Start of Lecture 1: COVER \& INTRODUCTION

2

0. Abstract

- We present "standard" domain description and requirements prescription examples using the RAISE [RaiseMethod] Specification Language, RSL [RSL].
- The illustrated example is that of transportation networks.
- These notes shalll serve as lecture notes for my lectures at Uppsala, Nov.8-19, 2010.
- The present document is the ordinary "book-form"-like notes.
- A separate document, compiled from the same files, present 11 sets of lecture slides.
- The "funny" small numbers you see in the present document, in margins and at almost end of display lines refer to slide page numbers of the slides document.

Dines Bjørner
Fredsvej 11, DK-2840 Holte, Denmark
bjorner@gmail.com - www.imm.dtu.dk/~db

Begun: Tuesday June 22, 2010. Compiled: November 12, 2010: 11:34

[^0]\qquad

Lecture 7: RSL I Mo.15.11.2010

Types

Lecture 8: RSL II Tu.16.11.2010
291-321
Values and Operations
Lecture 9: RSL III We.17.11.2010
322-361
Logic, Λ-Calculus, Other Applicative Constructs
Lecture 10: RSL IV Th.18.11.2010
362-397
Imperative Constructs, Process Constructs, Specifications
Lecture 11: Conclusion Fr.19.11.2010

1. Introduction
 1.1. The Problem

- The problem to be solved by this technical note is to present in one specific formal specification language, RSL [RaiseMethod],
- a domain description and
- a requirements prescription developed according to the "triptych approach" [TheSEBook3].

1.2. The Triptych Approach

- The "triptych approach" calls for
- a thorough description (cum analysis) of the domain
- before one attempts prescribing requirements for specific software.
- As part of the triptych approach to domain engineering one starts by exploring the description ontology of specification entities:
- simple entities,
- actions,
- events and
- behaviours
- before delving into the description ontology of facets:
- intrinsics,
- support technologies,
- rules \& regulations,
- scripts (licenses and contracts),
- management \& organisation and
- human behaviour.
- And, as part of the triptych approach to requirements engineering
- one starts by exploring the reengineering of business processes
- before delving into domain requirements concepts of
* projection,
* instantiation,
* determination,
* extension and
* fitting -
followed by a number of interface requirements stages.

Start of Lecture 2: ONTOLOGY

End of Lecture 1: COVER \& INTRODUCTION

\qquad

Lecture Notes in Software Engineering

2. An Ontology of Specification Entities

 Definition: Ontology.- In philosophy: A systematic account of Existence.
- To us:
- An explicit formal specification of how to represent the phenomena and concepts
- that are assumed to exist in some area of interest (some universe of discourse)
- and the relationships that hold among them.

Further clarification:

- An ontology is a catalogue of concepts and their relationships
- including properties as relationships to other concepts.

2.1. Simple Entities

Definition: Simple Entity. By a simple entity we shall loosely understand

- an individual, static or inert dynamic and that simple entities "roughly correspond" to what we shall think of as values.
- We shall further allow simple entities to be
- either atomic
- or composite, i.e., in the latter case having decomposable sub-
- an action,
- an event
- or a behaviour.

$$
12
$$

- Simple entities have attributes.
- Composite entities have
- attributes,
- sub-entities and
- a mereology, the latter explains how the sub-entities are formed
into the simple entity.

Definition: Specification.

- We use the term 'specification'
- to cover the concepts of domain descriptions, requirements prescriptions and software designs.
- More specifically a specification is a definition, usually consisting of many definitions.
Definition: Entity. By an entity we shall understand
- either a simple entity,
\qquad

entities.

Lecture Notes in Software Engineering 13

2.1.1. Net, Hubs and Links

1. There are nets, hubs and links.
2. A net contains zero, one or more hubs.
3. A net contains zero, one or more links.
```
type
    1. N,H,L
value
    2. obs_Hs:N }->\mathrm{ H-set
    3. obs_Ls: N }->\mathrm{ L-set
```


2.1.2. Unique Hub and Link Identifiers

4. There are hub identifiers and there are link identifiers.
5. From a hub one can observe its hub identifier.
6. From a link one can observe its link identifier.
7. Hubs of a net have unique hub identifiers.
8. Links of a net have unique hub identifiers.
type
9. HI, LI
value
10. obs_HI: $\mathrm{H} \rightarrow \mathrm{HI}$
11. obs_LI: L \rightarrow LI
axiom
12. $\forall \mathrm{n}: \mathrm{N}, \mathrm{h}, \mathrm{h}^{\prime}: \mathrm{H} \cdot\left\{\mathrm{h}, \mathrm{h}^{\prime}\right\} \subseteq$ obs_Hs $(\mathrm{n}) \wedge \mathrm{h} \neq \mathrm{h}^{\prime} \Rightarrow$ obs_HI(h) \neq obs_HI $\left(\mathrm{h}^{\prime}\right)$
13. $\forall \mathrm{n}: \mathrm{N}, \mathrm{l}, \mathrm{l}^{\prime}: \mathrm{L} \cdot\left\{1, \mathrm{l}^{\prime}\right\} \subseteq$ obs $_$Ls $(\mathrm{n}) \wedge \mathrm{l} \neq \mathrm{l}^{\prime} \Rightarrow$ obs_LI $(\mathrm{l}) \neq$ obs_LI $\left(\mathrm{l}^{\prime}\right)$
\qquad

16
From Domains to Requirements
2. An Omology or Specification Entuties 2.1. Simple Entities 2.1.3. Observabiity of Hub and Link Identifiers
10. From every link (of a net) we can observe the identifiers of the exactly two (distinct) hubs (of that net) that the link is connected to.

value

10. obs_HIs: L \rightarrow HI-set

axiom

10. $\forall \mathrm{n}: \mathrm{N}, \mathrm{l}: \mathrm{L} \cdot \mathrm{l} \in \mathrm{obs} _\mathrm{Ls}(\mathrm{n}) \Rightarrow$
11. card obs_HIs(l) $=2 \wedge \forall$ hi:HI•hi \in obs_HIs(l) \Rightarrow H_exists(hi)(n)

value

H_exists: $\mathrm{HI} \rightarrow \mathrm{N} \rightarrow$ Bool
H_exists(hi)(n) $\equiv \exists$ h:H•h \in obs_Hs(n) $\wedge o b s _H I(h)=h i$

2.1.3. Observability of Hub and Link Identifiers

9. From every hub (of a net) we can observe the identifiers of the zero, one or more distinct links (of that net) that the hub is connected to.

value

9. obs_LIs: H \rightarrow LI-set

axiom

9. $\forall \mathrm{n}: \mathrm{N}, \mathrm{h}: H \cdot \mathrm{~h} \in$ obs_Hs(n) $\Rightarrow \forall$ li:LI•li \in obs_LIs(h) \Rightarrow L_exists(li)(n) value

L_exists: $\mathrm{LI} \rightarrow \mathrm{N} \rightarrow$ Bool
L_exists(li)(n) $\equiv \exists$ l:L•l \in obs_Ls(n) $\wedge o b s _L I(1)=l i$
\ldots

Lecture Notes in Software Engineering
\qquad

2.1.4. A Theorem

2.1.4.1. Links implies Hubs
11. It follows from the above that if a net has at least one link then it has at least two hubs.

theorem:

11. $\forall \mathrm{n}: \mathrm{N} \cdot \boldsymbol{c}$ ard obs_Ls $(\mathrm{n}) \geq 1 \Rightarrow$ card obs_Hs(n) ≥ 2

2.1.5. Hub and Link Attributes

In preparation for later descriptions, narrative and formal, we make a slight detour to deal with hub and link attributes - but we omit, at present, from describing these attributes.
12. hub and link attributes, HAtrs and LAtrs, include the hub and link identifiers that can be observed from hubs and links, respecively.
13. These can be observed from hubs and links of nets.
14. And these can be provided as arguments when construction hubs and links.
${ }^{20}$
13. obs_HI: HAtrs $\rightarrow \mathrm{HI}$

```
type
12. HAtrs, LAtrs
value
13. obs_HAtrs: H }->\mathrm{ HAtrs
14. obs_LAtrs: L }->\mathrm{ LAtrs
type
12. HAtrs, LAtrs
13. obs_HAtrs: \(\mathrm{H} \rightarrow\) HAtrs
14. obs_LAtrs: L \(\rightarrow\) LAtrs
```

13. obs_LIs: HAtrs \rightarrow LI-set
14. obs_LI: LAtrs \rightarrow LI
15. obs_HIs: LAtrs \rightarrow HI-set
\qquad
16. An Ontology of Specification Entities 2.1. Simple Entities 2.1.6. Hub and Link Generators
17. From the set of hub attributes and a net one can "similarly" generate a hub which is not a hub of the net.
18. From the set of link attributes one can "similarly" generate a link.
19. From the set of link attributes and a net one can "similarly" generate a link which is not a link of the net.
where the reader is to narrate and formalise the "similarities"!

2.1.6. Hub and Link Generators

15. From [a (full) set of] hub attributes
(a) including an empty set of observable link identifiers one can generate a hub with
(a) the hub identifier being that of the argument hub attributes,
(b) the link identifiers of the hub being argument the empty set of link identifiers of the hub attributes and
(c) the argument hub attributes being those of the resulting hub,
16. genH: HAtrs $\rightarrow \mathrm{H}$
17. gen H (hatrs) as h

15(a). pre obs_LIs(hatrs)=\{\}
15(a). post obs_HI(h)=obs_HI(hatrs)
15(b). $\quad \wedge$ obs_LIs $(\mathrm{h})=\{ \}$
15(c). \wedge obs_HAtrs(h)=hatrs

```
16. genH: HAtrs \(\rightarrow \mathrm{N} \rightarrow \mathrm{H}\)
16. genH(hatrs)(n) as \(h\)
pre obs_LIs(hatrs) \(=\{ \}\)
        \(\wedge \sim \exists h^{\prime}: H \cdot h^{\prime} \in\) obs_Hs(n) \(\wedge\) obs_HI(h')=obs_HI(hatrs)
    post \(\mathrm{h} \notin\) obs_Hs(n)
        \(\wedge\) obs_HI(h)=obs_HI(hatrs)
        \(\wedge\) obs_LIs(h) \(=\{ \}\)
        \(\wedge\) obs_HAtrs(h)=hatrs
    genL: LAtrs \(\rightarrow\) L
    genL(latrs) as 1
    pre card obs_HIs(latrs)=2
    post obs_LI(l)=obs_LI(latrs)
        \(\wedge\) obs_LI(1)=obs_LI(latrs)
        \(\wedge\) obs_HIs(1)=obs_HIs(latrs)
8. genL(latrs)(n) as l
    pre card obs_LIs(latrs)=2
        \(\wedge\) obs_LIs(latrs) \(\subseteq x\) xtr_LIs(n)
    post \(l \notin\) obs_Ls(n)
        \(\wedge\) obs_LI(1)=obs_LI(latrs)
        \(\wedge\) obs_HIs(l) \(\subseteq\) obs_HIs(latrs)
        \(\wedge\) obs_LAtrs(l)=latrs
```

18. genL: LAtrs $\rightarrow \mathrm{N} \rightarrow \mathrm{L}$

2.2. States

Definition: State. By a state we shall understand

- a collection of one or more simple entities.

2.3. Actions

Definition: Action. By an action we shall understand

- something which potentially changes a state,
- that is, a function application to a state
- which potentially changes that state.

24
2. An Ontology of Specification Entities 2.3. Actions 2.3.1. Insert Hubs

value

19. insertH: HAtrs $\rightarrow \mathrm{N} \xrightarrow{\sim} \mathrm{N}$
20. insertH(hatrs)(n) as n^{\prime}
21. let $\mathrm{h}=\operatorname{genH}($ hatrs $)(\mathrm{n})$ in
pre $\mathrm{h} \notin$ obs_Hs(n)
\wedge obs_LIs(h) $=\{ \}$
post obs_Ls(n) $=0$ bsLs $\left(n^{\prime}\right)$
\wedge obs_Hs $\left(\mathrm{n}^{\prime}\right)=$ obs_Hs(n$) \cup\{\mathrm{h}\}$
\wedge obs_HAtrs $(\mathrm{h})=$ hatrs
end

Theorem:

- Inserting a proper hub in a well-formed net
- that is, a net satisfying all relevant axioms,
- results in a likewise well-formed net.

2.3.1. Insert Hubs

19. One can insert a hub, h, into a net, n.

The hub to be inserted
20. must not be a hub of the net and
21. h cannot already be connected to any links.

That is, we can only insert "isolated" hubs.
The result of inserting a hub, h, into a net, n, is a new net, n^{\prime},
22. which is like n except that it now also has the hub h.

Lecture Notes in Software Engineering
\qquad

2.3.2. Remove Hubs

23. One can remove a hub, h, from a net, n.

The hub to be removed
24. must be a hub of the net and
25. h cannot be connected to any links.

That is, the hub, h, may earlier - in is membership of the net - have been connected to links, but these must already, at the time of hub removal, have been removed, see below.
That is, we can only remove "isolated" hubs.
26. The result of removing a hub, h, from a net, n, is a new net, n^{\prime},

27 . which is like n
28. except that it now no longer has hub h.

value

```
23. removeH: \(\mathrm{H} \rightarrow \mathrm{N} \xrightarrow{\sim} \mathrm{N}\)
removeH(h)(n) as n'
pre \(h \in\) obs_Hs(n)
    \(\wedge\) obs_LIs(h) \(=\{ \}\)
post obs_Ls( \(n\) )=obsLs(n')
    \(\wedge\) obs_Hs(n) \(=\) obs_Hs \((\mathrm{n}) \backslash\{\mathrm{h}\}\)
23. removeH: \(\mathrm{H} \rightarrow \mathrm{N} \xrightarrow{\sim} \mathrm{N}\)
removeH(h)(n) as n'
pre \(h \in\) obs_Hs(n)
post obs_Ls(n)=obsLs(n')
\(\wedge\) obs_Hs(n')=obs_Hs(n)\\{h\} }
```

- Please note the almost line-by-line similarity of the insert and remove hub descriptions
- and that the only difference between these descriptions are the
- membership, union, respectively set difference operations $(\notin, \in, \cup$ respectively
).

28

The result of inserting a link, ℓ, into a net,
32. n, is a new net, n^{\prime},
33. in which ℓ is now a member.
34. Let $h_{j_{i}}, h_{k_{i}}$ be the two (distinct) hub identifiers of ℓ and
35. let h_{j}, h_{k} be the two (distinct) hubs of n which are identified by $h_{j_{i}}, h_{k_{i}}$.
36. All hubs of net n except h_{j}, h_{k} are the same as in n and are unchanged in n^{\prime}.
37. The two hubs h_{j}, h_{k} of n become hubs $h_{j}^{\prime}, h_{k}^{\prime}$ of n^{\prime}
38. such that only the observable identifiers of connected links have changed to now also include the identifier of link ℓ,
39. and such that the observed attributes are those of the argument.

2.3.3. Insert Links

29. One can insert a link, ℓ, into a net, n.

The link to be inserted must
30. not be a link of the net,
31. but the observable hub identifiers must be those of hubs of the net.

Lecture Notes in Software Engineering 29

value

```
insertL: \(\mathrm{L} \times\) LAtrs \(\rightarrow \mathrm{N} \xrightarrow{\sim} \mathrm{N}\)
```

insertL: $\mathrm{L} \times$ LAtrs $\rightarrow \mathrm{N} \xrightarrow{\sim} \mathrm{N}$
insertL(l,latrs)(n) as n
insertL(l,latrs)(n) as n
pre $1 \notin$ obs_Ls(n)
pre $1 \notin$ obs_Ls(n)
\wedge obs_HIs(1) $\subseteq x \operatorname{trHIs}(\mathrm{n})$
\wedge obs_HIs(1) $\subseteq x \operatorname{trHIs}(\mathrm{n})$
post obs_Ls $\left(n^{\prime}\right)=$ obs_Ls $(\mathrm{n}) \cup\{1\}$
post obs_Ls $\left(n^{\prime}\right)=$ obs_Ls $(\mathrm{n}) \cup\{1\}$
\wedge let $\{$ hji,hki $\}=o b s _H I s(1)$ in
\wedge let $\{$ hji,hki $\}=o b s _H I s(1)$ in
let $(h j, h k)=(\operatorname{getH}(h j i)(n), \operatorname{getH}(h k i)(n))$ in
let $(h j, h k)=(\operatorname{getH}(h j i)(n), \operatorname{getH}(h k i)(n))$ in
$\{\mathrm{hj}, \mathrm{hk}\} \subseteq o b s _H s(\mathrm{n})$
$\{\mathrm{hj}, \mathrm{hk}\} \subseteq o b s _H s(\mathrm{n})$
\wedge obs_Hs(n)
{hj,hk\} } = obs_Hs(n') \backslash \{ hj, hk \}
\wedge obs_Hs(n)
{hj,hk\} } = obs_Hs(n') \backslash \{ hj, hk \}
\wedge let $\left(h j^{\prime}, h^{\prime}\right)=\left(\operatorname{getH}(h j i)\left(n^{\prime}\right), \operatorname{getH}(h k i)\left(n^{\prime}\right)\right)$ in
\wedge let $\left(h j^{\prime}, h^{\prime}\right)=\left(\operatorname{getH}(h j i)\left(n^{\prime}\right), \operatorname{getH}(h k i)\left(n^{\prime}\right)\right)$ in
obs_LIs(hk') $=$ obs_LIs(hk') $\cup\{$ obs_LI(l) $\}$
obs_LIs(hk') $=$ obs_LIs(hk') $\cup\{$ obs_LI(l) $\}$
\wedge obs_LIs(hj') $=$ obs_LIs $\left(h j^{\prime}\right) \cup\left\{o b s _L I(1)\right\}$ end end end
\wedge obs_LIs(hj') $=$ obs_LIs $\left(h j^{\prime}\right) \cup\left\{o b s _L I(1)\right\}$ end end end
\wedge obs_LAtrs $(1)=$ latrs
\wedge obs_LAtrs $(1)=$ latrs
value

```
```

xtrHIs: $\mathrm{N} \rightarrow \mathrm{HI}$-set
$\operatorname{xtrHIs}(\mathrm{n}) \equiv\{$ obs_HI(h)|h:H•h \in obs_Hs(n) $\}$
getH: $\mathrm{HI} \rightarrow \mathrm{N} \xrightarrow{\sim} \mathrm{H}$
$\operatorname{get} H(h i)(n) \equiv$ let $h: H \cdot h \in o b s _H s(n) \wedge$ obs_HI(h)=hi in h end
pre $\exists \mathrm{h}: \mathrm{H} \cdot \mathrm{h} \in$ obs_Hs(n) \wedge obs_HI(h)=hi

```
32
rom Domans to Requirements
2. An Ontology of Specification Entities 2.3. Actions 2.3.4. Remove Links

The result of removing a link, \(\ell\), from a net,
42. \(n\), is a new net, \(n^{\prime}\),
43. in which \(\ell\) is no longer a member.
44. Let \(h_{j_{i}}, h_{k_{i}}\) be the two (distinct) hub identifiers of \(\ell\) and
45. let \(h_{j}, h_{k}\) be the two (distinct) hubs of \(n\) which are identified by \(h_{j_{i}}, h_{k_{i}}\).
46. \(h_{j}, h_{k}\) are in \(n^{\prime}\).
47. All hubs of net \(n\) except \(h_{j}, h_{k}\) are the same as in \(n\) and are unchanged in \(n^{\prime}\).
48. The two hubs \(h_{j}, h_{k}\) of \(n\) become hubs \(h_{j}^{\prime}, h_{k}^{\prime}\) of \(n^{\prime}\)
49. such that only the observable identifiers of connected links have changed to now no longer include the identifier of link \(\ell\).

\subsection*{2.3.4. Remove Links}
40. One can remove a link, \(\ell\), from a net, \(n\).

The link to be removed must
41. be a link of the net.


\section*{value}
40. removeL: \(\mathrm{L} \rightarrow \mathrm{N} \xrightarrow{\sim} \mathrm{N}\)
removeL(1)(n) as n'
pre \(l \in\) obs_Ls(n)
post obs_Ls \(\left(\mathrm{n}^{\prime}\right)=\) obs_Ls(n) \(\backslash\{1\}\)
\(\wedge\) let \(\{\) hji,hki \(\}=o b s \_H I s(1)\) in
let \((\mathrm{hj}, \mathrm{hk})=(\operatorname{getH}(\mathrm{hji})(\mathrm{n}), \operatorname{getH}(\mathrm{hki})(\mathrm{n}))\) in \(\{\mathrm{hj}, \mathrm{hk}\} \subseteq\) obs_Hs(n)
\(\wedge\) obs_Hs(n) \(\backslash\{\) hj,hk \(\}=\) obs_Hs(n' \({ }^{\prime} \backslash\{\) hj, hk \(\}\)
\(\wedge\) let \(\left(h j^{\prime}, h k^{\prime}\right)=\left(\operatorname{getH}(h j i)\left(n^{\prime}\right), \operatorname{getH}(h k i)\left(n^{\prime}\right)\right)\) in obs_LIs(hk') \(=\) obs_LIs(hk') \(\backslash\{\) obs_LI(l) \(\}\) \(\wedge\) obs_LIs \(\left.^{(h j}{ }^{\prime}\right)=o b s \_L I s\left(h j^{\prime}\right) \backslash\left\{o b s \_L I(1)\right\}\) end end end

\subsection*{2.3.5. Two Theorems}

\subsection*{2.3.5.1. Idempotency}
- With the preconditions satisfied by the insert and remove actions
- one can prove that first inserting a hub (link) into a net and
- then removing that hub (link) from the resulting net restores the original net:

\section*{theorem}
\(\forall \mathrm{n}, \mathrm{n}^{\prime}: \mathrm{N}, \mathrm{h}: \mathrm{H}, \mathrm{l}: \mathrm{L}\).
pre \(\operatorname{insertH}(\mathrm{h})(\mathrm{n}) \wedge \operatorname{removeH}(\mathrm{h})\left(\mathrm{n}^{\prime}\right) \wedge \operatorname{insertL}(\mathrm{l})(\mathrm{n}) \wedge \operatorname{removeL}(\mathrm{l})\left(\mathrm{n}^{\prime}\right) \Rightarrow\) \(\operatorname{removeH}(\mathrm{h})(\operatorname{insertH}(\mathrm{h})(\mathrm{n}))=\mathrm{n} \wedge \operatorname{removeL}(\mathrm{l})(\operatorname{insertL}(\mathrm{l})(\mathrm{n}))\)

\subsection*{2.3.5.2. Reachability}
- Any net that satisfies the axioms above
- can be constructed by sequences of insert hub and link actions.

\section*{theorem}
let n _nil: \(\mathrm{N} \cdot\) obs_Hs(n_nil) \(=\) obs_Ls(n_nil) \(=\{ \}\) in
\(\forall \mathrm{n}: \mathrm{N} \vdash\) axioms 7 . and 8 on page 14.; 9 on page 15 . 10 on page 16 . \(\exists \mathrm{hl}: \mathrm{H}^{*}, \mathrm{ll}: \mathrm{L}^{*} \cdot\) let \(\mathrm{n}^{\prime}=\operatorname{insertHs}(\mathrm{hl})\left(\mathrm{n} \_\right.\)nil \()\)in insertHs(ll)(n')=n end end
insertHs: \(\mathrm{H}^{*} \rightarrow \mathrm{~N} \xrightarrow{\sim} \mathrm{~N}\)
insertLs: \(L^{*} \rightarrow \mathrm{~N} \xrightarrow{\sim} \mathrm{~N}\)
insertHs \((\mathrm{hl})(\mathrm{n}) \equiv\) case hl of \(\left\rangle \rightarrow \mathrm{n},\langle\mathrm{h}\rangle^{\wedge} \mathrm{hl}^{\prime} \rightarrow\right.\) insertHs(hl')(insertH(h)(n)) end insertLs(ll)(n) \(\equiv\) case ll of \(\left\rangle \rightarrow \mathrm{n},\langle\mathrm{l}\rangle^{\wedge} \mathrm{ll} \rightarrow\right.\) insertLs(ll')(insertL(l)(n)) end
.
Informal proof: An informal proof goes like this:
- Take a net.
- For every hub, \(h\), in that net,
- let \(h^{\prime}\) be a version of \(h\) which has
* the same hub identifier,
* an empty set of observable link identifiers (of connected links),
* and otherwise all other attributes of \(h\),
- let \(h^{\prime}\) be a member of the list of hubs - and only such hubs.
- Let every and only such links in \(n\) be members of the list of links.
- Performing first the insertion of all hubs and then the insertions of all links will "turn the trick"!
end of informal proof.

\subsection*{2.4. Events}

\section*{Definition: Event.}
- An event is something that occurs instantaneously.
- Events are manifested by certain state changes, and by certain interactions between behaviours or processes.
- The occurrence of events may "trigger" [further] actions.
- How the triggering, i.e., the invocation of functions are brought about is usually left implied, or unspecified.
- A mudslide across a railway track or a road segment (i.e., a link) represents an event
- that effectively "removes" the link, or at least a segment of a link.
- Similarly if
- a train and/or automobile bridge collapses or
- a tunnel gets flooded or catches fire.

How are we to model such, and other events?

40

\section*{value}
50. event_link_disappearance: \(\mathrm{LI} \rightarrow \mathrm{N} \xrightarrow{\sim} \mathrm{N}\)
\(50(\mathrm{a})\). let \(\mathrm{l}=\mathrm{xtrL}(\mathrm{li})(\mathrm{n})\) in
50(a). let \(\left\{\right.\) hi' \(^{\prime}\), hi' \(\left.^{\prime}\right\}=\) obs_HIs(1) in
50(a). let \(\mathrm{n}^{\prime}=\operatorname{removeL}(1)(\mathrm{n})\) in
50(b). let \(\mathrm{h}^{\prime}=\) newH(n)(obs_Hs(n)) in
50(b). let \(\mathrm{h}^{\prime \prime}=\) newH \((\mathrm{n})\left(\right.\) obs_Hs \(\left.(\mathrm{n}) \cup\left\{\mathrm{h}^{\prime}\right\}\right)\) in
50(b). let \(\mathrm{n}^{\prime \prime}=\operatorname{insertH}\left(\mathrm{h}^{\prime}\right)\left(\operatorname{insertH}\left(\mathrm{h}^{\prime \prime}\right)(\mathrm{n})\right)\) in
\(50(\mathrm{c}) . \quad\) let \(\mathrm{l}^{\prime}=\) newL \((\mathrm{n})(\) obs_Ls(n) \()(\) obs_HI (h'), hi') in
\(50(\mathrm{c})\). let \(\mathrm{l}^{\prime \prime}=\) newL(n)(obs_Ls(n) \(\left.\cup\left\{\mathrm{l}^{\prime}\right\}\right)\left(\right.\) obs_HI(h \(\left.\mathrm{h}^{\prime \prime}\right)\), hi' \(\left.{ }^{\prime \prime}\right)\) in
\(50(\mathrm{c})\). insertL \(\left(1^{\prime}\right)\left(\operatorname{insertL}\left(1^{\prime}\right)\left(n^{\prime \prime}\right)\right)\) end end end end end end end end
\(50(\mathrm{~d})\). pre li \(\in \operatorname{xtrLIs}(\mathrm{n})\)
50. We choose to model the event" "disappearance" of a segment of a link identified by \(l_{i}: L I\) as the composition of the following actions:
(a) the removal of link \(l: L\) being affected, where \(l_{i}: L I\) identifies the link in the network;
(b) the insertion of two hubs, \(h^{\prime}, h^{\prime \prime}: H\), corresponding to "points" (on link \(l: L\) ) on either side of the mudslide or bridge - or other; and
(c) the insertion of two links, \(l^{\prime}, l^{\prime \prime}: L\), between the hubs of the original link and the new hubs.
(d) \(l_{i}: L I\) must identify a link \(l: L\) of net \(n: N\).

50(b). newH: \(\mathrm{N} \rightarrow \mathrm{H}\)-set \(\rightarrow \mathrm{H}\)
\(50(\mathrm{~b}) . \operatorname{newH}(\mathrm{n})(\mathrm{hs}) \equiv\) let \(\mathrm{h}: \mathrm{H} \cdot \mathrm{h} \notin \mathrm{hs} \wedge\) obs_LIs(h)=\{\} in h end 50(c). newL: \(\mathrm{N} \rightarrow\) L-set \(\rightarrow(\mathrm{HI} \times \mathrm{HI}) \rightarrow \mathrm{L}\)
\(50(\mathrm{c}) . \operatorname{newL}(\mathrm{n})(\mathrm{ls})\left(\mathrm{hi}^{\prime}, \mathrm{hi}^{\prime \prime}\right) \equiv\) let \(\mathrm{l}: \mathrm{L} \cdot \mathrm{l} \notin \mathrm{l}\) s \(\wedge\) obs_HIs \((1)=\left\{\right.\) hi' \(\left.^{\prime}, \mathrm{hi}^{\prime \prime}\right\}\) in 1 enc
\(\qquad\)

\subsection*{2.5. Behaviours}

\section*{Definition: Behaviour.}
- By behaviour we shall understand the way in which something functions or operates.
- In the context of domain engineering behaviour is a concept associated with phenomena, in particular manifest entities.
- And then behaviour is that which can be observed about the value of the entity and its interaction with an environment.
- A simple, sequential behaviour is a sequence of zero, one or more actions and events.

\subsection*{2.5.1. Behaviour Prescriptions}
- Usually behaviours follow a prescription.
- In the case of net construction we refer to the prescription as a construction plan.

\subsection*{2.5.1.1. Construction Plans}
51. The plan for constructing a net can be abstracted as
(a) a map, PLAN, which to each hub identifier associates
(b) a link-to-hub identifier map, LHIM, from the identifiers of links emanating from the hub to identifiers of connected hubs.
```

