain descriptions (cum requirements prescriptions):

∗ domain projection,

∗ domain determination,

∗ domain extension,

∗ domain instantiation and

∗ domain fitting.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 193

4. An Ontology of Requirements Constructions 4.2. Domain Requirements 4.2.1. Projection

4.2.1. Projection
Definition: Projection.

• By projection we shall here, in a somewhat narrow sense, mean

– a technique that applies to domain descriptions and

– yields requirements prescriptions.

• Basically projection “reduces” a domain description

– by “removing” (or, but rarely, hiding)

∗ entities,

∗ functions,

∗ events and

∗ behaviours

from the domain description.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

194 From Domains to Requirements

4. An Ontology of Requirements Constructions 4.2. Domain Requirements 4.2.1. Projection

• If the domain description is an informal one, say in English,

– it may have expressed that certain entities, functions, events
and behaviours

– might be in (some instantiations of) the domain.

– If not “projected away” the similar, i.e., informal require-
ments prescription

– will express that these entities, functions, events and behaviours

– shall be in the domain and

– hence will be in the environment of the machine being require-
ments prescribed.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 195

4. An Ontology of Requirements Constructions 4.2. Domain Requirements 4.2.1. Projection 4.2.1.1. Example

4.2.1.1. Example
Keep

• N, H, L,

• obs Hs,

• obs Ls,

• HI, LI,

• obs HI,

• obs LI,

• obs LIs,

• obs HIs,

• PLAN, LHIM,

• wf PLAN,

• ND, wf ND,

• LΣ, LΩ,

• obs LΣ, obs LΣ,

• HΣ, HΩ,

• obs HΣ, obs HΣ,

• V, VI, VP,

• obs VI, obs VP,

• TF, T and

• wf TF.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

196 From Domains to Requirements

4. An Ontology of Requirements Constructions 4.2. Domain Requirements 4.2.2. Instantiation

4.2.2. Instantiation
Definition: Instantiation.

• ‘To represent (an abstraction) by a concrete instance’ [mw2004].

• Domain instantiation is a domain requirements facet.

• It is an operation performed on a domain description (cum require-
ments prescription).

• Where, in a domain description certain entities and functions are left
undefined,

– domain instantiation means

– that these entities or functions are now instantiated

– into constant values.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 197

4. An Ontology of Requirements Constructions 4.2. Domain Requirements 4.2.2. Instantiation 4.2.2.1. Example

4.2.2.1. Example

• The following instantiation prescription only covers the static aspects
of the toll road net, i.e., simple entities.

• That is, the states of hubs and links will first be dealt with in Sect. .

139. A toll road net (a subnet of a larger previously described net) consists
of a pair: toll road links and toll road to plaza hubs and links.

(a) The toll road links component is a linear sequence of one or more
pairs of toll road links.

(b) The toll road to plaza hubs and links component is a linear sequence
of two or more triples of a plaza, a (plaza to toll road hub) link
and a toll road hub.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

198 From Domains to Requirements

4. An Ontology of Requirements Constructions 4.2. Domain Requirements 4.2.2. Instantiation 4.2.2.1. Example

(c) The wellformedness of toll road nets are expressed next.
i. The length of the toll road links sequence is one less than the length of the

toll road to plaza hubs and links sequence. The idea is that the toll road links
at position i connect the toll road hubs at positions i and i + 1 of the toll
road to plaza hubs and links sequence — i being the indexes of the toll road
links sequence.

ii. All links have distinct link identifiers.

iii. All hubs and plazas have distinct hub identifiers.

iv. From the links in the pairs of links, (li, l
′
i), of position i in the toll road links

component one observes exactly the same two element set of hub identifiers,

v. and these are the identifiers of the hubs at positions i and i + 1 of the toll
road to plaza hubs and links sequence.

vi. The plaza to toll road hub links are indeed connected to these plazas and
hubs; and

vii. the plaza and toll road hubs are connected only to the links as mentioned
above.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 199

4. An Ontology of Requirements Constructions 4.2. Domain Requirements 4.2.2. Instantiation 4.2.2.1. Example

(d) A toll road plaza is like a hub, with an observable hub identifier
(and equipped with ticket-issuing tool booths and ticket-collection
and payment toll booths).

type

139. TRN′ = TRLs × PHLs
139. TRN = {|trn:TRN′

•wf TRN(trn)|}
139(a). TRLs = (L × L)∗

139(b). PHLs = (PZ × L × H)∗

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

200 From Domains to Requirements

4. An Ontology of Requirements Constructions 4.2. Domain Requirements 4.2.2. Instantiation 4.2.2.1. Example

value

139(c). wf TRN: TRN′ → Bool

139(c). wf TRN(trn:(trls,phls)) ≡
139((c))i. len trls +1 = len phls ∧
139((c))ii. card xtr Hs(trn) = card xtr HIs(trn) ∧
139((c))iii. card xtr Ls(trn) = card xtr LIs(trn)
139((c))iv. ∀ i:Nat•i ∈ inds trls ⇒
139((c))iv. let (l,l′)=trsl(i),(p,l′′,hi)=phls(i),(,l′′′,hj)=phls(i+1) in

139((c))iv. obs HIs(l) = obs HIs(l′) =
139((c))v. {obs HI(hi),obs HI(hj)} ∧
139((c))vii. case i of

139((c))vii. 1 → obs LIs(hi) = xtr LIs({l,l′,l′′}),
139((c))vii. len trsl − 1 → obs LIs(hj) = xtr LIs({l,l′,l′′′}),
139((c))vii. → let (l′′′′,l′′′′′)=trsl(i) in obs LIs(hi)=xtr LIs({l,l′,l′′,l′′′′,l′′′′′}) end

139((c))vii. end end ∧
139((c))vii. ∀ i:Nat•i ∈ inds phls ⇒
139((c))vii. let (p,l,h)=phls(i) in obs HIs(l)=xtr HIs({p,h}) ∧
139((c))vii. obs LIs(p) = {obs LI(l)} end

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 201
4. An Ontology of Requirements Constructions 4.2. Domain Requirements 4.2.2. Instantiation 4.2.2.1. Example

type

139(d). PZ
value

139(d). obs HI: PZ → HI

xtr Hs: TRN → H-set

xtr Hs(,phls) ≡ {pz,h|(pz,l,h):(PZ×L×H)•(pz,l,h)∈ elems phls}
xtr Ls: TRN → L-set

xtr Ls(trls,phls) ≡
{l,l′|l,l′:L•(l,l′)∈ elems trls} ∪ {l|(pz,l,h):(PZ×L×H)•(pz,l,h)∈ elems phls}

xtr HIs: TRN → HI-set, xtr HIs(trn) ≡ {obs HI(h)|h:(H|PZ)•h ∈ xtr Hs(trn)}
xtr LIs: TRN → LI-set, xtr LIs(trn) ≡ {obs LI(l)|l:L•l ∈ xtr Ls(trn)}
xtr HIs: H-set → HI-set, xtr HIs(hs) = {obs LI(h)|h:H•h ∈ hs}
xtr LIs: L-set → LI-set, xtr LIs(ls) = {obs LI(l)|l:L•l ∈ ls}

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

202 From Domains to Requirements

4. An Ontology of Requirements Constructions 4.2. Domain Requirements 4.2.2. Instantiation 4.2.2.2. Abstraction: From Concrete Toll Road Nets to Abstract Nets

4.2.2.2. Abstraction: From Concrete Toll Road Nets to Abstract Nets

140. From concrete toll road nets, trn:TRN, one can abstract the nets,
n:N, of Items 1–11.

(a) the abstract net contains the hubs of the concrete net,

(b) and the links likewise.

value

140. abs N: TRN → N
140. abs N(trn) as n
140(a). obs Hs(n) = xtr Hs(trn) ∧
140(b). obs Ls(n) = xtr Ls(trn)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 203

4. An Ontology of Requirements Constructions 4.2. Domain Requirements 4.2.2. Instantiation 4.2.2.3. Theorem

4.2.2.3. Theorem

141. One can prove the following theorem:

• If trn satisfies wf TRN(trn)

• then abs N(trn)

• satisfies Axioms 7–8 (Page 14).

141. ∀ trn:TRN • wf TRN(trn) |=
abs N(trn) satisfies axioms 7.–10.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

204 From Domains to Requirements

4. An Ontology of Requirements Constructions 4.2. Domain Requirements 4.2.3. Determination

4.2.3. Determination
Definition: Determination.

• Domain determination is a domain requirements facet.

• It is an operation performed on a domain description cum require-
ments prescription.

• Any nondeterminism expressed by either of these specifications
which is not desirable for some required software design must
be made deterministic (by this requirements engineer performed
operation).

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 205

4. An Ontology of Requirements Constructions 4.2. Domain Requirements 4.2.3. Determination 4.2.3.1. Example

4.2.3.1. Example

• We shall focus on making more specific the rather generically defined
nets, hubs and links.

• There are no traffic signals within the toll road net and pairs of toll
road links are “one way, opposite direction” links.

h3 σ

l’

l
h

h σ

h

l’’’’

l’’’

l’

l

l’’’’

l’’’
h

= {(l’’i,li),(l’i,l’’i),(l’i,li),(l’’i,l’’i)}
in−on,on−off,reverse,in−out

{(l’’i,l’’’’i),(l’’’i,l’’i),(l’’’i,l’’’’i),(l’’i,l’’i)} = h σ

p
in

= {(_,l’’i),(l’’i,_)}t σ

out

= {(l’’i,li),(l’’i,l’’’’i),(l’’i,l’’i),(l’’’i,li),(l’i,l’’’’i),(l’’’i,l’’’’i),(l’i,li)}

l’’ l’’ l’’

Figure 4: Four example hub states: plaza, end hubs, “middle” hub

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

206 From Domains to Requirements

4. An Ontology of Requirements Constructions 4.2. Domain Requirements 4.2.3. Determination 4.2.3.1. Example

142. Pairs of toll road links, l, l′, connecting adjacent hubs hj, hk, of iden-
tifiers hji, hki, respectively, always and only allow traffic in opposite
directions, that is, are always in respective states {(hji, hki)} and
{(hki, hji)}.

143. Hub, h, states, hσ, are constant and allow traffic onto connected
links not closed for traffic in directions from hub h.

144. Plazas allow traffic only onto connected plaza to hub links of the
toll road net. (Whatever other links, “outside” the toll road net, the
plazas may be connected to is covered in the last line of the axiom
below.)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 207

4. An Ontology of Requirements Constructions 4.2. Domain Requirements 4.2.3. Determination 4.2.3.1. Example

axiom

∀ (trls,phls):TRN •

∀ i:Nat • i ∈ inds trls

let (l,l′) = trls(i), (p,l′′,h) = phls(i) in

case i of

1 → obs HΣ(h) = {(obs LI(l′′),obs LI(l)),

(obs LI(l′),obs LI(l′′)),(obs LI(l′),obs LI(l)),

(obs LI(l′′),obs LI(l′′))},
→ let (l′′′,l′′′′) = trls(i−1) in

obs HΣ(h) = {(obs LI(l′′),obs LI(l)),

(obs LI(l′′),obs LI(l′′′′)),(obs LI(l′′),obs LI(l′′)),

(obs LI(l′′),obs LI(l′′)),(obs LI(l′′′),obs LI(l)),

(obs LI(l′),obs LI(l′′′′)),(obs LI(l′′′),obs LI(l′′′′)),

(obs LI(l′),obs LI(l))} end end end ∧
let (l′′′,l′′′′) = trls(len trsl), (p,l′′,h) = phls(1 + len trsl) in

obs HΣ(h) = {(obs LI(l′′),obs LI(l′′′′)),

(obs LI(l′′′),obs LI(l′′)),(obs LI(l′′′),obs LI(l′′′′)),

(obs LI(l′′),obs LI(l′′))} end ∧
∀ (p,l′′,):(PZ×L×H)•(p,l′′,) ∈ elems phls ⇒

let lis = obs LIs(p) assert: obs LI(l′′) ∈ lis in

obs HΣ(p) = {(li,obs LI(l′′)),(obs LI(l′′),li)|li:LI•li ∈ lis} end

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

208 From Domains to Requirements
4. An Ontology of Requirements Constructions 4.2. Domain Requirements 4.2.3. Determination 4.2.3.1. Example

• In the last line of the wellformedness axiom above we express that

– the plaza maybe connected to many links not in the toll road net
and

– that the plaza is open for all traffic from these into the net (via
l′′),

– from l′′ to these

– and that traffic may even reverse at the plazas,

– that is, decide to not enter the toll road net after having just
visited the plaza.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

208 From Domains to Requirements

End of Lecture 5: REQUIREMENTS – up to and incl. Determination

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

208 From Domains to Requirements

Start of Lecture 6: REQUIREMENTS – from Extension “out”

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 209

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension

4.2.4. Extension
Definition: Extension.

• Domain extension is a domain requirements facet.

• It is an operation performed on a domain description or a require-
ments prescription.

• It effectively extends a domain description by entities, functions,
events and/or behaviours conceptually possible, but not neces-
sarily humanly or technologically feasible in the domain (as it
was).

• Figure 5 on the following page abstracts some of the extensions to
nets: the plaza entry and exit booths.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

210 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension

Entry
Booth

Exit
Booth

Car

Car

Exit Booth
Exit Gate

Enter Sensor Exit Sensor
Exit Booth

Entry Booth
Exit Sensor

Exit Booth
Enter Sensor

Payment Display & Acceptor

Ticket Collector

Entry Booth
Exit Gate

Vehicle
Direction

Vehicle
Direction

Entry Booth

Ticket Dispensor

Figure 5: Entry and Exit Tool Booths

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 2114. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension

• The following is a prolonged example.

• It contains three kinds of formalisations:

– a RAISE/CSP model,

– a Duration Calculus model [zcc+mrh2002,olderogdirks2008] and

– a Timed Automata model [AluDil:94,olderogdirks2008].

• The narrative for all three models are given when narrating the
RAISE/CSP model.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

212 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.1. Intuition

4.2.4.1. Intuition

• A toll road system is delimited by toll plazas with entry and exit
booths with their gates.

• To get access, from outside, to the roads within the toll road system,
a car must pass through an entry booth and its entry gate. To leave
the roads within the toll road system a car must pass through an
exit booth and its exit gate.

• Cars collect tickets upon entry and return these tickets upon exit
and pay a fee for having driven on the toll roads.

• The gates help ensure that cars have collected tickets and have paid
their dues.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 213

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.1. Intuition

exit sensorgateticket dispenserentry sensor

Car

Figure 6: A toll plaza entry booth

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

214 From Domains to Requirements4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions

4.2.4.2. Descriptions
4.2.4.2.1. • A RAISE/CSP Model•

We use the CSP property [TheSEBook123,CARH:Electronic] of RSL.
⊕ Toll Booth Plazas ⊕

• With respect to toll road systems we focus on just their plazas: that
is, where cars enter and leave the systems.

• The below description is grossly simplified: instead of plazas having
one or more entry and one or more exit booths (both with gates),
we just assume one (pair: booth/gate) of each.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 215

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.1 A RAISE/CSP Model

145. A toll plaza consists of a one pair of an entry booth and and entry
gate and one pair of an exit booth and an exit gate.

146. Entry booths consist of an entry sensor, a ticket dispenser and an
exit sensor.

147. Exit booths consist of an entry sensor, a ticket collector, a payment
display and a payment component.

type

145. PZ = (EB×G) × (XB×G)
146. EB = ...
147. XB = ...

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

216 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.1 A RAISE/CSP Model

⊕ Cars ⊕

148. There are vehicles.

149. Vehicles have unique vehicle identifications.

type

148. V
149. VId
value

149. obs VId: V → VId
axiom

149. ∀ v,v′:V • v6=v′ ⇒ obs VId(v) 6= obs VId(v′)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 217

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.1 A RAISE/CSP Model

⊕ Entry Booths ⊕

• The description now given is an idealisation.

• It assumes that everything works:

– that the vehicles behave as expected and

– that the electro-mechanics of booths and gates do likewise.