type
51(a). PLAN = HI ml LHIM
51(b). LHIM = LI }\vec{m

```

44
2. An Ontology of Specification Entities 2.5. Behaviours 2.5.1. Behaviour Prescripitions 2.5.1.2. Wellformedness of Construction Plans
(b) Using Hub Identifier Occurrences are Defined:
i. Let lhim be any link-to-hub-identifier map of a construction plan.
ii. For every hub identifier, \(h_{i}\), mapped to by a link identifier, \(l_{j}\), in lhim
iii. there exists a hub identifier, \(h_{k}\), that maps into \(l_{j}\); and

\subsection*{2.5.1.2. Wellformedness of Construction Plans}

\section*{52. Wellformed net construction plans satisfy three conditions:}
(a) All Links are Two-way Links:
i. Let \(h_{k}\) be any hub identifier of the construction plan.
ii. For all link identifiers, \(l_{j}\), of the LIHM, lhim \(_{k}\), mapped into by \(h_{k}\),
iii. let \(h_{\ell}\) be the hub identifier mapped into by \(l_{j}\) in \(l h i m_{k}\),
iv. then \(l_{j}\) is in the link-to-hub-identifier map, lhim \(_{\ell}\), mapped into by \(h_{\ell}\),

\section*{(c) No Junk:}
- To secure consistency between hub and link identifiers of a construction plan we impose:
- all the defined hub identifiers of a construction plan are in the range of some link to hub identifier map of that plan;
- and each of the hub identifiers of some link to hub identifier map are defined in the construction plan are in the range of some link to hub identifier map of that plan.

\section*{value}
52. wf_PLAN: PLAN \(\rightarrow\) Bool
52. wf_PLAN(plan) \(\equiv\)

52(a). all_links_are_two_way_links(plan) ^
52(b). hub_identifier_occurrences_are_defined(plan) \(\wedge\)
52(c). no_junk(plan)
```

52(a). all_links_are_two_way_links: PLAN \rightarrow Bool
52(a). all_links_are_two_way_links(plan) \equiv
52((a))i. $\quad \forall \mathrm{hk}: \mathrm{HI} \cdot \mathrm{hk} \in \operatorname{dom}$ plan \Rightarrow
$52((\mathrm{a}))$ ii. $\quad \forall \mathrm{lj}: \mathrm{LI} \cdot \mathrm{lj} \in \operatorname{dom} \operatorname{plan}(\mathrm{hk}) \Rightarrow$
$52((\mathrm{a}))$ iii. \quad let $\mathrm{hl}=(\operatorname{plan}(\mathrm{hk}))(\mathrm{lj})$ in
52((a))iv. $\quad \mathrm{lj} \in \operatorname{dom}$ plan(hl) end
52(b). hub_identifier_occurrences_are_defined: PLAN \rightarrow Bool
52(b). hub_identifier_occurrences_are_defined(plan) \equiv
52((b))i. $\quad \forall$ hlim:HLIM-hlim \in rng plan
52((b))ii. $\quad \forall \mathrm{lj}: \mathrm{LI} \cdot \mathrm{lj} \in \operatorname{dom} \operatorname{lhim} \Rightarrow$
52((b))iii. $\quad \exists \mathrm{hk}: H \mathrm{HI} \cdot \mathrm{hk} \in \operatorname{dom}$ plan $\wedge \mathrm{lj} \in \operatorname{dom} \operatorname{plan}(\mathrm{hk})$
52(c). no_junk: PLAN \rightarrow Bool
52(c). no_junk $($ plan $) \equiv \operatorname{dom}$ plan $=\cup\{\mathbf{r n g}($ plan $($ hi $)) \mid$ hi:HI.hi $\in \operatorname{dom}$ plan

```

48

We therefore augment construction plans to also reveal these attributes.

\section*{type}

APLAN \(=\) PLAN \(\times\) HInfo \(\times\) LInfo
HInfo \(=\mathrm{HI} \quad \vec{m}\) HAtrs
LInfo \(=\) LI \(\pi\) LAtrs

\subsection*{2.5.2. Augmented Construction Plans}
- Hubs and links in nets possess attributes (cf. Item 4 on page 14.).
- Some attributes have already been dealt with:
- the identifiers of hubs and links that can be observed from hubs, respectively links (cf. Items 4. and 5 on page 14.) and
- the identifiers of hubs that can be observed from links and the identifiers of links that can be observed from hubs (cf. Items 9 . and 10 on page 16.).
- In addition hubs and links in nets possess further attributes:
- spatial location of hubs and links,
- (locally ascribed) names of hubs and links,
- lengths of links,
- etcetera.
\(\qquad\)
\(\qquad\)

Lecture Notes in Software Engineering 49
53. The wellformedness of an augmented plan secures that
(a) all hubs identifiers defined in the construction plan are "detailed" in the hub information component, and that
(b) all links identifiers used in the construction plan are "detailed" in the in the link information component.

\section*{value}
53. wf_APLAN: APLAN \(\rightarrow\) Bool
53. wf_APLAN(plan,hinfo,linfo) \(\equiv\)

53(a). \(\quad\) dom plan \(=\) dom hinfo \(\wedge\)
53(b). \(\cup\{\) dom lhim|lhim:LHIM-lhim \(\in\) rang plan \(\}=\) dom linfo

\subsection*{2.5.3. Sequential Construction Behaviours}
54. From an augmented construction plan one can "extract" initial information about
(a) all hubs and
(b) all links.

\section*{value}

54(a). xtrH: \(\mathrm{HI} \rightarrow\) APLAN \(\rightarrow \mathrm{HI} \times\) HAtrs, \(x \operatorname{trH}(\) hi)(_,hinfo,_) \(\equiv\) hinfo(hi) 54(b). xtrL: LI \(\rightarrow\) APLAN \(\rightarrow\) LAtrs, \(x \operatorname{trL}(\mathrm{li})(\) \(\qquad\) ,linfo) \(\equiv \operatorname{linfo(li)~}\)

52

The net_construction function is initialised with the full sets of hub and link identifiers and with an empty net:
net_construction(hinfo,linfo)(dom hinfo,dom linfo)(n_nil)

\section*{value}
n_nil: \(\mathrm{N} \cdot\) obs_Hs(n_nil) \(=\{ \}=\) obs_Ls(n_nil)
- The net_construction behaviour shown above defines only a subset of all the valid behaviours that will construct a net according to the augmented plan (plan,hinfo,linfo).
- Other valid behaviours would start with constructing at least two hubs but could then go onto construct some of the (zero, one or more) links that connect some of the already constructed hubs, etcetera.
- We challenge the reader to precise narrate and formally define such net_construction behaviours.
55. A net construction behaviour can be (functionally and non-deterministically) modelled as
(a) a sequence of hub insertions followed by
(b) a sequence of link insertions.

\section*{value}
55. net_construction: HInfo \(\times\) LInfo \(\rightarrow\) (HI-set \(\times\) LI-set \() \rightarrow \mathrm{N} \rightarrow \mathrm{N}\)
55. net_construction(hinfo,linfo)(his,lis)(n) \(\equiv\)
55. case (his,lis) of

55(a). \(\quad\left(\{\mathrm{hi}\} \cup\right.\) his',__ \(\left.^{\prime}\right) \rightarrow\)
55(a). net_construction(hinfo,linfo)(his'lis)(insertH(hinfo(hi))(n)),
55(b). \(\quad(\},\{\mathrm{li}\} \cup\) lis' \() \rightarrow\)
55(b). net_construction(hinfo,linfo)(\{\},lis')(insertL(linfo(li))(n)),
55. \((\},\{ \}) \rightarrow \mathrm{n}\)
55. end
\(\qquad\)

\section*{3. An Ontology of Domain Facets \\ 3.0.1. Definitions}

Definition: Domain. An area of activity which some software is to support (or supports) or partially or fully automate (resp. automates).
- The term 'application domain' is considered synonymous with the term 'domain'.
Definition: Domain Description. A textual, informal or formal document which describes a domain as it is.

Usually a domain description is a set of documents with many parts recording many facets of the domain: The
- business processes,
- intrinsics,
- support technology,
- rules and regulations,
- management and organisation, and the
- human behaviours.

\section*{Definition: Domain Engineering.}
- The engineering of the development of a domain description, from
- identification of domain stakeholders, via
- domain acquisition,
- domain analysis,
- terminologisation,
and
- domain description
to
- domain validation and
- domain verification.

\section*{Definition: Domain Facet.}
- By a domain facet we understand
- one amongst a finite set of generic ways of analysing a domain:
- A view of the domain, such that the different facets cover conceptually different views,
- and such that these views together cover the domain.
- We consider here the following domain facets:
- business processes,
- intrinsics,
- support technology,
- rules and regulations,
- management and organisation, and
- human behaviour.

\subsection*{3.0.2. What Can Be Observed}
- "Whether you can observe a thing or not depends on the theory which you use. It is the theory which decides what can be observed."
- Albert Einstein objecting to the placing of observables at the heart of the new quantum mechanics, during Heisenberg's 1926 lecture at Berlin; related by Heisenberg, quoted in Unification of Fundamental Forces (1990) by Abdus Salam ISBN 0521371406.
\(\qquad\)

Lecture Notes in Software Engineering

\subsection*{3.0.3. Business Processes \\ 3.0.3.1. A Characterisation}
- By a business process we shall understand
- a behaviour
- of an enterprise, a business, an institution, a factory.

\subsection*{3.0.3.2. An Example}
- The business processes of transportation evolves around
- freights or passengers
- being transported along routes
- by a vehicle (car, train, aircraft, ship)
- "propelled" by some locomotive force.

\subsection*{3.1. Intrinsics}

\section*{Definition: Intrinsics.}
- By the intrinsics of a domain we shall understand
- those phenomena and concepts of a domain
- which are basic to any of the other facets,
- with such a domain intrinsics initially covering at least one stakeholder view.

\subsection*{3.1.1. Net Topology Descriptors}

Instead of dealing with the entire phenomenon of a net, that is, the real, physical, geographic "thing", we can describe essentials of a net, for example how its hub and links are connected.
56. One way of abstractly modelling a net descriptor is as a map, nd, from hub identifiers to simple maps, lihis, from link identifiers to hub identifiers,
57 . such that
(a) for all hi in (the definition set of) nd it is the case that
(b) if hi maps to lihi,
(c) and in that link identifier to hub identifier map, li maps to hi',
(d) then hi' is different from hi and
(e) hi' maps to an lihi' in which li is defined and maps to hi.
(f) And there are only such pairings.
\(\qquad\)

\({ }^{6}\)
From Domains to Requirements

From a net one can construct its net descriptor:

\section*{value}
\[
\begin{aligned}
& \text { conND: } \mathrm{N} \rightarrow \mathrm{ND} \\
& \operatorname{conND}(\mathrm{n}) \equiv
\end{aligned}
\]
hi:HI•hi \(\in \operatorname{xtrHIs}(\mathrm{n})]\)

\section*{type}
56. \(\mathrm{ND}^{\prime}=\mathrm{HI} \vec{m}(\mathrm{LI} \overrightarrow{m I} \mathrm{HI})\)
56. \(\quad \mathrm{ND}=\left\{\left|n d^{\prime}: N D \cdot w f \mathrm{ND}\left(\mathrm{nd}^{\prime}\right)\right|\right\}\)
value
57. wf_ND: ND \(\rightarrow\) Bool
57. wf_ND(nd) \(\equiv\)

57(a). \(\quad \forall\) hi:HI.hi \(\in\) dom nd \(\Rightarrow\)
57(b). \(\quad\) let lihi \(=n d(h i)\) in
57(c). \(\quad \forall\) li:LI \(\cdot\) li \(\in\) dom lihi \(\Rightarrow\)
\(57(\mathrm{c}) . \quad\) let hi' \(=(\mathrm{nd}(\mathrm{hi}))(\mathrm{li})\) in
57(d). \(\quad\) hi \(\neq\) hi' \(^{\prime} \wedge\)
57(e). \(\quad\) hi' \(\in \operatorname{dom} n d \wedge \operatorname{li} \in \operatorname{dom}\left(n d\left(h i^{\prime}\right)\right) \wedge h i=\left(n d\left(h i^{\prime}\right)\right)\left(l_{i}\right)\)
57(f). end end

\subsection*{3.1.2 Link States and Link State Spaces}
- We introduce the notions of
- the state of a link,
- the state of a hub,
- the state space of a link and
- the state space of a hub.
- States abstract directions of movement.
- Links are, by our previous definitions, bi-directional:
- from one of the connected hubs to the other,
- and vice versa.
- And hubs are multi-directional:
- from potentially any link via the hub to potentially any link.
- Let
- the observed hub identifiers of a link \(\ell\) be \(\left\{h_{j}, h_{k}\right\}\),
- then link \(\ell\) can potentially be in any one of the four link states: - \(\left\{\left\{\left(h_{j}, h_{k}\right),\left(h_{k}, h_{j}\right)\right\},\left\{\left(h_{j}, h_{k}\right)\right\},\left\{\left(h_{k}, h_{j}\right)\right\}\right.\) and \(\{\}\}\}\).
- Any one particular link may
- always remain in one and the same state,
- or it may from time to time undergo transitions between any subset of the potential link state space.
\({ }^{6} 6\)
From Domains to Requirements
3. An Ontology of Domain Facets 3.1. Intrinisis 3.1.2. Link States and Link State Spaces

\section*{type}
58. \(\mathrm{L} \Sigma=(\mathrm{HI} \times \mathrm{HI})\)-set
59. \(L \Omega=L \Sigma\)-set
value
60. generate_full_L \(\Sigma: \mathrm{L} \rightarrow \mathrm{L} \Sigma\)
60. generatefull_L \(\Sigma(1) \equiv\)
60. \(\left\} \cup\left\{\left(h i^{\prime}, h i^{\prime \prime}\right) \mid h i^{\prime}, h i^{\prime \prime}: H I \cdot h i^{\prime} \neq h i^{\prime \prime} \wedge\left\{\right.\right.\right.\) hi' \(^{\prime}\), hi' \(\left.^{\prime \prime}\right\}=\) obs_HIs \(\left.(1)\right\}\)
60. generate_L \(\Omega: \mathrm{L} \rightarrow \mathrm{L} \Omega\)
60. let full \(L \sigma=\) generate_full \(\mathrm{L} \Sigma(1)\) in
60. \(\quad\{\}, \cup\{\sigma \mid \sigma: L \Sigma \cdot \sigma \subseteq\) full \(L \sigma\}\}\) end
61. obs_L \(\Sigma: \mathrm{L} \rightarrow \mathrm{L} \Sigma\)
62. obs_L \(\Omega: \mathrm{L} \rightarrow \mathrm{L} \Sigma\)-set
58. Link states, \(l \sigma: L \Sigma\), are set of pairs of hub identifiers.
59. Link state spaces are set of link states.
60. From a link one can generate the link state space of all potential link states.
61. From a link one can observe the current link state \(l \sigma: L \Sigma\).
62. From a link one can observe the link state space \(l \omega: L \Omega\).
\(\qquad\)

Lecture Notes in Software Engineering

\subsection*{3.1.3. Hub States and Hub State Spaces}
63. Hub states, \(h \sigma: H \Sigma\), are sets of pairs of link identifiers \(\left(\left(l_{i}, l_{k}\right)\right)\), designating that if \(\left(l_{i}, l_{k}\right)\) is in the current hub state then movement can take place from the link designated by \(l_{i}\) (via hub \(h\) ) to the link designated by \(l_{k}\).
64. Hub state spaces are set of hub states.
65. From a hub one can generate the hub state space of all potential hub states.
66. From a hub one can observe the current hub state \(h \sigma: H \Sigma\).
67. From a hub one can observe the hub state space \(h \omega: H \Omega\).

\section*{type}
63. \(\mathrm{H} \Sigma=(\mathrm{LI} \times \mathrm{LI})\)-set
64. \(\mathrm{H} \Omega=\mathrm{H} \Sigma\)-set
value
65. generate_full_H \(\Sigma: H \rightarrow H \Sigma\)
65. generate_full \(\mathrm{H} \Sigma(\mathrm{h}) \equiv\)
65. \(\left\} \cup\left\{\left(\mathrm{li}^{\prime}, \mathrm{li}^{\prime \prime}\right) \mid \mathrm{li}^{\prime}, \mathrm{li}^{\prime \prime}: \mathrm{LI} \cdot\left\{\mathrm{li}^{\prime}, \mathrm{li}^{\prime \prime}\right\} \subseteq\right.\right.\) obs_LIs \(\left.(\mathrm{h})\right\}\)
60. generate_ \(\mathrm{H} \Omega: \mathrm{H} \rightarrow \mathrm{H} \Omega\)
60. let full \(\mathrm{H} \sigma=\) generate_full_ \(\mathrm{H} \Sigma(\mathrm{h})\) in
60. \(\{\} \cup\{\sigma \mid \sigma: H \Sigma \cdot \sigma \subseteq\) full \(\mathrm{H} \sigma\}\}\) end
66. obs_H \(\Sigma: \mathrm{H} \rightarrow \mathrm{H} \Sigma\)
66. obs_H \(\Omega: H \rightarrow H \Sigma\)-set

\subsection*{3.1.5. Concrete Types for Simple Entities}
- As an alternative for, or as a step of refinement from the earlier sorts of nets, hubs and links
- one can simplify matters by concrete types for these simple entities.
70. Nets are Cartesians of sets of hubs and links.
71. A link is a Cartesian of a link identifier, a set of exactly two hub identifiers, a link state, a link state space, and a number of presently further unspecified link attributes.
72. A hub is a Cartesian of a hub identifier, a set of zero, one or more link identifiers, a hub state, a hub state space, and a number of presently further unspecified hub attributes.

\subsection*{3.1.4. State and State Space Wellformedness}
68. States must be in appropriate state spaces.
69. State spaces must be subsets of all potential appropriate states.

\section*{axiom}
\(\forall \mathrm{n}: \mathrm{N}, \mathrm{l}: \mathrm{L}, \mathrm{h}: \mathrm{H} \cdot \mathrm{l} \in\) obs_Ls(n) \(\wedge \mathrm{h} \in\) obs_Hs(n) \(\Rightarrow\)
58. obs_L \(L(1) \in\) obs_L \(\Omega(1) \wedge\)
59. obs_L \(L(1) \subseteq\) generate_full \(L \Sigma(1) \wedge\)
58. obs_H \(\Sigma(\mathrm{h}) \in\) obs_H \(\Omega(\mathrm{h}) \wedge\)
59. obs_H \(\Omega(\mathrm{h}) \subseteq\) generate_full_ \(\mathrm{H} \Sigma(\mathrm{h})\)

\section*{theorems:}
\(\forall \mathrm{n}: \mathrm{N}, \mathrm{l}: \mathrm{L}, \mathrm{h}: \mathrm{H} \cdot \mathrm{l} \in \mathrm{obs} \_\mathrm{Ls}(\mathrm{n}) \wedge \mathrm{h} \in\) obs_Hs(n) \(\Rightarrow\) obs_L \(\Sigma(1) \subseteq\left\{\left(\right.\right.\) hi' \(^{\prime}\), hi' \(\left.^{\prime}\right) \mid\) hi' \(^{\prime}\), hi' \(^{\prime \prime}: H \cdot\left\{\right.\) hi' \(^{\prime}\), hi' \(\left.^{\prime \prime}\right\} \subseteq\) obs_HIs \(\left.(1)\right\} \wedge\)
obs_H \(\Sigma(h) \subseteq\left\{\left(\mathrm{li}^{\prime}, \mathrm{li}^{\prime}\right) \mid \mathrm{li}^{\prime}, \mathrm{li}^{\prime}: L \cdot\left\{\mathrm{li}^{\prime}, \mathrm{l}{ }^{\prime \prime}\right\} \subseteq\right.\) obs_LIs \(\left.(\mathrm{h})\right\}\)
\(\qquad\)

Lecture Notes in Software Engineering

\section*{type}
70. \(\mathrm{N}=\mathrm{H}\)-set \(\times \mathrm{L}\)-set
71. L :: obs_LI:LI \(\times\) obs_HIs:HI-set \(\times \mathrm{L} \Sigma \times \mathrm{L} \Omega \times\) LAtrs
72. H :: obs_HI:HI \(\times\) obs_LIs:LI-set \(\times \mathrm{H} \Sigma \times \mathrm{H} \Omega \times\) HAtrs

We leave it to the reader to narrate the wellformedness constraints.

\section*{axiom}
\(\forall(\mathrm{hs}, \mathrm{ls}): \mathrm{N} \cdot \mathrm{ls} \neq\{ \} \Rightarrow\) card hs \(\geq 2 \wedge\)
\(\forall \mathrm{l}^{\prime}, \mathrm{l}^{\prime \prime}: \mathrm{L} \cdot\left\{\mathrm{l}^{\prime}, \mathrm{l}^{\prime \prime}\right\} \subseteq 1 \mathrm{ls} \wedge \mathrm{l}^{\prime} \neq \mathrm{l}^{\prime \prime} \Rightarrow\) obs_LI \(\left(\mathrm{l}^{\prime}\right) \neq\) obs_LI \(\left(\mathrm{l}^{\prime}\right) \wedge\)
\(\forall \mathrm{h}^{\prime} \mathrm{h}^{\prime \prime}: \mathrm{H} \cdot\left\{\mathrm{h}^{\prime}, \mathrm{h}^{\prime \prime}\right\} \subseteq \mathrm{hs} \wedge \mathrm{h}^{\prime} \neq \mathrm{h}^{\prime \prime} \Rightarrow\) obs_HI(h')\(\neq \mathrm{obs} \_\mathrm{HI}\left(\mathrm{h}^{\prime \prime}\right) \wedge\)
\(\forall\) l:(li,his,l \(\sigma, \mathrm{l} \omega\), latrs): \(\mathrm{L} \cdot \mathrm{l} \in \mathrm{ls} \Rightarrow\)
card his \(=2 \wedge\) his \(\subseteq\left\{\right.\) obs_HI \(\left.\left(h^{\prime \prime}\right) \mid h^{\prime \prime}: H \cdot h^{\prime \prime \prime} \in h s\right\} \wedge\)
\(l \sigma \in\) generatefull_L \(\Sigma(1) \wedge\)
\(l \sigma \in l \omega \subseteq\) generate full_L \(\Sigma(1) \wedge\)
\(\forall\) h:(hi,lis,h \(\sigma\), h \(\omega\), hatrs): \(\mathrm{H} \cdot \mathrm{h} \in \mathrm{hs} \Rightarrow\)
lis \(\subseteq\left\{\right.\) obs_LI \(\left.\left(l^{\prime \prime}\right) \mid l^{\prime \prime \prime}: \mathrm{L} \cdot \mathrm{l}^{l^{\prime \prime}} \in \mathrm{ls}\right\} \wedge\)
\(\mathrm{h} \sigma \in\) generate_full_H \(\Sigma(\mathrm{h}) \wedge\)
\(h \sigma \in \mathrm{~h} \omega \subseteq\) generatefull_H \(\Sigma(\mathrm{h})\)

74
3. An Ontology of Domain Facets 3.1. Intrinisics 3.1.6. Example Hub Crossings

The top left hub/link diagram (1.) thus can be claimed to depict hub state \(\{(A, B)\), \((A, C),(A, D),(B, C),(C, D),(D, A)\}\).
Photo 2 shows a semaphore which seems to be able to display all kinds of states.


Figure 2: A General Purpose Traffic Light
The point of this example is to show that a hub may take on many states, that not all hub states may be desirable (viz., lead to crossing traffic if so interpreted), and that to reach from one hub state to another one must change the state.

\subsection*{3.1.6. Example Hub Crossings}


Lecture Notes in Software Engineering

\subsection*{3.1.7. Actions Continued}
73. The action change_H \(\Sigma\) takes a hub, \(h\), in some state, and a desired next state, \(h \sigma^{\prime}\), and results in a hub, \(h^{\prime}\), which
(a) has the same hub identifier as \(h\),
is connected to the same links as \(h\),
has the same hub state space as \(h\),
has the same attributes (names and values) as \(h\),
(b) but whose state may have changed.

73(b). The new state of \(h^{\prime}\) ought be \(h \sigma^{\prime}\), but electro-mechanical or other failures in setting the state may set the new state to any state of the potential states of \(h\) (i.e., \(h^{\prime}\) ), not just to any state in the hub state space of \(h\).

\section*{value}
73. change_H \(\Sigma: \mathrm{H} \times \mathrm{H} \Sigma \rightarrow \mathrm{H}\)
73. change_H \(\Sigma\left((\right.\) hi,lis, \(\mathrm{h} \sigma, \mathrm{h} \omega\), hatrs \(\left.), \mathrm{h} \sigma^{\prime}\right) \equiv\)

73(b). let \(\mathrm{h} \sigma^{\prime \prime \prime} \in\) generate_full_H \(\Sigma \mathrm{s}\) in
73(a). (hi,lis,h \(\sigma^{\prime \prime \prime}, \mathrm{h} \omega\), hatrs) end
- Had we specified that the resulting state must be \(h \sigma^{\prime}\)
- then we had prescribed a requirements to a change operation.
- As it is now we have described a domain phenomenon, namely that operations may fail.
\(\qquad\)

\subsection*{3.2.1. Traffic Signals}

A traffic signal represents a technology in support of visualising hub states and in effecting state changes.
74. A hub state is now modelled as a triple: the link identifier \(l_{i}\) ("coming from"), a colour (red, yellow, and green), and another the link identifier \(l_{j}\) ("going to").
75. Signalling is now a sequence of one or more pairs of next hub states and time intervals:
\[
<\left(h \sigma_{1}, t i_{1}\right),\left(h \sigma_{2}, t i_{2}\right), \ldots,\left(h \sigma_{n-1}, t i_{n-1}\right),\left(h \sigma_{n}, t i_{n}\right)>, n>0
\]

\subsection*{3.2. Support Technologies}

Definition: Support Technology. By a support technology we understand
- a facet of a domain,
- one which reflects its (current) dependency on
- human, - electronic and/or
- mechanical, - other technologies
- electro-mechanical,
(i.e., tools) in order to carry out its business processes.
\[
\begin{array}{ll}
\text { Lecture Notes in Software Engineering } & \text { 3. An Ontology of Domain Facets 3.2. Support Tectnologies 3.2.1. Traffic Signals }
\end{array}
\]
- The idea of a signalling is
- to first change the designated hub to state \(h \sigma_{1}\),
- then wait \(t i_{1}\) time units,
- then set the designated hub to state \(h \sigma_{2}\),
- then wait \(t i_{2}\) time units,
- etcetera, ending with final state \(\sigma_{n}\)
- and a (supposedly) long time interval \(t i_{n}\)
- before any decisions are to be made as to another signalling.
- The set of hub states \(\left\{h \sigma_{1}, h \sigma_{2}, \ldots, h \sigma_{n-1}\right\}\) of
\[
<\left(h \sigma_{1}, t i_{1}\right),\left(h \sigma_{2}, t i_{2}\right), \ldots,\left(h \sigma_{n-1}, t i_{n-1}\right),\left(h \sigma_{n}, t i_{n}\right)>, n>0
\]
are called intermediate states.
- Their purpose is to secure an orderly vehicle-wise safe signal transitions from red to green etc.
76. A street signal (a semaphore) is now abstracted as a map from pairs of hub states to signalling sequences.
The idea is that given a hub one can observe its semaphore, and given the state, \(h \sigma\) (not in the above set), of the hub "to be signalled" and the state \(h \sigma_{n}\) into which that hub is to be signalled "one looks up" under that pair in the semaphore and obtains the desired signalling.

\section*{type}
74. \(\mathrm{H} \Sigma=\mathrm{LI} \times\) Colour \(\times \mathrm{LI}\)
74. Colour \(==\) red \(\mid\) yellow \(\mid\) green
75. Signalling \(=(\mathrm{H} \Sigma \times \mathrm{TI})^{*}\)
75. TI
76. Sempahore \(=(H \Sigma \times H \Sigma) \pi\) Signalling

\section*{value}
76. obs_Semaphore: \(\mathrm{H} \rightarrow\) Sempahore

82

\subsection*{3.2.2. Traffic "Control"}
78. Given two hub states, \(h \sigma_{\text {init }}\) and \(h \sigma_{\text {end }}\), where \(h \sigma_{\text {init }}\) designates a present hub state and \(h \sigma_{\text {end }}\) designates a desired next hub state after signalling.
79. Now signalling is a sequence of one or more successful hub state changes.

\section*{value}
78. signalling: \(\mathrm{H} \Sigma \times \mathrm{H} \Sigma \rightarrow \mathrm{H} \rightarrow \mathrm{H}\)
79. signalling \(\left(\mathrm{h} \sigma_{\text {init }}, \mathrm{h} \sigma_{\text {end }}\right)(\mathrm{h}) \equiv\)
79. let sema =obs_Semaphore(h) in
79. let \(\mathrm{sg}=\operatorname{sema}\left(\mathrm{h} \sigma_{\text {init }}, \mathrm{h} \sigma_{\text {end }}\right)\) in
79. signal_sequence(sg)(h) end end
79. pre \(\left(\mathrm{h} \sigma_{\text {init }}, \mathrm{h} \sigma_{\text {end }}\right) \in\) dom obs_Semaphore(h)
77. A hub semaphore, sema, contains only such hub states as are observed in the hub state space.
(a) Let hsps be the set of "from/to" hub state pairs in sema.
(b) Then hs is the set of all hub states mentioned in hsps.
(c) To hs join all the hub states mentioned in any signalling, sg, of sema.
77. hub_state_space: Sempahore \(\rightarrow H \Sigma\)-set
77. hub_state_space(sema) \(\equiv\)

77(a). let hsps \(=\{\mathrm{hsp} \mid \mathrm{hsp}:(\mathrm{H} \Sigma \times \mathrm{H} \Sigma) \cdot \mathrm{hsp} \in\) dom sema \(\}\) in
77(b). let hs \(=\left\{\mathrm{h} \sigma^{\prime}, \mathrm{h} \sigma^{\prime \prime} \mid \mathrm{h} \sigma^{\prime}, \mathrm{h} \sigma^{\prime \prime}: \mathrm{H} \Sigma \cdot\left(\mathrm{h} \sigma^{\prime}, \mathrm{h} \sigma^{\prime \prime}\right) \in \mathrm{hsps}\right\}\) in
\(77(\mathrm{c}) . \quad \mathrm{hs} \cup \cup\{\{\mathrm{h} \sigma \mid(\mathrm{h} \sigma, \mathrm{ti}):(\mathrm{H} \Sigma \times \mathrm{TI}) \cdot(\mathrm{h} \sigma, \mathrm{ti}) \in\) elems sg\} \(\mid\) sg:Signalling.sg \(\in\) 77. end end

\section*{axiom}
77. \(\forall \mathrm{h}: \mathrm{H} \cdot \cup\) obs_H \(\Omega(\mathrm{h})=\) hub_state_space(obs_Semaphore(h))
\(\qquad\)

Lecture Notes in Software Engineering
3. An Ontology of Domain Facets 3.2. Support Technologies 3.2.2. Trafic "Controf
79. signal_sequence \((\rangle)(h) \equiv h\)
79. signal_sequence \((\langle(\mathrm{h} \sigma, \mathrm{ti})\rangle\) - sg \()(\mathrm{h}) \equiv\)
79. let \(\mathrm{h} \sigma^{\prime}=\) change_ \(\mathrm{H} \Sigma(\mathrm{h})(\mathrm{h} \sigma)\) in
79. if \(h \sigma^{\prime} \neq h \sigma\) then chaos
79. else wait(ti); signal_sequence(sg)(h) end end
- If a desired hub state change fails (chaos) then we do not define the outcome of signalling.

\subsection*{3.3. Rules and Regulations}

Definition: Rule. A rule stipulates a regulating principle.
- In the context of modelling domain rules we shall understand a domain rule
- as some text
- whose meaning is a predicate
- over a pair of suitably chosen domain states.
- We may assume that
- a domain action or a domain event
- takes place in the first of these states and
- results in the second of these states.
- If the predicate is true
- then we say that the rule has been obeyed,

Usually a domain rule is paired with a possibly remedying regulation.

\section*{Definition: Regulation.}
- A regulation stipulates that
- an action be taken
- in order to remedy a previous action which violated a rule.
- That is,
- a regulation is some text
- which designates a possibly composite action,
- that is, a state-to-state change
- which ostensibly results in a state
- in which the rule, "attached" to the regulation, now holds.
- otherwise that it has been violated.
```

type
$\begin{array}{ll}80 . & \mathrm{V} \\ 80(\mathrm{a}) & \mathrm{VI}\end{array}$
80(b). $\quad \mathrm{VP}=\mathrm{HP} \mid \mathrm{LP}$
$80((b))$ i. $\mathrm{HP}==\mathrm{atH}(\mathrm{hi}: \mathrm{HI})$
$80((\mathrm{~b}))$ ii. $\mathrm{LP}==$ onL(li:LI,fhi:HI,f:F,thi:HI)
$80((\mathrm{~b}))$ ii. $\mathrm{F}=\{|\mathrm{f}: \mathrm{F} \cdot 0<\mathrm{f}<1|\}$
value
80(a). \quad obs_VI: V \rightarrow VI
80(b). obs_VP: V \rightarrow VP
81.
obs_Vs: $\mathrm{N} \rightarrow$ V-set
axiom
$\forall \mathrm{v}: \mathrm{V} \cdot \mathrm{v} \in \mathrm{obs}$ _Vs(n) \Rightarrow
\exists onL(li,fhi,f,thi):VP \cdot onL(li,fhi,f,thi $)=o b s _V P(v) \Rightarrow$
$\exists \mathrm{l}: \mathrm{L} \cdot \mathrm{l} \in$ obs_Ls $(\mathrm{n}) \wedge$ li=obs_LI $(\mathrm{l}) \wedge\{$ fhi, thi $\}=o b s _H I s(1) \vee$
$\exists \operatorname{atH}(\mathrm{hi}): \mathrm{VP} \cdot \operatorname{atH}(\mathrm{hi})=$ obs_VP $(\mathrm{v}) \Rightarrow$
$\exists \mathrm{h}: \mathrm{H} \cdot \mathrm{h} \in \mathrm{obs} _\mathrm{Hs}(\mathrm{n}) \wedge \mathrm{hi}=\mathrm{obs}$ _HI(h)

```

\subsection*{3.3.2. Traffic}
83. By traffic we understand a continuous function from time to a pair of nets and position of vehicles.
84. By time we understand a dense set of points with dense and points being mathematical concepts [wayne.d.blizard.90, J. van. Benthem.Logic.Time91]

\section*{type}
83. \(\mathrm{TF}=\mathrm{T} \rightarrow\) (sel_net: \(\mathrm{N} \times\) sel_veh_pos: \((\mathrm{V} \vec{m} \mathrm{VP})\) )
84. T

\subsection*{3.3.2.1. Wellformedness of Traffic}
- Expressing the wellformedness of traffic is not a simple matter.
- We shall approach this task in a number of "small steps".

\footnotetext{
Lecture Notes in Software Engineering
}
3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.2. Traffic 3.3.2.1. \(\qquad\)

\footnotetext{
85. proper_vehicle_positions: \(\mathrm{TF} \rightarrow \mathbf{B o o l}\)
85. proper_vehicle_positions \((\mathrm{tf}) \equiv\)
85. \(\forall \mathrm{t}: \mathrm{T} \cdot \mathrm{t} \in \mathbb{D} O M A \mathbb{N} \mathrm{Nf}\).
85. let \((n, v p s)=\operatorname{tf}(\mathrm{t})\) in

85(a). \(\quad \forall \mathrm{v}: \mathrm{V} \cdot \mathrm{v} \in\) dom vp•is_net_position \((\mathrm{vps}(\mathrm{v}))(\mathrm{n})\)
85(b). \(\quad \forall \mathrm{v}^{\prime}: \mathrm{V} \cdot \mathrm{v}^{\prime} \in\) dom \(\mathrm{vp} \wedge \mathrm{v} \neq \mathrm{v}^{\prime} \Rightarrow\) diff_net_pos \(\left(\mathrm{vps}(\mathrm{v}), \operatorname{vps}\left(\mathrm{v}^{\prime}\right)\right)\)
85. end

85(a). is_net_position: VP \(\rightarrow \mathrm{N} \rightarrow \mathbf{B o o l}\)
85(a). is_net_position (vp)(n) \(\equiv\)
85(a). case vp of
85(a). \(\quad\) atH \((\) hi \() \rightarrow\) hi \(\in\) obs_HIs(n),
85(a). onL(li,fhi,f,thi) \(\rightarrow\) li \(\in\) obs_LIs(n) \(\wedge\{\) fhi,thi \(\} \subseteq\) obs_HIs(n)
85(a). end
85(b). diff_net_pos: VP \(\times \mathrm{VP} \rightarrow \mathbf{B o o l}\)
85(b). diff_net_pos(vp, \(\left.\mathrm{vp}^{\prime}\right) \equiv\)
85(b). case (vp, vp') of
85(b). (atH(hi),atH(hi)) \(\rightarrow\) true,
85(b). (onL(li,fhi,f,thi),onL(li,fhi,f,thi)) \(\rightarrow \mathrm{f} \neq \mathrm{f}^{\prime}\),
85(b). \(\quad-\quad \rightarrow\) true
85(b). end
}

\subsection*{3.3.2.1.2. • Dynamic Wellformedness•}
86. Vehicles, when moving, move monotonically, that is,
(a) if a vehicle, at some time, \(t\), is at a link position onL(li,hi,f,hi') where f is not infinitesimally close to 1 , then that vehicle will, at some later time \(t^{\prime}\), infinitesimally close to \(t\), be at link position onL (li,hi, \(\mathrm{f}^{\prime}\), hi' \()\) where \(f^{\prime}\) is infinitesimally close to \(f\);
(b) if the vehicle, at some time, \(t\), is at a link position onL(li,hi,f,hi') where f is indeed infinitesimally close to 1 , then that vehicle will, at some infinitesimally later time \(t^{\prime}\), be at hub position atH(hi');
(c) and if the vehicle, at some time, \(t\), is at a hub position atHP(hi) then the vehicle will at some infinitesimally later time \(t^{\prime}\) either be at hub position atHP(hi) or at some link position onL(li,hi,f,hi') where \(f\) is infinitesimally close to 0 .
\({ }^{94}\)
3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.2. Traffic 3.3.2.1
87. If a vehicle is (has been) moving along a link \(l_{i}\) and is now,
- at time \(t\), at position onL \(\left(l_{i}, h_{j}, f, h_{k}\right)\), that is, moving from \(h_{j}\) to \(h_{k}\),
- then it cannot at a subsequent, infinitesimally close time, \(t^{\prime}\), be at a position
- onL \(\left(l_{i}, h_{k}, f^{\prime}, h_{j}\right)\), that is, moving in the opposite direction, \(h_{k}\) to \(h_{j}\).
```

value
86. monotonic: $\mathrm{TF} \rightarrow$ Bool
monotonic (tf) \equiv
$\forall \mathrm{t}, \mathrm{t}^{\prime}: \mathrm{T} \cdot\left\{\mathrm{t}, \mathrm{t}^{\prime}\right\} \subseteq \mathbb{D} \mathbb{M} \operatorname{MiIN} \mathrm{tf}$.
let $(\mathrm{n}, \mathrm{vps})=\mathrm{tf}(\mathrm{t}),\left(\mathrm{n}^{\prime}, \mathrm{vps}^{\prime}\right)=\mathrm{tf}\left(\mathrm{t}^{\prime}\right)$ in
INFINITESIMALLIY CLOSE $\left(t, t^{\prime}\right) \wedge t<t^{\prime} \Rightarrow$
$\forall \mathrm{v}: \mathrm{V} \cdot \mathrm{v} \in \operatorname{dom} \mathrm{vps} \cap$ dom vps^{\prime}.
case ($\left.\mathrm{vps}(\mathrm{v}), \mathrm{vps}^{\prime}(\mathrm{v})\right)$ of
$($ onL(li,fhi,f,thi),onL(li,fhi,f,thi) $) \rightarrow$
$\mathrm{f}<\mathrm{f}^{\prime} \wedge \operatorname{INFINITTESIMALLY} \operatorname{CLOSE}\left(\mathrm{f}, \mathrm{f}^{\prime}\right)$,
$($ onL(li,fhi,f,thi),atH(thi)) \rightarrow
$\operatorname{INFINITESIMALLY} \operatorname{CLOSE}(f, 1)$,
(atH(hi),atH(hi)) \rightarrow true,
(atH(hi),onL(li,hi,f,thi)) \rightarrow
INfinitesimally $\operatorname{ClOSE}(0, f)$,
\rightarrow true
end end

```
    3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.2. Traffic 3.3.2.1.

\section*{value}
87. God_does_not_play_dice \({ }^{3}\) : \(\mathrm{TF} \rightarrow\) Bool
87. God_does_not_play_dice(tf) \(\equiv\)
87. \(\forall \mathrm{t}, \mathrm{t}^{\prime}: \mathrm{T} \cdot\left\{\mathrm{t}, \mathrm{t}^{\prime}\right\} \subseteq\) domain \(\mathrm{tf} \wedge \mathrm{t}<\mathrm{t}^{\prime} \wedge \operatorname{infinimesmailly~close~}\left(\mathrm{t}, \mathrm{t}^{\prime}\right) \Rightarrow\)
87. let \(\left.(\mathrm{n}, \mathrm{vps})=\operatorname{tf}(\mathrm{t}),\left(\mathrm{n}^{\prime}, \mathrm{vps}\right)^{\prime}\right)=\mathrm{tf}\left(\mathrm{t}^{\prime}\right)\) in
87. \(\forall \mathrm{v}: \mathrm{V} \cdot \mathrm{v} \in \operatorname{dom} \mathrm{vps} \cap \operatorname{dom} \mathrm{vps}^{\prime} \Rightarrow\)
87. case \(\left(\operatorname{vps}(\mathrm{v}), \operatorname{vps}^{\prime}(\mathrm{v})\right)\) of
87. (onL(li,fhi,_,thi),onL(li,thi,_,fhi)) \(\rightarrow\) false,
87. \(\quad \rightarrow\) true
87. end end

\footnotetext{
\({ }^{3}\) Albert Einstein: "I, at any rate, am convinced that He does not throw dice." Letter to Max Born (4 December 1926); The Born-Einstein Letters (translated by Irene Born) (Walker and Company, New York, 1971) ISBN 0-8027-0326-7. Reflects Einstein's view of Quantum Mechanics at the time.
}
88. If a vehicle is (has been) moving along and has,
- at time \(t\), been at some position \(p\), and
- at time \(t^{\prime}\), later than \(t\), is at some position \(p^{\prime}\),
- then it must at all times \(t^{\prime \prime}\) between \(t\) and \(t^{\prime}\) have been somewhere on the net.
```

value
no_ghost_vehicles: $\mathrm{TF} \rightarrow$ Bool
no_ghost_vehicles(tf) \equiv
$\forall \mathrm{t}, \mathrm{t}^{\prime}: \mathrm{T} \cdot\left\{\mathrm{t}, \mathrm{t}^{\prime}\right\} \subseteq \subseteq_{\operatorname{DOMAIN}} \mathrm{tf} \wedge \mathrm{t}<\mathrm{t}^{\prime} \Rightarrow$
let $(\mathrm{n}, \mathrm{vps})=\mathrm{tf}(\mathrm{t}),\left(\mathrm{n}^{\prime}, \mathrm{vps}^{\prime}\right)=\mathrm{tf}\left(\mathrm{t}^{\prime}\right)$ in
$\forall \mathrm{v}: \mathrm{V} \cdot \mathrm{v} \in \operatorname{dom} \mathrm{vps} \cap \operatorname{dom} \mathrm{vps}^{\prime} \Rightarrow$
$\forall \mathrm{t}^{\prime \prime}: \mathrm{T} \cdot \mathrm{t}<\mathrm{t}^{\prime \prime}<\mathrm{t}^{\prime} \Rightarrow$
let $\left(\mathrm{n}^{\prime \prime}, \mathrm{vps}^{\prime \prime}\right)=\operatorname{tf}\left(\mathrm{t}^{\prime \prime}\right)$ in $\mathrm{v} \in \operatorname{dom} \mathrm{vps}^{\prime \prime}$ end
end

```

\subsection*{3.3.4. Another Traffic Regulator}
- We present an abstraction of a more conventional traffic signal than modelled in Items 74 on page 78 to 77 on page 81.
90. A traffic signal now simply shows an entry permit: either red, yellow or green at the hub when "leaving" any link, i.e., at the entry to a hub from any link.

\section*{type}
90. \(\mathrm{EP}==\) red \(\mid\) yellow \(\mid\) green
90. \(\mathrm{H} \Sigma=\mathrm{LI} \vec{m} \mathrm{EP}\)
axiom
90. \(\forall \mathrm{h}: \mathrm{H} \cdot \mathrm{obs} \_\mathrm{LIs}(\mathrm{h})=\) dom obs_H \(\Sigma(\mathrm{h})\)
- We leave it to the reader to express a constraint over hub state spaces as to how there must be hub states such that entry from any link is possible.

\subsection*{3.3.3. Traffic Rules (I of II)}
89. A vehicle must not move from a hub, \(h_{i}\), into a link \(\ell\) (from hub (identified by) \(h_{i}\) to hub (identified by) \(h_{j}\) ) which is closed in direction \(\left(h_{i}, h_{j}\right)\), that is, where \(\left(h_{i}, h_{j}\right)\) is not in the current state of link.

\section*{rule:}
89. \(\forall \mathrm{tf}: \mathrm{TF}, \mathrm{t}: \mathrm{T} \cdot \mathrm{t} \in \mathbb{D} \mathbb{D M} \mathbb{A} \mathbb{N}(\mathrm{tf}) \Rightarrow\)
\[
\text { let }(\mathrm{n}, \mathrm{tp})=\operatorname{tf}(\mathrm{t}) \text { in }
\]
\(\forall \mathrm{v}: \mathrm{V} \cdot \mathrm{v} \in \operatorname{dom} \operatorname{tp} \Rightarrow\)
case \(\operatorname{tp}(\mathrm{v})\) of
atH(hi) \(\rightarrow\)
let \(t^{\prime}: T \cdot t^{\prime}>t \wedge t^{\prime} \in \mathbb{D O M A I N}\left(t r^{\prime}\right) \wedge \mathbb{I N F I N I T T E S I M A L L Y} \_\mathbb{C L O S E}\left(t, t^{\prime}\right)\) in let \(\left(\mathrm{n}^{\prime}, \mathrm{tp}^{\prime}\right)=\mathrm{tf}\left(\mathrm{t}^{\prime}\right)\) in
\(\exists\) li:LI,hi':HI,f:F,hi":HI .
hi'=hi \(\wedge \mathbb{I N F I N I T I E I M A L L Y \_ C L O S E ( f , 0 ) ~ \wedge ~}\)
\(\operatorname{tp}^{\prime}(\mathrm{v})=\) onL \(\left(\mathrm{li}, \mathrm{hi}^{\prime}, \mathrm{f}^{\prime}, \mathrm{hi}^{\prime \prime}\right) \wedge(\) hi,hi' \() \notin\) obs_L \(\Sigma\left(\right.\) getL \(\left.\left(\mathrm{li}, \mathrm{n}^{\prime}\right)\right)\) \(\rightarrow \rightarrow\)
end end end end
\(\qquad\)
ecture Notes in Software Engineering

\subsection*{3.3.5. Traffic Rules (II of II)}
91. Vehicles must not enter a hub if entry permission is not green.
```