150. An entry sensor registers whether a car is entering the entry booth
or not,

(a) that is, for the duration of the car passing the entry sensor that
sensor senses the car identification cid

(b) otherwise it senses “nothing”.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

218 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.1 A RAISE/CSP Model

151. A ticket dispenser

(a) either holds a ticket or does not hold a ticket, i.e., no ticket;

(b) normally it does not hold a ticket;

(c) the ticket dispenser holds a ticket soon after a car has passed the
entry sensor;

(d) the passing car collects the ticket –

(e) after which the ticket dispenser no longer holds a ticket.

152. An exit sensor

(a) registers the identification of a car leaving the toll booth

(b) otherwise it senses “nothing”.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 219

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.1 A RAISE/CSP Model

⊕ Gates ⊕

153. A gate

(a) is either closed or open;

(b) it is normally closed;

(c) if a car is entering it is secured set to close (as a security measure);

(d) once a car has collected a ticket it is set to open;

(e) and once a car has passed the exit sensor it is again set to close.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

220 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.1 A RAISE/CSP Model

⊕ The Entry Plaza System ⊕

type

C, CI
G = open | close
TK == Ticket | no ticket

value

obs CI: (C|Ticket) → CI
channel

entry sensor:CI
ticket dispenser:Ticket
exit sensor:CI
gate ch:G

value

vs:V-set

eb:EB,xb:XB,eg,xg:G

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 221

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.1 A RAISE/CSP Model

system: G × EB × V-set × XB × G
system(eg,eb,vs,xb,xg) ≡
‖{car(obs CI(c),c)|c:C•c ∈ cs} ‖ entry booth(eb) ‖ entry gate(eg) ‖ ...

car: CI × C → out entry sensor,exit sensor
in ticket dispenser Unit

car(ci,c) ≡
entry sensor ! ci ;
let ticket = ticket dispenser ? assert: ticket 6= no ticket in

ticket dispenser ! no ticket ;
exit sensor ! ci ;
car(add(ticket,c)) end

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

222 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.1 A RAISE/CSP Model

entry booth: Unit → in entry sensor, exit sensor
out ticket dispenser
out gate ch Unit

entry booth(b) ≡
gate ch ! close ;
let ci = entry sensor ? in

ticket dispenser ! make ticket(cid) ;
let res = ticket dispenser ? in assert: res = no ticket ;
gate ch ! open ;
let ci′ = exit sensor ? in assert: ci′ = ci ;
gate ch ! close ;
entry booth(add Ticket(ticket,b)) end end end

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 223

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.1 A RAISE/CSP Model

entry gate: G → in gate Unit

entry gate(g) ≡
case gate ch ? of

close → exit gate(close) assert: g = open,
open → exit gate(open) assert: g = close

end

add Ticket: Ticket × C
∼
→ C

pre add Ticket(t,c): ∼has Ticket(c)
post: add Ticket(t,c): has Ticket(c)

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

224 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.1 A RAISE/CSP Model

has Ticket: (C|B) → Bool

obs Ticket: (C|B)
∼
→ Ticket

pre obs Ticket(cb): has Ticket(cb)

rem Ticket: (C
∼
→ C) | (B

∼
→ B)

pre rem Ticket(cb): has Ticket(cb)
post rem Ticket(cb): ∼has Ticket(cb)

• In the next section, “A Duration Calculus Model”, we shall start
refining the descriptions given above.

• We do so in order to handle failures of vehicles to behave as expected
and of the electro-mechanics of booths and gates.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 225

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.2 A Duration Calculus Model

4.2.4.2.2. • A Duration Calculus Model•

• We use the Duration Calculus [zcc+mrh2002,olderogdirks2008] exten-
sion to RSL.

• We abstract the channels of the RAISE/CSP model

• to now be Boolean-valued variables.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

226 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.2 A Duration Calculus Model

type

ES = Bool [true=passing, false=not passing]
TD = Bool [true=ticket, false=no ticket]
G = Bool [true=open, false=closing⌈⌉closed⌈⌉opening]
XS = Bool [true=car has just passed, false=car passing⌈⌉no-one passing

variable

entry sensor:ES := false ;
ticket dispenser:TD := false ;
gate:G := false ;
exit sensor:XS := false ;

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 227

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.2 A Duration Calculus Model

154. No matter its position, the gate must be closed within no more than
δeg time units after the entry sensor has registered that a car is
entering the toll booth.

155. A ticket must be in the ticket dispenser within δet time units after
the entry sensor has registered that a car is entering the toll booth.

156. The ticket is in the ticket dispenser at most δtdc time units

157. The gate must be open within δgo time units after a ticket has been
collected.

158. The exit sensor is registering (i.e., is on) the identification of exiting
cars and is not registering anything when no car is passing (i.e., is
off).

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

228 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.2 A Duration Calculus Model

154. ∼(⌈entry sensor⌉ ; (ℓ = δeg ∧ ⌈gate⌉))
155. ∼(⌈entry sensor⌉ ; (ℓ = δet ∧ ⌈∼ticket dispenser⌉))
156. �(⌈∼ticket dispenser⌉ ⇒ ℓ < δtdc)
157. ∼(⌈ticket dispenser⌉ ; (⌈∼ticket dispenser ∧ ∼gate⌉ ∧ ℓ ≥ δgo))
158. �(⌈gate=closing⌉ ⇒ ⌈∼ exit sensor⌉)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 229

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.3 A Timed Automata Model

4.2.4.2.3. • A Timed Automata Model•

• A timed automaton [AluDil:94,olderogdirks2008] for a configuration of
an entry gate, its entry booth and a car is shown in Fig. 7 on the
next page.

• Figure 8 on page 232 shows the a car, an exit booth and its exit gate
interactions.

• They are more-or-less “derived” from the example of Sect. 7.5 of
[[]Alur & Dill, 1994]AluDil:94 (Pages 42–45).

• The right half of the car timed automaton of Fig. 7 on the next page

– is to be thought of as the same as the left half of the car timed
automaton of Fig. 8 on page 232,

– cf. the vertical dotted (...) line.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

230 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.3 A Timed Automata Model

x

e

c

td

tc

o

tc

x

e

c

Entry Booth Car

ig

ca

ca

o:open, ig: idle gate, c:close, ib: idle booth, ca:cruise around,e:entry, td:ticket deposit, tc:ticket collection, x:exit

ib

c

o

_

_

Cd

On

Cd: closed, Cg:closing, On:open, Og:opening

Plaza j

Entry Gate

keg > 5

keg < 7_

keg:=0

keg < 7

keg:=0 keg > 5_

Og Cg

ig o

Figure 7: A timed automata model of gate, entry booth and car interactions

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 231

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.3 A Timed Automata Model

value

eg,xg:G, eb:EB, xb:XB, vs:V-set

System: G×EV×V-set×XB×G → Unit

System(eg,eb,vs,xb,xg) ≡
Entry Gate(eg) ‖ Entry Booth(eb) ‖
‖{Car(obs CId(c),c)|ci:C,v:C•c ∈ cs} ‖
Exit Booth(xb) ‖ Exit Gate(xg)

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

232 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.3 A Timed Automata Model

e

pd

td

x

o

pd

e
tc

c

p
p

Car

Plaza k

Exit Booth

x

Exit Gate

ca

ca

ib

ig c

ig

ca:cruise around, ib:idle, e:entry, td:ticket deposit, pd:payment display, p: payment, x:exit, c:close, o:open, ig:idle gate

kxg:=0
c

kxg < 7_

o
kxg:=0

kxg < 7

kxg > 5

kxg > 5_

_

o

On

Cd

Cg Og

Figure 8: A timed automata model of car, exit booth and gate interactions

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 233

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.5. Fitting

4.2.5. Fitting
Definition: Fitting.

• By domain requirements fitting we understand an operation

– which takes n domain requirements prescriptions, dri
(i = {1..n}),

– claimed to share m independent sets of tightly related sets of simple en-
tities, actions, events and/or behaviours

• and map these into n+m domain requirements prescriptions, δrj

(j = {1..n+m}),

– where m of these, δrn+k
(k = {1..m})

– capture the m shared phenomena and concepts

– and the other n prescriptions, δrℓ
(ℓ = {1..n}),

– are like the n “input” domain requirements prescriptions, dri
(i = {1..n}),

– except that they now,

– (instead of the “more-or-less” shared prescriptions, that are now consolidated in δrn+k
)

– prescribe interfaces between δri
and δrn+k

for i : {1..n}.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

234 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.5. Fitting 4.2.5.1. Examples

4.2.5.1. Examples

to be written

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 235

4. 4. An Ontology of Requirements Constructions 4.3. Interface Requirements

4.3. Interface Requirements
Definition: Interface Requirements.

• Interface requirements are those requirements

• which can on be expressed using professional terms

• from both the domain and the machine.

Thus, by interface requirements we understand

• the expression of expectations

• as to which software-software, or software-hardware interface
places (i.e., channels),

• inputs and outputs (including the semiotics of these input/outputs)

• there shall be in some contemplated computing system.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

236 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.3. Interface Requirements

Interface requirements can often, usefully, be classified in terms of

• shared data initialisation requirements,

• shared data refreshment requirements,

• computational data+control requirements,

• man-machine dialogue requirements,

• man-machine physiological requirements and

• machine-machine dialogue requirements.

Interface requirements constitute one requirements facet.

• Other requirements facets are:

– business process reengineering,

– domain requirements and

– machine requirements.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 237

4. 4. An Ontology of Requirements Constructions 4.3. Interface Requirements 4.3.1. But First: On Shared Phenomena and Concepts

4.3.1. But First: On Shared Phenomena and Concepts
Definition: Shared Phenomenon or Concept.

• A shared phenomenon (or concept) is a phenomenon (respec-
tively a concept)

– which is present in some domain (say in the form of facts,
knowledge or information)

– and which is also represented in the machine (say in the form
of some entity, simple, action, event or behaviour).

• A phenomenon of a domain, when shared, becomes a concept of
the machine.

• We shall give some examples – but they are just illustrative.

• Proper narration and formalisation is left to the reader !

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

238 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.3. Interface Requirements 4.3.2. Shared Simple Entities

4.3.2. Shared Simple Entities
Definition: Shared Simple Entity.

• By a shared simple entity we mean a simple entity

– which both occurs

– in the domain (as a phenomenon or a concept)

– and in themachine.

• Simple entities that are shared between the domain and the
machine must initially be input to the machine.

• Dynamically arising simple entities must likewise be input

– and all such machine entities

– must have their attributes updated, when need arise.

• Requirements for shared simple entities

– thus entail requirements for their representation

– and for their human/machine and/or machine/machine transfer dialogue.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 239

4. 4. An Ontology of Requirements Constructions 4.3. Interface Requirements 4.3.2. Shared Simple Entities 4.3.2.1. Example

4.3.2.1. Example

• Main shared entities are those of hubs and links.

• Representations of hubs and links “within” the machine

– necessarily abstracts many of the properties of hubs and links;

– some (such) attributes may not be represented altogether.

• As for human input,

– some man/machine dialogue

– based around a set of visual display unit screens

– with fields for the input of hub,

– respectively link attributes

can then be devised.

• Etc.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

240 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.3. Interface Requirements 4.3.3. Shared Actions

4.3.3. Shared Actions
Definition: Shared Action.

• By a shared action we mean an action

– that can only be partly computed by the machine.

– That is, the machine,

∗ in order to complete an action,

∗ may have to inquire with the domain

∗ (in order, say, to extract some measurable, time-varying
simple entity attribute value)

∗ in order to proceed in its computation.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 241

4. 4. An Ontology of Requirements Constructions 4.3. Interface Requirements 4.3.3. Shared Actions 4.3.3.1. Example

4.3.3.1. Example

• In order for a car driver to leave an exit toll booth
the following component actions must take place:

– (a) the driver inserts the electronic pass into the exit toll booth;
– (b) the exit toll booth scans and accepts the ticket and

∗ calculates the fee for the car journey

∗ from entry booth

∗ via the toll road net

∗ to the exit booth;

– (c) exit toll booth alerts the driver as to the cost and is requested
to pay this amount;

– (d) once the driver has paid

– (e) the exit booth toll gate is raised.

• Actions (a,d) are driver actions, (b,c,e) are machine actions.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

242 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.3. Interface Requirements 4.3.4. Shared Events

4.3.4. Shared Events
Definition: Shared Event.

• By a shared event we mean

– an event whose occurrence in the domain

– need be communicated to the machine

and, vice-versa,

– an event whose occurrence in the machine

– need be communicated to the domain.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 243

4. 4. An Ontology of Requirements Constructions 4.3. Interface Requirements 4.3.4. Shared Events 4.3.4.1. Examples

4.3.4.1. Examples

• The arrival of a car at a toll plaza entry booth is an event

– that must be communicated to the machine

– so that the entry booth may issue a proper pass (ticket).

• Similarly for the arrival of a car at a toll plaza exit booth is an event

– that must be communicated to the machine

– so that the machine may request the return of the pass and com-
pute the fee.

• The end of that computation is an event

– that is communicated to the driver (in the domain)

– requesting that person to pay a certain fee

– after which the exit gate is opened.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

244 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.3. Interface Requirements 4.3.5. Shared Behaviours

4.3.5. Shared Behaviours
Definition: Shared Behaviour.

• By a shared behaviour we mean a behaviour

– many of whose actions and events occur both

– in the domain

– and in the machine

– (in some encoded form, and in the same squence).

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 245

4. 4. An Ontology of Requirements Constructions 4.3. Interface Requirements 4.3.5. Shared Behaviours 4.3.5.1. Example

4.3.5.1. Example

• A typical toll road net use behaviour is as follows:

– Entry at some toll plaza: receipt of electronic ticket,

– placement of ticket in special ticket “pocket” in front window,

– the raising of the entry booth toll gate;

– drive up to [first] toll road hub (with electronic registration of time of occur-
rence),

– drive down a selected link (with electronic registration of time of occurrence of
entry to and exit from link),

– then a repeated number of zero, one or more

∗ toll road hub and

∗ link visits –

∗ some of which may be “repeats” –

– ending with a drive down from a toll road hub to a toll plaza

– with the return of the electronic ticket, etc.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

246 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.4. Machine Requirements

4.4. Machine Requirements
Definition: Machine Requirements.

• Machine requirements are those requirements which, in principle,

– can be expressed without using professional domain terms

– (for which these requirements are established).

• Thus, by machine requirements,

– we understand requirements put specifically to,

– i.e., expected specifically from, the machine.

• We normally analyse machine requirements into

– performance requirements,

– dependability requirements,

– maintenance requirements,

– platform requirements and

– documentation requirements.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 247

4. 4. An Ontology of Requirements Constructions 4.4. Machine Requirements 4.4.1. An Enumeration of Classes of Machine Requirements

4.4.1. An Enumeration of Classes of Machine Requirements

• We shall in these lecture notes not go into any detail about machine
requirements.

• But we shall classify machine requirements into a long list of specific
kinds of machine requirements.

• Performance

– Storage

– Time

– Software Size

• Dependability

– Accessability

– Availability

– Reliability

– Robustness

– Safety

– Security

• Maintenance

– Adaptive

– Corrective

– Perfective

– Preventive

• Platforms

– Development

– Demonstration

– Execution

– Maintenance

• Documentation

• Other

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

Lecture Notes in Software Engineering 247

End of Lecture 6: REQUIREMENTS – from Extension “out”

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

Lecture Notes in Software Engineering 247

Start of Lecture 11: CLOSING

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

248 From Domains to Requirements

5. Conclusion

5. Conclusion

• We discuss a number of issues.

5.1. What Have We Omitted

• Our coverage of domain and requirements engineering has focused
on modelling techniques for domain and requirements facets.

• We have omitted the important software engineering tasks of

– stakeholder identification and liaison,

– domain and, to some extents also requirements, especially goal
acquisition and analysis,

– terminologisation, and

– techniques for domain and requirements and goal validation
and [goal] verification (D,R |= G).

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 249

5. Conclusion 5.2. Domain Descriptions Are Not Normative

5.2. Domain Descriptions Are Not Normative

• A description of, for example,

– “the” domain of the New York Stock Exchange would describe

∗ the set of rules and regulations governing
the submission of sell offers and buy bids

∗ as well as rules and regulations for
clearing (‘matching’) sell offers and buy bids.

– These rules and regulations appears to be quite different from those of the
Tokyo Stock Exchange.

– A normative description of stock exchanges would abstract these rules so as to
be rather un-informative.

– And, anyway, rules and regulations changes and business process re-engineering
changes entities, actions, events and behaviours.

– For any given software development one may thus have to rewrite parts of
existing domain descriptions, or construct an entirely new such description.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

250 From Domains to Requirements

5. Conclusion 5.3. “Requirements Always Change”

5.3. “Requirements Always Change”

• This claim is often used as a hidden excuse for not doing a proper,
professional job of requirements prescription, let alone “deriving”
them, as we advocate, from domain descriptions.

• Instead we now make the following counterclaims

– [1] “domains are far more stable than requirements” and

– [2] “requirements changes arise more as a result of business process
re-engineering than as a result of changing stakeholder ideas”.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 251

5. Conclusion 5.3. “Requirements Always Change”

• Closer studies of a number of domain descriptions,

– for example of a financial service industry,

– reveals that the domain in terms of which an “ever expanding”
variety of financial products are offered,

– are, in effect, based on a small set of very basic domain functions
which have been offered for well-nigh centuries !

• We thus claim that

– thoroughly developed domain descriptions and

– thoroughly “derived” requirements prescriptions

– tend to stabilise the requirements re-design,

– but never alleviate it.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

252 From Domains to Requirements

5. Conclusion 5.4. What Can Be Described and Prescribed

5.4. What Can Be Described and Prescribed

• The issue of “what can be described” has been a constant challenge
to philosophers.

– Bertrand Russell covers, in a 1919 publication, Theory of De-
scriptions, and

– in [Philosophy of Mathematics] a revision, as The Philosophy of
Logical Atomism.

• The issue is not that straightforward.

• In two recent papers we try to broach the topic from the point of
view of the kind of domain engineering presented in these lectures.

• Our approach is simple; perhaps too simple !

• We can describe what can be observed.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 253

5. Conclusion 5.4. What Can Be Described and Prescribed

• We do so,

– first by postulating types of observable phenomena and of derived
concepts;

– then by the introduction of observer functions and by axioms over
these, that is, over values of postulated types and observers.

– To this we add defined functions; usually described by pre/post-
conditions.

∗ The narratives refer to the “real” phenomena

∗ whereas the formalisations refer to related phenomenological
concepts.

• The narrative/formalisation problem is that one can ‘describe’ phe-
nomena without always knowing how to formalise them.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

254 From Domains to Requirements

5. Conclusion 5.5. What Have We Achieved – and What Not

5.5. What Have We Achieved – and What Not

• Earlier we made some claims.

• We think we have substantiated them all, albeit ever so briefly.

• Each of the domain facets

– (intrinsics,

– support technologies,

– rules and regulations,

– scripts [licenses and contracts],

– management and organisation and

– human behaviour)

• and each of the requirements facets

– (projection,

– instantiation,

– determination,

– extension and

– fitting)

• provide rich grounds for both specification methodology studies and and for more
theoretical studies.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 255

5. Conclusion 5.6. Relation to Other Work

5.6. Relation to Other Work

• The most obvious ‘other’ work is that of Michael jackson’s [Problem
Frames].

– In that book Jackson, like is done here,

∗ departs radically from conventional requirements engineering.

∗ In his approach understandings of the domain, the requirements
and possible software designs

∗ are arrived at, not hierarchically, but in parallel, interacting
streams of decomposition.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

256 From Domains to Requirements

5. Conclusion 5.6. Relation to Other Work

• Thus the ‘Problem Frame’ development approach iterates between
concerns of

– domains,

– requirements and

– software design.

• “Ideally” our approach pursues

– domain engineering

– prior to requirements engineering,

– and, the latter, prior to software design.

• But see next.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 257

5. Conclusion 5.6. Relation to Other Work

• The recent book [Axel van Lamsweerde]

– appears to represent the most definitive work on Requirements
Engineering today.

– Much of its requirements and goal acquisition and analysis tech-
niques

– carries over to main aspects of domain acquisition and analysis
techniques

– and the goal-related techniques of [Lamsweerde] apply to determining
which

∗ projections,

∗ instantiation,

∗ determination and

∗ extension operations

to perform on domain descriptions.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

258 From Domains to Requirements

5. Conclusion 5.7. “Ideal” Versus Real Developments

5.7. “Ideal” Versus Real Developments

• The term ‘ideal’ has been used in connection with ‘ideal development’
from domain to requirements.

• We now discuss that usage.

• Ideally software development could proceed

– from developing domain descriptions

– via “deriving” requirements prescriptions

– to software design,

each phase involving extensive

– formal specifications,

– verifications (formal testing, model checking and theorem proving)
and validation.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 259

5. Conclusion 5.7. “Ideal” Versus Real Developments

• More realistically

– less comprehensive domain description development (D)

– may alternate with both requirements development (R) work

– and with software design (S) –

– in some

∗ controlled,

∗ contained

∗ iterated and

∗ “spiralling”

manner

– and such that it is at all times clear which development step is
what: D, R or S!

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

260 From Domains to Requirements

5. Conclusion 5.8. Description Languages

5.8. Description Languages

• We have used the RSL specification language, for the formalisations
of this report,

• but any of the model-oriented approaches and languages offered by

– Alloy,

– B, Event B,

– RAISE,

– VDM and

– Z,

should work as well.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 261

5. Conclusion 5.8. Description Languages

• No single one of the above-mentioned formal specification languages,
however, suffices.

• Often one has to carefully combine the above with elements of

– Petri Nets,

– CSP,

– MSC,

– Statecharts,

and/or some temporal logic, for example

– either DC or

– TLA+.

• Research into how such diverse textual and diagrammatic languages
can be combined is ongoing.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

262 From Domains to Requirements

5. Conclusion 5.9. Entailments

5.9. Entailments

• D,R |= G

* From the Domain and the Requirements we can reason that the
Goals are met.

• D,S |= R

* In a proof of correctness of Software design with respect toRequirements
prescriptions one often has to refer to assumptions about the
Domain.

* Formalising our understandings of the Domain, the Requirements
and the Software design enables proofs that the software is right
and the formalisation of the “derivation” of Requirements from
Domain specifications help ensure that it is the right software
[Boehm81].

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 263

5. Conclusion 5.10. Domain Versus Ontology Engineering

5.10. Domain Versus Ontology Engineering

• In the information science community an ontology is a

– “formal, explicit specification of a shared conceptualisation”.

• Most of the information science ontology work seems aimed primarily
at axiomatisations of properties of entities.

• Apart from that there are many issues of “ontological engineering”
that are similar to the triptych kind of domain engineering;

– but then, we claim, that domain engineering goes well beyond
ontological engineering and makes free use of whatever formal
specification languages are needed.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

264 From Domains to Requirements

6. Bibliographical Notes

6. Bibliographical Notes
6.1. Description Languages

• Besides using

– as precise a subset of a national language, as here English, as
possible, and in enumerated expressions and statements,

– we have “paired” such narrative elements with corresponding enu-
merated clauses of a formal specification language.

• We have been using the RAISE Specification Language, RSL in our
formal texts.

• But any of the model-oriented approaches and languages offered by

– Alloy,

– CafeOBJ [futatsugi2000a],

– Event B,

– VDM and

– Z,

should work as well.
c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

Lecture Notes in Software Engineering 265

6. Bibliographical Notes 6.1. Description Languages

• No single one of the above-mentioned formal specification languages,
however, suffices.

• Often one has to carefully combine the above with elements of

– Petri Nets,

– CSP: Communicating Sequential Processes,

– MSC: Message Sequence Charts,

– Statecharts,

– and some temporal logic, for example

∗ DC: Duration Calculus

∗ or TLA+.

– And even then !

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

Lecture Notes in Software Engineering 265

End of Lecture 11: CLOSING

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

Lecture Notes in Software Engineering 265

Start of Lecture 7: RSL: Types

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

266 Lecture Notes in Software Engineering 1

1. An RSL Primer

1. An RSL Primer
1.1. Types

1.1.1. Type Expressions

• Type expressions are expressions whose values are types, that is,

• possibly infinite sets of values (of “that” type).

1.1.1.1. Atomic Types

• Atomic types have (atomic) values.

• That is, values which we consider to have no proper constituent
(sub-)values,

• i.e., cannot, to us, be meaningfully “taken apart”.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 267

1. An RSL Primer 1.1. Types 1.1.1. Type Expressions 1.1.1.1. Atomic Types

type

[1] Bool

[2] Int

[3] Nat

[4] Real

[5] Char

[6] Text

1. The Boolean type of truth values false

and true.

2. The integer type on integers ..., –2, –1,
0, 1, 2,

3. The natural number type of positive
integer values 0, 1, 2, ...

4. The real number type of real values,

i.e., values whose numerals can be writ-
ten as an integer, followed by a period
(“.”), followed by a natural number
(the fraction).

5. The character type of character values
′′a′′, ′′b′′, ...

6. The text type of character string val-
ues ′′aa′′, ′′aaa′′, ..., ′′abc′′, ...

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

268 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.1. Types 1.1.1. Type Expressions 1.1.1.1. Atomic Types

Example 1 . Basic Net Attributes:

• For safe, uncluttered traffic,
hubs and links can ‘carry’ a maximum of vehicles.

• Links have lengths. (We ignore hub (traversal) lengths.)

• One can calculate whether a link is a two-way link.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 269

1. An RSL Primer 1.1. Types 1.1.1. Type Expressions 1.1.1.1. Atomic Types

type

MAX = Nat

LEN = Real

is Two Way Link = Bool

value

obs Max: (H|L) → MAX
obs Len: L → LEN
is two way link: L → is Two Way Link
is two way link(l) ≡ ∃ lσ:LΣ • lσ ∈ obs HΣ(l)∧card lσ=2

. End of Example 1

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

270 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.1. Types 1.1.1. Type Expressions 1.1.1.2. Composite Types

1.1.1.2. Composite Types

• Composite types have composite values.

• That is, values which we consider to have
proper constituent (sub-)values,

• i.e., can, to us, be meaningfully “taken apart”.

[7] A-set

[8] A-infset

[9] A × B × ... × C
[10] A∗

[11] Aω

[12] A →m B

[13] A → B

[14] A
∼
→ B

[15] (A)
[16] A | B | ... | C
[17] mk id(sel a:A,...,sel b:B)
[18] sel a:A ... sel b:B

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 271

1. An RSL Primer 1.1. Types 1.1.1. Type Expressions 1.1.1.2. Composite Types

Example 2 Composite Net Type Expressions:

• The type clauses of function signatures:

value

f: A → B

• often have the type expressions A and/or B

• be composite type expressions:

value

obs HIs: L → HI-set
obs LIs: H → LI-set
obs HΣ: H → HT-set

set HΣ: H × HΣ → H

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

272 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.1. Types 1.1.1. Type Expressions 1.1.1.2. Composite Types

• Right-hand sides of type definitions often have composite type expres-
sions:

type

N = H-set × L-set
HT = LI × HI × LI
LT′ = HI × LI × HI

. End of Example 2

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 273

1. An RSL Primer 1.1. Types 1.1.2. Type Definitions

1.1.2. Type Definitions
1.1.2.1. Concrete Types

• Types can be concrete

• in which case the structure of the type

• is specified by type expressions:

type

A = Type expr
schematic examples:

A1 = B1-set, A2 = B1-infset

A3 = B2 × C1 × D1
B1 = E∗, B2 = Eω

C1 = F →m G

D1 = H → J, D2 = H
∼
→ J

K = L | M

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

274 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.1. Types 1.1.2. Type Definitions 1.1.2.1. Concrete Types

Example 3 .Composite Net Types:

• There are many ways in which nets can be concretely modelled:

• Sorts + Observers + Axioms: First we show an example of type
definitions without right-hand side, that is, of sort definitions.

From a net one can observe many things.

Of the things we focus on are the hubs and the links.

A net contains two or more hubs and one or more links.

type

[sorts] Nα, H, L, HI, LI
value

obs Hs: Nα → H-set

obs Ls: Nα → L-set
axiom

∀ n:Nα • card obs Hs(n)>0 ⇒ card obs Ls(n)≥1 ∧ ...

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 275

1. An RSL Primer 1.1. Types 1.1.2. Type Definitions 1.1.2.1. Concrete Types

• Cartesians + Wellformedness: A net can be considered as a
Cartesian of sets of two or more hubs and sets of one or more links.

type

[sorts] H, L
Nβ = H-set × L-set

value

wf Nβ: Nβ → Bool

wf Nβ(hs,ls) ≡ card hs>1 ⇒ card ls>0

inject Nβ: Nα
∼
→ Nβ pre: wf Nβ(hs,ls)

inject Nβ(nα) ≡ (obs Hs(nα),obs Ls(nα))

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

276 Lecture Notes in Software Engineering 1
1. An RSL Primer 1.1. Types 1.1.2. Type Definitions 1.1.2.1. Concrete Types

• Cartesians + Maps + Wellformedness: Or a net can be de-
scribed

a as a triple of b-c-d:

b hubs (modelled as a map from hub identfiers to hubs),

c links (modelled as a map from link identfiers to links), and

d a graph from hub hi identifiers hii to maps from identfiers liji
of

hub hi connected links lij to the identfiers hji of link connected
hubs hj.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 277

1. An RSL Primer 1.1. Types 1.1.2. Type Definitions 1.1.2.1. Concrete Types

type

[sorts] H, HI, L, LI
[a] Nγ = HUBS × LINKS × GRAPH
[b] HUBS = HI →m H
[c] LINKS = LI →m L
[d] GRAPH = HI →m (LI −m> HI)

– [b,c] hs:HUBS and ls:LINKS are maps from hub (link) identifiers to
hubs (links) where one can still observe these identfiers from these
hubs (link).

• Example ?? on page ?? defines the well-formedness predicates for the
above map types.

. End of Example 3

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

278 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.1. Types 1.1.2. Type Definitions 1.1.2.1. Concrete Types

[1] Type name = Type expr /∗ without | s or subtypes ∗/
[2] Type name = Type expr 1 | Type expr 2 | ... | Type expr n
[3] Type name ==

mk id 1(s a1:Type name a1,...,s ai:Type name ai) |
... |
mk id n(s z1:Type name z1,...,s zk:Type name zk)

[4] Type name :: sel a:Type name a ... sel z:Type name z
[5] Type name = {| v:Type name′

• P(v) |}

• where a form of [2–3] is provided by combining the types:

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 279

1. An RSL Primer 1.1. Types 1.1.2. Type Definitions 1.1.2.1. Concrete Types

Type name = A | B | ... | Z
A == mk id 1(s a1:A 1,...,s ai:A i)
B == mk id 2(s b1:B 1,...,s bj:B j)
...
Z == mk id n(s z1:Z 1,...,s zk:Z k)

axiom

∀ a1:A 1, a2:A 2, ..., ai:Ai •

s a1(mk id 1(a1,a2,...,ai))=a1 ∧ s a2(mk id 1(a1,a2,...,ai))=a2 ∧
... ∧ s ai(mk id 1(a1,a2,...,ai))=ai ∧

∀ a:A • let mk id 1(a1′,a2′,...,ai′) = a in

a1′ = s a1(a) ∧ a2′ = s a2(a) ∧ ... ∧ ai′ = s ai(a) end

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

280 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.1. Types 1.1.2. Type Definitions 1.1.2.1. Concrete Types

Example 4Net Record Types: Insert Links:

7. To a net one can insert a new link in either of three ways:

(a) Either the link is connected to two existing hubs — and the insert operation
must therefore specify the new link and the identifiers of two existing hubs;

(b) or the link is connected to one existing hub and to a new hub — and the insert
operation must therefore specify the new link, the identifier of an existing hub,
and a new hub;

(c) or the link is connected to two new hubs — and the insert operation must
therefore specify the new link and two new hubs.

(d) From the inserted link one must be able to observe identifier of respective hubs.