rule:
91. }\forall\textrm{tf:TF},\textrm{t}:\textrm{T}:\textrm{t}\in\mathbb{DOMA\mathbb{N}(\textrm{tf})=>
let (n,vps)=tf(t) in
v:V}\cdot\textrm{v}\in\mathrm{ dom vps }
case vps(v) of
onL(li,hi,f,hi')}
INTFINITEESMMALLEY_\mathbb{CLOSE}(f,1) ^
let h }\sigma=\mathrm{ obs_H}\Sigma(\operatorname{getH}(\mp@subsup{hi'}{\prime}{\prime},n))
t':T \cdot t'>t }\wedge\mathbb{INT\mathbb{NITESSIMALLLYY_CLOSEE}(t,\mp@subsup{t}{}{\prime}) in
let (n',vps') = vps(t') in
h\sigma(li)}\not=\mathrm{ green }\wedge vps'(v)\not=atH(hi') assert: vps'(v) = onL(li,hi,f,hi'
end end
- ..
end e

```

\section*{Start of Lecture 4: DOMAINS: Scripts - Human Behaviour}
\(\qquad\)


\subsection*{3.4. Scripts}

\section*{Definition: Scripts.}
- A script is plan of action.
- By a domain script we shall, more specifically, understand
- the structured, almost, if not outright,
- formally expressed, wording of a set of
- rules and regulations.
- See also
- license and
- contract.

Definitions follow.
\(\qquad\)

\subsection*{3.4.1. Routes as Scripts}

\subsection*{3.4.1.1. Paths}
92. A path is a triple:
(a) a hub identifier, \(h_{i}\), a link identifier, \(l_{j}\), and another hub identifier, \(h_{k}\), distinct from \(h_{i}\),
(b) such that there is a link \(\ell\) with identifier \(l_{j}\) in a net \(n\) such that \(\left\{h_{i}, h_{k}\right\}\) are the hub identifiers that can be observed from \(\ell\).
type
92. Pth \(=\mathrm{HI} \times \mathrm{LI} \times \mathrm{HI}\)
axiom
92(a). \(\quad \forall\) (hi,li,hi'):Pth \(\cdot \exists \mathrm{n}: \mathrm{N}, \mathrm{l}: \mathrm{L} \cdot \mathrm{l} \in\) obs_Ls(n) \(\Rightarrow\)
92(b). obs_LI(l)=li \(\wedge\) obs_HIs \((1)=\{\) hi,hi' \(\}\)
93. From a net one can extract all its paths:
(a) if \(l\) is a link of the net,
(b) \(l_{j}\) its identifier,
(c) \(\left\{h_{i}, h_{k}\right\}\) the identifiers of its connected hubs,
(d) then \(\left(h_{i}, l_{j}, h_{k}\right)\) and \(\left(h_{k}, l_{j}, h_{j}\right)\) are paths of the net.

\section*{value}
93. paths: \(\mathrm{N} \rightarrow\) Pth-set

93(a). paths (n) \(\equiv\)
\[
\begin{array}{lc}
\text { 93(d). } & \{(\mathrm{hi}, \mathrm{lj}, \mathrm{hk}),(\mathrm{hk}, \mathrm{lj}, \text { hi) }) \mid 1: \mathrm{L}, \mathrm{lj}: \mathrm{LI}, \text { hi,hk:HI } \mathrm{l} \in \text { obs_Ls(n) } \wedge \\
\text { 93(b). } & \text { lj=obs_LI(l) } \wedge \\
\text { 93(c). } & \{\text { hi,hk }\}=\text { obs_HIs }(1)\}
\end{array}
\]

\subsection*{3.4.1.2. Routes}
95. A route of a net is a sequence of zero, one or more paths such that
(a) all paths of a route are paths of the net and
(b) adjacent paths in the sequence "share" hub identifiers.

\section*{type}
95. \(\mathrm{R}=\mathrm{Pth}^{*}\)
axiom
95. \(\forall \mathrm{r}: \mathrm{R}, \exists \mathrm{n}: \mathrm{N}\).

95(a). elems r \(\subseteq\) paths \((\mathrm{n}) \wedge\)
95(b). \(\quad \forall \mathrm{i}:\) Nat \(\cdot\{\mathrm{i}, \mathrm{i}+1\} \subseteq\) inds \(\mathrm{r} \Rightarrow\)
95(b). let (_,_hi)=r(i), (hi',_,_)=r(i+1) in hi=hi' end
94. From a net descriptor one can (likewise) extract all its paths:
(a) Let \(h_{i}, h_{k}\) be any two distinct hub identifiers of the net descriptor
(definition set),
(b) such that they both map into a link identifier \(l_{j}\),
(c) then \(\left(h_{i}, l_{j}, h_{k}\right)\) and \(\left(h_{k}, l_{j}, h_{j}\right)\) are paths of the net.

\section*{value \\ ue}
93. paths: ND \(\rightarrow\) Pth-set
93. \(\quad\) paths \((n d) \equiv\)

94(a). \(\quad\{(h i, l j, h k),(h k, l j, h i) \mid h i, h k: H I, l j: L I \cdot h i \neq h k \wedge\{h i, h k\} \subseteq d o m n d \Rightarrow\) 94(b). \(\quad \mathrm{lj} \in \operatorname{dom} \mathrm{nd}(\mathrm{hi}) \cap \operatorname{dom} \mathrm{nd}(\mathrm{hk})\}\)
\(\qquad\)
\(\qquad\)

96. From a net, \(n\), we can generate the possibly infinite set of finite and possibly infinite routes:
(a) \(<>\) is a path (basis clause 1);
(b) if \(p\) is a path of \(n\) then \(\langle p\rangle\) is a path of \(n\) (basis clause 2);
(c) if \(r\) and \(r^{\prime}\) are non-empty routes of \(n\)
i. and the last \(h_{i}\) of \(r\) is the same as the first \(h_{j}\) of \(r^{\prime}\)
ii. then the concatenation of \(r\) and \(r^{\prime}\) is a route

\section*{(induction clause).}
(d) Only such routes which can be formed by a (finite, respectively infinite) application of basis clauses Items 96(a) and 96(b) and induction clause Item 96(c) are routes (extremal clause).

\section*{value}
96. routes: \(\mathrm{N} \mid \mathrm{ND} \rightarrow\) R-infset
96. routes(nond) \(\equiv\)

96(a). let \(\mathrm{rs}=\{\langle \rangle\} \cup\)
96(b). \(\quad\{\langle\mathrm{p}\rangle \mid \mathrm{p}:\) Pth \(\cdot \mathrm{p} \in\) paths(nond) \(\} \cup\)
96((c))ii. \(\quad\left\{r^{\wedge} r^{\prime} \mid r, r^{\prime}: R \cdot r \in r s \wedge r^{\prime} \in r s \wedge\right.\)
96((c))i. \(\exists\) hi,hi',hi",hi":H,li:LI .
96((c))i. \(\quad \mathrm{r}=\mathrm{r}^{\prime \prime} \wedge\left\langle\left(\mathrm{hi}, \mathrm{li}, \mathrm{hi} \mathrm{i}^{\prime}\right)\right\rangle \wedge \mathrm{r}^{\prime}=\left\langle\left(\mathrm{hi}^{\prime \prime}, \mathrm{li}^{\prime}, \mathrm{hi} \mathrm{i}^{\prime \prime}\right)\right\rangle \mathrm{r}^{\prime \prime \prime} \wedge\)
\(96((\mathrm{c}))\) i. \(\left.\quad \mathrm{hi}^{\prime}=\mathrm{hi}^{\prime \prime}\right\}\) in
96(d). rs end

108
From Domains to Requirements

\subsection*{3.4.2.3. Bus Routes}
100. A bus stop list is a sequence of two or more bus stops, bsl.
101. A bus route, \(b r\), is a pair of a net route, \(r\), and a bus stop list, \(b s l\), such that route \(r\) is a route of \(n\) and such that \(b s l\) is embedded in \(r\). If
(a) there exists an index list, \(i l\), of ascending indices of the route \(r\) and of the length of \(b s l\)
(b) such that the \(i\) th path of \(r\)
(c) share from and to hub identifiers and link identifier with the \(i l(i)\) th bus stop of bsl
then \(b s l\) is embedded in \(r\).
102. We must allow for two or more stops along a bus route to be adjacent on the same link - in which case the corresponding fractions must likewise be ascending.

\subsection*{3.4.2. Bus Timetables as Scripts \\ 3.4.2.1. Buses}
97. Buses are vehicles,
98. with bus identifiers being the same as vehicle identifiers.
```

type
97. B
98. BI }\subseteq\textrm{VI

```

\subsection*{3.4.2.2. Bus Stops}
99. A link bus stop indicates the link (by its identifier), the from and to hub identifiers, and the fraction "down the link" from the from to the to hub identifiers.

\section*{type}
99. \(\quad \mathrm{BS}=\) mkL_BS(sel_fhi:HI,sel_li:LL,sel_f:F,sel_thi:HI)

\begin{tabular}{lll} 
Lecture Notes in Software Engineering \\
& 3. 3. An ontoosy of omamion Faeces 3.4. Scripts 3.4.2. Bus Timetables as Scripts 3.4.4.2.3. Bus Routes & 109 \\
\hline
\end{tabular}

\footnotetext{
value
n:N
type
100. \(\quad \mathrm{BSL}=\mathrm{BS}\) *
101. \(\quad \mathrm{BR}=\left\{\left|(\mathrm{r}, \mathrm{bsl}):(\mathrm{R} \times \mathrm{BSL}) \cdot \mathrm{wf} \_\mathrm{BR}(\mathrm{r}, \mathrm{bsl})\right|\right\}\)
value
101. wf_BR: BR \(\rightarrow\) Bool
101. wf_BR(r,bsl) \(\equiv \exists \mathrm{n}: \mathrm{N}, \mathrm{r}: \mathrm{R} \cdot \mathrm{r} \in \operatorname{routes}(\mathrm{n}) \wedge\) is_embedded_in(r,bsl)

101(a). is_embedded_in: \(\mathrm{BR} \rightarrow\) Bool
101(a). is_embedded_in(r,bsl) \(\equiv\)
101(b). \(\exists\) il:Nat* \(\cdot\) len il=len bsl \(\wedge\) inds il \(\subseteq\) inds \(r \wedge\) ascending(il) \(\Rightarrow\)
101(c). \(\quad \forall\) i:Nat \(\cdot \mathrm{i} \in\) inds il \(\Rightarrow\)
101(c). let \((h i, l j, h k)=r(i l(i)),\left(\right.\) hi' \(\left.^{\prime}, \mathrm{l}^{\prime}, \mathrm{f}, \mathrm{hk} \mathrm{k}^{\prime}\right)=\operatorname{bsl}(\mathrm{i})\) in
101(c). \(\quad h i=h i^{\prime} \wedge l j=l j^{\prime} \wedge h k=h k^{\prime}\) end \(\wedge\)
102. \(\quad \forall \mathrm{i}:\) Nat \(\cdot\{\mathrm{i}, \mathrm{i}+1\} \subseteq\) inds il \(\Rightarrow\)
102. let \((h i, l j, f, h k)=\operatorname{bsl}(i),\left(h^{\prime}, \mathrm{l}^{\prime}, \mathrm{f}^{\prime}, \mathrm{hk}^{\prime}\right)=\operatorname{bsl}(\mathrm{i}+1)\) in
102. \(h i=h i^{\prime} \wedge l j=l j^{\prime} \wedge h k=h k^{\prime} \Rightarrow f<f^{\prime}\) end
ascending: Nat \({ }^{*} \rightarrow\) Bool, ascending \((\mathrm{il}) \equiv \forall \mathrm{i}: \mathbf{N a t} \cdot\{\mathrm{i}, \mathrm{i}+1\} \subseteq\) inds il \(\Rightarrow \mathrm{il}(\mathrm{i}) \leq \mathrm{il}(\mathrm{i}+1)\)
}

\subsection*{3.4.2.4. Bus Schedule}
103. A timed bus stop is a pair of a time and a bus stop.
104. A timed bus stop list is a sequence of timed bus stops.
105. A bus schedule is a pair of a route and a timed bus stop list such that
- there is a net of which the routes is indeed a route,
- the bus stop list of the timed bus stop list is embedded in the route, and
- "later" listed bus stops register later times.
106. SimpleBusSchedules remove routes from BusRoutes.

112

\subsection*{3.4.2.5. Timetable}

The concept of a bus line captures all those bus schedules which ply the same bus route but at different times. A timetable is made up from distinctly named bus lines.
107. A bus line has a unique bus line name.
108. We say that two bus schedules are the same if they are based on the same route and if they differ only in their times.
109. Each of the different bus routes of a bus line has a unique bus number.
110. A route bus schedule pairs a route with simple bus schedules for each of a number of busses (identified by their bus number).
111. A bus timetable (listing, map) maps bus line names to route bus schedules.
112. A timetable is a pair, a net and a table.
113. A well-formed timetable must satisfy same bus schedules within each bus line
114. All bus numbers are distinct across bus lines.

\section*{type}
103. TBS :: sel_T:T sel_bs:BS
104. \(\mathrm{TBSL}=\mathrm{TBS}^{*}\)
105. BusSched \(=\{\mid(r, t b s l):(\mathrm{R} \times\) TBSL \() \cdot\) wf_BusSched \((\mathrm{r}, \mathrm{tbsl}) \mid\}\)
value
105. wf_BusSched: BusSched \(\rightarrow\) Bool
105. wf_BusSched(r,tbsl) \(\equiv\)
105. \(\exists \mathrm{n}: \mathrm{N} \cdot \mathrm{r} \in \operatorname{routes}(\mathrm{n})\)
105. \(\wedge\) let bsl:SBS \(=\langle\) sel_BS(tbsl(i) \() \mid \mathrm{i}:[1\)..len tbsl \(]\rangle\) in is_embedded_in(r,bsl) end
105. \(\wedge \forall \mathrm{i}:\) Nat \(\cdot\{\mathrm{i}, \mathrm{i}+1\} \subseteq\) inds tbsl \(\Rightarrow\) sel_T(tbsl \((\mathrm{i}))<\) sel_T \((\operatorname{tbsl}(\mathrm{i}+1))\)
type
106. \(\mathrm{SBS}=\left\{\mid \mathrm{bsl}: \mathrm{BS}^{*} \cdot \exists \mathrm{n}: \mathrm{N}, \mathrm{r}: \mathrm{R} \cdot \mathrm{r} \in \operatorname{routes}(\mathrm{n}) \wedge\right.\) is_embedded_in(r,bsl) \(\left.\mid\right\}\)
```

Lecture Notes in Software Engineering \quad 3. 3. An onotose of omamin Facest 3.4. Scripts 3.4.2. Bus Timetables as Scripts 3.4.2.5. Timetable

```
type
107. BLNm
value
108. same_bus_schedule: BusSched }\times\mathrm{ BusSched }->\mathrm{ Bool
108. same_bus_schedule((r1,btl1),(r2,btl2)) \equiv
108. r1 = r2 ^ len btl1 = btl2 ^
108. \langlesel_BS(btl1(i))|i:[1..len btl1]\rangle=\langlesel_BS(btl2(i))|i:[1..len bt12]\rangle
type
109. BNo
110. RBS :: sel_R:R sel_btbl:(BNo }\vec{m}\mathrm{ SBS)
111. TBL = BLNm }\vec{m}\mathrm{ RBS
112. TT' }=\textrm{ND}\times\textrm{TBL
113. TT }={|t\textrm{tt:TT}\cdot\textrm{wf
```


value

```
113. wf_TT: TT \(\rightarrow\) Bool
113. wf_TT(_,tbl) \(\equiv\)
113. \(\forall\) bln:BLNm.bln \(\in\) dom tbl \(\Rightarrow\)
113. \(\forall\) bno,bno':BNo \(\cdot\{\) bno,bno' \(\} \subseteq\) dom sel_btbl \((\) tbl \((\mathrm{bln})) \Rightarrow\)
113. same_bus_schedule(sel_R(tbl(bln)),sel_btbl(tbl(bln))(bno),
sel_R(tbl(bln)),sel_btbl(tbl(bln))(bno')) \(\wedge\)
113.
\(\forall \operatorname{bln}^{\prime}, \mathrm{bln} n^{\prime \prime}: \mathrm{BLNm} \cdot\left\{\mathrm{bln}^{\prime}, \mathrm{bln} n^{\prime \prime}\right\} \subseteq\) dom tbl \(\wedge\) bln \({ }^{\prime} \neq \mathrm{bln}^{\prime \prime} \Rightarrow\)
dom sel_btbl \(\left(\operatorname{tbl}\left(\operatorname{bln} n^{\prime}\right)\right) \cap\) dom sel_btbl \(\left.\left(\operatorname{tbl}^{(b l n}{ }^{\prime \prime}\right)\right)=\{ \}\)
```

116

- Here, we shall not develop the idea of bus timetables denoting certain traffics.
- Instead we refer to our previously sketched model of traffics (Sect. , Pages 89-97)
- Route (designations) and bus timetables
- script potential and actual route travels, respectively
- script the dispatch of buses and their travelling.
- Bus timetables can also be seen as a form of contracts
- between the bus operators offering the bus services
- and potential and actual passengers,
- with the contract promising timely transport.
- In the next section, Sect., we shall sketch a language of bus service contracts and bus service actions implied by such contracts.

3.4.3. Route and Bus Timetable Denotations

- What are routes and bus timetables scripting ?
- Routes (list of connected link traversal designations) script that one may transport people or freight along the sequence of designated links.
- Bus timetables script (at least) two things:
- the set of bus traffics on the net which satisfy the bus timetable, and
- information that potential and actual bus passengers may, within some measure of statistics (and probability), rely upon for their bus transport.
\qquad
\qquad

Lecture Notes in Software Engineering

3.4.4. Licenses and Contracts

Definition: License

- A license is
- a script
- specifically expressing a permission to act;
- is freedom of action;
- is a permission granted by competent authority to engage in a business or occupation or in an activity otherwise unlawful;
- a document, plate, or tag evidencing a license granted;
- a grant by the holder of a copyright or patent to another of any of the rights embodied in the copyright or patent short of an assignment of all rights.
Licenses appear more to have morally than legally binding poser.

Definition: Contract.

- A contract

- is a special kind of license
- specifically expressing a legally binding agreement between two or more parties -
- hence a document describing the conditions of the contract;
- a contract is business arrangement for the supply of goods or services at fixed prices, times and locations.
- A contract further specifies
- how it might, or must be developed;
- criteria for acceptance of what has been developed;
- delivery dates for the developed items;
- who the "parties" to the contract are:
* the client and
* the developer, etc.
- In software development a contract specifies what is to be developed:
- (1) a domain description,
- (2) a requirements prescription, or
- (3) a software design;
or a combination of these $(1-2,2-3,1-3)$.
- For a comprehensive treatment of licenses and contracts we refer to [Chapter 10, Sect. 10.6 (Pages 309--326) [jaist-db10]] [jaist-mono].
- We shall illustrate fragments of a language for bus service contracts.
- The background for the bus contract language is the following.
- In many large cities around Europe the city or provincial government secures public transport in the form of bus services operated by many different private companies.
- Earlier lectures illustrated the concept of bus (service) timetables.
- The bus services implied by such a timetable, for a city area with surrounding suburbs etc. - need not be implemented by just one company, but can be contracted, by the city government public transport office, to several companies, each taking care of a subset of the timetable.
- Different bus operators then take care of non-overlapping parts and all take care of the full timetable.
- It may even be that extra buses need be scheduled, on the fly, in connection with major sports or concert or other events.
- Bus operators may experience vehicle breakdowns or bus driver shortages and may be forced to subcontract other, even otherwise competing bus operators to "step in" and alleviate the problem.

124
3.3 . 3. scine 34.4 . 3.41.
115. A bus contract has a header with the distinct names of a contractee and a contractor and a time interval.
116. A bus contract presents a timetable.
117. A bus contract presents a set of bus lines (by their identifiers) such that these are in the timetable.
118. And a bus contract may list one or more of three kinds of "exceptions":
(a) cancellation of one or more named bus tours on one or more bus lines subject to certain (specified) conditions;
(b) insertion of one or more extra bus tours on one or more bus lines subject to certain (specified) conditions;
(c) subcontracting one or more unspecified bus tours on one or more bus lines subject to certain (specified) conditions - to further unspecified contractors.

3.4.4.1. Contracts

Schematically we may represent a bus contract as follows:
Contract cn between contractee ci and contractor cj:
This contract contracts cj in the period $\left[\mathrm{t}, \mathrm{t}^{\prime}\right]$ to
perform the following services with respect to timetable tt :
operate bus lines $\left\{\mathrm{blj}_{1}, \mathrm{blj}_{2}, \ldots, \mathrm{blj}_{n}\right\}$
subject to the following occasional exceptions:
cancellation of bus tours:
$\left\{\left(\mathrm{blj}_{a},\left\{\mathrm{bno}_{a_{1}}, \ldots, \mathrm{bno}_{a_{m}}\right\}\right), \ldots\right\}$ subject to conditions cbt
insertion of bus tours on lines
$\left\{\operatorname{blj}_{\alpha},{ }^{, b l j}{ }_{\beta}, \ldots, b l j_{\gamma}\right\}$ subject to conditions ibt
subcontracting bus tours on lines
$\left\{\mathrm{blj}_{\delta}, \mathrm{bl}_{\phi}, \ldots, \mathrm{blj}_{\omega}\right\}$ subject to conditions scbt.
\qquad

Lecture Notes in Software Engineering

We abstract the above quoted "one or more of three kinds of exceptions" as one possibly empty clause for each of these alternatives.
119. A bus contract now contains a header, a timetable, the subject bus lines and the exceptions,
120. such that
(a) line names mentioned in the contract are those of the bus lines of the timetable, and
(b) bus (tour) numbers are those of the appropriate bus lines in the timetable.
121. The calendar period is for at least one full day, midnight to midnight.
122. A named contract is a pair of a contract name and a contract.

type

115. CNm, CId, D, T, CON
116. $\mathrm{CH}=\mathrm{CId} \times \mathrm{CId} \times(\mathrm{D} \times \mathrm{D})$
117. $\mathrm{CT}=\mathrm{TT}$
118. $\mathrm{CLs}=$ BLNm-set
119. $\mathrm{CE}=(\mathrm{CA} \times \mathrm{IN} \times \mathrm{SC}) \times \mathrm{CON}$

118(a). CA $=$ BLNm π BNo-set
118(b). $\mathrm{IN}=$ BLNm $\pi \mathrm{m}$ BNo-set
118(c). $\mathrm{SC}=$ BLNm-set
119. $\mathrm{CO}^{\prime}=\mathrm{CH} \times \mathrm{CT} \times \mathrm{CLs} \times \mathrm{CE}$
120. $\mathrm{CO}=\left\{\mid \mathrm{co}: \mathrm{CO}{ }^{\prime}\right.$ wf_CO(co) $\left.\mid\right\}$
122. $\mathrm{NCO}=\mathrm{CNm} \times \mathrm{CO}$

value

```
120. wf_CO: CO' }->\mathrm{ Bool
120. wf_CO((ce,cr,(d,d')),(nd,tbl),cls,((blns,blns',bls),con)) \equiv
117. ce }\not=\mathrm{ cr }
120(a). cls \subseteqdom tbl ^
120(b). }\quad\forall\mathrm{ bli,bli':BLNm • bli }\in\mathrm{ dom blns }\wedge\mathrm{ bli' }\in\mathrm{ dom blns' }
120(a). {bli,bli'}\subseteqdom tbl ^
120(b). blns(bli) \cup blns'(bli')\subseteqdom sel_btbtl(tbl(bli)) ^
120(a). bls }\subset\mathrm{ dom tbl ^
121. d < d'
```


3.4.4.2. Contractual Actions

For contract cn commence bus tour, line: bli and bus no.: bno

For contract cn cancel bus tour, line: bli and bus no.: bno
For contract cn insert extra bus tour, line: bli and bus no.: bno

Subcontract with respect to contract cn the following:
Contract cn^{\prime} : for the calendar period $\left[\mathrm{d}, \mathrm{d}^{\prime}\right]$ contractee ci contracts contractor cj to perform the following services with respect to timetable tt :
operate bus lines $\left\{\right.$ blj $\left._{1}, \mathrm{blj}_{2}, \ldots, \mathrm{blj}_{n}\right\}$
subject to the following occasional exceptions:
cancellation of bus tours:
$\left\{\left(\mathrm{blj}_{c},\left\{\right.\right.\right.$ bno $_{c_{1}}, \ldots$, bno $\left.\left.\left._{c_{m}}\right\}\right), \ldots\right\}$ subject to conditions cbt
insertion of bus tours on lines
$\left\{\left(\operatorname{blj}_{i},\left\{\operatorname{bno}_{i_{1}}, \ldots\right.\right.\right.$, bno $\left.\left.\left._{i_{n}}\right\}\right), \ldots\right\}$ subject to conditions ibt

subcontracting bus tours on lines

$\left\{\mathrm{blj}_{\delta}, \mathrm{bl}_{\phi}, \ldots, \mathrm{blj}_{\omega}\right\}$ subject to conditions scbt

Lecture Notes in Software Engineering 3. 3. An ontologe of Domin Facees 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.2. Contractual Actions 129
123. A bus operator action is either a commence, a cancellation, an insertion or a subcontracting action. All actions refer to the (name of) the contract with respect to which the action is contracted.
(a) A commence action designator states the bus line concerned and the bus number of that line.
(b) A cancellation action designator states the bus line concerned and the bus number of that line.
(c) An insertion action designator states the bus line concerned and the bus number of that line - for which an extra bus is to be inserted. ${ }^{4}$
(d) A subcontracting action designator, besides the name of the contract with respect to which the subcontract is a subcontract, state a named contract (whose contract name is unique).

type

123. Act $=$ Com \mid Can \mid Ins \mid Sub

123(a). Com $==$ mkCom(sel_cn:CNm,sel_bli:BLNm,sel_bno:BNo)
123(b). Can $==$ mkCan(sel_cn:CNm,sel_bli:BLNm,sel_bno:BNo)
123(c). Ins $==$ mkIns(sel_cn:CNm,sel_bli:BLNm,sel_bno:BNo)
123(d). Sub $==$ mkSub(sel_cn:CNm,sel_con:NCO)

3.4.4.3. Wellformedness of Contractual Actions

124. In order to express wellformedness conditions, that is, pre-conditions, for the action designators we introduce a context which map contract names to contracts.
125. Wellformedness of a contract is now expressed with respect to a context.
```
type
124. }\textrm{CTX}=\textrm{CNm}|\textrm{m
value
125. wf_Act: Act }->\mathrm{ CTX }->\mathrm{ Bool
```

127. cancellation and insertion commands have the same static wellformedness conditions as have commence command.
128. wf_Act(mkCan(cnm,bln,bno))(ctx) \equiv wf_Act(mkCom(cnm,bln,bno))(ctx)
129. $\operatorname{wf} \operatorname{Act}(\operatorname{mkIns}(c n m, b l n, b n o))(c t x) \equiv \operatorname{wf} \operatorname{Act}(m k C o m(c n m, b l n, b n o))(c t x)$
(a) contract name cnm must be defined in context ctx;
(b) bus line name bln must be defined in the contract, that is, in cls, and
(c) bus number bno must be defined in the bus table part of table tbl.
130. wf_Act(mkCom(cnm,bln,bno))(ctx) \equiv

126(a). cnm $\in \operatorname{dom} \operatorname{ctx} \wedge$
126. let $\left.\left((\mathrm{ce}, \mathrm{cr}),(\mathrm{nd}, \mathrm{tbl}), \mathrm{cls},(\mathrm{blns}, \mathrm{bls}, \mathrm{bls})^{\prime}\right),\left(\mathrm{d}, \mathrm{d}^{\prime}\right)\right)=\operatorname{ctx}(\mathrm{cnm})$ in

126(b). bln $\in \mathrm{cls} \wedge$
126(c). bno \in dom sel_btbl(tbl(bln)) end
128. If cmd is a subcontract command then

Let the subcontract command and the cnm named contract in ctx be
 respectively ((ce,cr,(d, d' $)$), (nd,tbl), cls, (blns,bls,bls')).
(a) contract name cnm must be defined in context ctx;
(b) contract name cnm^{\prime} must not be defined in context ctx;
(c) the calendar period of the subcontract must be within that of the contract from which it derives;
(d) the net descriptors nd and nd^{\prime} must be identical;
(e) the tables tbl and tbl' and must be identical and
(f) the set, cls', of bus line names that are the scope of the subcontracting must be a subset of bls'.

136 \qquad

- We do not here bring any narrated or formalised description of the semantics of contracts and actions.
- First such a description would be rather lengthy.
- Secondly a specification would be more of a requirements prescription.

```
128. wf_Act(mkSub(cnm,nco:(cnm',co:((ce',cr',(\mp@subsup{d}{}{\prime\prime},\mp@subsup{\textrm{d}}{}{\prime\prime\prime})),(nd',tbl'),cls',(blns',blns',},\textrm{bls}\mp@subsup{\textrm{s}}{}{\prime\prime\prime})))))(ctx
128(a). cnm \in dom ctx }
128. let co' = ((ce,cr,(d,d')),(nd,tbl),cls,(blns,blns',bls'))=\operatorname{ctx}(cnm) in
128(b). }\mp@subsup{\textrm{cnm}}{}{\prime}\not\in\operatorname{dom}\mathrm{ tbl }
128(c). d}\leq\mp@subsup{\textrm{d}}{}{\prime\prime}\leq\mp@subsup{\textrm{d}}{}{\prime\prime\prime}\leq\mp@subsup{\textrm{d}}{}{\prime}
128(d). nd' = nd }
128(e). }\quad\mp@subsup{\textrm{tbl}}{}{\prime}=\textrm{tbl}
128(f). cls'}\subseteq\mp@subsup{\mathrm{ bls}}{}{\prime}\mathrm{ end
```

- Wellformedness of contracts, wf_CO(co) and wf_CO(co'), secures other constraints.

3.5. Management and Organisation

Definition: Management.

- Management is about resources:
- their acquisition,
- scheduling (over time),
- allocation (over locations),
- deployment (in performing actions) and
- disposal ("retirement").
- We distinguish between
- board-directed,
- tactical and
- strategic,
- operational
actions.
- Board-directed actions target mainly financial resources: obtaining new funds through conversion of goodwill into financial resources, acquiring and selling "competing" or "supplementary" business units.
- Strategic actions convert financial resources into production, service supplies and resources and vice-versa - and in this these actions schedule availability of such resources.
- Tactical actions mainly allocate resources.
- Operational actions order, monitor and control the deployment of resources in the performance of actions.

140
From Domains to Requirements

Definition: Management \& Organisation.

- The composite term management and organisation
- applies in connection with management as outlined just above and
- with organisation also outlined above.
- The term then emphasises the relations between the organisation and management of an enterprise.