8. From a net one can remove a link.5 The removal command specifies a link identifier.

5– provided that what remains is still a proper net

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 281

1. An RSL Primer 1.1. Types 1.1.2. Type Definitions 1.1.2.1. Concrete Types

type

7 Insert == Ins(s ins:Ins)
7 Ins = 2xHubs | 1x1nH | 2nHs
7(a) 2xHubs == 2oldH(s hi1:HI,s l:L,s hi2:HI)
7(b) 1x1nH == 1oldH1newH(s hi:HI,s l:L,s h:H)
7(c) 2nHs == 2newH(s h1:H,s l:L,s h2:H)
8 Remove == Rmv(s li:LI)

axiom

7(d) ∀ 2oldH(hi′,l,hi′′):Ins • hi′6=hi′′ ∧ obs LIs(l)={hi′,hi′′} ∧
∀ 1old1newH(hi,l,h):Ins • obs LIs(l)={hi,obs HI(h)} ∧
∀ 2newH(h′,l,h′′):Ins • obs LIs(l)={obs HI(h′),obs HI(h′′)}

Example 16 on page 351 presents the semantics functions for int Insert
and int Remove.
. End of Example 4

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

282 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.1. Types 1.1.2. Type Definitions 1.1.2.2. Subtypes

1.1.2.2. Subtypes

• In RSL, each type represents a set of values. Such a set can be
delimited by means of predicates.

• The set of values b which have type B and which satisfy the predicate
P , constitute the subtype A:

type

A = {| b:B • P(b) |}

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 283

1. An RSL Primer 1.1. Types 1.1.2. Type Definitions 1.1.2.2. Subtypes

Example 5 . Net Subtypes:

• In Example 3 on page 274 we gave three examples.

– For the first we gave an example, Sorts + Observers + Axioms,
“purely” in terms of sets, see Sorts — Abstract Types below.

– For the second and third we gave concrete types in terms of Carte-
sians and Maps.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

284 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.1. Types 1.1.2. Type Definitions 1.1.2.2. Subtypes

• In the Sorts + Observers + Axioms part of Example 3

– a net was defined as a sort, and so were its hubs, links, hub identi-
fiers and link identifiers;

– axioms – making use of appropriate observer functions - make up
the wellformedness condition on such nets.

We now redefine this as follows:

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 285

1. An RSL Primer 1.1. Types 1.1.2. Type Definitions 1.1.2.2. Subtypes

type

[sorts] N′, H, L, HI, LI
N = {|n:N′

• wf N(n)|}
value

wf N: N′ → Bool

wf N(n) ≡
∀ n:N • card obs Hs(n)≥0 ∧ card obs Ls(n)≥0 ∧
axioms 2.–3., 5.–6., and 10., (Page 14)

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

286 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.1. Types 1.1.2. Type Definitions 1.1.2.2. Subtypes

• In the Cartesians + Wellformedness part of Example 3

– a net was a Cartesian of a set of hubs and a set of links

– with the wellformedness that there were at least two hubs and at
least one link

– and that these were connected appropriately (treated as ...).

We now redefine this as follows:

type

N′ = H-set × L-set
N = {|n:N′

• wf N(n)|}

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 287

1. An RSL Primer 1.1. Types 1.1.2. Type Definitions 1.1.2.2. Subtypes

• In the Cartesians + Maps + Wellformedness part of Example 3

– a net was a triple of hubs, links and a graph,

– each with their wellformednes predicates.

We now redefine this as follows:

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

288 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.1. Types 1.1.2. Type Definitions 1.1.2.2. Subtypes

type

[sorts] L, H, LI, HI
N′ = HUBS × LINKS × GRAPH
N = {|(hs,ls,g):N′

• wf HUBS(hs)∧wf LINKS(ls)∧wf GRAPH(g)(hs,ls)|}
HUBS′ = HI →m H
HUBS = {|hs:HUBS′

• wf HUBS(hs)|}
LINKS′ = LI → L
LINKS = {|ls:LINKS′

• wf LINKS(ls)|}
GRAPH′ = HI →m (LI →m HI)
GRAPH = {|g:GRAPH′

• wf GRAPH(g)|}
value

wf GRAPH: GRAPH′ → (HUBS × LINKS) → Bool

wf GRAPH(g)(hs,ls) ≡ wf N(hs,ls,g)

• Example ?? on page ?? presents a definition of wf GRAPH.

. .End of Example 5

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 289

1. An RSL Primer 1.1. Types 1.1.2. Type Definitions 1.1.2.3. Sorts — Abstract Types

1.1.2.3. Sorts — Abstract Types

• Types can be (abstract) sorts

• in which case their structure is not specified:

type

A, B, ..., C

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

290 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.1. Types 1.1.2. Type Definitions 1.1.2.3. Sorts — Abstract Types

Example 6 .Net Sorts:

• In formula lines of Examples 3–5

• we have indicated those type clauses which define sorts,

• by bracketed [sorts] literals.

. End of Example 6

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

290 Lecture Notes in Software Engineering 1

End of Lecture 7: RSL: Types

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

290 Lecture Notes in Software Engineering 1

Start of Lecture 8: RSL: Values & Operations

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 291

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations

1.2. Concrete RSL Types: Values and Operations
1.2.1. Arithmetic

type

Nat, Int, Real

value

+,−,∗: Nat×Nat→Nat | Int×Int→Int | Real×Real→Real

/: Nat×Nat
∼
→Nat | Int×Int

∼
→Int | Real×Real

∼
→Real

<,≤,=, 6=,≥,> (Nat|Int|Real) × (Nat|Int|Real) → Bool

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

292 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.1. Arithmetic

1.2.2. Set Expressions
1.2.2.1. Set Enumerations

Let the below a’s denote values of type A, then the below designate
simple set enumerations:

{{}, {a}, {e1,e2,...,en}, ...} ⊆ A-set

{{}, {a}, {e1,e2,...,en}, ..., {e1,e2,...}} ⊆ A-infset

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 293

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.2. Set Expressions 1.2.2.1. Set Enumerations

Example 7 .Set Expressions over Nets:

• We now consider hubs to abstract cities, towns, villages, etcetera.

• Thus with hubs we can associate sets of citizens.

• Let c:C stand for a citizen value c being an element in the type C of
all such.

• Let g:G stand for any (group) of citizens, respectively the type of all
such.

• Let s:S stand for any set of groups, respectively the type of all such.

• Two otherwise distinct groups are related to one another if they share
at least one citizen, the liaisons.

• A network nw:NW is a set of groups such that for every group in
the network one can always find another group with which it shares
liaisons.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

294 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.2. Set Expressions 1.2.2.1. Set Enumerations

Solely using the set data type and the concept of subtypes, we can model the above:

type

C
G′ = C-set, G = {| g:G′

• g 6={} |}
S = G-set

L′ = C-set, L = {| ℓ:L′
• ℓ 6={} |}

NW′ = S, NW = {| s:S • wf S(s) |}
value

wf S: S → Bool

wf S(s) ≡ ∀ g:G • g ∈ s ⇒ ∃ g′:G • g′ ∈ s ∧ share(g,g′)
share: G×G → Bool

share(g,g′) ≡ g 6=g′ ∧ g ∩ g′ 6= {}
liaisons: G×G → L
liaisons(g,g′) = g ∩ g′ pre share(g,g′)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 295

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.2. Set Expressions 1.2.2.1. Set Enumerations

Annotations:

• L stands for proper liaisons (of at least one liaison).

• G′, L′ and N′ are the “raw” types which are constrained to G, L and N.

• {| binding:type expr • bool expr |} is the general form of the subtype expression.

• For G and L we state the constraints “in-line”, i.e., as direct part of the subtype
expression.

• For NW we state the constraints by referring to a separately defined predicate.

• wf S(s) expresses — through the auxiliary predicate — that s contains at least two
groups and that any such two groups share at least one citizen.

• liaisons is a “truly” auxiliary function in that we have yet to “find an active need”
for this function!

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

296 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.2. Set Expressions 1.2.2.1. Set Enumerations

• The idea is that citizens can be associated with more than one city,
town, village, etc.

• (primary home, summer and/or winter house, working place, etc.).

• A group is now a set of citizens related by some “interest”

• (Rotary club membership, political party “grassroots”, religion, et.).

• The student is invited to define, for example, such functions as:

– The set of groups (or networks) which are represented in all hubs [or in only one
hub].

– The set of hubs whose citizens partake in no groups [respectively networks].

– The group [network] with the largest coverage in terms of number of hubs in
which that group [network] is represented.

. End of Example 7

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 297

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.2. Set Expressions 1.2.2.2. Set Comprehension

1.2.2.2. Set Comprehension

• The expression, last line below, to the right of the ≡, expresses set
comprehension.

• The expression “builds” the set of values satisfying the given predi-
cate.

• It is abstract in the sense that it does not do so by following a
concrete algorithm.

type

A, B
P = A → Bool

Q = A
∼
→ B

value

comprehend: A-infset × P × Q → B-infset

comprehend(s,P,Q) ≡ { Q(a) | a:A • a ∈ s ∧ P(a)}

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

298 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.2. Set Expressions 1.2.2.2. Set Comprehension

Example 8 . Set Comprehensions:

Item 52 on page 43, the wf N(hs,ls,g) wellformedness predicate definition,
includes:

type

51(a). PLAN = HI →m LHIM
51(b). LHIM = LI →m HI-set
value

52(c). no junk: PLAN → Bool

52(c). no junk(plan) ≡ dom plan = ∪{rng(plan(hi))|hi:HI•hi ∈ dom plan}

. End of Example 8

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 299

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.3. Cartesian Expressions

1.2.3. Cartesian Expressions
1.2.3.1. Cartesian Enumerations

• Let e range over values of Cartesian types involving A, B, . . ., C,

• then the below expressions are simple Cartesian enumerations:

type

A, B, ..., C
A × B × ... × C

value

(e1,e2,...,en)

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

300 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.3. Cartesian Expressions 1.2.3.1. Cartesian Enumerations

Example 9 . Cartesian Net Types:

• So far we have abstracted hubs and links as sorts.

• That is, we have not defined their types concretely.

• Instead we have postulated some attributes such as:

– observable hub identifiers of hubs and

– sets of observable link identifiers of links connected to hubs.

• We now claim the following further attributes of hubs and links.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 301

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.3. Cartesian Expressions 1.2.3.1. Cartesian Enumerations

• Concrete links have

– link identifiers,

– link names – where two or more connected links may have the same link name,

– two (unordered) hub identifiers,

– lenghts,

– locations – where we do not presently defined what we main by locations,

– etcetera

• Concrete hubs have

– hub identifiers,

– unique hub names,

– a set of one or more observable link identifiers,

– locations,

– etcetera.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

302 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.3. Cartesian Expressions 1.2.3.1. Cartesian Enumerations

type

LN, HN, LEN, LOC
cL = LI × LN × (HI × HI) × LOC × ...
cH = HI × HN × LI-set × LOC × ...

. End of Example 9

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 303

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.4. List Expressions

1.2.4. List Expressions
1.2.4.1. List Enumerations

• Let a range over values of type A,

• then the below expressions are simple list enumerations:

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ...} ⊆ A∗

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ..., 〈e1,e2,...,en,... 〉, ...} ⊆ Aω

〈 a i .. a j 〉

• The last line above assumes ai and aj to be integer-valued expres-
sions.

• It then expresses the set of integers from the value of ei to and
including the value of ej.

• If the latter is smaller than the former, then the list is empty.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

304 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.4. List Expressions 1.2.4.2. List Comprehension

1.2.4.2. List Comprehension

• The last line below expresses list comprehension.

type

A, B, P = A → Bool, Q = A
∼
→ B

value

comprehend: Aω × P × Q
∼
→ Bω

comprehend(l,P,Q) ≡
〈 Q(l(i)) | i in 〈1..len l〉 • P(l(i))〉

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 305

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.4. List Expressions 1.2.4.2. List Comprehension

Example 10 .Routes in Nets:

• A phenomenological (i.e., a physical) route of a net is a sequence of
one or more adjacent links of that net.

• A conceptual route is a sequence of one or more link identifiers.

• An abstract route is a conceptual route

– for which there is a phenomenological route of the net

– for which the link identifiers of the abstract route

– map one-to-one onto links of the phenomenological route.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

306 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.4. List Expressions 1.2.4.2. List Comprehension

type

N, H, L, HI, LI
PR′ = L∗

PR = {| pr:PR′
• ∃ n:N • wf PR(pr)(n)|}

CR = LI∗

AR′ = LI∗

AR = {| ar:AR′
• ∃ n:N • wf AR(ar)(n) |}

value

wf PR: PR′ → N → Bool

wf PR(pr)(n) ≡
∀ i:Nat • {i,i+1}⊆inds pr ⇒

obs HIs(l(i)) ∩ obs HIs(l(i+1)) 6= {}
wf AR′: AR′ → N → Bool

wf AR(ar)(n) ≡
∃ pr:PR • pr ∈ routes(n) ∧ wf PR(pr)(n) ∧ len pr=len ar ∧

∀ i:Nat • i ∈ inds ar ⇒ obs LI(pr(i))=ar(i)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 307

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.4. List Expressions 1.2.4.2. List Comprehension

• A single link is a phenomenological route.

• If r and r′ are phenomenological routes

– such that the last link r

– and the first link of r′

– share observable hub identifiers,

then the concatenation r̂r′ is a route.

This inductive definition implies a recursive set comprehension.

• A circular phenomenological route is a phenomenological route whose first and last
links are distinct but share hub identifiers.

• A looped phenomenological route is a phenomenological route where two distinctly
positions (i.e., indexed) links share hub identifiers.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

308 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.4. List Expressions 1.2.4.2. List Comprehension

value

routes: N → PR-infset

routes(n) ≡
let prs = {〈l〉|l:L•obs Ls(n)} ∪

∪ {pr̂pr′|pr,pr′:PR•{pr,pr′}⊆prs∧obs HIs(r(len pr))∩obs HIs(pr′(1)) 6={}}
prs end

is circular: PR → Bool

is circular(pr) ≡ obs HIs(pr(1))∩obs HIs(pr(len pr))6={}

is looped: PR → Bool

is looped(pr) ≡ ∃ i,j:Nat • i6=j∧{i,j}⊆index pr ⇒ obs HIs(pr(i))∩obs HIs(pr(j))6={}

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 309

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.4. List Expressions 1.2.4.2. List Comprehension

• Straight routes are Phenomenological routes without loops.

• Phenomenological routes with no loops can be constructed from phe-
nomenological routes by removing suffix routes whose first link give
rise to looping.

value

straight routes: N → PR-set

straight routes(n) ≡
let prs = routes(n) in {straight route(pr)|pr:PR•ps ∈ prs} end

straight route: PR → PR
straight route(pr) ≡
〈pr(i)|i:Nat•i:[1..len pr] ∧ pr(i) 6∈ elems〈pr(j)|j:Nat•j:[1..i]〉〉

. .End of Example 10

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

310 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.5. Map Expressions

1.2.5. Map Expressions
1.2.5.1. Map Enumerations

• Let (possibly indexed) u and v range over values of type T1 and T2,
respectively,

• then the below expressions are simple map enumerations:

type

T1, T2
M = T1 →m T2

value

u,u1,u2,...,un:T1, v,v1,v2,...,vn:T2
{[], [u 7→v], ..., [u1 7→v1,u27→v2,...,un 7→vn],...} ⊆ M

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 311

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.5. Map Expressions 1.2.5.2. Map Comprehension

1.2.5.2. Map Comprehension

• The last line below expresses map comprehension:

type

U, V, X, Y
M = U →m V

F = U
∼
→ X

G = V
∼
→ Y

P = U → Bool

value

comprehend: M×F×G×P → (X →m Y)
comprehend(m,F,G,P) ≡

[F(u) 7→ G(m(u)) | u:U • u ∈ dom m ∧ P(u)]

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

312 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.5. Map Expressions 1.2.5.2. Map Comprehension

Example 11 Concrete Net Type Construction:

• We Define a function con[struct] Nγ (of the Cartesians + Maps
+ Wellformedness part of Example 3.

– The base of the construction is the fully abstract sort definition of
Nα in the Sorts + Observers + Axioms part of Example 3 –
where the sorts of hub and link identifiers are taken from earlier
examples.

– The target of the construction is the Nγ of the Cartesians +
Maps + Wellformedness part of Example 3.