The borderlines within management actions and across organisation "layouts" are fuzzy.

Definition: Organisation.

- Organisation is about
- the "grand scale",
* executive and strategic
* national, continental or global (world wide)
- (i) allocation of major resource (e.g., business) units, whether in a hierarchical, in a matrix, or in some other organigramspecified structure,
- (ii) as well as the clearly defined relations (which information, decisions and actions are transferred) between these units, and
- (iii) organisational dynamics.

Lecture Notes in Software Engineering

3.5.1. Transport System Examples

We shall only present sketchy examples of management and organsation.

- Executive actions:
- Deciding on major re-organisation of a transport net
* (for example introduction of toll roads or freeways,
* road pricing,
* major bridges across wide waters [potentially connecting two hitherto unconnected nets],
* and their management)
are executive actions.
- So are decisions on merging or splitting transport from or into several transport services.
- Reorganising an enterprise
* from one characterised by a "deep" hierarchy of management layers (a hierarchy which may very well exemplify highly centralised both administrative and functional monitoring and control)
* into a matrix of two "shallow" hierarchies, one which addresses tactical and operational management and one which addresses executive and strategic management - with the former (the operations) being replicated across geographical areas while the latter applies "globally" -
such reorganisations reflect executive actions (but are carried out by strategic and tactical management).

3.6. Human Behaviour

Definition: Human Behaviour.

- By human behaviour we shall here understand
- the way a human follows the enterprise rules and regulations
- as well as interacts with a machine:
* dutifully honouring specified (machine dialogue or) protocols,
* or negligently so,
* or sloppily not quite so,
* or even criminally not so!
- Human behaviour is a facet of the domain.
- We shall thus model human behaviour also in terms of it failing to react properly,
- i.e., humans as non-deterministic agents!
- Strategic actions: Adding or removing transport links, or major reorganisation of bus timetables are strategic actions. Splitting a(n own) contract into what is still to be operated and subcontracting other parts, for definite, to other bus operators are also strategic actions.
- Tactical actions: Insertion and cancellation of bus services are tactical actions. Subcontracting some parts of a timetable demanded service, for a short while, to other bus operators could be considered tactical actions.
- Operational actions: Commencing and thus, in general, allocating drivers to and sending these off on bus services are operational actions. So are announcing insertion of new (unscheduled) and cancellation of scheduled routes
\qquad
\qquad

3.7.2. Theories of Support Technologies 3.7.2.1. An Example

- Traffic (tf:TF), intrinsically, is a total function over some time interval, from time ($\mathrm{t}: \mathrm{T}$) to continuously positioned ($\mathrm{p}: \mathrm{P}$) vehicles ($\mathrm{tn}: \mathrm{TN}$).
- Conventional optical sensors sample, at regular intervals, the intrinsic train traffic.
- The result is a sampled traffic (stf:sTF).
- Hence the collection of all optical sensors, for any given net, is a partial function from intrinsic (itf) to sampled train traffics (stf).
- We need to express quality criteria that any optical sensor technology should satisfy - relative to a necessary and sufficient description of a closeness predicate.
\qquad
\qquad

3. 3. An onotose of Domain Faeses 3.7. Towards Theories of Domain Facets 3.7.2. Theories of Support Technologies 3.7.2.1. An Example

- For all intrinsic traffics, itf, and for all optical sensor technologies og, the following must hold:
- Let stf be the traffic sampled by the optical gates.
- For all time points, t , in the sampled traffic,
- those time points must also be in the intrinsic traffic,
- and, for all trains, tn, in the intrinsic traffic at that time,
- the train must be observed by the optical gates, and
- the actual position of the train and the sampled position must somehow be checkable to be close, or identical to one another.

Since hubs change state with time, $n: N$, the net needs to be part of any model of traffic.

```
type
    T, TN
    \(\mathrm{P}=\mathrm{HP} \mid \mathrm{LP}\)
    NetTraffic :: net: \(\mathrm{N} \times \operatorname{trf}:(\mathrm{V} \vec{m} \mathrm{P})\)
    iTF \(=\mathrm{T} \rightarrow\) NetTraffic
    \(\mathrm{sTF}=\mathrm{T} \vec{m}\) NetTraffic
    \(\mathrm{oG}=\mathrm{iTF} \xrightarrow{\sim} \mathrm{sTF}\)
value
    [close] c: NetTraffic \(\times \mathrm{TN} \times\) NetTraffic \(\xrightarrow{\sim}\) Bool
axiom
    \(\forall \mathrm{itt}: \mathrm{iTF}, \mathrm{og}: \mathrm{OG} \cdot\) let \(\mathrm{stt}=\mathrm{og}(\mathrm{itt})\) in
        \(\forall \mathrm{t}: \mathrm{T} \cdot \mathrm{t} \in \operatorname{dom} \mathrm{stt}\).
            \(\mathrm{t} \in \mathbb{D} \mathbb{O M}\) itt \(\wedge \forall \mathrm{Tn}: \mathrm{TN} \cdot \mathrm{tn} \in \operatorname{dom} \operatorname{trf}(\mathrm{itt}(\mathrm{t}))\)
            \(\Rightarrow \operatorname{tn} \in \operatorname{dom} \operatorname{trf}(\operatorname{stt}(\mathrm{t})) \wedge \mathrm{c}(\operatorname{itt}(\mathrm{t}), \operatorname{tn}, \mathrm{stt}(\mathrm{t}))\) end
```


3.7.3. A Theory of Rules \& Regulations

- There are, abstractly speaking, usually three kinds of languages involved wrt. (i.e., when expressing) rules and regulations (respectively when invoking actions that are subject to rules and regulations).
- Two languages, Rules and Reg, exist for describing rules, respectively regulations; and
- one, Stimulus, exists for describing the form of the [always current] domain action stimuli.

3.7.2.2. General

- The formal requirements can be narrated:
- Let Θ_{i} and Θ_{a} designate the spaces of intrinsic and actual-world configurations (contexts and states).
- For each intrinsic configuration model - that we know is support technology assisted -
- there exists a support technology solution,
- that is, a total function from all intrinsic configurations to corresponding actual configurations.
- If we are not convinced that there is such a function then there is little hope that we can trust this technology

type

$$
\begin{aligned}
& \Theta_{i}, \Theta_{a} \\
& \mathrm{ST}=\Theta_{i} \rightarrow \Theta_{a}
\end{aligned}
$$

axiom

\forall sts:ST-set, st:ST $\cdot \mathrm{st} \in \mathrm{sts} \Rightarrow \forall \theta_{i}: \Theta_{i}, \exists \theta_{a}: \Theta_{a} \cdot \mathrm{st}\left(\theta_{i}\right)=\theta_{a}$

A syntactic stimulus, sy_sti, denotes a function, se_sti:STI: $\Theta \rightarrow \Theta$, from any configuration to a next configuration

- A syntactic rule, sy_rul:Rule, has as its semantics, its meaning, rul:RUL,
- a predicate over current and next configurations, $(\Theta \times \Theta) \rightarrow$ Bool,
- where these next configurations have been caused, by the stimuli. These stimuli express:
- If the predicate holds then the stimulus will result in a valid next configuration.

```
type
Stimulus, Rule, \(\Theta\)
STI \(=\Theta \rightarrow \Theta\)
RUL \(=(\Theta \times \Theta) \rightarrow\) Bool
value
    meaning: Stimulus \(\rightarrow\) STI
    meaning: Rule \(\rightarrow\) RUL
    valid: Stimulus \(\times\) Rule \(\rightarrow \Theta \rightarrow\) Bool
    \(\operatorname{valid}(\) sy_sti,sy_rul \()(\theta) \equiv\) meaning \((\) sy_rul \()(\theta,(\) meaning \((\) sy_sti \())(\theta))\)
    valid: Stimulus \(\times\) RUL \(\rightarrow \Theta \rightarrow\) Bool
    \(\operatorname{valid}(\) sy_sti,se_rul \()(\theta) \equiv \operatorname{se\_ rul}(\theta,(\) meaning \((\) sy_sti \())(\theta))\)
```

- A syntactic regulation, sy_reg:Reg (related to a specific rule), stands for, i.e., has as its semantics, its meaning,
- a semantic regulation, se_reg:REG,
- which is a pair.
- This pair consists of
* a predicate, pre_reg:Pre_REG, where Pre_REG $=(\Theta \times \Theta) \rightarrow$ Bool,
* and a domain configuration-changing function, act_reg:Act_REG, where Act_REG $=\Theta \rightarrow \Theta$,
* that is, both involving current and next domain configurations.

3. 3.An Onotoges of Dominif Facees 3.7. Towards Theories of Domain Facets 3.7.3. A Theory of Rulles \& Regultions

- The two kinds of functions express:
* If the predicate holds,
* then the action can be applied.
- The predicate is almost the inverse of the rules functions.
- The action function serves to undo the stimulus function.
ecture Notes in Software Engineering

```
type
    Reg
    Rul_and_Reg = Rule }\times\mathrm{ Reg
    REG = Pre_REG }\times\mathrm{ Act_REG
    Pre_REG = \Theta }\times\Theta->\mathrm{ Bool
    Act_REG = \Theta->\Theta
value
    interpret: Reg }->\mathrm{ REG
```

- The idea is now the following:
- Any action of the system, i.e., the application of any stimulus, * may be an action in accordance with the rules,
* or it may not.
- Rules therefore express whether stimuli are valid or not in the current configuration.
- And regulations therefore express whether they should be applied, and, if so, with what effort.

160
3. 3. An Onotoses of omamin Faceses 3.7. Towards Theories of Domain Facets 3.7.3. A Theory of Rules \& Regulations

axiom

```
\(\forall\) (sy_rul,sy_reg):Rul_and_Regs .
    let se_rul \(=\) meaning(sy_rul),
        (pre_reg,act_reg) \(=\) meaning(sy_reg) in
    \(\forall\) sy_sti:Stimulus, \(\theta: \Theta\).
        \(\sim\) valid(sy_sti,se_rul)( \(\theta\) )
            \(\Rightarrow\) let \(\theta^{\prime}=(\) meaning \((\) sy_sti \()(\theta)\) in
            pre_reg \(\left(\theta, \theta^{\prime}\right)\)
            \(\Rightarrow \exists \mathrm{n} \theta: \Theta \cdot \operatorname{act}\) reg \(\left(\theta^{\prime}\right)=\mathrm{n} \theta \wedge\) se_rul \((\theta, \mathrm{n} \theta)\)
```

 end end
 - More specifically,
- there is usually, in any current system configuration, given a set of pairs of rules and regulations.
- Let (sy_rul,sy_reg) be any such pair.
- Let sy_sti be any possible stimulus.
- And let θ be the current configuration.
- Let the stimulus, sy_sti, applied in that configuration result in a next configuration, θ^{\prime}, where $\theta^{\prime}=($ meaning $($ sy_sti) $)(\theta)$.
$-\operatorname{Let} \theta^{\prime}(=($ meaning $($ sy_sti) $)(\theta))$ violate the rule, i.e., \sim valid(sy_sti,sy_rul) $(\theta$
- then if predicate part, pre_reg, of the meaning of the regulation, sy_reg, holds in that violating next configuration, pre_reg $\left(\theta, \theta^{\prime}\right.$
- then the action part, act_reg, of the meaning of the regulation, sy_reg, must be applied, act_reg $\left(\theta^{\prime}\right)$, to remedy the situation.
- It may be that the regulation predicate fails to detect applicability of regulations actions.
- That is, the interpretation of a rule differs, in that respect, from the interpretation of a regulation.
- Such is life in the domain, i.e., in actual reality

3.7.4. A Theory of Management \& Organisation

164
3. 3. An Onotobsy of Domamif Fecects 3.7. Towards Theories of Domain Facets S.7.5. A Theory of Human Behaviour

type

Action $=\Theta \xrightarrow{\sim} \Theta$-infset

value

hum int: Rule $\rightarrow \Theta \rightarrow$ RUL-infset
action: Stimulus $\rightarrow \Theta \rightarrow \Theta$
hum_beha: Stimulus \times Rules \rightarrow Action $\rightarrow \Theta \xrightarrow{\sim} \Theta$-infset
hum_beha(sy_sti,sy_rul) $(\alpha)(\theta)$ as θ set

post

θ set $=\alpha(\theta) \wedge$ action $($ sy_sti $)(\theta) \in \theta$ set
$\wedge \forall \theta^{\prime}: \Theta \cdot \theta^{\prime} \in \theta$ set \Rightarrow
\exists se_rul:RUL:se_rul \in hum_int $($ sy_rul $)(\theta) \Rightarrow \operatorname{se} _$rul $\left(\theta, \theta^{\prime}\right)$

3.7.5. A Theory of Human Behaviour

- Commensurate with the above, humans interpret rules and regulations differently,
- and not always "consistently" - in the sense of repeatedly applying the same interpretations.
- Our final specification pattern is therefore:
- The above is, necessarily, sketchy:
- There is a possibly infinite variety of ways of interpreting some rules.
- A human, in carrying out an action, interprets applicable rules and chooses one which that person believes suits some (professional, sloppy, delinquent or criminal) intent.
- "Suits" means that it satisfies the intent,
* i.e., yields true on the pre/post-configuration pair,
* when the action is performed -
* whether as intended by the ones who issued the rules and regulations or not.
- We do not cover the case of whether an appropriate regulation is applied or not

End of Lecture 4: DOMAINS: Scripts - Human Behaviour

4. An Ontology of Requirements Constructions

Definition: Requirements.

- A condition or capability
- needed by a user
- to solve a problem or achieve an objective [IEEEStd.610.12].

Definition: Machine.

- By the machine we understand
- the hardware
- plus software
- that implements some requirements, i.e., a computing system.
\qquad

Definition: Requirements Unit.

- By a requirements unit
- we mean a single sentence
- which expresses an "isolated" requirements.
- (We omit charaterising "single sentence" and"isolated".)

Definition: Requirements Prescription.

- By a requirements prescription
- we mean just that: the prescription of some requirements.
- Sometimes, by requirements prescription,
- we mean a relatively complete and consistent specification of all requirements,
- and sometimes just a requirements unit.

Definition: Requirements Engineering. The engineering of the development of a requirements prescription,

- from identification of requirements stake-holders,
- via requirements acquisition,
- requirements analysis, and
- requirements prescription to
- requirements validation and
- requirements verification.
- We shall just focus on requirements prescription,
- that is, the modelling of requirements.

170

Definition: Business Process Engineering.

- By business process engineering we shall understand
- the design,
- the determination,
of business processes.
- In doing business process engineering
- one is basically designing,
- i.e., prescribing entirely new business processes.

4.1. Business Process Re-engineering

Definition: Business Process.

- By a business process we shall understand
- a behaviour of an enterprise, a business, an institution, a factory.
- A business process reflects the ways in which a business conducts its affairs, and is a facet of the domain.
- Other facets of an enterprise are those of its
- intrinsics,
- support technology,
- rules and regulations,
- management and organisation, and
- human behaviour.

Definition: Business Process Re-engineering.

- By business process reengineering we shall understand
- the re-design,
- the change,
of business processes.
- In doing business process re-engineering
- one is basically carrying out change management.

4.1.1. The Kinds of Requirements

- We distinguish between three kinds of requirements:
- the domain requirements are those requirements which can be expressed solely using terms of the domain;
- the machine requirements are those requirements which can be expressed solely using terms of the machine, and
- the interface requirements are those requirements which must use terms from both the domain and the machine in order to be expressed.

174

4. An Ontology of Requirements Constructions 4.1. Business Process Re-engineering 4.1.2. Goals versus Requirements

- We make a distinction between goals and requirements.
- Goals are what we
- expect satisfied by the software
- implemented from the requirements.
- But goals could also be
- of the system
- for which the software is required.
- First we exemplify the latter, then the former.

4.1.2. Goals Versus Requirements

- Whereas
- a domain description presents a domain as it is,
- a requirements prescription presents a domain
* as it would be
* if some required machine
* was implemented (from these requirements).
- The machine is the hardware plus software to be designed from the requirements.
- That is, the machine is what the requirements are about.

4.1.2.1. Goals of a Toll Road System

- A goal for a toll road system may be
- to decrease the travel time between certain hubs and
- to lower the number of traffic accidents between certain hubs,

4.1.2.3. Arguing Goal-satisfaction of a Toll Road System

- By endowing links and hubs with average traversal times for both ordinary road and for toll road links and hubs
- one can calculate traversal times between hubs
- and thus argue that the toll road system satisfies "quicker" traversal times.
- By endowing links and hubs with traffic accident statistics (real, respectively estimated)
- for both ordinary road and for toll road links and hubs
- one can calculate estimated traffic accident statistics between all hubs
- and thus argue that the combined ordinary road plus toll road system satisfies lower traffic fatalities.
4.12 . 41 Bever

4.1.2.4. Arguing Goal-satisfaction of Toll Road System Software

- By recording
- tickets issued and collected at toll booths and
- toll road hubs and links entered and left
- as per the requirements specification brought in forthcoming examples (Sects. -),
- we can eventually argue that
- the requirements of the forthcoming examples (Sects. -)
- help satisfy the goal of the example ?? on page ??.
Lecture Notes in Software Engineering
- We shall assume that the (goal and) requirements engineer elicit both \mathcal{G} oals and \mathcal{R} equirements from requirements stake-holders.
- $\mathcal{D}, \mathcal{R} \models \mathcal{G}$
- The \mathcal{G} oals can be argued to hold
- by reasoning over the \mathcal{R} equirements
- and the Domain.
- But we shall focus only on
- domain and
- interface
requirements such as "derived" from domain descriptions.

4.1.3. Re-engineered Nets

- The nets defined in Lecture 3 could be of any topology.
- They could consist of two or more nets that were not linked to one another;
- they could consist of connected nets or nets that were acyclic; etc.;
- and the nets were not specifically road, rail, sea lane or air lane nets.

182

Figure 3: A Toll Road System

- We shall now consider a special kind of road nets: basically the road nets we have in mind
- are linear sequences of pairs of links of opposite direction link "states",
- where these links, let us call them toll road links, are connected to toll road hubs;
- where, in addition, these toll road hubs are linked, via toll plazas (i.e., "special" hubs) to toll road hubs
- by means of on/off links.
- We do not consider the general nets that are (possibly) connected to the toll plazas.
- The pragmatics behind these nets is the following:
- Drivers enter and leave the toll road nets at toll road plazas;
- collect tickets from toll road plaza ticket-issuing booths when entering the toll road net and
- present these at toll road plaza ticket-collection booths and pay according to some function of the time and length (from entry to exit plaza) driven on the toll road net when leaving the net;
- drivers are otherwise free to "circle" the toll road net as they see fit:
* multiple times "up and down" the net,
* circling toll road hubs,
* etc.
- Our sketch centers around a toll road net with toll booth plazas.
- The BPR focuses
- first on entities, actions, events and behaviours,
- then on the six domain facets.

186
4. An Ontology of Requirements Constructions 4.1. Business Process Re-engineering 4.1.3. Re-engineered Nets
\qquad yirements

130. Re-engineered Actions:

- Cars enter and leave the toll road net through one of the toll plazas.
- Upon entering, car drivers receive, from the entry booth, a plastic/paper/electronic ticket which they place in a special holder in the front window.
- Cars arriving at intermediate toll road intersections choose, on their own, to turn either "up" the toll road or "down" the toll road - with that choice being registered by the electronic ticket.
- Cars arriving at a toll road intersection may choose to "circle" around that intersection one or more times - with that choice being registered by the electronic ticket.
- Upon leaving, car drivers "return" their electronic ticket to the exit booth and pay the amount "asked" for.

129. Re-engineered Entities:

- We shall focus on a linear sequence of toll road intersections (i.e., hubs) connected by pairs of one-way (opposite direction) toll roads (i.e., links).
- Each toll road intersection is connected by a two way road to a toll plaza.
- Each toll plaza contains a pair of sets of entry and exit toll booths.
- (Sect. brings more details.)

131. Re-engineered Events:

- A car entering the toll road net at a toll both plaza entry booth constitutes an event.
- A car leaving the toll road net at a toll both plaza entry booth constitutes an event.
- A car entering a toll road hub constitutes an event.
- A car entering a toll road link constitutes an event.

132. Re-engineered Behaviours:

- The journey of a car,
- from entering the toll road net at a toll booth plaza,
- via repeated visits to toll road intersections
- interleaved with repeated visits to toll road links
- to leaving the toll road net at a toll booth plaza,
constitutes a behaviour - with
- receipt of tickets,
- return of tickets and
- payment of fees
being part of these behaviours.
- Notice that a toll road visitor is allowed to cruise "up" and "down" the linear toll road net - while (probably) paying for that pleasure (through the recordings of "repeated" hub and link entries).

190

136. Re-engineered Scripts:

- No need.

137. Re-engineered Management and Organisation:

- There is a definite need for domain describing
- the management and possibly distributed organisation
- of toll booth plazas.

138. Re-engineered Human Behaviour:

- Humans, in this case car drivers, may not change their behaviour in the spectrum from diligent and accurate via sloppy and delinquent to outright traffic-law breaking - so we see no need for any "re-engineering"

133. Re-engineered Intrinsics:

- Toll plazas and abstracted booths are added to domain intrinsics.

134. Re-engineered Support Technologies:

- There is a definite need for domain-describing the failure-prone toll plaza entry and exit booths.

135. Re-engineered Rules and Regulations:

- Rules for entering and leaving toll booth entry and exit booths must be described as must related regulations.
- Rules and regulations for driving around the toll road net must be likewise be described.

4.2. Domain Requirements

Definition: Domain Requirements.

- By domain requirements we understand
- such requirements
- (save those of business process reengineering)
- which can be expressed sôlely by using professional terms of the domain.

Definition: Domain Requirements Facet.

- By domain requirements facets we understand
- such domain requirements
- that basically arise from either of the following operations on domain descriptions (cum requirements prescriptions):
* domain projection,
* domain determination,
* domain extension,
* domain instantiation and
* domain fitting.

194

- If the domain description is an informal one, say in English,
- it may have expressed that certain entities, functions, events and behaviours
- might be in (some instantiations of) the domain.
- If not "projected away" the similar, i.e., informal requirements prescription
- will express that these entities, functions, events and behaviours
- shall be in the domain and
- hence will be in the environment of the machine being requirements prescribed.

4.2.1. Projection

Definition: Projection.

- By projection we shall here, in a somewhat narrow sense, mean - a technique that applies to domain descriptions and
- yields requirements prescriptions.
- Basically projection "reduces" a domain description
- by "removing" (or, but rarely, hiding)
* entities,
* functions,
* events and
* behaviours
from the domain description.

November 12, 2010, 11.3, E, Eusidesest Lectures, oft. 11-2.2, 2010

Lecture Notes in Software Engineering

\qquad

4.2.1.1. Example

Keep

- N, H, L,
- obs_Hs,
- obs_Ls,
- HI, LI,
- obs_HI,
- obs_LI,
- obs_Lls,
- obs_Hls
- PLAN, LHIM,
- wf_PLAN
- ND, wf_ND,
- $\mathrm{L} \Sigma, \mathrm{L} \Omega$,
- obs_L Σ, obs_L Σ,
- $\mathrm{H} \Sigma, \mathrm{H} \Omega$,
- obs_H Σ, obs_H Σ,
- wf_TF.

4.2.2. Instantiation

Definition: Instantiation.

- 'To represent (an abstraction) by a concrete instance' [mw2004].
- Domain instantiation is a domain requirements facet.
- It is an operation performed on a domain description (cum requirements prescription).
- Where, in a domain description certain entities and functions are left undefined,
- domain instantiation means
- that these entities or functions are now instantiated
- into constant values.

198 \square
4. An Ontology of Requirements Construction 4. Domain Requirements 4.22 . Instantiation 4.2.1. En
(c) The wellformedness of toll road nets are expressed next.
i. The length of the toll road links sequence is one less than the length of the toll road to plaza hubs and links sequence. The idea is that the toll road links at position i connect the toll road hubs at positions i and $i+1$ of the toll road to plaza hubs and links sequence - i being the indexes of the toll road links sequence.
ii. All links have distinct link identifiers.
iii. All hubs and plazas have distinct hub identifiers.
iv. From the links in the pairs of links, $\left(l_{i}, l_{i}^{\prime}\right)$, of position i in the toll road links component one observes exactly the same two element set of hub identifiers,
v . and these are the identifiers of the hubs at positions i and $i+1$ of the toll road to plaza hubs and links sequence.
vi. The plaza to toll road hub links are indeed connected to these plazas and hubs; and
vii. the plaza and toll road hubs are connected only to the links as mentioned above.

4.2.2.1. Example

- The following instantiation prescription only covers the static aspects of the toll road net, i.e., simple entities.
- That is, the states of hubs and links will first be dealt with in Sect.

139. A toll road net (a subnet of a larger previously described net) consists of a pair: toll road links and toll road to plaza hubs and links.
(a) The toll road links component is a linear sequence of one or more pairs of toll road links.
(b) The toll road to plaza hubs and links component is a linear sequence of two or more triples of a plaza, a (plaza to toll road hub) link and a toll road hub.

Lecture Notes in Software Engineering
(d) A toll road plaza is like a hub, with an observable hub identifier (and equipped with ticket-issuing tool booths and ticket-collection and payment toll booths).

type

139. $\mathrm{TRN}^{\prime}=\mathrm{TRLs} \times$ PHLs
140. $\operatorname{TRN}=\{\mid$ trn:TRN \cdot.wf_TRN $(\operatorname{trn}) \mid\}$

139(a). TRLs $=(\mathrm{L} \times \mathrm{L})^{*}$
139(b). PHLs $=(\mathrm{PZ} \times \mathrm{L} \times \mathrm{H})^{*}$

value

139(c). wf_TRN: TRN \rightarrow Bool
139(c). wf_TRN(trn:(trls,phls)) \equiv
139((c))i. len trls $+1=$ len phls \wedge
$139((\mathrm{c}))$ ii. \quad card $\times \operatorname{tr} _\mathrm{Hs}(\operatorname{trn})=\mathbf{c a r d} \times \operatorname{xtr} _\mathrm{HIs}(\operatorname{trn}) \wedge$
139 ((c)) iii. \quad card x tr_Ls(trn) $=$ card xtr_LIs(trn)
$139((\mathrm{c}))$ iv. $\quad \forall \mathrm{i}:$ Nat. $\cdot \mathrm{i} \in$ inds trls \Rightarrow
139((c))iv. let $\left(1, l^{\prime}\right)=\operatorname{trsl}(\mathrm{i}),\left(\mathrm{p}, \mathrm{l}^{\prime \prime}, \mathrm{hi}\right)=$ phls(i), $\left(\ldots, \mathrm{l}^{\prime \prime \prime}, \mathrm{hj}\right)=\mathrm{phls}(\mathrm{i}+1)$ in
139((c))iv. \quad obs_HIs(l) $=$ obs_HIs(1 $\left.{ }^{\prime}\right)=$
139((c))v. \{obs_HI(hi),obs_HI(hj)\} ^
139((c))vii. case i of
139((c))vii. $\quad 1 \rightarrow$ obs_LIs(hi) $=x \operatorname{tr} _$LIs $\left(\left\{1, l^{\prime}, l^{\prime \prime}\right\}\right)$,
139((c))vii. len trsl - $1 \rightarrow$ obs_LIs(hj) $=x \operatorname{tr} _\operatorname{LIs}\left(\left\{1,1^{\prime}, l^{\prime \prime \prime}\right\}\right)$,
139((c))vii.
$139((\mathrm{c})$) vii.
$139((\mathrm{c}))$ vii. $\quad \forall \mathrm{i}:$ Nat $\cdot \mathrm{i} \in$ inds phls \Rightarrow
139((c))vii. let $(\mathrm{p}, \mathrm{l}, \mathrm{h})=$ phls(i) in obs_HIs(1)=xtr_HIs $(\{\mathrm{p}, \mathrm{h}\}) \wedge$
$139((\mathrm{c}))$ vii. obs_LIs(p) $=\{$ obs_LI(1) $\}$ end
\qquad

202
4. An Onter or Ream Domains to Requiremens

4.2.2.2. Abstraction: From Concrete Toll Road Nets to Abstract Nets

140. From concrete toll road nets, trn:TRN, one can abstract the nets, $\mathrm{n}: \mathrm{N}$, of Items 1-11.
(a) the abstract net contains the hubs of the concrete net,
(b) and the links likewise.

value

140. abs_N: TRN $\rightarrow \mathrm{N}$
141. abs_N(trn) as n

140(a). obs_Hs(n) $=$ xtr_Hs(trn) \wedge
140(b). obs_Ls(n) $=x t r _L s(t r n)$
type
139(d). PZ
value
139(d). obs_HI: PZ \rightarrow HI

```
xtr_Hs: TRN \(\rightarrow\) H-set
xtr_Hs(_,phls) \(\equiv\{\mathrm{pz}, \mathrm{h} \mid(\mathrm{pz}, \mathrm{l}, \mathrm{h}):(\mathrm{PZ} \times \mathrm{L} \times \mathrm{H}) \cdot(\mathrm{pz}, \mathrm{l}, \mathrm{h}) \in\) elems phls \(\}\)
xtr Ls: TRN \(\rightarrow\) L-set
\(x \operatorname{xtr}^{2} \mathrm{Ls}(\) trls, phls\() \equiv\)
    \(\left\{1, l^{\prime} 11, l^{\prime}: \mathrm{L} \cdot\left(\mathrm{l}, \mathrm{l}^{\prime}\right) \in\right.\) elems \(\left.\operatorname{trls}\right\} \cup\{1 \mid(\mathrm{pz}, \mathrm{l}, \mathrm{h}):(\mathrm{PZ} \times \mathrm{L} \times \mathrm{H}) \cdot(\mathrm{pz}, \mathrm{l}, \mathrm{h}) \in\) elems phls \(\}\)
```

xtr_HIs: TRN \rightarrow HI-set, \quad xtr_HIs(trn) \equiv \{obs_HI(h)|h:(H|PZ).h \in xtr_Hs(trn) $\}$
xtr_LIs: TRN \rightarrow LI-set, $\quad x \operatorname{tr} _$LIs $(\operatorname{trn}) \equiv\left\{o b s _L I(1) \mid 1: L \cdot l \in \operatorname{xtr} _L s(\operatorname{trn})\right\}$
xtr_HIs: H-set \rightarrow HI-set, xtr_HIs(hs) $=\{$ obs_LI(h)|h:H•h \in hs $\}$
xtr_LIs: L-set \rightarrow LI-set, \quad xtr_LIs $(1 \mathrm{~s})=\{$ obs_LI(1) $\mid 1: \mathrm{L} \cdot \mathrm{l} \in \mathrm{ls}\}$
Lecture Notes in Software Engineering
4. An Ontology of Requirements Constructions 4.2. Domain Requirements 4.2.2. Instantitation 4.2.2.3. Theorem

4.2.2.3. Theorem

141. One can prove the following theorem:

- If trn satisfies wf_TRN(trn)
- then abs_N(trn)
- satisfies Axioms 7-8 (Page 14).

141. \forall trn:TRN \cdot wf_TRN(trn) \models abs_N(trn) satisfies axioms 7.-10.

4.2.3. Determination

Definition: Determination.

- Domain determination is a domain requirements facet
- It is an operation performed on a domain description cum requirements prescription.
- Any nondeterminism expressed by either of these specifications which is not desirable for some required software design must be made deterministic (by this requirements engineer performed operation).

206
4. An Ontology of Requirements Constructions 4.2. Domain Requirements 4.2.3. Determination 4.2.3.1. Example \qquad tifiers $h j_{i}, h k_{i}$, respectively, always and only allow traffic in opposite directions, that is, are always in respective states $\left\{\left(h j_{i}, h k_{i}\right)\right\}$ and $\left\{\left(h k_{i}, h j_{i}\right)\right\}$.
143. Hub, h, states, $h \sigma$, are constant and allow traffic onto connected links not closed for traffic in directions from hub h.
144. Plazas allow traffic only onto connected plaza to hub links of the toll road net. (Whatever other links, "outside" the toll road net, the plazas may be connected to is covered in the last line of the axiom below.)

4.2.3.1. Example

- We shall focus on making more specific the rather generically defined nets, hubs and links.
- There are no traffic signals within the toll road net and pairs of toll road links are "one way, opposite direction" links.

Figure 4: Four example hub states: plaza, end hubs, "middle" hub

```
Lecture Notes in Software Engineering
4. An Ontology of Requirements Constructions 4.2. Domain Requirements 4.2.3. Determination 4.2.3.1. Example
```


axiom

\forall (trls,phls):TRN •
$\forall \mathrm{i}:$ Nat $\cdot \mathrm{i} \in$ inds trls
let $\left(1, l^{\prime}\right)=\operatorname{trls}(\mathrm{i}),\left(\mathrm{p}, \mathrm{l}^{\prime \prime}, \mathrm{h}\right)=\operatorname{phls}(\mathrm{i})$ in
case i of
$1 \rightarrow$ obs_H $\Sigma(h)=\left\{\left(\right.\right.$ obs_LI(l $\left.{ }^{\prime \prime}\right)$, obs_LI(l) $)$
(obs_LI(l^{\prime}),obs_LI($\left.l^{\prime \prime}\right)$), (obs_LI($\left.l^{\prime}\right)$, obs_LI(l)),
(obs_LI($\left.\left.\left(1^{\prime \prime}\right), o b s _L I\left(l^{\prime \prime}\right)\right)\right\}$,
$-\rightarrow$ let $\left(1^{\prime \prime \prime}, l^{\prime \prime \prime \prime}\right)=\operatorname{trls}(\mathrm{i}-1)$ in
obs_H $\Sigma(h)=\left\{\left(\right.\right.$ obs_LI $\left(l^{\prime \prime}\right)$, obs_LI(l) $)$,
(obs_LI($\left.\left.l^{\prime \prime}\right), o b s _L I\left(l^{\prime \prime \prime \prime}\right)\right),\left(o b s _L I\left(l^{\prime \prime}\right), o b s _L I\left(l^{\prime \prime}\right)\right)$,
(obs_LI($\left.l^{\prime \prime}\right)$, obs_LI($\left.\left.l^{\prime \prime}\right)\right),\left(o b s _L I\left(l^{\prime \prime \prime}\right), o b s _L I(1)\right)$,
(obs_LI(l' $),$ obs_LI(l(l'")) $),\left(o b s _L I\left(l^{\prime \prime \prime}\right), o b s _L I\left(l^{\prime \prime \prime}\right)\right)$,
(obs_LI(l' l^{\prime},obs_LI(l)) $\}$ end end end \wedge
et $\left(l^{l^{\prime \prime}}, l^{l^{\prime \prime \prime}}\right)=\operatorname{trls}($ len $\operatorname{trsl}),\left(p, l^{\prime \prime}, h\right)=\operatorname{phls}(1+$ len $\operatorname{trsl})$ in
obs_H $\Sigma(\mathrm{h})=\left\{\left(\right.\right.$ obs_LI $\left(\mathrm{l}^{\prime \prime}\right)$, obs_LI($\left.\left.\mathrm{l}^{\prime \prime \prime \prime}\right)\right)$ (obs_LI($\left.\left(l^{\prime \prime \prime}\right), o b s _L I\left(l^{\prime \prime}\right)\right),\left(o b s _L I\left(l^{\prime \prime \prime}\right), o b s _L I\left(l^{\prime \prime \prime}\right)\right)$, (obs_LI($\left(1^{\prime \prime}\right)$, obs_LI($\left.\left.\left(1^{\prime \prime}\right)\right)\right\}$ end \wedge
$\forall\left(\mathrm{p}, \mathrm{l}^{\prime \prime}, \quad\right):(\mathrm{PZ} \times \mathrm{L} \times \mathrm{H}) \cdot\left(\mathrm{p}, \mathrm{l}^{\prime \prime}, _\right) \in$ elems phls \Rightarrow
let lis $=$ obs_LIs (p) assert: obs_LI $\left(l^{\prime \prime}\right) \in$ lis in
obs_H $\Sigma(\mathrm{p})=\left\{\left(\mathrm{li}\right.\right.$, obs_LI $\left.\left(\mathrm{l}^{\prime \prime}\right)\right),\left(\right.$ obs_LI $\left.\left.\left(\mathrm{l}^{\prime \prime}\right), \mathrm{li}\right) \mid \mathrm{li}: L I \cdot l i \in \operatorname{lis}\right\}$ end

- In the last line of the wellformedness axiom above we express that
- the plaza maybe connected to many links not in the toll road net and
- that the plaza is open for all traffic from these into the net (via $I^{\prime \prime}$),
- from I' to these
- and that traffic may even reverse at the plazas,
- that is, decide to not enter the toll road net after having just visited the plaza.

Start of Lecture 6: REQUIREMENTS - from Extension "out"

\qquad
\qquad 4.2.4. Extension

Figure 5: Entry and Exit Tool Booths
\qquad

4.2.4.1. Intuition

- A toll road system is delimited by toll plazas with entry and exit booths with their gates.
- To get access, from outside, to the roads within the toll road system, a car must pass through an entry booth and its entry gate. To leave the roads within the toll road system a car must pass through an exit booth and its exit gate.
- Cars collect tickets upon entry and return these tickets upon exit and pay a fee for having driven on the toll roads.
- The gates help ensure that cars have collected tickets and have paid their dues.
- The following is a prolonged example.
- It contains three kinds of formalisations:
- a RAISE/CSP model,
- a Duration Calculus model [zcc+mrh2002,olderogdirks2008] and
- a Timed Automata model [AluDil:94,olderogdirks2008].
- The narrative for all three models are given when narrating the RAISE/CSP model.
\qquad

Figure 6: A toll plaza entry booth
\qquad 4.2.4. Extension 4.2.4.2. Descripitions 4.2.4.2.1 A Rarse/CsP Model

4.2.4.2. Descriptions

4.2.4.2.1. - A RAISE/CSP Model•

We use the CSP property [TheSEBook123, CARH:Electronic] of RSL.

\oplus Toll Booth Plazas \oplus

- With respect to toll road systems we focus on just their plazas: that is, where cars enter and leave the systems.
- The below description is grossly simplified: instead of plazas having one or more entry and one or more exit booths (both with gates), we just assume one (pair: booth/gate) of each.

216

\oplus Cars \oplus

148. There are vehicles.
149. Vehicles have unique vehicle identifications.
```
type
148. V
149. VId
value
149. obs_VId: V }->\mathrm{ VId
axiom
149. }\forall\textrm{v},\mp@subsup{\textrm{v}}{}{\prime}:\textrm{V}\cdot\textrm{v}\not=\mp@subsup{\textrm{v}}{}{\prime}=>\mathrm{ obs_VId(v)}\not==\mathrm{ obs_VId(v
```

145. A toll plaza consists of a one pair of an entry booth and and entry gate and one pair of an exit booth and an exit gate.
146. Entry booths consist of an entry sensor, a ticket dispenser and an exit sensor.
147. Exit booths consist of an entry sensor, a ticket collector, a payment display and a payment component.

type

145. $\mathrm{PZ}=(\mathrm{EB} \times \mathrm{G}) \times(\mathrm{XB} \times \mathrm{G})$
146. $\mathrm{EB}=\ldots$
147. $\mathrm{XB}=\ldots$

\oplus Entry Booths \oplus

- The description now given is an idealisation.
- It assumes that everything works:
- that the vehicles behave as expected and
- that the electro-mechanics of booths and gates do likewise.

150. An entry_sensor registers whether a car is entering the entry booth or not,
(a) that is, for the duration of the car passing the entry_sensor that sensor senses the car identification cid
(b) otherwise it senses "nothing".

151. A ticket_dispenser

(a) either holds a ticket or does not hold a ticket, i.e., no_ticket;
(b) normally it does not hold a ticket;
(c) the ticket_dispenser holds a ticket soon after a car has passed the entry_sensor;
(d) the passing car collects the ticket -
(e) after which the ticket_dispenser no longer holds a ticket.

152. An exit_sensor

(a) registers the identification of a car leaving the toll booth
(b) otherwise it senses "nothing".
\qquad

\oplus The Entry Plaza System \oplus

type

C, CI
$\mathrm{G}=$ open | close
TK $==$ Ticket \mid no_ticket

value

obs_CI: (C|Ticket) \rightarrow CI

channel

entry_sensor:CI
ticket_dispenser:Ticket
exit_sensor:CI
gate_ch:G

value

vs:V-set
eb:EB,xb:XB,eg,xg:G

\oplus Gates \oplus

153. A gate

(a) is either closed or open;
(b) it is normally closed;
(c) if a car is entering it is secured set to close (as a security measure);
(d) once a car has collected a ticket it is set to open;
(e) and once a car has passed the exit-sensor it is again set to close.

```
system: G }\times\textrm{EB}\times\textrm{V}\mathrm{ -set }\times\textrm{XB}\times\textrm{G
system(eg,eb,vs,xb,xg) \equiv
    |{car(obs_CI(c),c)|c:C.c \in cs} | entry_booth(eb) | entry_gate(eg) | ...
car: CI }\times\mathrm{ C }->\mathrm{ out entry_sensor,exit_sensor
            in ticket_dispenser Unit
car(ci,c) \equiv
    entry_sensor!ci ;
    let ticket = ticket_dispenser ? assert: ticket }\not=\mathrm{ no_ticket in
    ticket_dispenser ! no_ticket ;
    exit_sensor! ci ;
    car(add(ticket,c)) end
```

```
entry_booth: Unit \(\rightarrow\) in entry_sensor, exit_sensor
    out ticket_dispenser
    out gate_ch Unit
```

entry_booth (b) \equiv
gate_ch! close ;
let ci $=$ entry_sensor $?$ in
ticket_dispenser! make_ticket(cid)
let res $=$ ticket_dispenser $?$ in assert: res = no_ticket ;
gate_ch! open ;
let $\mathrm{ci}^{\prime}=$ exit_sensor ? in assert: $\mathrm{ci}^{\prime}=\mathrm{ci}$;
gate_ch! close ;
entry_booth(add_Ticket(ticket,b)) end end end

4.2.4.2.2. - A Duration Calculus Model•

- We use the Duration Calculus [zcc+mrh2002,olderogdirks2008] extension to RSL.
- We abstract the channels of the RAISE/CSP model
- to now be Boolean-valued variables.

type

$\mathrm{ES}=$ Bool [true=passing, false=$=$ not_passing $]$
TD $=$ Bool [true=ticket, false=no_ticket]
$\mathrm{G}=$ Bool [true=open, false=closing Пclosed Пopening]
XS $=$ Bool [true=car_has_just_passed, false=car_passing $\|$ no-one_passinを variable
entry_sensor:ES := false ;
ticket_dispenser:TD := false ;
gate:G:= false ;
exit_sensor:XS := false ;
154. No matter its position, the gate must be closed within no more than $\delta_{e g}$ time units after the entry_sensor has registered that a car is entering the toll booth.
155. A ticket must be in the ticket_dispenser within $\delta_{e t}$ time units after the entry_sensor has registered that a car is entering the toll booth.
156. The ticket is in the ticket_dispenser at most $\delta_{t d c}$ time units
157. The gate must be open within $\delta_{g o}$ time units after a ticket has been collected.
158. The exit sensor is registering (i.e., is on) the identification of exiting cars and is not registering anything when no car is passing (i.e., is off).
\qquad

4.2.4.2.3. - A Timed Automata Model•

- A timed automaton [A1uDi1:94,olderogdirks2008] for a configuration of an entry gate, its entry booth and a car is shown in Fig. 7 on the next page.
- Figure 8 on page 232 shows the a car, an exit booth and its exit gate interactions.
- They are more-or-less "derived" from the example of Sect. 7.5 of [c]Alur \& Dill, 1994]AluDil:94 (Pages 42-45).
- The right half of the car timed automaton of Fig. 7 on the next page
- is to be thought of as the same as the left half of the car timed automaton of Fig. 8 on page 232,
- cf. the vertical dotted (:) line.

Cd. closed, Cgeclosing, oni.pen, Og:opening

Figure 7: A timed automata model of gate, entry booth and car interactions

value

eg,xg:G, eb:EB, xb:XB, vs:V-set
System: $\mathrm{G} \times \mathrm{EV} \times$ V-set $\times \mathrm{XB} \times \mathrm{G} \rightarrow$ Unit
System(eg,eb,vs,xb,xg) \equiv
Entry_Gate(eg) || Entry_Booth(eb) ||
$\left\|\left\{\operatorname{Car}\left(o b s _C I d(c), c\right) \mid c i: C, v: C-c \in c s\right\}\right\|$
Exit_Booth(xb) || Exit_Gate(xg)
\qquad

4.2.5. Fitting

Definition: Fitting.

- By domain requirements fitting we understand an operation
- which takes n domain requirements prescriptions, $d_{r_{i}}(i=\{1 . . n\})$,
- claimed to share m independent sets of tightly related sets of simple entities, actions, events and/or behaviours
- and map these into $n+m$ domain requirements prescriptions, $\delta_{r_{j}}$ $(j=\{1 . . n+m\})$,
- where m of these, $\delta_{r_{n+k}}(k=\{1 . . m\})$
- capture the m shared phenomena and concepts
- and the other n prescriptions, $\delta_{r_{\ell}}(\ell=\{1 . . n\})$,
- are like the n "input" domain requirements prescriptions, $d_{r_{i}}(i=\{1 . . n\})$
- except that they now,
- (instead of the "more-or-less" shared prescriptions, that are now consolidated in $\delta_{r_{n+k}}$)
- prescribe interfaces between $\delta_{r_{i}}$ and $\delta_{r_{n+k}}$ for $i:\{1 . . n\}$.

4.2.5.1. Examples

TO BE WRITTEN

Interface requirements can often, usefully, be classified in terms of

- shared data initialisation requirements,
- shared data refreshment requirements,
- computational data+control requirements,
- man-machine dialogue requirements,
- man-machine physiological requirements and
- machine-machine dialogue requirements.

Interface requirements constitute one requirements facet.

- Other requirements facets are:
- business process reengineering,
- domain requirements and
- machine requirements.

4.3. Interface Requirements

Definition: Interface Requirements.

- Interface requirements are those requirements
- which can on be expressed using professional terms
- from both the domain and the machine.

Thus, by interface requirements we understand

- the expression of expectations
- as to which software-software, or software-hardware interface places (i.e., channels),
- inputs and outputs (including the semiotics of these input/outputs)
- there shall be in some contemplated computing system.

4.3.1. But First: On Shared Phenomena and Concepts Definition: Shared Phenomenon or Concept.

- A shared phenomenon (or concept) is a phenomenon (respectively a concept)
- which is present in some domain (say in the form of facts, knowledge or information)
- and which is also represented in the machine (say in the form of some entity, simple, action, event or behaviour).
- A phenomenon of a domain, when shared, becomes a concept of the machine.
- We shall give some examples - but they are just illustrative.
- Proper narration and formalisation is left to the reader !

4.3.2. Shared Simple Entities

Definition: Shared Simple Entity.

- By a shared simple entity we mean a simple entity
- which both occurs
- in the domain (as a phenomenon or a concept)
- and in themachine.
- Simple entities that are shared between the domain and the machine must initially be input to the machine.
- Dynamically arising simple entities must likewise be input
- and all such machine entities
- must have their attributes updated, when need arise.
- Requirements for shared simple entities
- thus entail requirements for their representation
- and for their human/machine and/or machine/machine transfer dialogue.

240

4.3.3. Shared Actions

Definition: Shared Action.

- By a shared action we mean an action
- that can only be partly computed by the machine.
- That is, the machine,
* in order to complete an action,
* may have to inquire with the domain
* (in order, say, to extract some measurable, time-varying simple entity attribute value)
* in order to proceed in its computation.

4.3.2.1. Example

- Main shared entities are those of hubs and links.
- Representations of hubs and links "within" the machine
- necessarily abstracts many of the properties of hubs and links;
- some (such) attributes may not be represented altogether.
- As for human input,
- some man/machine dialogue
- based around a set of visual display unit screens
- with fields for the input of hub,
- respectively link attributes
can then be devised.
- Etc.

Lecture Notes in Software Engineering
4.
4. 4.An ononoesgo freacierenens Construcios 4.3. Interface Requirements 4.3.3. Shared Actions 4.3.3.1. Example

4.3.3.1. Example

- In order for a car driver to leave an exit toll booth the following component actions must take place:
- (a) the driver inserts the electronic pass into the exit toll booth;
- (b) the exit toll booth scans and accepts the ticket and
* calculates the fee for the car journey
* from entry booth
* via the toll road net
* to the exit booth;
- (c) exit toll booth alerts the driver as to the cost and is requested to pay this amount;
- (d) once the driver has paid
- (e) the exit booth toll gate is raised.
- Actions (a,d) are driver actions, (b,c,e) are machine actions.

4.3.4. Shared Events

Definition: Shared Event.

- By a shared event we mean
- an event whose occurrence in the domain
- need be communicated to the machine
and, vice-versa,
- an event whose occurrence in the machine
- need be communicated to the domain.

244

4.3.5. Shared Behaviours

Definition: Shared Behaviour.

- By a shared behaviour we mean a behaviour
- many of whose actions and events occur both
- in the domain
- and in the machine
- (in some encoded form, and in the same squence).

4.3.4.1. Examples

- The arrival of a car at a toll plaza entry booth is an event
- that must be communicated to the machine
- so that the entry booth may issue a proper pass (ticket).
- Similarly for the arrival of a car at a toll plaza exit booth is an event
- that must be communicated to the machine
- so that the machine may request the return of the pass and compute the fee.
- The end of that computation is an event
- that is communicated to the driver (in the domain)
- requesting that person to pay a certain fee
- after which the exit gate is opened.
\qquad

4.3.5.1. Example

- A typical toll road net use behaviour is as follows:
- Entry at some toll plaza: receipt of electronic ticket,
- placement of ticket in special ticket "pocket" in front window,
- the raising of the entry booth toll gate;
- drive up to [first] toll road hub (with electronic registration of time of occurrence),
- drive down a selected link (with electronic registration of time of occurrence of entry to and exit from link),
- then a repeated number of zero, one or more
* toll road hub and
* link visits -
* some of which may be "repeats" -
- ending with a drive down from a toll road hub to a toll plaza
- with the return of the electronic ticket, etc.

4.4. Machine Requirements

Definition: Machine Requirements.

- Machine requirements are those requirements which, in principle, - can be expressed without using professional domain terms - (for which these requirements are established).
- Thus, by machine requirements
- we understand requirements put specifically to,
- i.e., expected specifically from, the machine.
- We normally analyse machine requirements into
- performance requirements, - platform requirements and
- dependability requirements, - documentation requirements.
- maintenance requirements.

End of Lecture 6: REQUIREMENTS - from Extension "out"

4.4.1. An Enumeration of Classes of Machine Requirements

- We shall in these lecture notes not go into any detail about machine requirements.
- But we shall classify machine requirements into a long list of specific kinds of machine requirements.
- Performance
- Storage
- Time
- Software Size
- Dependability
- Accessability
- Availability
- Reliability
- Robustness
- Safety
- Security
Maintenance
- Adaptive
- Corrective
- Perfective
- Preventive
- Platforms
- Development
- Demonstration
- Execution
- Maintenance
- Documentation
- Other

5. Conclusion

- We discuss a number of issues.

5.1. What Have We Omitted

- Our coverage of domain and requirements engineering has focused on modelling techniques for domain and requirements facets.
- We have omitted the important software engineering tasks of
- stakeholder identification and liaison,
- domain and, to some extents also requirements, especially goal acquisition and analysis,
- terminologisation, and
- techniques for domain and requirements and goal validation and [goal] verification $(\mathcal{D}, \mathcal{R} \models \mathcal{G})$.

5.3. "Requirements Always Change"

- This claim is often used as a hidden excuse for not doing a proper, professional job of requirements prescription, let alone "deriving" them, as we advocate, from domain descriptions.
- Instead we now make the following counterclaims
- [1] "domains are far more stable than requirements" and
- [2] "requirements changes arise more as a result of business process re-engineering than as a result of changing stakeholder ideas".

5.2. Domain Descriptions Are Not Normative

- A description of, for example,
- "the" domain of the New York Stock Exchange would describe
* the set of rules and regulations governing
the submission of sell offers and buy bids
* as well as rules and regulations for clearing ('matching') sell offers and buy bids.
- These rules and regulations appears to be quite different from those of the Tokyo Stock Exchange.
- A normative description of stock exchanges would abstract these rules so as to be rather un-informative.
- And, anyway, rules and regulations changes and business process re-engineering changes entities, actions, events and behaviours.
- For any given software development one may thus have to rewrite parts of existing domain descriptions, or construct an entirely new such description.
ecture Notes in Software Engineering

5. Conclusion 5.3. "Requirements Always Change

- Closer studies of a number of domain descriptions,
- for example of a financial service industry,
- reveals that the domain in terms of which an "ever expanding" variety of financial products are offered,
- are, in effect, based on a small set of very basic domain functions which have been offered for well-nigh centuries !
- We thus claim that
- thoroughly developed domain descriptions and
- thoroughly "derived" requirements prescriptions
- tend to stabilise the requirements re-design,
- but never alleviate it.

5.4. What Can Be Described and Prescribed

- The issue of "what can be described" has been a constant challenge to philosophers.
- Bertrand Russell covers, in a 1919 publication, Theory of Descriptions, and
- in [Philosophy of Mathematics] a revision, as The Philosophy of Logical Atomism.
- The issue is not that straightforward.
- In two recent papers we try to broach the topic from the point of view of the kind of domain engineering presented in these lectures.
- Our approach is simple; perhaps too simple !
- We can describe what can be observed.

5.5. What Have We Achieved - and What Not

- Earlier we made some claims
- We think we have substantiated them all, albeit ever so briefly.
- Each of the domain facets
- (intrinsics,
- support technologies,
- rules and regulations,

> - scripts [licenses and contracts],

- management and organisation and
- human behaviour
- and each of the requirements facets
- (projection,
- extension and
- instantiation,
- fitting)
- determination,
- provide rich grounds for both specification methodology studies and and for more theoretical studies.
- We do so,
- first by postulating types of observable phenomena and of derived concepts;
- then by the introduction of observer functions and by axioms over these, that is, over values of postulated types and observers.
- To this we add defined functions; usually described by pre/postconditions.
* The narratives refer to the "real" phenomena
* whereas the formalisations refer to related phenomenological concepts.
- The narrative/formalisation problem is that one can 'describe' phenomena without always knowing how to formalise them.