– First we recall the ssential types of that Nγ.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 313

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.5. Map Expressions 1.2.5.2. Map Comprehension

type

Nγ = HUBS × LINKS × GRAPH
HUBS = HI →m H
LINKS = LI →m L
GRAPH = HI →m (LI →m HI)

value

con Nγ: Nα → Nγ

con Nγ(nα) ≡
let hubs = [obs HI(h) 7→ h | h:H • h ∈ obs Hs(nα)],

links = [obs LI(h) 7→ l | l:L • l ∈ obs Ls(nα)],
graph = [obs HI(h) 7→ [obs LI(l) 7→ ι(obs HIs(l)\{obs HI(h)})

| l:L • l ∈ obs Ls(nα)∧li ∈ obs LIs(h)]
| H:h • h ∈ obs Hs(nα)] in

(hubs.links,graph) end

ι: A-set
∼
→ A [A could be LI-set]

ι(as) ≡ if card as=1 then let {a}=as in a else chaos end end

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

314 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.5. Map Expressions 1.2.5.2. Map Comprehension

theorem:

nα satisfies axioms 2.–3., 5.–6., and 10. (Page 14) ⇒ wf Nγ(con Nγ(nα))

. .End of Example 11

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 315

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.6. Set Operations

1.2.6. Set Operations
1.2.6.1. Set Operator Signatures

value

∈: A × A-infset → Bool

6∈: A × A-infset → Bool

∪: A-infset × A-infset → A-infset

∪: (A-infset)-infset → A-infset

∩: A-infset × A-infset → A-infset

∩: (A-infset)-infset → A-infset

\: A-infset × A-infset → A-infset

⊂: A-infset × A-infset → Bool

⊆: A-infset × A-infset → Bool

=: A-infset × A-infset → Bool

6=: A-infset × A-infset → Bool

card: A-infset
∼
→ Nat

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

316 Lecture Notes in Software Engineering 1
1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.6. Set Operations 1.2.6.2. Set Examples

1.2.6.2. Set Examples

examples

a ∈ {a,b,c}
a 6∈ {}, a 6∈ {b,c}
{a,b,c} ∪ {a,b,d,e} = {a,b,c,d,e}
∪{{a},{a,b},{a,d}} = {a,b,d}
{a,b,c} ∩ {c,d,e} = {c}
∩{{a},{a,b},{a,d}} = {a}
{a,b,c} \ {c,d} = {a,b}
{a,b} ⊂ {a,b,c}
{a,b,c} ⊆ {a,b,c}
{a,b,c} = {a,b,c}
{a,b,c} 6= {a,b}
card {} = 0, card {a,b,c} = 3

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 317

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.7. Cartesian Operations

1.2.7. Cartesian Operations

type

A, B, C
g0: G0 = A × B × C
g1: G1 = (A × B × C)
g2: G2 = (A × B) × C
g3: G3 = A × (B × C)

value

va:A, vb:B, vc:C, vd:D
(va,vb,vc):G0,

(va,vb,vc):G1
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decomposition expressions

let (a1,b1,c1) = g0,
(a1′,b1′,c1′) = g1 in .. end

let ((a2,b2),c2) = g2 in .. end

let (a3,(b3,c3)) = g3 in .. end

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

318 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.8. List Operations

1.2.8. List Operations
1.2.8.1. List Operator Signatures

value

hd: Aω ∼
→ A

tl: Aω ∼
→ Aω

len: Aω ∼
→ Nat

inds: Aω → Nat-infset

elems: Aω → A-infset

.(.): Aω × Nat
∼
→ A

̂: A∗ × Aω → Aω

=: Aω × Aω → Bool

6=: Aω × Aω → Bool

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 319

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.8. List Operations 1.2.8.2. List Operation Examples

1.2.8.2. List Operation Examples

examples

hd〈a1,a2,...,am〉=a1
tl〈a1,a2,...,am〉=〈a2,...,am〉
len〈a1,a2,...,am〉=m
inds〈a1,a2,...,am〉={1,2,...,m}
elems〈a1,a2,...,am〉={a1,a2,...,am}
〈a1,a2,...,am〉(i)=ai
〈a,b,c〉̂〈a,b,d〉 = 〈a,b,c,a,b,d〉
〈a,b,c〉=〈a,b,c〉
〈a,b,c〉 6= 〈a,b,d〉

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

320 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.9. Map Operations

1.2.9. Map Operations
1.2.9.1. Map Operator Signatures and Map Operation Examples

value

m(a): M → A
∼
→ B, m(a) = b

dom: M → A-infset [domain of map]
dom [a1 7→b1,a27→b2,...,an 7→bn] = {a1,a2,...,an}

rng: M → B-infset [range of map]
rng [a1 7→b1,a27→b2,...,an 7→bn] = {b1,b2,...,bn}

†: M × M → M [override extension]
[a 7→b,a′7→b′,a′′7→b′′] † [a′7→b′′,a′′7→b′] = [a 7→b,a′7→b′′,a′′7→b′]

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 321

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.9. Map Operations 1.2.9.1. Map Operator Signatures and Map Operation Examples

∪: M × M → M [merge ∪]
[a 7→b,a′7→b′,a′′7→b′′] ∪ [a′′′7→b′′′] = [a 7→b,a′7→b′,a′′7→b′′,a′′′7→b′′′]

\: M × A-infset → M [restriction by]
[a 7→b,a′7→b′,a′′7→b′′]\{a} = [a′7→b′,a′′7→b′′]

/: M × A-infset → M [restriction to]
[a 7→b,a′7→b′,a′′7→b′′]/{a′,a′′} = [a′7→b′,a′′7→b′′]

=, 6=: M × M → Bool

◦: (A →m B) × (B →m C) → (A →m C) [composition]
[a 7→b,a′7→b′] ◦ [b 7→c,b′7→c′,b′′7→c′′] = [a 7→c,a′7→c′]

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

An RSL Primer 321

End of Lecture 8: RSL: Values & Operations

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

An RSL Primer 321

Start of Lecture 9: RSL: Logic, Λ-Calculus, Fctl. Specs.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

322 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.3. The RSL Predicate Calculus

1.3. The RSL Predicate Calculus
1.3.1. Propositional Expressions

• Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values
(true or false [or chaos]).

• Then:

false, true

a, b, ..., c ∼a, a∧b, a∨b, a⇒b, a=b, a6=b

• are propositional expressions having Boolean values.

• ∼, ∧, ∨, ⇒, = and 6= are Boolean connectives (i.e., operators).

• They can be read as: not, and, or, if then (or implies), equal and not equal.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 323

1. An RSL Primer 1.3. The RSL Predicate Calculus 1.3.2. Simple Predicate Expressions

1.3.2. Simple Predicate Expressions

• Let identifiers (or propositional expressions) a, b, ..., c designate
Boolean values,

• let x, y, ..., z (or term expressions) designate non-Boolean values

• and let i, j, . . ., k designate number values,

• then:

false, true

a, b, ..., c
∼a, a∧b, a∨b, a⇒b, a=b, a 6=b
x=y, x6=y,
i<j, i≤j, i≥j, i 6=j, i≥j, i>j

• are simple predicate expressions.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

324 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.3. The RSL Predicate Calculus 1.3.3. Quantified Expressions

1.3.3. Quantified Expressions

• Let X, Y, . . ., C be type names or type expressions,

• and let P(x), Q(y) and R(z) designate predicate expressions in
which x, y and z are free.

• Then:

∀ x:X • P(x)
∃ y:Y • Q(y)
∃ ! z:Z • R(z)

• are quantified expressions — also being predicate expressions.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 325

1. An RSL Primer 1.3. The RSL Predicate Calculus 1.3.3. Quantified Expressions

Example 12 Predicates Over Net Quantities:

• From earlier examples we show some predicates:

• Example 1: Right hand side of function definition is two way link(l):

∃ lσ:LΣ • lσ ∈ obs HΣ(l)∧card lσ=2

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

326 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.3. The RSL Predicate Calculus 1.3.3. Quantified Expressions

• Example 3:

– The Sorts + Observers + Axioms part:

∗ Right hand side of the wellformedness function wf N(n) defini-
tion:
∀ n:N • card obs Hs(n)≥2 ∧ card obs Ls(n)≥1 ∧ axioms 2.–
3., 5.–6., and 10., (Page 14)

∗ Right hand side of the wellformedness function wf N(hs,ls) defi-
nition:
card hs≥2 ∧ card ls≥1 ...

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 327

1. An RSL Primer 1.3. The RSL Predicate Calculus 1.3.3. Quantified Expressions

– The Cartesians + Maps + Wellformedness part:

∗ Right hand side of the wf HUBS wellformedness function definition:
∀ hi:HI • hi ∈ dom hubs ⇒ obs HIhubs(hi)=hi

∗ Right hand side of the wf LINKS wellformedness function definition:
∀ li:LI • li ∈ dom links ⇒ obs LIlinks(li)=li

∗ Right hand side of the wf N(hs,ls,g) wellformedness function definition:
[c] dom hs = dom g ∧
[d] ∪ {dom g(hi)|hi:HI • hi ∈ dom g} = dom links ∧
[e] ∪ {rng g(hi)|hi:HI • hi ∈ dom g} = dom g ∧
[f] ∀ hi:HI • hi ∈ dom g ⇒ ∀ li:LI • li ∈ dom g(hi) ⇒ (g(hi))(li)6=hi
[g] ∀ hi:HI • hi ∈ dom g ⇒ ∀ li:LI • li ∈ dom g(hi) ⇒

∃ hi′:HI • hi′ ∈ dom g ⇒ ∃ ! li:LI • li ∈ dom g(hi) ⇒
(g(hi))(li) = hi′ ∧ (g(hi′))(li) = hi

. .End of Example 12

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

328 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.4. λ-Calculus + Functions

1.4. λ-Calculus + Functions
1.4.1. The λ-Calculus Syntax

type /∗ A BNF Syntax: ∗/
〈L〉 ::= 〈V〉 | 〈F〉 | 〈A〉 | (〈A〉)
〈V〉 ::= /∗ variables, i.e. identifiers ∗/
〈F〉 ::= λ〈V〉 • 〈L〉
〈A〉 ::= (〈L〉〈L〉)

value /∗ Examples ∗/
〈L〉: e, f, a, ...
〈V〉: x, ...
〈F〉: λ x • e, ...
〈A〉: f a, (f a), f(a), (f)(a), ...

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 329

1. An RSL Primer 1.4. λ-Calculus + Functions 1.4.2. Free and Bound Variables

1.4.2. Free and Bound Variables
Let x, y be variable names and e, f be λ-expressions.

• 〈V〉: Variable x is free in x.

• 〈F〉: x is free in λy •e if x 6= y and x is free in e.

• 〈A〉: x is free in f (e) if it is free in either f or e (i.e., also in both).

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

330 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.4. λ-Calculus + Functions 1.4.3. Substitution

1.4.3. Substitution
Substitution of an expression N for all free free x in M is expressed: subst([N/x]M).

• subst([N/x]x) ≡ N;

• subst([N/x]a) ≡ a,

for all variables a 6= x;

• subst([N/x](P Q)) ≡ (subst([N/x]P) subst([N/x]Q));

• subst([N/x](λx•P)) ≡ λy•P;

• subst([N/x](λy•P)) ≡ λy• subst([N/x]P),

if x6=y and y is not free in N or x is not free in P;

• subst([N/x](λy•P)) ≡ λz•subst([N/z]subst([z/y]P)),

if y6=x and y is free in N and x is free in P

(where z is not free in (N P)).

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 331

1. An RSL Primer 1.4. λ-Calculus + Functions 1.4.4. α-Renaming and β-Reduction

1.4.4. α-Renaming and β-Reduction

• α-renaming: λx•M

If x, y are distinct variables then replacing x by y in λx•M results
in λy•subst([y/x]M). We can rename the formal parameter of a λ-
function expression provided that no free variables of its body M
thereby become bound.

• β-reduction: (λx•M)(N)

All free occurrences of x in M are replaced by the expression N
provided that no free variables of N thereby become bound in the
result. (λx•M)(N) ≡ subst([N/x]M)

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

332 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.4. λ-Calculus + Functions 1.4.4. The λ-Calculus Syntax

Example 13 . Network Traffic:

• We model traffic by introducing a number of model concepts.

• We simplify,

– without loosing the essence of this example, namely to show the use of λ–
functions,

– by omitting consideration of dynamically changing nets.

• These are introduced next:

– Let us assume a net, n:N.

– There is a dense set, T, of times – for which we omit giving an appropriate
definition.

– There is a sort, V, of vehicles.

– TS is a dense subset of T.

– For each ts:TS we can define a minimum and a maximum time.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 333

1. An RSL Primer 1.4. λ-Calculus + Functions 1.4.4. The λ-Calculus Syntax

– The MIN and MAX functions are meta-linguistic.

– At any moment some vehicles, v:V, have a pos:Pos ition on the net
and VP records those.

– A Pos ition is either on a link or at a hub.

– An onLink position can be designated by the link identifier, the
identifiers of the from and to hubs, and the fraction, f:F, of the
distance down the link from the from hub to the to hub.

– An atHub position just designates the hub (by its identifier).

– Traffic, tf:TF, is now a continuous function from T ime to NP
(“recordings”).

– Modelling traffic in this way entails a (“serious”) number of well-
formedness conditions. These are defined in wf TF (omitted: ...).

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

334 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.4. λ-Calculus + Functions 1.4.4. The λ-Calculus Syntax

value

n:N
type

T, V
TS = T-infset

axiom

∀ ts:TS • ∃ tmin,tmax:T: tmin ∈ ts ∧ tmax ∈ ts ∧ ∀ t:T • t ∈ ts ⇒ tmin ≤ t ≤ tmax
[that is: ts = {MIN (ts)..MAX (ts)}]

type

VP = V →m Pos
TF′ = T → VP, TF = {|tf:TF′

•wf TF(tf)(n)|}
Pos = onL | atH
onL == mkLPos(hi:HI,li:LI,f:F,hi:HI), atH == mkHPos(hi:HI)

value

wf TF: TF→ N → Bool

wf TF(tf)(n) ≡ ...
DOMAIN : TF → TS
MIN ,MAX : TS → T

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 335

1. An RSL Primer 1.4. λ-Calculus + Functions 1.4.4. The λ-Calculus Syntax

• We have defined the continuous, composite entity of traffic.

• Now let us define an operation of inserting a vehicle in a traffic.

• To insert a vehicle, v, in a traffic, tf , is prescribable as follows:

– the vehicle, v, must be designated;

– a time point, t, “inside” the traffic tf must be stated;

– a traffic, vtf , from time t of vehicle v must be stated;

– as well as traffic, tf , into which vtf is to be “merged”.

• The resulting traffic is referred to as tf ′.

value

insert V: V × T × TF → TF → TF
insert V(v,t,vtf)(tf) as tf′

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

336 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.4. λ-Calculus + Functions 1.4.4. The λ-Calculus Syntax

• The function insert V is here defined in terms of a pair of pre/post
conditions.

• The pre-condition can be prescribed as follows:

– The insertion time t must be within to open interval of time points
in the traffic tf to which insertion applies.

– The vehicle v must not be among the vehicle positions of tf .

– The vehicle must be the only vehicle “contained” in the “inserted”
traffic vtf .

pre: MIN (DOMAIN (tf)≤t≤MAX (DOMAIN (tf)) ∧
∀ t′:T • t′ ∈ DOMAIN (tf) ⇒ v 6∈ dom tf(t′) ∧
MIN (DOMAIN (vtf)) = t ∧
∀ t′:T•t′ ∈ DOMAIN (vtf) ⇒ dom vtf(t′)={v}

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 337

1. An RSL Primer 1.4. λ-Calculus + Functions 1.4.4. The λ-Calculus Syntax

• The post condition “defines” tf ′, the traffic resulting from merging
vtf with tf :

– Let ts be the time points of tf and vtf , a time interval.

– The result traffic, tf ′, is defines as a λ-function.

– For any t′′ in the time interval

– if t′′ is less than t, the insertion time, then tf ′ is as tf ;

– if t′′ is t or larger then tf ′ applied to t′′, i.e., tf ′(t′′)

∗ for any v′ : V different from v yields the same as (tf (t))(v′),

∗ but for v it yields (vtf (t))(v).

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

338 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.4. λ-Calculus + Functions 1.4.4. The λ-Calculus Syntax

post: tf′ = λt′′

•

let ts = DOMAIN (tf) ∪ DOMAIN (vtf) in

if MIN (ts) ≤ t′′ ≤ MAX (ts)
then

((t′′<t) → tf(t′′),
(t′′≥t) → [v′7→ if v′6=v then (tf(t))(v′) else (vtf(t))(v) end

|v′:V•v′ ∈ vehicles(tf)])
else chaos end

end

assumption: wf TF(vtf)∧wf TF(tf)
theorem: wf TF(tf′)

value

vehicles: TF → V-set

vehicles(tf) ≡ {v|t:T,v:V•t ∈ DOMAIN (tf)∧v ∈ dom tf(t)}

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 339

1. An RSL Primer 1.4. λ-Calculus + Functions 1.4.5. Function Signatures

1.4.5. Function Signatures
For sorts we may want to postulate some functions:

type

A, B, ..., C
value

obs B: A → B
...
obs C: A → C

• These functions cannot be defined.

• Once a domain is presented

– in which sort A and sorts or types B, ... and C occurs

– these observer functions can be demonstrated.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

340 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.4. λ-Calculus + Functions 1.4.5. Function Signatures

Example 14 . Hub and Link Observers:

• Let a net with several hubs and links be presented.

• Now observer functions

– obs Hs and

– obs Ls

can be demonstrated:

– one simply “walks” along the net, pointing out

– this hub and

– that link,

– one-by-one

– until all the net has been visited.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 341

1. An RSL Primer 1.4. λ-Calculus + Functions 1.4.5. Function Signatures

• The observer functions

– obs HI and

– obs LI

can be likewise demonstrated, for example:

– when a hub is “visited”

– its unique identification

– can be postulated (and “calculated”)

– to be the unique geographic position of the hub

– one which is not overlapped by any other hub (or link),

• and likewise for links.

. .End of Example 14

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

342 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.4. λ-Calculus + Functions 1.4.6. Function Definitions

1.4.6. Function Definitions
Functions can be defined explicitly:

type

A, B
value

f: A → B [a total function]
f(a expr) ≡ b expr

g: A
∼
→ B [a partial function]

g(a expr) ≡ b expr
pre P(a expr)
P: A → Bool

• a expr, b expr are

• A, respectively B valued expressions

• of any of the kinds illustrated in earlier and later sections of this
primer.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 343

1. An RSL Primer 1.4. λ-Calculus + Functions 1.4.6. Function Definitions

Or functions can be defined implicitly:

value

f: A→B
f(a expr) as b
post P(a expr,b)
P: A×B→Bool

g: A
∼
→B

g(a expr) as b
pre P′(a expr)
post P(a expr,b)
P′: A→Bool

where b is just an identifier.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

344 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.4. λ-Calculus + Functions 1.4.6. Function Definitions

• Finally functions, f, g, ..., h, can be defined in terms of axioms

• over function identifiers, f, g, ..., h, and over identifiers of function
arguments and results.

type

A, B, ..., C, D
value

f: A → B, g: B → C, ..., h: C → D
axiom

∀ a:A, b:B, ..., c:C, d:D
P1(f,g,...,h,a,b,...,c,d) ∧ ... ∧ Pn(f,g,...,h,a,b,...,c,d)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 345

1. An RSL Primer 1.4. λ-Calculus + Functions 1.4.6. Function Definitions

Example 15 . .Axioms over Hubs, Links and Their Observers:

• The axioms displayed in Items 7–10 on Page 14 of Sect.

• demonstrates how a number of entities and observer functions are
constrained

• (that is, partially defined) by function signatures.

. .End of Example 15

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

346 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.5. Other Applicative Expressions

1.5. Other Applicative Expressions
1.5.1. Simple let Expressions

Simple (i.e., nonrecursive) let expressions:

let a = Ed in Eb(a) end

is an “expanded” form of:

(λa.Eb(a))(Ed)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 347

1. An RSL Primer 1.5. Other Applicative Expressions 1.5.2. Recursive let Expressions

1.5.2. Recursive let Expressions
Recursive let expressions are written as:

let f = λa•E(f,a) in B(f,a) end

let f = (λg•λa•E(g,a))(f) in B(f.a) end

let f = F(f) in E(f,a) end where F ≡ λg•λa•E(g,a)
let f = YF in B(f,a) end where YF = F(YF)

• We read f = YF as “f is a fix point of F”.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

348 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.5. Other Applicative Expressions 1.5.3. Non-deterministic let Clause

1.5.3. Non-deterministic let Clause

• The non-deterministic let clause:

let a:A • P(a) in B(a) end

• expresses the non-deterministic selection of a value a of type A

• which satisfies a predicate P(a) for evaluation in the body B(a).

• If no a:A • P(a) the clause evaluates to chaos.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 349

1. An RSL Primer 1.5. Other Applicative Expressions 1.5.4. Pattern and “Wild Card” let Expressions

1.5.4. Pattern and “Wild Card” let Expressions
Patterns and wild cards can be used:

let {a} ∪ s = set in ... end

let {a, } ∪ s = set in ... end

let (a,b,...,c) = cart in ... end

let (a, ,...,c) = cart in ... end

let 〈a〉̂ℓ = list in ... end

let 〈a, ,b〉̂ℓ = list in ... end

let [a 7→b] ∪ m = map in ... end

let [a 7→b,] ∪ m = map in ... end

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

350 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.5. Other Applicative Expressions 1.5.5. Conditionals

1.5.5. Conditionals
if b expr then c expr else a expr
end

if b expr then c expr end ≡ /∗ same as: ∗/
if b expr then c expr else skip end

if b expr 1 then c expr 1
elsif b expr 2 then c expr 2
elsif b expr 3 then c expr 3
...
elsif b expr n then c expr n end

case expr of

choice pattern 1 → expr 1,
choice pattern 2 → expr 2,
...
choice pattern n or wild card → expr n end

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 351
1. An RSL Primer 1.5. Other Applicative Expressions 1.5.5. Conditionals

Example 16 . Choice Pattern Case Expressions: Insert Links:

We consider the meaning of the Insert operation designators.

9. The insert operation takes an Insert command and a net and yields
either a new net or chaos for the case where the insertion command
“is at odds” with, that is, is not semantically well-formed with respect
to the net.

10. We characterise the “is not at odds”, i.e., is semantically well-formed,
that is:

• pre int Insert(op)(hs,ls),

as follows: it is a propositional function which applies to Insert actions,
op, and nets, (hs.ls), and yields a truth value if the below relation
between the command arguments and the net is satisfied. Let (hs,ls)
be a value of type N.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

352 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.5. Other Applicative Expressions 1.5.5. Conditionals

11. If the command is of the form 2oldH(hi′,l,hi′) then

⋆1 hi′ must be the identifier of a hub in hs,

⋆s2 l must not be in ls and its identifier must (also) not be observable
in ls, and

⋆3 hi′′ must be the identifier of a(nother) hub in hs.

12. If the command is of the form 1oldH1newH(hi,l,h) then

⋆1 hi must be the identifier of a hub in hs,

⋆2 l must not be in ls and its identifier must (also) not be observable
in ls, and

⋆3 h must not be in hs and its identifier must (also) not be observable
in hs.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 353

1. An RSL Primer 1.5. Other Applicative Expressions 1.5.5. Conditionals

13. If the command is of the form 2newH(h′,l,h′′) then

⋆1 h′ — left to the reader as an exercise (see formalisation !),

⋆2 l — left to the reader as an exercise (see formalisation !), and

⋆3 h′′ — left to the reader as an exercise (see formalisation !).

Conditions concerning the new link (second ⋆s, ⋆2, in the above three
cases) can be expressed independent of the insert command category.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

354 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.5. Other Applicative Expressions 1.5.5. Conditionals

value

9 int Insert: Insert → N
∼
→ N

10′ pre int Insert: Ins → N → Bool

10′′ pre int Insert(Ins(op))(hs,ls) ≡
⋆2 s l(op) 6∈ ls ∧ obs LI(s l(op)) 6∈ iols(ls) ∧

case op of

11) 2oldH(hi′,l,hi′′) → {hi′,hi′′}∈ iohs(hs),
12) 1oldH1newH(hi,l,h) →

hi ∈ iohs(hs) ∧ h 6∈ hs ∧ obs HI(h) 6∈ iohs(hs),
13) 2newH(h′,l,h′′) →

{h′,h′′}∩ hs={} ∧ {obs HI(h′),obs HI(h′′)}∩ iohs(hs)={}
end

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 355

1. An RSL Primer 1.5. Other Applicative Expressions 1.5.5. Conditionals

14. Given a net, (hs,ls), and given a hub identifier, (hi), which can be
observed from some hub in the net, xtr H(hi)(hs,ls) extracts the hub
with that identifier.

15. Given a net, (hs,ls), and given a link identifier, (li), which can be
observed from some link in the net, xtr L(li)(hs,ls) extracts the hub
with that identifier.

value

14: xtr H: HI → N
∼
→ H

14: xtr H(hi)(hs,) ≡ let h:H•h ∈ hs ∧ obs HI(h)=hi in h end

pre hi ∈ iohs(hs)

15: xtr L: HI → N
∼
→ H

15: xtr L(li)(,ls) ≡ let l:L•l ∈ ls ∧ obs LI(l)=li in l end

pre li ∈ iols(ls)

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

356 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.5. Other Applicative Expressions 1.5.5. Conditionals

16. When a new link is joined to an existing hub then the observable link
identifiers of that hub must be updated to reflect the link identifier of
the new link.

17. When an existing link is removed from a remaining hub then the
observable link identifiers of that hub must be updated to reflect the
removed link (identifier).

value

aLI: H × LI → H, rLI: H × LI
∼
→ H

16: aLI(h,li) as h′

pre li 6∈ obs LIs(h)
post obs LIs(h′) = {li} ∪ obs LIs(h) ∧ non I eq(h,h′)

17: rLI(h′,li) as h
pre li ∈ obs LIs(h′) ∧ card obs LIs(h′)≥2
post obs LIs(h) = obs LIs(h′) \ {li} ∧ non I eq(h,h′)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 357

1. An RSL Primer 1.5. Other Applicative Expressions 1.5.5. Conditionals

18. If the Insert command is of kind 2newH(h’,l,h”) then the updated net of hubs and
links, has

• the hubs hs joined, ∪, by the set {h′,h′′} and

• the links ls joined by the singleton set of {l}.

19. If the Insert command is of kind 1oldH1newH(hi,l,h) then the updated net of hubs
and links, has

19.1 : the hub identified by hi updated, hi′, to reflect the link connected to that hub.

19.2 : The set of hubs has the hub identified by hi replaced by the updated hub hi′

and the new hub.

19.2 : The set of links augmented by the new link.

20. If the Insert command is of kind 2oldH(hi’,l,hi”) then

20.1–.2 : the two connecting hubs are updated to reflect the new link,

20.3 : and the resulting sets of hubs and links updated.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

358 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.5. Other Applicative Expressions 1.5.5. Conditionals

int Insert(op)(hs,ls) ≡
⋆i case op of

18 2newH(h′,l,h′′) → (hs ∪ {h′,h′′},ls ∪ {l}),
19 1oldH1newH(hi,l,h) →
19.1 let h′ = aLI(xtr H(hi,hs),obs LI(l)) in

19.2 (hs\{xtr H(hi,hs)}∪{h,h′},ls ∪{l}) end,
20 2oldH(hi′,l,hi′′) →
20.1 let hsδ = {aLI(xtr H(hi′,hs),obs LI(l)),
20.2 aLI(xtr H(hi′′,hs),obs LI(l))} in

20.3 (hs\{xtr H(hi′,hs),xtr H(hi′′,hs)}∪ hsδ,ls ∪{l}) end

⋆j end

⋆k pre pre int Insert(op)(hs,ls)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 359

1. An RSL Primer 1.5. Other Applicative Expressions 1.5.5. Conditionals

21. The remove command is of the form Rmv(li) for some li.

22. We now sketch the meaning of removing a link:

(a) The link identifier, li, is, by the pre int Remove pre-condition, that of a link, l,
in the net.

(b) That link connects to two hubs, let us refer to them as h′ and h′.

(c) For each of these two hubs, say h, the following holds wrt. removal of their
connecting link:

i. If l is the only link connected to h then hub h is removed. This may mean
that

• either one

• or two hubs

are also removed when the link is removed.

ii. If l is not the only link connected to h then the hub h is modified to reflect
that it is no longer connected to l.

(d) The resulting net is that of the pair of adjusted set of hubs and links.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

360 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.5. Other Applicative Expressions 1.5.5. Conditionals

value

21 int Remove: Rmv → N
∼
→ N

22 int Remove(Rmv(li))(hs,ls) ≡
22(a)) let l = xtr L(li)(ls), {hi′,hi′′} = obs HIs(l) in

22(b)) let {h′,h′′} = {xtr H(hi′,hs),xtr H(hi′′,hs)} in

22(c)) let hs′ = cond rmv(h′,hs) ∪ cond rmv H(h′′,hs) in

22(d)) (hs\{h′,h′′} ∪ hs′,ls\{l}) end end end

22(a)) pre li ∈ iols(ls)

cond rmv: LI × H × H-set → H-set

cond rmv(li,h,hs) ≡
22((c))i) if obs HIs(h)={li} then {}
22((c))ii) else {sLI(li,h)} end

pre li ∈ obs HIs(h)

. End of Example 16

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 361

1. An RSL Primer 1.5. Other Applicative Expressions 1.5.6. Operator/Operand Expressions

1.5.6. Operator/Operand Expressions

〈Expr〉 ::=
〈Prefix Op〉 〈Expr〉
| 〈Expr〉 〈Infix Op〉 〈Expr〉
| 〈Expr〉 〈Suffix Op〉
| ...

〈Prefix Op〉 ::=
− | ∼ | ∪ | ∩ | card | len | inds | elems | hd | tl | dom | rng

〈Infix Op〉 ::=
= | 6= | ≡ | + | − | ∗ | ↑ | / | < | ≤ | ≥ | > | ∧ | ∨ | ⇒
| ∈ | 6∈ | ∪ | ∩ | \ | ⊂ | ⊆ | ⊇ | ⊃ | ̂ | † | ◦

〈Suffix Op〉 ::= !

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

An RSL Primer 361

End of Lecture 9: RSL: Logic, Λ-Calculus, Fctl. Specs.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

An RSL Primer 361

Start of Lecture 10: RSL: Imperative & Process Specs.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

362 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.6. Imperative Constructs

1.6. Imperative Constructs
1.6.1. Statements and State Changes

Unit

value

stmt: Unit → Unit

stmt()

• The Unit clause, in a sense, denotes “an underlying state”

– which we, for simplicity, can consider as

– a mapping from identifiers of declared variables into their values.

• Statements accept no arguments and, usually, operate on the state

– through “reading” the value(s) of declared variables and

– through “writing”, i.e., assigning values to such declared variables.

• Statement execution thus changes the state (of declared variables).

• Unit → Unit designates a function from states to states.

• Statements, stmt, denote state-to-state changing functions.

• Affixing () as an “only” arguments to a function “means” that () is an argument of type Unit.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 363
1. An RSL Primer 1.6. Imperative Constructs 1.6.2. Variables and Assignment

1.6.2. Variables and Assignment

0. variable v:Type := expression
1. v := expr

1.6.3. Statement Sequences and skip

2. skip

3. stm 1;stm 2;...;stm n

1.6.4. Imperative Conditionals

4. if expr then stm c else stm a end

5. case e of: p 1→S 1(p 1),...,p n→S n(p n) end

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

364 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.6. Imperative Constructs 1.6.5. Iterative Conditionals

1.6.5. Iterative Conditionals

6. while expr do stm end

7. do stmt until expr end

1.6.6. Iterative Sequencing

8. for i in list • P(list(i)) do S(list(i)) end

9. for e in set • P(e) do S(e) end

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 365

1. An RSL Primer 1.7. Process Constructs

1.7. Process Constructs
1.7.1. Process Channels

• Let A, B and C stand for three types of (channel) messages

• and i:IIdx, j:JIdx for channel array indexes, then:

channel

c:A
channel

{k[i]|i:IIdx}:B
{ch[i,j]i:IIdx,j:JIdx}:C

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

366 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.7. Process Constructs 1.7.1. Process Channels

Example 17 Modelling Connected Links and Hubs:

• Examples (17–20) are building up a model of one form of meaning
of a transport net.