5.6. Relation to Other Work

- The most obvious 'other' work is that of Michael jackson's [Problem Frames].
- In that book Jackson, like is done here,
* departs radically from conventional requirements engineering.
* In his approach understandings of the domain, the requirements and possible software designs
* are arrived at, not hierarchically, but in parallel, interacting streams of decomposition.
- Thus the 'Problem Frame' development approach iterates between concerns of
- domains,
- requirements and
- software design.
- "Ideally" our approach pursues
- domain engineering
- prior to requirements engineering,
- and, the latter, prior to software design.
- But see next.

5.7. "Ideal" Versus Real Developments

- The term 'ideal' has been used in connection with 'ideal development' from domain to requirements.
- We now discuss that usage.
- Ideally software development could proceed
- from developing domain descriptions
- via "deriving" requirements prescriptions
- to software design,
each phase involving extensive
- formal specifications,
- verifications (formal testing, model checking and theorem proving) and validation.
- The recent book [Axel van Lamsweerde]
- appears to represent the most definitive work on Requirements Engineering today.
- Much of its requirements and goal acquisition and analysis techniques
- carries over to main aspects of domain acquisition and analysis techniques
- and the goal-related techniques of [Lamsweerde] apply to determining which
* projections,
* instantiation,
* determination and
* extension operations
to perform on domain descriptions.
\qquad
- More realistically
- less comprehensive domain description development (D)
- may alternate with both requirements development (R) work
- and with software design (S) -
- in some
* controlled,
* contained
* iterated and
* "spiralling"
manner
- and such that it is at all times clear which development step is what: \mathcal{D}, \mathcal{R} or \mathcal{S} !

5.8. Description Languages

- We have used the RSL specification language, for the formalisations of this report,
- but any of the model-oriented approaches and languages offered by
- Alloy,
$-B$, Event B,
- RAISE,
- VDM and
- Z,
should work as well.

262
5. Conclusion 5.9. Entailments

5.9. Entailments

- $\mathcal{D}, \mathcal{R} \models \mathcal{G}$
* From the \mathcal{D} omain and the \mathcal{R} equirements we can reason that the \mathcal{G} oals are met.
- $\mathcal{D}, \mathcal{S} \models \mathcal{R}$
* In a proof of correctness of \mathcal{S} oftware design with respect to \mathcal{R} equirements prescriptions one often has to refer to assumptions about the Domain.
* Formalising our understandings of the \mathcal{D} omain, the \mathcal{R} equirements and the \mathcal{S} oftware design enables proofs that the software is right and the formalisation of the "derivation" of Requirements from Domain specifications help ensure that it is the right software [Boehm81].
- No single one of the above-mentioned formal specification languages, however, suffices.
- Often one has to carefully combine the above with elements of
- Petri Nets,
- CSP,
- MSC,
- Statecharts,
and/or some temporal logic, for example
- either DC or
- TLA+.
- Research into how such diverse textual and diagrammatic languages can be combined is ongoing.

5.10. Domain Versus Ontology Engineering

- In the information science community an ontology is a
- "formal, explicit specification of a shared conceptualisation".
- Most of the information science ontology work seems aimed primarily at axiomatisations of properties of entities.
- Apart from that there are many issues of "ontological engineering" that are similar to the triptych kind of domain engineering;
- but then, we claim, that domain engineering goes well beyond ontological engineering and makes free use of whatever formal specification languages are needed.

6. Bibliographical Notes

6.1. Description Languages

- Besides using
- as precise a subset of a national language, as here English, as possible, and in enumerated expressions and statements,
- we have "paired" such narrative elements with corresponding enumerated clauses of a formal specification language.
- We have been using the RAISE Specification Language, RSL in our formal texts.
- But any of the model-oriented approaches and languages offered by

$$
\begin{array}{ll}
- \text { Alloy, } & - \text { VDM and } \\
\text { - CafeOBJ [futatsugi2000a], } & -\mathrm{Z},
\end{array}
$$

- Event B,
should work as well.
- No single one of the above-mentioned formal specification languages, however, suffices.
- Often one has to carefully combine the above with elements of
- Petri Nets,
- CSP: Communicating Sequential Processes,
- MSC: Message Sequence Charts,
- Statecharts,
- and some temporal logic, for example
* DC: Duration Calculus
* or TLA + .
- And even then !

1. An RSL Primer
 1.1. Types
 1.1.1. Type Expressions

- Type expressions are expressions whose values are types, that is,
- possibly infinite sets of values (of "that" type).

1.1.1.1. Atomic Types

- Atomic types have (atomic) values.
- That is, values which we consider to have no proper constituent (sub-)values,
- i.e., cannot, to us, be meaningfully "taken apart".

$$
268 \quad \text { Lecture Notes in Software Engineering } 1
$$

1. An RsL Primer 1.1. Types 1.1.1. Type Expressions 1.1.1. Atomic Types

Example 1

Basic Net Attributes

- For safe, uncluttered traffic,
hubs and links can 'carry' a maximum of vehicles
- Links have lengths. (We ignore hub (traversal) lengths.)
- One can calculate whether a link is a two-way link.

type

[1] Bool	[4] Real
[2] Int	[5] Char
[3] Nat	[6] Text

1. The Boolean type of truth values false and true.
2. The integer type on integers ..., $-2,-1$ $0,1,2$,
3. The natural number type of positive integer values $0,1,2$, .
4. The real number type of real values,
i.e., values whose numerals can be written as an integer, followed by a period ("."), followed by a natural number (the fraction)
5. The character type of character values "a", "b", ..
6. The text type of character string values "aa", "aaa", ..., "abc", ..
\qquad
```
type
    MAX = Nat
    LEN = Real
    is_Two_Way_Link = Bool
value
    obs_Max: \((H \mid L) \rightarrow\) MAX
    obs_Len: L \(\rightarrow\) LEN
    is_two_way_link: \(L \rightarrow\) is_Two_Way_Link
    is_two_way_link(I) \(\equiv \exists|\sigma: L \Sigma \cdot| \sigma \in\) obs_H \(\Sigma(I) \wedge\) card \(\mid \sigma=2\)
```

End of Example 1

1.1.1.2. Composite Types

- Composite types have composite values.
- That is, values which we consider to have proper constituent (sub-)values,
- i.e., can, to us, be meaningfully "taken apart".
[7] A-set
[8] A-infset
[9] $\mathrm{A} \times \mathrm{B} \times \ldots \times \mathrm{C}$
[10] A*
[11] A^{ω}
[12] A $\pi \vec{m}$

```
[13] A \(\rightarrow\) B
\([14] \mathrm{A} \xrightarrow{\sim} \mathrm{B}\)
[15] (A)
[16] A | B | ... | C
[17] mk_id(sel_a:A,...,sel_b:B)
[18] sel_a:A ... sel_b:B
```

- Right-hand sides of type definitions often have composite type expressions:

$$
\begin{aligned}
& \text { type } \\
& \text { N }=\mathrm{H} \text {-set } \times \mathrm{L} \text {-set } \\
& \mathrm{HT}=\mathrm{LI} \times \mathrm{HI} \times \mathrm{LI} \\
& \mathrm{LT}=\mathrm{HI} \times \mathrm{LI} \times \mathrm{HI}
\end{aligned}
$$

End of Example 2

Example 2

Composite Net Type Expressions:

- The type clauses of function signatures:

$$
\begin{aligned}
& \text { value } \\
& \qquad f: A \rightarrow B
\end{aligned}
$$

- often have the type expressions A and/or B
- be composite type expressions:
value
obs_HIs: L \rightarrow HI-set
obs_Lls: $\mathrm{H} \rightarrow$ LI-set
obs_H $\Sigma: \mathrm{H} \rightarrow \mathrm{HT}$-set
set_H $\Sigma: \mathrm{H} \times \mathrm{H} \Sigma \rightarrow \mathrm{H}$

An RSL Primer

1.1.2. Type Definitions

1.1.2.1. Concrete Types

- Types can be concrete
- in which case the structure of the type
- is specified by type expressions:

type

A = Type_expr
schematic examples:

$$
\begin{aligned}
& \mathrm{A} 1=\mathrm{B} 1-\text { set, } \mathrm{A} 2=\mathrm{B} 1 \text {-infset } \\
& \mathrm{A} 3=\mathrm{B} 2 \times \mathrm{C} 1 \times \mathrm{D} 1 \\
& \mathrm{~B} 1=\mathrm{E}^{*}, \mathrm{~B} 2=\mathrm{E}^{\omega} \\
& \mathrm{C} 1=\mathrm{F} \rightarrow \mathrm{~m} \\
& \mathrm{D} 1=\mathrm{H} \rightarrow \mathrm{~J}, \mathrm{D} 2=\mathrm{H} \xrightarrow{\sim} \mathrm{~J} \\
& \mathrm{~K}=\mathrm{L} \mid \mathrm{M}
\end{aligned}
$$

Example 3

Composite Net Types

- There are many ways in which nets can be concretely modelled:
- Sorts + Observers + Axioms: First we show an example of type definitions without right-hand side, that is, of sort definitions.
From a net one can observe many things.
Of the things we focus on are the hubs and the links.
A net contains two or more hubs and one or more links.
type
[sorts] $\mathrm{N}_{\alpha}, \mathrm{H}, \mathrm{L}, \mathrm{HI}, \mathrm{LI}$
value
obs_Hs: $\mathrm{N}_{\alpha} \rightarrow \mathrm{H}$-set
obs_Ls: $\mathrm{N}_{\alpha} \rightarrow$ L-set
axiom
$\forall \mathrm{n}: \mathrm{N}_{\alpha} \cdot$ card obs_Hs $(\mathrm{n})>0 \Rightarrow$ card obs_Ls $(\mathrm{n}) \geq 1 \wedge \ldots$
- Cartesians + Maps + Wellformedness: Or a net can be described
a as a triple of b-c-d:
b hubs (modelled as a map from hub identfiers to hubs),
c links (modelled as a map from link identfiers to links), and
d a graph from hub h_{i} identifiers $h_{i_{i}}$ to maps from identfiers $l_{i j_{i}}$ of hub h_{i} connected links $l_{i j}$ to the identfiers $h_{j_{i}}$ of link connected hubs h_{j}.
- Cartesians + Wellformedness: A net can be considered as a Cartesian of sets of two or more hubs and sets of one or more links.

```
type
    [sorts] H, L
    \(\mathrm{N}_{\beta}=\mathrm{H}\)-set \(\times \mathrm{L}\)-set
value
    \(w_{f} \mathrm{~N}_{\beta}: \mathrm{N}_{\beta} \rightarrow\) Bool
    wf_ \(N_{\beta}\) (hs,ls) \(\equiv\) card hs \(>1 \Rightarrow\) card \(\mathrm{ls}>0 \ldots\)
    inject_ \(N_{\beta}: N_{\alpha} \xrightarrow{\sim} N_{\beta}\) pre: wf_ \(N_{\beta}(h s, l s)\)
    inject_ \(\mathrm{N}_{\beta}\left(\mathrm{n}_{\alpha}\right) \equiv\) (obs_Hs \(\left(\mathrm{n}_{\alpha}\right)\),obs_Ls \(\left(\mathrm{n}_{\alpha}\right)\) )
```


type

[sorts] H, HI, L, LI
[a] $\mathrm{N}_{\gamma}=\mathrm{HUBS} \times$ LINKS \times GRAPH
[b] $\mathrm{HUBS}=\mathrm{HI} \pi \mathrm{H}$
[c] LINKS $=\mathrm{LI} \vec{m} \mathrm{~L}$
[d] GRAPH $=\mathrm{HI} \pi(\mathrm{LI}-\mathrm{m}>\mathrm{HI})$

- [b,c] hs:HUBS and Is:LINKS are maps from hub (link) identifiers to hubs (links) where one can still observe these identfiers from these hubs (link).
- Example ?? on page ?? defines the well-formedness predicates for the above map types.

End of Example 3
[1] Type_name $=$ Type_expr $/ *$ without $\mid \mathrm{s}$ or subtypes $* /$
[2] Type_name $=$ Type_expr_1 \mid Type_expr_2 | ... | Type_expr_n
[3] Type_name ==
mk_id_1(s_a1:Type_name_a1,...s_ai:Type_name_ai) | ... | mk_id_n(s_z1:Type_name_z1,...s_zk:Type_name_zk)
[4] Type_name :: sel_a:Type_name_a ... sel_z:Type_name_z
[5] Type_name $=\{\mid$ v:Type_name' $\cdot \mathcal{P}(\mathrm{v}) \mid\}$

- where a form of [2-3] is provided by combining the types:

280
Lecture Notes in Software Engineering

1. An RsL Primer 1.1. Types 1.1.2. Type Definitions 1.1.2.1. Concrete Types

Example 4
Net Record Types: Insert Links:
7. To a net one can insert a new link in either of three ways:
(a) Either the link is connected to two existing hubs - and the insert operation must therefore specify the new link and the identifiers of two existing hubs;
(b) or the link is connected to one existing hub and to a new hub - and the insert operation must therefore specify the new link, the identifier of an existing hub and a new hub;
(c) or the link is connected to two new hubs - and the insert operation must therefore specify the new link and two new hubs.
(d) From the inserted link one must be able to observe identifier of respective hubs. 8. From a net one can remove a link. ${ }^{5}$ The removal command specifies a link identifier.

[^1]```
Type_name = A | B | .. | Z
A == mk_id_1(s_a1:A_1,..,s_ai:A_i)
B == mk_id_2(s_b1:B_1,..,s_bj:B_j)
Z == mk_id_n(s_z1:Z_1,\ldots,s__k:Z_k)
```


## axiom

$\forall$ a1:A_1, a2:A_2, ..., ai:Ai .
s_a1(mk_id_1(a1,a2,...,ai))=a1 $\wedge$ s_a2(mk_id_1(a1,a2,...,ai))=a2 $\wedge$
$\ldots \wedge$ s_ai(mk_id_1(a1,a2,...,ai))=ai $\wedge$
$\forall$ a:A $\cdot$ let mkid_1(a1', a2', $\left.\ldots, a^{\prime}\right)=a$ in
$a 1^{\prime}=$ s_al $(a) \wedge a 2^{\prime}=$ s_a2 $(a) \wedge \ldots \wedge$ ai' $=$ s_ai $(a)$ end

1. An RSL Primer 1.1. Types 1.1.2. Type Definitions 1.1.2.1. Concrete Types
```
type
 7 Insert == Ins(s_ins:Ins)
 7 Ins = 2xHubs | 1x1nH | 2nHs
 7(a) 2xHubs == 2oldH(s_hi1:HI,s_l:L,s_hi2:HI)
 7(b) 1x1nH == 1oldH1newH(s_hi:HI,s_l:L,s_h:H)
 7(c) 2nHs == 2newH(s_h1:H,s|:L,s_h2:H)
 8 Remove == Rmv(s_li:LI)
axiom
 7(d) \forall2oldH(hi',l,hi'):Ins · hi'=hi" ^ obs_LIs(I)={hi',hi'} ^
 1old1newH(hi,I,h):Ins \cdot obs_Lls(I)={hi,obs_HI(h)} ^
 \forallnewH(h',l,h'):Ins · obs_Lls(I)={obs_HI(h'),obs_HI(h')}
```

Example 16 on page 351 presents the semantics functions for int Insert and int_Remove.

## Example 5

Net Subtypes:

- In Example 3 on page 274 we gave three examples.
- For the first we gave an example, Sorts + Observers + Axioms "purely" in terms of sets, see Sorts - Abstract Types below.
- For the second and third we gave concrete types in terms of Cartesians and Maps.


## type

$$
\mathrm{A}=\{|\mathrm{b}: \mathrm{B} \cdot \mathcal{P}(\mathrm{~b})|\}
$$

.

1. An RSL Primer 1.1. Types 1.1.2. Type Definitions 1.1.2.2. Subtypes

$$
\text { - In the Sorts }+ \text { Observers }+ \text { Axioms part of Example } 3
$$

- a net was defined as a sort, and so were its hubs, links, hub identifiers and link identifiers;
- axioms - making use of appropriate observer functions - make up the wellformedness condition on such nets.

We now redefine this as follows:

- In RSL, each type represents a set of values. Such a set can be delimited by means of predicates.
- The set of values $\mathbf{b}$ which have type $\mathbf{B}$ and which satisfy the predicate $\mathcal{P}$, constitute the subtype A:
保

We now redefine this as follows:

1. An RSL Primer 1.1. Types 1.1.2. Type Definitions 1.1.2.2. Subtypes
```
type
 [sorts] N', H, L, HI, LI
 N={|n:N'.wf_N(n)|}
value
 wf_N: N' }->\mathrm{ Bool
 wf_N(n) \equiv
 |}:N\cdot\mp@code{card obs_Hs(n)\geq0^ card obs_Ls(n)\geq0^
 axioms 2.-3., 5.-6., and 10., (Page 14)
```

- In the Cartesians + Wellformedness part of Example 3
- a net was a Cartesian of a set of hubs and a set of links
- with the wellformedness that there were at least two hubs and at least one link
- and that these were connected appropriately (treated as ...).

We now redefine this as follows:

```
type
 N' = H-set }\times L-se
 N = {|n:N' }\cdot\textrm{wf_N(n)|
```


## type

[sorts] L, H, LI, HI
$\mathrm{N}^{\prime}=\mathrm{HUBS} \times \mathrm{LINKS} \times \mathrm{GRAPH}$
$N=\left\{\left|(h s, l s, g): N^{\prime} \cdot w f \_H U B S(h s) \wedge w f \_L I N K S(l s) \wedge w f \_G R A P H(g)(h s, \mid s)\right|\right\}$
$\mathrm{HUBS}^{\prime}=\mathrm{HI} \underset{\mathrm{m}}{ } \mathrm{H}$
$\operatorname{HUBS}=\left\{\left|\mathrm{hs}: \mathrm{HUBS}^{\prime} \cdot \mathrm{wf}_{-} \mathrm{HUBS}(\mathrm{hs})\right|\right\}$
$\mathrm{LINKS}^{\prime}=\mathrm{LI} \rightarrow \mathrm{L}$
LINKS $=\{| | s: L I N K S ' \cdot w f$ LINKS $(\mathrm{Is}) \mid\}$
GRAPH $=\mathrm{HI} \vec{m}(\mathrm{LI} \vec{m} \mathrm{HI})$
GRAPH $=\{\mid \mathrm{g}:$ GRAPH $\cdot$ wf_GRAPH $(\mathrm{g}) \mid\}$
value
wf_GRAPH: GRAPH' $\rightarrow$ (HUBS $\times$ LINKS) $\rightarrow$ Bool
wf_GRAPH $(\mathrm{g})(\mathrm{hs}, \mathrm{ls}) \equiv \mathrm{wf} \mathrm{N}(\mathrm{hs}, \mathrm{ls}, \mathrm{g})$

- Example ?? on page ?? presents a definition of wf_GRAPH

End of Example 5

- In the Cartesians + Maps + Wellformedness part of Example 3
- a net was a triple of hubs, links and a graph,
- each with their wellformednes predicates.

We now redefine this as follows:

An RSL Primer

1. An RSL Primer 1.1. Types 1.1.2. Type Definitions 1.1.2.3. Sorts - Abstract Types
1.1.2.3. Sorts - Abstract Types

- Types can be (abstract) sorts
- in which case their structure is not specified:


## type

A, B, ..., C

## Example 6

$\qquad$ Net Sorts:

- In formula lines of Examples 3-5
- we have indicated those type clauses which define sorts,
- by bracketed [sorts] literals.


## End of Example 6

Start of Lecture 8: RSL: Values \& Operations

End of Lecture 7: RSL: Types

## An RSL Primer

### 1.2. Concrete RSL Types: Values and Operations <br> 1.2.1. Arithmetic

```
type
 Nat, Int, Real
value
+,-,*: Nat }\times\mathrm{ Nat }->\mathrm{ Nat | Int }\times\mathrm{ Int }->\mathrm{ Int | Real }\times\mathrm{ Real }->\mathrm{ Real
/: Nat }\times\mathrm{ Nat }\xrightarrow{}{~}\mathrm{ Nat | Int }\times\mathrm{ Int }\xrightarrow{}{~}\mathrm{ Int | Real }\times\mathrm{ Real }\xrightarrow{~}{~}\mathrm{ Real
<,\leq,=,\not=,\geq,> (Nat|Int|Real) }\times(\mathrm{ Nat }|\mathrm{ Int }|\mathrm{ Real })->\mathrm{ Bool
```


### 1.2.2.1. Set Enumerations

Let the below $a$ 's denote values of type $A$, then the below designate simple set enumerations:

```
{{},{a},{\mp@subsup{e}{1}{},\mp@subsup{e}{2}{},\ldots,\mp@subsup{e}{n}{}},\ldots}\subseteqA-set
{{},{a},{\mp@subsup{\textrm{e}}{1}{},\mp@subsup{\textrm{e}}{2}{},\ldots,\mp@subsup{e}{n}{}},\ldots,{\mp@subsup{\textrm{e}}{1}{},\mp@subsup{\textrm{e}}{2}{},\ldots}}\subseteqA-infset
```

1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.2. Set Expressions 1.2.2.1. Set Enumerations

Solely using the set data type and the concept of subtypes, we can model the above:

```
type
 C
 \(\mathrm{G}^{\prime}=\mathrm{C}\)-set, \(\quad \mathrm{G}=\left\{\left|\mathrm{g}: \mathrm{G}^{\prime} \cdot \mathrm{g} \neq\{ \}\right|\right\}\)
 S = G-set
 \(\mathrm{L}^{\prime}=\) C-set, \(\quad \mathrm{L}=\left\{\left|\ell: \mathrm{L}^{\prime} \cdot \ell \neq\{ \}\right|\right\}\)
 \(N^{\prime}=S, \quad N W=\{\mid \mathrm{s}: S \cdot w f\) S \((\mathrm{s}) \mid\}\)
value
 wf_S: S \(\rightarrow\) Bool
 wf_S(s) \(\equiv \forall \mathrm{g}: \mathrm{G} \cdot \mathrm{g} \in \mathrm{s} \Rightarrow \exists \mathrm{g}^{\prime}: \mathrm{G} \cdot \mathrm{g}^{\prime} \in \mathrm{s} \wedge \operatorname{share}\left(\mathrm{g}, \mathrm{g}^{\prime}\right)\)
 share: \(G \times G \rightarrow\) Bool
 share \(\left(\mathrm{g}, \mathrm{g}^{\prime}\right) \equiv \mathrm{g} \neq \mathrm{g}^{\prime} \wedge \mathrm{g} \cap \mathrm{g}^{\prime} \neq\{ \}\)
 liaisons: \(G \times G \rightarrow L\)
 liaisons \(\left(\mathrm{g}, \mathrm{g}^{\prime}\right)=\mathrm{g} \cap \mathrm{g}^{\prime}\) pre share \(\left(\mathrm{g}, \mathrm{g}^{\prime}\right)\)
```


## Example 7

cities, towns, villages, etcetera.

- We now consider hubs to abstract cities,
- Thus with hubs we can associate sets of citizens.
- Let $\mathrm{c}: \mathrm{C}$ stand for a citizen value c being an element in the type C of all such.
- Let g:G stand for any (group) of citizens, respectively the type of all such.
- Let $\mathrm{s}: \mathrm{S}$ stand for any set of groups, respectively the type of all such.
- Two otherwise distinct groups are related to one another if they share at least one citizen, the liaisons.
- A network nw:NW is a set of groups such that for every group in the network one can always find another group with which it shares liaisons.


## An RSL Primer

## Annotations:

- L stands for proper liaisons (of at least one liaison)
- $\mathrm{G}^{\prime}, \mathrm{L}^{\prime}$ and $\mathrm{N}^{\prime}$ are the "raw" types which are constrained to $G, L$ and $N$.
- $\{\mid$ binding:type_expr • bool_expr $\mid\}$ is the general form of the subtype expression.
- For $G$ and $L$ we state the constraints "in-line", i.e., as direct part of the subtype expression.
- For NW we state the constraints by referring to a separately defined predicate
- wf_S(s) expresses - through the auxiliary predicate - that s contains at least two groups and that any such two groups share at least one citizen.
- liaisons is a "truly" auxiliary function in that we have yet to "find an active need" for this function!
- The idea is that citizens can be associated with more than one city, town, village, etc.
- (primary home, summer and/or winter house, working place, etc.).
- A group is now a set of citizens related by some "interest"
- (Rotary club membership, political party "grassroots", religion, et.).
- The student is invited to define, for example, such functions as:
- The set of groups (or networks) which are represented in all hubs [or in only one hub].
- The set of hubs whose citizens partake in no groups [respectively networks].
- The group [network] with the largest coverage in terms of number of hubs in which that group [network] is represented.


## End of Example 7

298

## Example 8

## Set Comprehensions:

Item 52 on page 43 , the $w f \_(h s, l s, g)$ wellformedness predicate definition, includes:
type
51(a). PLAN $=\mathrm{HI} \pi$ LHIM
51(b). LHIM $=\mathrm{LI} \quad \pi \mathrm{HI}$-set
value
52(c). no_junk: PLAN $\rightarrow$ Bool
52(c). no_junk(plan) $\equiv$ dom plan $=\cup\{\mathbf{r n g}($ plan(hi)) $\mid$ hi:Hl.hi $\in$ dom plan $\}$

### 1.2.2.2. Set Comprehension

- The expression, last line below, to the right of the $\equiv$, expresses set comprehension.
- The expression "builds" the set of values satisfying the given predicate.
- It is abstract in the sense that it does not do so by following a concrete algorithm.