– We model the movement of vehicles around hubs and links.

– We think of each hub, each link and each vehicle to be a process.

– These processes communicate via channels.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 367

1. An RSL Primer 1.7. Process Constructs 1.7.1. Process Channels

• We assume a net, n : N , and a set, vs, of vehicles.

• Each vehicle can potentially interact

– with each hub and

– with each link.

• Array channel indices (vi,hi):IVH and (vi,li):IVL serve to effect these interactions.

• Each hub can interact with each of its connected links and indices (hi,li):IHL serves
these interactions.

type

N, V, VI
value

n:N, vs:V-set

obs VI: V → VI
type

H, L, HI, LI, M
IVH = VI×HI, IVL = VI×LI, IHL = HI×LI

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

368 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.7. Process Constructs 1.7.1. Process Channels

• We need some auxiliary quantities in order to be able to express sub-
sequent channel declarations.

• Given that we assume a net, n : N and a set of vehicles, vs : V S, we
can now define the following (global) values:

– the sets of hubs, hs, and links, ls of the net;

– the set, ivhs, of indices between vehicles and hubs,

– the set, ivls, of indices between vehicles and links, and

– the set, ihls, of indices between hubs and links.

value

hs:H-set = obs Hs(n), ls:L-set = obs Ls(n)
his:HI-set = {obs HI(h)|h:H•h ∈ hs}, lis:LI-set = {obs LI(h)|l:L•l ∈ ls},
ivhs:IVH-set = {(obs VI(v),obs HI(h))|v:V,h:H•v ∈ vs∧h ∈ hs}
ivls:IVL-set = {(obs VI(v),obs LI(l))|v:V,l:L•v ∈ vs∧l ∈ ls}
ihls:IHL-set = {(hi,li)|h:H,(hi,li):IHL• h ∈ hs∧hi=obs HI(h)∧li ∈ obs LIs(h)}

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 369

1. An RSL Primer 1.7. Process Constructs 1.7.1. Process Channels

• We are now ready to declare the channels:

– a set of channels, {vh[i]|i:IVH•i∈ivhs} between vehicles and all po-
tentially traversable hubs;

– a set of channels, {vh[i]|i:IVH•i∈ivhs} between vehicles and all po-
tentially traversable links; and

– a set of channels, {hl[i]|i:IHL•i∈ihls}, between hubs and connected
links.

channel

{vh[i] | i:IVH • i ∈ ivhs} : M
{vl[i] | i:IVL • i ∈ ivls} : M
{hl[i] | i:IHL • i ∈ ihls} : M

. .End of Example 17

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

370 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.7. Process Constructs 1.7.2. Process Definitions

1.7.2. Process Definitions

• A process definition is a function definition.

• The below signatures are just examples.

• They emphasise that process functions must somehow express,

– in their signature,

• via which channels they wish to engage in input and output events.

• Processes P and Q are to interact, and to do so “ad infinitum”.

• Processes R and S are to interact, and to do so “once”, and then
yielding B, respectively D values.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 371

1. An RSL Primer 1.7. Process Constructs 1.7.2. Process Definitions

value

P: Unit → in c out {k[i]|i:IIdx} Unit

Q: i:KIdx → out c in k[i] Unit

P() ≡ ... c ? ... k[i] ! e ... ; P()
Q(i) ≡ ... c ! e ... k[i] ? ... ; Q(i)

k[i]!v k[i]?

c? c!e

P() Q(i)

Figure 9: The P —— Q Process

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

372 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.7. Process Constructs 1.7.2. Process Definitions

Example 18 Communicating Hubs, Links and Vehicles:

• Hubs interact with links and vehicles:

– with all immediately adjacent links,

– and with potentially all vehicles.

• Links interact with hubs and vehicles:

– with both adjacent hubs,

– and with potentially all vehicles.

• Vehicles interact with hubs and links:

– with potentially all hubs.

– and with potentially all links.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 373

1. An RSL Primer 1.7. Process Constructs 1.7.2. Process Definitions

value

hub: hi:HI × h:H → in,out {hl[(hi,li)|li:LI•li ∈ obs LIs(h)]}
in,out {vh[(vi,hi)|vi:VI•vi ∈ vis]} Unit

link: li:LI × l:L → in,out {hl[(hi,li)|hi:HI•hi ∈ obs HIs(l)]}
in,out {vh[(vi,li)|vi:VI•vi ∈ vis]} Unit

vehicle: vi:VI → (Pos × Net) → v:V →
in,out {vh[(vi,hi)|hi:HI•hi ∈ his]}
in,out {vl[(vi,li)|li:LI•li ∈ lis]} Unit

. .End of Example 18

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

374 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.7. Process Constructs 1.7.3. Process Composition

1.7.3. Process Composition

• Let P and Q stand for names of process functions,

• i.e., of functions which express willingness to engage in input and/or
output events,

• thereby communicating over declared channels.

• Let P and Q stand for process expressions,

• and let Pi stand for an indexed process expression, then:

P ‖ Q Parallel composition
P ⌈⌉⌊⌋ Q Nondeterministic external choice (either/or)
P ⌈⌉ Q Nondeterministic internal choice (either/or)
P –‖ Q Interlock parallel composition
O { Pi | i:Idx } Distributed composition, O = ‖,⌈⌉⌊⌋,⌈⌉,–‖

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 375

1. An RSL Primer 1.7. Process Constructs 1.7.3. Process Composition

Example 19 . Modelling Transport Nets:

• The net, with vehicles, potential or actual, is now considered a process.

• It is the parallel composition of

– all hub processes,

– all link processes and

– all vehicle processes.

value

net: N → V-set → Unit

net(n)(vs) ≡
‖ {hub(obs HI(h))(h)|h:H•h ∈ obs Hs(n)} ‖
‖ {link(obs LI(l))(l)|l:L•l ∈ obs Ls(n)} ‖
‖ {vehicle(obs VI(v))(obs PN(v))(v)|v:V•v ∈ vs}

obs PN: V → (Pos×Net)

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

376 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.7. Process Constructs 1.7.3. Process Composition

• We illustrate a schematic definition of simplified hub processes.

• The hub process alternates, internally non-deterministically, ⌈⌉, be-
tween three sub-processes

– a sub-process which serves the link-hub connections,

– a sub-process which serves thos vehicles which communicate that
they somehow wish to enter or leave (or do something else with
respect to) the hub, and

– a sub-process which serves the hub itself — whatever that is !

hub(hi)(h) ≡
⌈⌉⌊⌋{let m = hl[(hi,li)] ? in hub(hi)(Ehℓ

(li)(m)(h)) end|i:LI•li ∈ obs LI(h)}
⌈⌉ ⌈⌉⌊⌋{let m = vh[(vi,hi)] ? in hub(vi)(Ehv

(vi)(m)(h)) end|vi:VI•vi ∈ vis}
⌈⌉ hub(hi)(Ehown

(h))

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 377

1. An RSL Primer 1.7. Process Constructs 1.7.3. Process Composition

• The three auxiliary processes:

– Ehℓ
update the hub with respect to (wrt.) connected link, li, infor-

mation m,

– Ehv
update the hub with wrt. vehicle, vi, information m,

– Ehown
update the hub with wrt. whatever the hub so decides. An

example could be signalling dependent on previous link-to-hub com-
municated information, say about traffic density.

Ehℓ
: LI → M → H → H

Ehv
: VI → M → H → H

Ehown
: H → H

• The student is encouraged to sketch/define similarly schematic link
and vehicle processes.

. .End of Example 19

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

378 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.7. Process Constructs 1.7.4. Input/Output Events

1.7.4. Input/Output Events

• Let c and k[i] designate channels of type A

• and e expression values of type A, then:

[1] c?, k[i]? input A value
[2] c!e, k[i]!e output A value

value

[3] P: ... → out c ..., P(...) ≡ ... c!e ... offer an A value,
[4] Q: ... → in c ..., Q(...) ≡ ... c? ... accept an A value
[5] S: ... → ..., S(...) = P(...)‖Q(...) synchronise and communicate

• [5] expresses the willingness of a process to engage in an event that

– [1,3] “reads” an input, respectively

– [2,4] “writes” an output.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 379

1. An RSL Primer 1.7. Process Constructs 1.7.4. Input/Output Events

Example 20Modelling Vehicle Movements:

• Whereas hubs and links are modelled as basically static, passive, that
is, inert, processes we shall consider vehicles to be “highly” dynamic,
active processes.

• We assume that a vehicle possesses knowledge about the road net.

– The road net is here abstracted as an awareness of

– which links, by their link identifiers,

– are connected to any given hub, designated by its hub identifier,

– the length of the link,

– and the hub to which the link is connected “at the other end”, also
by its hub identifier

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

380 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.7. Process Constructs 1.7.4. Input/Output Events

• A vehicle is further modelled by its current position on the net in terms
of either hub or link positions

– designated by appropriate identifiers

– and, when “on a link” “how far down the link”, by a measure of a
fraction of the total length of the link, the vehicle has progressed.

type

Net = HI →m (LI →m HI)
Pos = atH | onL
atH == mk atH(hi:HI)
onL == mk onL(fhi:HI,li:LI,f:F,thi:HI)
F = {|f:Real•0≤f≤1|}

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 381

1. An RSL Primer 1.7. Process Constructs 1.7.4. Input/Output Events

• We first assume that the vehicle is at a hub.

• There are now two possibilities (1–2] versus [4–8]).

– Either the vehicle remains at that hub

∗ [1] which is expressed by some non-deterministic wait

∗ [2] followed by a resumption of being that vehicle at that location.

– [3] Or the vehicle (driver) decides to “move on”:

∗ [5] Onto a link, li,

∗ [4] among the links, lis, emanating from the hub,

∗ [6] and towards a next hub, hi′.

– [4,6] The lis and hi′ quantities are obtained from the vehicles own knowledge of
the net.

– [7] The hub and the chosen link are notified by the vehicle of its leaving the hub
and entering the link,

– [8] whereupon the vehicle resumes its being a vehicle at the initial location on
the chosen link.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

382 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.7. Process Constructs 1.7.4. Input/Output Events

• The vehicle chooses between these two possibilities by an internal non-deterministic
choice ([3]).

type

M == mk L H(li:LI,hi:HI) | mk H L(hi:HI,li:LI)
value

vehicle: VI → (Pos × Net) → V → Unit

vehicle(vi)(mk atH(hi),net)(v) ≡
[1] (wait ;
[2] vehicle(vi)(mk atH(hi),net)(v))
[3] ⌈⌉
[4] (let lis=dom net(hi) in

[5] let li:LI•li ∈ lis in

[6] let hi′=(net(hi))(li) in

[7] (vh[(vi,hi)]!mk H L(hi,li)‖vl[(vi,li)]!mk H L(hi,li));
[8] vehicle(vi)(mk onL(hi,li,0,hi′),net)(v)
[9] end end end)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 383
1. An RSL Primer 1.7. Process Constructs 1.7.4. Input/Output Events

• We then assume that the vehicle is on a link and at a certain distance “down”, f,
that link.

• There are now two possibilities ([1–2] versus [4–7]).

– Either the vehicle remains at that hub

∗ [1′] which is expressed by some non-deterministic wait

∗ [2′] followed by a resumption of being that vehicle at that location.

– [3′] Or the vehicle (driver) decides to “move on”.

– [4′] Either

∗ [5′] The vehicle is at the very end of the link and signals the link and the hub
of its leaving the link and entering the hub,

∗ [6′] whereupon the vehicle resumes its being a vehicle at hub h′.

– [7′] or the vehicle moves further down, some non-zero fraction down the link.

• The vehicle chooses between these two possibilities by an internal non-deterministic
choice ([3]).

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

384 Lecture Notes in Software Engineering 1
1. An RSL Primer 1.7. Process Constructs 1.7.4. Input/Output Events

type

M == mk L H(li:LI,hi:HI) | mk H L(hi:HI,li:LI)
value

δ:Real = move(h,f) axiom 0<δ≪1
vehicle(vi)(mk onL(hi,li,f,hi′),net)(v) ≡
[1′] (wait ;
[2′] vehicle(vi)(mk onL(hi,li,f,hi′),net)(v))
[3′] ⌈⌉
[4′] (case f of

[5′] 1 → ((vl[vi,hi′]!mk L H(li,hi′)‖vh[vi,li]!mk L H(li,hi′));
[6′] vehicle(vi)(mk atH(hi′),net)(v)),
[7′] → vehicle(vi)(mk onL(hi,li,f+δ,hi′),net)(v)
[8′] end)
move: H × F → F

. .End of Example 20

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 385

1. An RSL Primer 1.8. Simple RSL Specifications

1.8. Simple RSL Specifications

• Besides the above constructs RSL also possesses module-oriented

– scheme, – class and – object

constructs.

• We shall not cover these here.

• An RSL specification is then simply

– a sequence of one or more clusters of

∗ zero, one or more sort and/or type definitions,

∗ zero, one or more variable declarations,

∗ zero, one or more channel declarations,

∗ zero, one or more value definitions (including functions) and

∗ zero, one or more and axioms.

• We can illustrate these specification components schematically:

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

386 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.8. Simple RSL Specifications

type

A, B, C, D, E, F, G

Hf = A-set, Hi = A-infset

J = B×C×...×D

Kf = E∗, Ki = Eω

L = F→m G

Mt = J → Kf, Mp = J
∼
→ Ki

N == alpha | beta | ... | omega

O == mk Hf(as:Hf)

| mk Kf(el:Kf) | ...
P = Hf | Kf | L | ...

variable

vhf:Hf := 〈〉
channel

chf:F, chg:G, {chb[i]|i:A}:B

value

va:A, vb:B, ..., ve:E

f1: A → B, f2: C
∼
→ D

f1(a) ≡ Ef1(a)

f2: E → in|out chf F

f2(e) ≡ Ef2(e)

f3: Unit → in chf out chg Unit

...
axiom

Pi(f1,va),

Pj(f2,vb),

...
Pk(f3,ve)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 387

1. An RSL Primer 1.8. Simple RSL Specifications

• The ordering of these clauses is immaterial.

• Intuitively the meaning of these definitions and declarations are the following.

– The type clause introduces a number of user-defined type names;

∗ the type names are visible anywhere in the specification;

∗ and either denote sorts or concrete types.

– The variable clause declares some variable names;

∗ a variable name denote some value of decalred type;

∗ the variable names are visible anywhere in the specification:

· assigned to (‘written’) or

· values ‘read’.

– The channel clause declares some channel names;

∗ either simple channels or arrays of channels of some type;

∗ the channel names are visible anywhere in the specification.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

388 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.8. Simple RSL Specifications

– The value clause bind (constant) values to value names.

∗ These value names are visible anywhere in the specification.

∗ The specification

type

A
value

a:A

∗ non-deterministically binds a to a value of type A.

∗ Thuis includes, for example

type

A, B
value

f: A → B

∗ which non-deterministically binds f to a function value of type
A→B.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 389

1. An RSL Primer 1.8. Simple RSL Specifications

Example 21 . A Neat Little “System”:

• We present a self-contained specification of a simple system:

– The system models

∗ vehicles moving along a net, vehicle,

∗ the recording of vehicles entering links, enter sensor,

∗ the recording of vehicles leaving links, leave sensor, and

∗ the road pricing payment of a vehicle having traversed (entered
and left) a link.

– Note

∗ that vehicles only pay when completing a link traversal;

∗ that ‘road pricing’ only commences once a vehicle enters the first
link after possibly having left an earlier link (and hub); and

∗ that no road pricing payment is imposed on vehicles entering,
staying-in (or at) and leaving hubs.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

390 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.8. Simple RSL Specifications

– We assume the following:

∗ that each link is somehow associated with two pairs of sensors:

· a pair of enter and leave sensors at one end, and

· a pair of enter and leave sensors at the other end;

and

∗ a road pricing process

· which records pairs of link enterings and leavings,

· first one, then, after any time interval, the other,

· with leavings leading to debiting of traversal fees;

• Our first specification

– define types,

– assume a net value,

– declares channels and

– state signatures of all processes.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 391

1. An RSL Primer 1.8. Simple RSL Specifications

• ves stand for vehicle entering (link) sensor channels,

• vls stand for vehicle leaving (link) sensor channels,

• rp stand for ‘road pricing’ channel

• enter sensor(hi,li) stand for vehicle entering [sensor] process from hub
hi to link (li).

• leave sensor(li,hi) stand for vehicle leaving [sensor] process from link
li to hub (hi).

• road pricing() stand for the unique ‘road pricing’ process.

• vehicle(vi)(...) stand for the vehicle vi process.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

392 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.8. Simple RSL Specifications

type

N, H, HI, LI, VI
RPM == mk Enter L(vi:VI,li:LI) | mk Leave L(vi:VI,li:LI)

value

n:N
channel

{ves[obs HI(h),li]|h:H•h ∈ obs Hs(n)∧li ∈ obs LIs(h)}:VI
{vls[li,obs HI(h)]|h:H•h ∈ obs Hs(n)∧li ∈ obs LIs(h)}:VI
rp:RPM

type

Fee, Bal
LVS = LI →m VI-set, FEE = LI →m Fee, ACC = VI →m Bal

value

link: (li:LI × L) → Unit

enter sensor: (hi:HI × li:LI) → in ves[hi,li],out rp Unit

leave sensor: (li:LI × hi:HI) → in vls[li,hi],out rp Unit

road pricing: (LVS×FEE×ACC) → in rp Unit

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 393
1. An RSL Primer 1.8. Simple RSL Specifications

• To understand the sensor behaviours let us review the vehicle be-
haviour.

• In the vehicle behaviour defined in Example 20, in two parts, Slide 382
and Slide 384 we focus on the events

– [7] where the vehicle enters a link, respectively

– [5′] where the vehicle leaves a link.

• These are summarised in the schematic reproduction of the vehicle
behaviour description.

– We redirect the interactions between vehicles and links to become

– interactions between vehicles and enter and leave sensors.

value

δ:Real = move(h,f) axiom 0<δ≪1
move: H × F → F

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

394 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.8. Simple RSL Specifications

vehicle: VI → (Pos × Net) → V → Unit

vehicle(vi)(pos,net)(v) ≡
[1] (wait ;
[2] vehicle(vi)(pos,net)(v))
[3] ⌈⌉

case pos of

mk atH(hi) →
[4−6] (let lis=dom net(hi) in let li:LI•li ∈ lis in let hi′=(net(hi))(li) in

[7] ves[hi,li]!vi;
[8] vehicle(vi)(mk onL(hi,li,0,hi′),net)(v)
[9] end end end)

mk onL(hi,li,f,hi′) →
[4′] (case f of

[5′−6′] 1 → (vls[li,hi]!vi; vehicle(vi)(mk atH(hi′),net)(v)),
[7′] → vehicle(vi)(mk onL(hi,li,f+δ,hi′),net)(v)
[8′] end)

end

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 395
1. An RSL Primer 1.8. Simple RSL Specifications

• As mentioned on Slide 390 link behaviours are associated with two
pairs of sensors:

– a pair of enter and leave sensors at one end, and

– a pair of enter and leave sensors at the other end;

value

link(li)(l) ≡
let {hi,hi′} = obs HIs(l) in

enter sensor(hi,li) ‖ leave sensor(li,hi) ‖
enter sensor(hi′,li) ‖ leave sensor(li,hi′) end

enter sensor(hi,li) ≡
let vi = ves[hi,li]? in rp!mk Enter LI(vi,li); enter sensor(hi,li) end

leave sensor(li,hi) ≡
let vi = ves[li,hi]? in rp!mk Leave LI(vi,li); enter sensor(li,hi) end

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

396 Lecture Notes in Software Engineering 1

1. An RSL Primer 1.8. Simple RSL Specifications

• The LVS component of the road pricing behaviour serves,

– among other purposes that are not mentioned here,

– to record whether the movement of a vehicles “originates” along a
link or not.

• Otherwise we leave it to the student to carefully read the formulas.

value

payment: VI × LI → (ACC × FEE) → ACC
payment(vi,li)(fee,acc) ≡
let bal′ = if vi ∈ dom acc then add(acc(vi),fee(li)) else fee(li) end

in acc † [vi 7→ bal′] end

add: Fee × Bal → Bal [add fee to balance]

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 397

1. An RSL Primer 1.8. Simple RSL Specifications

road pricing(lvs,fee,acc) ≡ in rp
let m = rp? in

case m of

mk Enter LI(vi,li) →
road pricing(lvs†[li7→lvs(li)∪{vi}],fee,acc),

mk Leave LI(vi,li) →
let lvs′ = if vi ∈ lvs(li) then lvs†[li7→lvs(li)\{vi}] else lvs end,

acc′ = payment(vi,li)(fee,acc) in

road pricing(lvs′,fee,acc′)
end end end

. .End of Example 21

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

An RSL Primer 397

End of Lecture 10: RSL: Imperative & Process Specs.

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

398 Lecture Notes in Software Engineering 1

B Slide Table-of-Contents

Contents

Lect. # 1: COVER & INTRODUCTION 0

1 Introduction 5

1.1 The Problem . 5

1.2 The Triptych Approach . 6

Lect. # 2: ONTOLOGY 8

2 An Ontology of Specification Entities 9

2.1 Simple Entities . 11

2.1.1 Net, Hubs and Links . 13

2.1.2 Unique Hub and Link Identifiers . 14

2.1.3 Observability of Hub and Link Identifiers . 15

2.1.4 A Theorem . 17

2.1.4.1 Links implies Hubs . 17

2.1.5 Hub and Link Attributes . 18

2.1.6 Hub and Link Generators . 19

2.2 States . 22

2.3 Actions . 22

2.3.1 Insert Hubs . 23

2.3.2 Remove Hubs . 25

2.3.3 Insert Links . 27

2.3.4 Remove Links . 31

2.3.5 Two Theorems . 34

2.3.5.1 Idempotency . 34

2.3.5.2 Reachability . 35

2.4 Events . 37

2.5 Behaviours . 41

2.5.1 Behaviour Prescriptions . 42

2.5.1.1 Construction Plans . 42

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 399

2.5.1.2 Wellformedness of Construction Plans . 43

2.5.2 Augmented Construction Plans . 47

2.5.3 Sequential Construction Behaviours . 50

Lect. # 3: DOMAINS: Intrinsics – Rules & Regulations 52

3 An Ontology of Domain Facets 53

3.0.1 Definitions . 53

3.0.2 What Can Be Observed . 57

3.0.3 Business Processes . 58

3.0.3.1 A Characterisation . 58

3.0.3.2 An Example . 58

3.1 Intrinsics . 59

3.1.1 Net Topology Descriptors . 60

3.1.2 Link States and Link State Spaces . 63

3.1.3 Hub States and Hub State Spaces . 67

3.1.4 State and State Space Wellformedness . 69

3.1.5 Concrete Types for Simple Entities . 70

3.1.6 Example Hub Crossings . 73

3.1.7 Actions Continued . 75

3.2 Support Technologies . 77

3.2.1 Traffic Signals . 78

3.2.2 Traffic “Control” . 82

3.3 Rules and Regulations . 84

3.3.1 Vehicles . 87

3.3.2 Traffic . 89

3.3.2.1 Wellformedness of Traffic . 89

3.3.2.1.1 Static Wellformedness . 90

3.3.2.1.2 Dynamic Wellformedness . 92

3.3.3 Traffic Rules (I of II) . 97

3.3.4 Another Traffic Regulator . 98

3.3.5 Traffic Rules (II of II) . 99

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

400 Lecture Notes in Software Engineering 1

Lect. # 4: DOMAINS: Scripts – Human Behaviour 99

3.4 Scripts . 100

3.4.1 Routes as Scripts . 101

3.4.1.1 Paths . 101

3.4.1.2 Routes . 104

3.4.2 Bus Timetables as Scripts . 107

3.4.2.1 Buses . 107

3.4.2.2 Bus Stops . 107

3.4.2.3 Bus Routes . 108

3.4.2.4 Bus Schedule . 110

3.4.2.5 Timetable . 112

3.4.3 Route and Bus Timetable Denotations . 115

3.4.4 Licenses and Contracts . 117

3.4.4.1 Contracts . 123

3.4.4.2 Contractual Actions . 128

3.4.4.3 Wellformedness of Contractual Actions . 131

3.5 Management and Organisation . 137

3.5.1 Transport System Examples . 141

3.6 Human Behaviour . 144

3.7 Towards Theories of Domain Facets . 146

3.7.1 A Theory of Intrinsics . 147

3.7.2 Theories of Support Technologies . 148

3.7.2.1 An Example . 148

3.7.2.2 General . 151

3.7.3 A Theory of Rules & Regulations . 152

3.7.4 A Theory of Management & Organisation . 162

3.7.5 A Theory of Human Behaviour . 163

Lect. # 5: REQUIREMENTS – up to and incl. Determination 165

4 An Ontology of Requirements Constructions 166

4.1 Business Process Re-engineering . 169

4.1.1 The Kinds of Requirements . 172

4.1.2 Goals Versus Requirements . 173

4.1.2.1 Goals of a Toll Road System . 175

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 401

4.1.2.2 Goals of Toll Road System Software . 176

4.1.2.3 Arguing Goal-satisfaction of a Toll Road System . 177

4.1.2.4 Arguing Goal-satisfaction of Toll Road System Software . 178

4.1.3 Re-engineered Nets . 180

4.2 Domain Requirements . 191

4.2.1 Projection . 193

4.2.1.1 Example . 195

4.2.2 Instantiation . 196

4.2.2.1 Example . 197

4.2.2.2 Abstraction: From Concrete Toll Road Nets to Abstract Nets . 202

4.2.2.3 Theorem . 203

4.2.3 Determination . 204

4.2.3.1 Example . 205

Lect. # 6: REQUIREMENTS – from Extension “out” 208

4.2.4 Extension . 209

4.2.4.1 Intuition . 212

4.2.4.2 Descriptions . 214

4.2.4.2.1 A RAISE/CSP Model . 214

4.2.4.2.1 Toll Booth Plazas . 214

4.2.4.2.1 Cars . 216

4.2.4.2.1 Entry Booths . 217

4.2.4.2.1 Gates . 219

4.2.4.2.1 The Entry Plaza System . 220

4.2.4.2.2 A Duration Calculus Model . 225

4.2.4.2.3 A Timed Automata Model . 229

4.2.5 Fitting . 233

4.2.5.1 Examples . 234

4.3 Interface Requirements . 235

4.3.1 But First: On Shared Phenomena and Concepts . 237

4.3.2 Shared Simple Entities . 238

4.3.2.1 Example . 239

4.3.3 Shared Actions . 240

4.3.3.1 Example . 241

4.3.4 Shared Events . 242

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

402 Lecture Notes in Software Engineering 1

4.3.4.1 Examples . 243

4.3.5 Shared Behaviours . 244

4.3.5.1 Example . 245
4.4 Machine Requirements . 246

4.4.1 An Enumeration of Classes of Machine Requirements . 247

Lect. # 11: CLOSING 247

5 Conclusion 248

5.1 What Have We Omitted . 248
5.2 Domain Descriptions Are Not Normative . 249

5.3 “Requirements Always Change” . 250

5.4 What Can Be Described and Prescribed . 252

5.5 What Have We Achieved – and What Not . 254
5.6 Relation to Other Work . 255

5.7 “Ideal” Versus Real Developments . 258

5.8 Description Languages . 260
5.9 Entailments . 262

5.10 Domain Versus Ontology Engineering . 263

6 Bibliographical Notes 264

6.1 Description Languages . 264

Lect. # 7: RSL: Types 265

1 An RSL Primer 266

1.1 Types . 266
1.1.1 Type Expressions . 266

1.1.1.1 Atomic Types . 266

Example 1: Basic Net Attributes . 268

1.1.1.2 Composite Types . 270
Example 2: Composite Net Type Expressions . 271

1.1.2 Type Definitions . 273

1.1.2.1 Concrete Types . 273
Example 3: Composite Net Types . 274

Example 4: Net Record Types: Insert Links . 280

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 403

1.1.2.2 Subtypes . 282

Example 5: Net Subtypes . 283

1.1.2.3 Sorts — Abstract Types . 289

Example 6: Net Sorts . 290

Lect. # 8: RSL: Values & Operations 290

1.2 Concrete RSL Types: Values and Operations . 291

1.2.1 Arithmetic . 291

1.2.2 Set Expressions . 292

1.2.2.1 Set Enumerations . 292

Example 7: Set Expressions over Nets . 293

1.2.2.2 Set Comprehension . 297

Example 8: Set Comprehensions . 298

1.2.3 Cartesian Expressions . 299

1.2.3.1 Cartesian Enumerations . 299

Example 9: Cartesian Net Types . 300

1.2.4 List Expressions . 303

1.2.4.1 List Enumerations . 303

1.2.4.2 List Comprehension . 304

Example 10: Routes in Nets . 305

1.2.5 Map Expressions . 310

1.2.5.1 Map Enumerations . 310

1.2.5.2 Map Comprehension . 311

Example 11: Concrete Net Type Construction . 312

1.2.6 Set Operations . 315

1.2.6.1 Set Operator Signatures . 315

1.2.6.2 Set Examples . 316

1.2.7 Cartesian Operations . 317

1.2.8 List Operations . 318

1.2.8.1 List Operator Signatures . 318

1.2.8.2 List Operation Examples . 319

1.2.9 Map Operations . 320

1.2.9.1 Map Operator Signatures and Map Operation Examples . 320

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

404 Lecture Notes in Software Engineering 1

Lect. # 9: RSL: Logic, Λ-Calculus, Fctl. Specs. 321

1.3 The RSL Predicate Calculus . 322

1.3.1 Propositional Expressions . 322

1.3.2 Simple Predicate Expressions . 323

1.3.3 Quantified Expressions . 324

Example 12: Predicates Over Net Quantities . 325

1.4 λ-Calculus + Functions . 328

1.4.1 The λ-Calculus Syntax . 328

1.4.2 Free and Bound Variables . 329

1.4.3 Substitution . 330

1.4.4 α-Renaming and β-Reduction . 331

Example 13: Network Traffic . 332

1.4.5 Function Signatures . 339

Example 14: Hub and Link Observers . 340

1.4.6 Function Definitions . 342

Example 15: Axioms over Hubs, Links and Their Observers . 345

1.5 Other Applicative Expressions . 346

1.5.1 Simple let Expressions . 346

1.5.2 Recursive let Expressions . 347

1.5.3 Non-deterministic let Clause . 348

1.5.4 Pattern and “Wild Card” let Expressions . 349

1.5.5 Conditionals . 350

Example 16: Choice Pattern Case Expressions: Insert Links . 351

1.5.6 Operator/Operand Expressions . 361

Lect. # 10: RSL: Imperative & Process Specs. 361

1.6 Imperative Constructs . 362

1.6.1 Statements and State Changes . 362

1.6.2 Variables and Assignment . 363

1.6.3 Statement Sequences and skip . 363

1.6.4 Imperative Conditionals . 363

1.6.5 Iterative Conditionals . 364

1.6.6 Iterative Sequencing . 364

1.7 Process Constructs . 365

1.7.1 Process Channels . 365

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 12, 2010, 11:34

An RSL Primer 405

Example 17: Modelling Connected Links and Hubs . 366
1.7.2 Process Definitions . 370

Example 18: Communicating Hubs, Links and Vehicles . 372
1.7.3 Process Composition . 374

Example 19: Modelling Transport Nets . 375
1.7.4 Input/Output Events . 378

Example 20: Modelling Vehicle Movements . 379
1.8 Simple RSL Specifications . 385

Example 21: A Neat Little “System” . 389

B Slide Table-of-Contents 398

November 12, 2010, 11:34, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