```
type
 A, B
 P}=\textrm{A}->\textrm{Bool
 Q = A \xrightarrow{ ~ B}{~}
```

value
comprehend: A-infset $\times \mathrm{P} \times \mathrm{Q} \rightarrow$ B-infset
comprehend $(\mathrm{s}, \mathrm{P}, \mathrm{Q}) \equiv\{\mathrm{Q}(\mathrm{a}) \mid \mathrm{a}: \mathrm{A} \cdot \mathrm{a} \in \mathrm{s} \wedge \mathrm{P}(\mathrm{a})\}$

An RSL Primer

### 1.2.3. Cartesian Expressions

1.2.3.1. Cartesian Enumerations

- Let $e$ range over values of Cartesian types involving $A, B, \ldots, C$,
- then the below expressions are simple Cartesian enumerations:


## type

$$
\begin{aligned}
& \mathrm{A}, \mathrm{~B}, \ldots, \mathrm{C} \\
& \mathrm{~A} \times \mathrm{B} \times \ldots \times \mathrm{C}
\end{aligned}
$$

value
(e1,e2,...,en)

## Example 9

## Cartesian Net Types

- So far we have abstracted hubs and links as sorts.
- That is, we have not defined their types concretely.
- Instead we have postulated some attributes such as:
- observable hub identifiers of hubs and
- sets of observable link identifiers of links connected to hubs.
- We now claim the following further attributes of hubs and links.


## type

```
LN, HN, LEN, LOC
cL}=\textrm{LI}\times\textrm{LN}\times(\textrm{HI}\times\textrm{HI})\times\textrm{LOC}\times
cH}=\textrm{HI}\times\textrm{HN}\times\textrm{LI}\mathrm{ -set }\times\textrm{LOC}\times
```

End of Example 9

- Concrete links have
- link identifiers,
- link names - where two or more connected links may have the same link name,
- two (unordered) hub identifiers,
- lenghts,
- locations - where we do not presently defined what we main by locations,
- etcetera
- Concrete hubs have
- hub identifiers,
- unique hub names,
- a set of one or more observable link identifiers,
- locations,
- etcetera.


### 1.2.4. List Expressions

1.2.4.1. List Enumerations

- Let $a$ range over values of type $A$,
- then the below expressions are simple list enumerations:
$\left\{\rangle,\langle\mathrm{e}\rangle, \ldots,\langle\mathrm{e} 1, \mathrm{e} 2, \ldots, \mathrm{en}\rangle, \ldots\} \subseteq \mathrm{A}^{*}\right.$
$\left\{\rangle,\langle\mathrm{e}\rangle, \ldots,\langle\mathrm{e} 1, \mathrm{e} 2, \ldots, \mathrm{en}\rangle, \ldots,\langle\mathrm{e} 1, \mathrm{e} 2, \ldots, \mathrm{en}, \ldots\rangle, \ldots\} \subseteq \mathrm{A}^{\omega}\right.$
$\left\langle\mathrm{a} i \quad . . \mathrm{a}_{-} j\right\rangle$
- The last line above assumes $a_{i}$ and $a_{j}$ to be integer-valued expressions.
- It then expresses the set of integers from the value of $e_{i}$ to and including the value of $e_{j}$.
- If the latter is smaller than the former, then the list is empty.


## Example 10

- A phenomenological (i.e., a physical) route of a net is a sequence of one or more adjacent links of that net.
- A conceptual route is a sequence of one or more link identifiers.
- An abstract route is a conceptual route
- for which there is a phenomenological route of the net
- for which the link identifiers of the abstract route
- map one-to-one onto links of the phenomenological route.


## An RSL Primer

- A single link is a phenomenological route.
- If $r$ and $r^{\prime}$ are phenomenological routes
- such that the last link $r$
- and the first link of $r^{\prime}$
- share observable hub identifiers,
then the concatenation $\widehat{r^{\prime}}$ is a route.
This inductive definition implies a recursive set comprehension.
- A circular phenomenological route is a phenomenological route whose first and last links are distinct but share hub identifiers.
- A looped phenomenological route is a phenomenological route where two distinctly positions (i.e., indexed) links share hub identifiers.

```
value
 routes: \(\mathrm{N} \rightarrow\) PR-infset
 routes(n) \(\equiv\)
 let prs \(=\left\{\langle I\rangle \mid I: L \cdot o b s _L s(n)\right\} \cup\)
```



```
 prs end
is_circular: PR \(\rightarrow\) Bool
is_circular \((\) pr \() \equiv\) obs_HIs \((\operatorname{pr}(1))\) คobs_HIs \((\operatorname{pr}(\) len \(p r)) \neq\{ \}\)
 is_looped: PR \(\rightarrow\) Bool
is_looped \((\mathrm{pr}) \equiv \exists \mathrm{i}, \mathrm{j}:\) Nat \(\cdot \mathrm{i} \neq \mathrm{j} \wedge\{\mathrm{i}, \mathrm{j}\} \subseteq\) index \(\mathrm{pr} \Rightarrow\) obs_HIs \((\operatorname{pr}(\mathrm{i})) \cap\) obs_HIs \((\operatorname{pr}(\mathrm{j})) \neq\{ \}\)
```

310
Lecture Notes in Software Engineering

### 1.2.5. Map Expressions

### 1.2.5.1. Map Enumerations

- Let (possibly indexed) $u$ and $v$ range over values of type $T 1$ and $T 2$, respectively,
- then the below expressions are simple map enumerations:


## type

T1, T2
$\mathrm{M}=\mathrm{T} 1 \pi \mathrm{~T} 2$
value

$$
\begin{aligned}
& \mathrm{u}, \mathrm{u} 1, \mathrm{u} 2, \ldots, \mathrm{un}: \mathrm{T} 1, \mathrm{v}, \mathrm{v} 1, \mathrm{v} 2, \ldots, \mathrm{vn}: \mathrm{T} 2 \\
& \{[],[\mathrm{u} \mapsto \mathrm{v}], \ldots,[\mathrm{u} 1 \mapsto \mathrm{v} 1, \mathrm{u} 2 \mapsto \mathrm{v} 2, \ldots, \mathrm{un} \mapsto \mathrm{vn}], \ldots\} \subseteq \mathrm{M}
\end{aligned}
$$

- Straight routes are Phenomenological routes without loops.
- Phenomenological routes with no loops can be constructed from phenomenological routes by removing suffix routes whose first link give rise to looping.


## value

straight_routes: $\mathrm{N} \rightarrow \mathrm{PR}$-set
straight_routes $(\mathrm{n}) \equiv$
let prs $=$ routes(n) in $\{$ straight_route(pr)|pr:PR.ps $\in$ prs $\}$ end
straight_route: $\mathrm{PR} \rightarrow \mathrm{PR}$
straight_route(pr) $\equiv$

$$
\langle\mathrm{pr}(\mathrm{i})| \mathrm{i}: \text { Nat.i: }:[1 . . \operatorname{len} \mathrm{pr}] \wedge \operatorname{pr}(\mathrm{i}) \notin \operatorname{elems}\langle\mathrm{pr}(\mathrm{j})| j: \text { Nat.j: }:[1 . . \mathrm{i}]\rangle\rangle
$$

End of Example 10

An RSL Primer

### 1.2.5.2. Map Comprehension

- The last line below expresses map comprehension:

$$
\begin{aligned}
& \text { type } \\
& \begin{array}{l}
\mathrm{U}, \mathrm{~V}, \mathrm{X}, \mathrm{Y} \\
\mathrm{M}=\mathrm{U} \xrightarrow{m} \mathrm{~V} \\
\mathrm{~F}=\mathrm{U} \xrightarrow{\rightarrow} \mathrm{X} \\
\mathrm{G}=\mathrm{V} \xrightarrow{\rightarrow} \mathrm{Y} \\
\mathrm{P}=\mathrm{U} \rightarrow \text { Bool } \\
\text { value } \\
\text { comprehend: } \mathrm{M} \times \mathrm{F} \times \mathrm{G} \times \mathrm{P} \rightarrow(\mathrm{X} \rightarrow \mathrm{~T} \\
\text { comprehend }(\mathrm{m}, \mathrm{~F}, \mathrm{G}, \mathrm{P}) \equiv \\
\quad[\mathrm{F}(\mathrm{u}) \mapsto \mathrm{G}(\mathrm{~m}(\mathrm{u})) \mid \mathrm{u}: \mathrm{U} \cdot \mathrm{u} \in \operatorname{dom} \mathrm{~m} \wedge \mathrm{P}(\mathrm{u})]
\end{array}
\end{aligned}
$$

## Example 11

## Concrete Net Type Construction:

- We Define a function con[struct]_ $N_{\gamma}$ (of the Cartesians + Maps + Wellformedness part of Example 3.
- The base of the construction is the fully abstract sort definition of $N_{\alpha}$ in the Sorts + Observers + Axioms part of Example $3-$ where the sorts of hub and link identifiers are taken from earlier examples.
- The target of the construction is the $\mathrm{N}_{\gamma}$ of the Cartesians + Maps + Wellformedness part of Example 3.
- First we recall the ssential types of that $N_{\gamma}$.

$$
\text { 1. An RSL Primer 1.2. Concrete RSL Types: Values and Operations 1.2.5. Map Expressions } 1.2 .5 \text {.2. Map Compretension }
$$

## theorem:

$\mathrm{n}_{\alpha}$ satisfies axioms 2.-3., 5.-6., and 10. (Page 14) $\Rightarrow \mathrm{wf}_{-} \mathrm{N}_{\gamma}\left(\operatorname{con} \mathrm{N}_{\gamma}\left(\mathrm{n}_{\alpha}\right.\right.$
End of Example 11

```
type
 \(\mathrm{N}_{\gamma}=\) HUBS \(\times\) LINKS \(\times\) GRAPH
 HUBS \(=\mathrm{HI} \underset{m}{ } \mathrm{H}\)
 LINKS \(=\mathrm{LI} \vec{m} \mathrm{~L}\)
 \(\mathrm{GRAPH}=\mathrm{HI} \underset{m}{\vec{m}}(\mathrm{LI} \underset{m}{ } \mathrm{HI})\)
value
 con_ \(\mathrm{N}_{\gamma}: \mathrm{N}_{\alpha} \rightarrow \mathrm{N}_{\gamma}\)
 con_N \(\mathrm{N}_{\gamma}\left(\mathrm{n}_{\alpha}\right) \equiv\)
 let hubs \(=\left[\right.\) obs_HI \((\mathrm{h}) \mapsto \mathrm{h} \mid \mathrm{h}: \mathrm{H} \cdot \mathrm{h} \in\) obs_Hs \(\left.\left(\mathrm{n}_{\alpha}\right)\right]\),
 links \(=\left[\right.\) obs_LI \((\mathrm{h}) \mapsto I \mid \mathrm{I}: \mathrm{L} \cdot \mathrm{I} \in\) obs_Ls \(\left.\left(\mathrm{n}_{\alpha}\right)\right]\),
 graph \(=[\) obs_HI(h) \(\mapsto[\) obs_LI(I) \(\mapsto \iota(\) obs_HIs \((\mathrm{I}) \backslash\{\) obs_HI(h) \(\})\)
 \(\mid \mathrm{I}: \mathrm{L} \cdot \mathrm{I} \in\) obs_Ls \(\left(\mathrm{n}_{\alpha}\right) \wedge \mathrm{li} \in\) obs_LIs(h)
 | \(\mathrm{H}: \mathrm{h} \cdot \mathrm{h} \in\) obs_Hs \(\left.\left(\mathrm{n}_{\alpha}\right)\right]\) in
 (hubs.links,graph) end
\(\iota: \mathrm{A}\)-set \(\xrightarrow{\sim} \mathrm{A}[\mathrm{A}\) could be LI-set \(]\)
\(\iota(\mathrm{as}) \equiv\) if card as=1 then let \(\{a\}=\) as in a else chaos end end
```

$\qquad$

An RSL Primer
1.2.6. Set Operations
1.2.6.1. Set Operator Signatures
value

$$
\begin{aligned}
& \in: A \times \text { A-infset } \rightarrow \text { Bool } \\
& \notin: A \times \text { A-infset } \rightarrow \text { Bool } \\
& \cup: \text { A-infset } \times \text { A-infset } \rightarrow \text { A-infset } \\
& \cup:(\text { A-infset }) \text {-infset } \rightarrow \text { A-infset } \\
& \cap: \text { A-infset } \times \text { A-infset } \rightarrow \text { A-infset } \\
& \cap:(\text { A-infset }) \text {-infset } \rightarrow \text { A-infset } \\
& \backslash: \text { A-infset } \times \text { A-infset } \rightarrow \text { A-infset } \\
& \subset: \text { A-infset } \times \text { A-infset } \rightarrow \text { Bool } \\
& \subseteq: \text { A-infset } \times \text { A-infset } \rightarrow \text { Bool } \\
& =: \text { A-infset } \times \text { A-infset } \rightarrow \text { Bool } \\
& \neq: \text { A-infset } \times \text { A-infset } \rightarrow \text { Bool } \\
& \text { card }: \text { A-infset } \xrightarrow{\sim} \text { Nat }
\end{aligned}
$$

## examples

```
a}\in{a,b,c
a}\not\in{},a\not\in{b,c
{a,b,c}\cup{a,b,d,e}={a,b,c,d,e}
\cup{a},{a,b},{a,d}}={a,b,d}
{a,b,c}\cap{c,d,e}={c}
\cap{{a},{a,b},{a,d}}={a}
{a,b,c}\{c,d}={a,b}
{a,b}}\subset{a,b,c
{a,b,c}\subseteq{a,b,c}
{a,b,c} ={a,b,c}
{a,b,c}}\not={a,b
card {} = 0, card {a,b,c} = 3
```


### 1.2.8. List Operations

1.2.8.1. List Operator Signatures
value
hd: $\mathrm{A}^{\omega} \xrightarrow{\sim} \mathrm{A}$
tl: $A^{\omega} \xrightarrow{\sim} A^{\omega}$
len: $A^{\omega} \xrightarrow{\sim}$ Nat
inds: $\mathrm{A}^{\omega} \rightarrow$ Nat-infset
elems: $\mathrm{A}^{\omega} \rightarrow$ A-infset
.(.): $\mathrm{A}^{\omega} \times \mathrm{Nat} \xrightarrow{\sim} \mathrm{A}$
$\uparrow: A^{*} \times A^{\omega} \rightarrow A^{\omega}$
$=: A^{\omega} \times A^{\omega} \rightarrow$ Bool
$\neq: A^{\omega} \times A^{\omega} \rightarrow$ Bool

### 1.2.7. Cartesian Operations

```
```

type

```
```

type
A, B, C
A, B, C
g1: G1 = (A }\times\textrm{B}\times\textrm{C}
g1: G1 = (A }\times\textrm{B}\times\textrm{C}
g2: G2 = (A }\times\textrm{B})\times\textrm{C
g2: G2 = (A }\times\textrm{B})\times\textrm{C
g3: G3 = A }\times(\textrm{B}\times\textrm{C}
g3: G3 = A }\times(\textrm{B}\times\textrm{C}
value
value
va:A, vb:B, vc:C, vd:D
va:A, vb:B, vc:C, vd:D
(va,vb,vc):G0,

```
```

    (va,vb,vc):G0,
    ```
```

    g0: G0 \(=\mathrm{A} \times \mathrm{B} \times \mathrm{C} \quad\) (va3,(vb3,vc3)):G3
    
## decomposition expressions

```
let \((\mathrm{a} 1, \mathrm{~b} 1, \mathrm{c} 1)=\mathrm{g} 0\),
\(\left(\mathrm{al}^{\prime}, \mathrm{b1} 1^{\prime}, \mathrm{c} 1^{\prime}\right)=\mathrm{g} 1 \mathrm{in} .\). end
let \(((a 2, b 2), c 2)=\mathrm{g} 2\) in. end
let \((a 3,(b 3, c 3))=g 3\) in.. end
(va,vb,vc):G1
((va,vb),vc):G2
let (a3,(b3,c3)) = g3 in .. end
```


## An RSL Primer

### 1.2.9. Map Operations

1.2.9.1. Map Operator Signatures and Map Operation Examples value

$$
\mathrm{m}(\mathrm{a}): \mathrm{M} \rightarrow \mathrm{~A} \xrightarrow{\sim} \mathrm{~B}, \mathrm{~m}(\mathrm{a})=\mathrm{b}
$$

dom: $\mathrm{M} \rightarrow$ A-infset [domain of map] $\operatorname{dom}[\mathrm{a} 1 \mapsto \mathrm{~b} 1, \mathrm{a} 2 \mapsto \mathrm{~b} 2, \ldots, \mathrm{an} \mapsto \mathrm{bn}]=\{\mathrm{a} 1, \mathrm{a} 2, \ldots, \mathrm{an}\}$

```
rng: M \(\rightarrow\) B-infset [range of map]
 rng \([\mathrm{a} 1 \mapsto \mathrm{~b} 1, \mathrm{a} 2 \mapsto \mathrm{~b} 2, \ldots, \mathrm{an} \mapsto \mathrm{bn}]=\{\mathrm{b} 1, \mathrm{~b} 2, \ldots, \mathrm{bn}\}\)
 \(\dagger: \mathrm{M} \times \mathrm{M} \rightarrow \mathrm{M}\) [override extension]
 \(\left[\mathrm{a} \mapsto \mathrm{b}, \mathrm{a}^{\prime} \mapsto \mathrm{b}^{\prime}, \mathrm{a}^{\prime \prime} \mapsto \mathrm{b}^{\prime \prime}\right] \dagger\left[\mathrm{a}^{\prime} \mapsto \mathrm{b}^{\prime \prime}, \mathrm{a}^{\prime \prime} \mapsto \mathrm{b}^{\prime}\right]=\left[\mathrm{a} \mapsto \mathrm{b}, \mathrm{a}^{\prime} \mapsto \mathrm{b}^{\prime \prime}, \mathrm{a}^{\prime \prime} \mapsto \mathrm{b}^{\prime}\right]\)
```

$\qquad$

```
\(\cup: M \times M \rightarrow M[\) merge \(\cup]\)
 \(\left[\mathrm{a} \mapsto \mathrm{b}, \mathrm{a}^{\prime} \mapsto \mathrm{b}^{\prime}, \mathrm{a}^{\prime \prime} \mapsto \mathrm{b}^{\prime \prime}\right] \cup\left[\mathrm{a}^{\prime \prime} \mapsto \mathrm{b}^{\prime \prime \prime}\right]=\left[\mathrm{a} \mapsto \mathrm{b}, \mathrm{a}^{\prime} \mapsto \mathrm{b}^{\prime}, \mathrm{a}^{\prime \prime} \mapsto \mathrm{b}^{\prime \prime}, \mathrm{a}^{\prime \prime} \mapsto \mathrm{b}^{\prime \prime}\right]\)
\(\backslash: M \times\) A-infset \(\rightarrow \mathrm{M}\) [restriction by]
 \(\left[a \mapsto b, a^{\prime} \mapsto b^{\prime}, a^{\prime \prime} \mapsto b^{\prime \prime}\right] \backslash\{a\}=\left[a^{\prime} \mapsto b^{\prime}, a^{\prime \prime} \mapsto b^{\prime \prime}\right]\)
\(/: \mathrm{M} \times \mathrm{A}\)-infset \(\rightarrow \mathrm{M}[\) restriction to \(]\)
 \(\left[\mathrm{a} \mapsto \mathrm{b}, \mathrm{a}^{\prime} \mapsto \mathrm{b}^{\prime}, \mathrm{a}^{\prime \prime} \mapsto \mathrm{b}^{\prime \prime}\right] /\left\{\mathrm{a}^{\prime}, \mathrm{a}^{\prime \prime}\right\}=\left[\mathrm{a}^{\prime} \mapsto \mathrm{b}^{\prime}, \mathrm{a}^{\prime \prime} \mapsto \mathrm{b}^{\prime \prime}\right]\)
\(=, \neq: \mathrm{M} \times \mathrm{M} \rightarrow\) Bool
\({ }^{\circ}:(\mathrm{A} \rightarrow \mathrm{B}) \times(\mathrm{B} \rightarrow \mathrm{C}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C})[\) composition \(]\)
\(\left[\mathrm{a} \mapsto \mathrm{b}, \mathrm{a}^{\prime} \mapsto \mathrm{b}^{\prime}\right]^{\circ}\left[\mathrm{b} \mapsto \mathrm{c}, \mathrm{b}^{\prime} \mapsto \mathrm{c}^{\prime}, \mathrm{b}^{\prime \prime} \mapsto \mathrm{c}^{\prime \prime}\right]=\left[\mathrm{a} \mapsto \mathrm{c}, \mathrm{a}^{\prime} \mapsto \mathrm{c}^{\prime}\right]\)
```


### 1.3. The RSL Predicate Calculus <br> 1.3.1. Propositional Expressions

- Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values (true or false [or chaos])
- Then:
false, true
$a, b, \ldots, c \sim a, a \wedge b, a \vee b, a \Rightarrow b, a=b, a \neq b$
- are propositional expressions having Boolean values.
$-\sim, \wedge, \vee, \Rightarrow$, $=$ and $\neq$ are Boolean connectives (i.e., operators)
- They can be read as: not, and, or, if then (or implies), equal and not equal.


### 1.3.3. Quantified Expressions

- Let X, Y, ..., C be type names or type expressions,
- and let $\mathcal{P}(x), \mathcal{Q}(y)$ and $\mathcal{R}(z)$ designate predicate expressions in which $x, y$ and $z$ are free.
- Then:

```
\forallx:X · P (x)
\exists y:Y · Q (y)
\exists!z:Z\cdot\mathcal{R}(z)
```

- are quantified expressions - also being predicate expressions.


### 1.3.2. Simple Predicate Expressions

- Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values,
- let $\mathrm{x}, \mathrm{y}, \ldots, \mathrm{z}$ (or term expressions) designate non-Boolean values
- and let $\mathrm{i}, \mathrm{j}, \ldots, \mathrm{k}$ designate number values,
- then:
false, true
a, b, ..., c
$\sim \mathrm{a}, \mathrm{a} \wedge \mathrm{b}, \mathrm{a} \vee \mathrm{b}, \mathrm{a} \Rightarrow \mathrm{b}, \mathrm{a}=\mathrm{b}, \mathrm{a} \neq \mathrm{b}$
$x=y, x \neq y$
$i<j, i \leq j, i \geq j, i \neq j, i \geq j, i>j$
- are simple predicate expressions.

An RSL Primer

1. An RSL Primer 1.3. The RSL Predicate Calculus 1.3.3. Quantified Expressions

## Example 12

## Predicates Over Net Quantities:

- From earlier examples we show some predicates
- Example 1: Right hand side of function definition is_two_way_link(I): $\exists l \sigma: L \Sigma \cdot l \sigma \in$ obs_H $H(I) \wedge$ card $/ \sigma=2$


## - Example 3

- The Sorts + Observers + Axioms part:
* Right hand side of the wellformedness function wf_N(n) definition:
$\forall n: N \cdot$ card obs_Hs $(n) \geq 2 \wedge$ card obs_Ls $(n) \geq 1 \wedge$ axioms 2 .3., 5.-6., and 10., (Page 14)
* Right hand side of the wellformedness function $w f_{-} N(h s, / s)$ definition:
card $h s \geq 2 \wedge$ card $\mid s \geq 1 \ldots$


## 1.4. $\lambda$-Calculus + Functions

1.4.1. The $\lambda$-Calculus Syntax
type /* A BNF Syntax: */
$\langle\mathrm{L}\rangle::=\langle\mathrm{V}\rangle|\langle\mathrm{F}\rangle|\langle\mathrm{A}\rangle \mid(\langle\mathrm{A}\rangle)$
$\langle\mathrm{V}\rangle::=/ *$ variables, i.e. identifiers $* /$
$\langle\mathrm{F}\rangle::=\lambda\langle\mathrm{V}\rangle \cdot\langle\mathrm{L}\rangle$
$\langle\mathrm{A}\rangle::=(\langle\mathrm{L}\rangle\langle\mathrm{L}\rangle)$
value / $*$ Examples */
$\langle\mathrm{L}\rangle: \mathrm{e}, \mathrm{f}, \mathrm{a}, \ldots$
$\langle\mathrm{V}\rangle: \mathrm{x}, \ldots$
$\langle\mathrm{F}\rangle: \lambda \mathrm{x} \cdot \mathrm{e}, .$.
$\langle A\rangle: f a,(f a), f(a),(f)(a), \ldots$

- The Cartesians + Maps + Wellformedness part:
* Right hand side of the wf_HUBS wellformedness function definition: $\forall$ hi:HI $\cdot$ hi dom hubs $\Rightarrow$ obs_Hllhubs(hi)=hi
* Right hand side of the wf_LINKS wellformedness function definition: $\forall$ li:LI•li $\in$ dom links $\Rightarrow$ obs_Lllinks(li)=li
* Right hand side of the $w f$ f $N(h s, l s, g)$ wellformedness function definition:
[c] $\operatorname{dom} h s=\operatorname{dom} g \wedge$
$[d] \cup\{\operatorname{dom} g(h i) \mid h i: H I \cdot h i \in \operatorname{dom} g\}=$ dom links $\wedge$
$[e] \cup\{\operatorname{rng} g(h i) \mid h i: H I \cdot h i \in \operatorname{dom} g\}=\operatorname{dom} g \wedge$
$[f] \forall h i: H 1 \cdot h i \in \operatorname{dom} g \Rightarrow \forall \quad$ li:Ll $\cdot l i \in \operatorname{dom} g(h i) \Rightarrow(g(h i))(l i) \neq h i$
$[g] \forall$ hi:HI $\cdot h i \in \operatorname{dom} g \Rightarrow \forall$ li:LI $\cdot l i \in \operatorname{dom} g(h i) \Rightarrow$ $\exists h i: H I \cdot h i \in \operatorname{dom} g \Rightarrow \exists!$ li:LI $\cdot l i \in \operatorname{dom} g(h i) \Rightarrow$ $(g(h i))(l i)=h i \wedge(g(h i))(l i)=h i$

End of Example 12

An RSL Primer

# 1.4.2. Free and Bound Variables 

Let $x, y$ be variable names and $e, f$ be $\lambda$-expressions.

- $\langle\mathrm{V}\rangle$ : Variable $x$ is free in $x$.
- $\langle\mathrm{F}\rangle: x$ is free in $\lambda y \cdot e$ if $x \neq y$ and $x$ is free in $e$.
- $\langle\mathrm{A}\rangle: x$ is free in $f(e)$ if it is free in either $f$ or $e$ (i.e., also in both).


### 1.4.3. Substitution

Substitution of an expression $N$ for all free free $x$ in $M$ is expressed: $\boldsymbol{\operatorname { s u b s t }}([\mathrm{N} / \mathrm{x}] \mathrm{M})$.

- $\boldsymbol{\operatorname { s u b }} \boldsymbol{\operatorname { s i n }}([\mathrm{N} / \mathrm{x}] \mathrm{x}) \equiv \mathrm{N}$;
- $\boldsymbol{\operatorname { s u b s t }}([\mathrm{N} / \mathrm{x}] \mathrm{a}) \equiv \mathrm{a}$
for all variables $\mathrm{a} \neq \mathrm{x}$;
- $\boldsymbol{\operatorname { s u b }} \boldsymbol{\operatorname { s i n }}([\mathrm{N} / \mathrm{x}](\mathrm{P} Q)) \equiv(\boldsymbol{\operatorname { s u b s t }}([\mathrm{N} / \mathrm{x}] \mathrm{P}) \boldsymbol{\operatorname { s u b s t }}([\mathrm{N} / \mathrm{x}] \mathrm{Q}))$;
- $\boldsymbol{\operatorname { s u b s t }}([\mathrm{N} / \mathrm{x}](\lambda x \cdot P)) \equiv \lambda y \cdot P ;$
- $\boldsymbol{\operatorname { s u b }} \boldsymbol{\operatorname { s i n }}([\mathrm{N} / \mathrm{x}](\lambda y \cdot \mathrm{P})) \equiv \lambda y$. $\boldsymbol{\operatorname { s u b s t }}([\mathrm{N} / \mathrm{x}] \mathrm{P})$,
if $x \neq y$ and $y$ is not free in $N$ or $x$ is not free in $P$;
- $\boldsymbol{\operatorname { s u b }} \boldsymbol{\operatorname { s i n }}([\mathrm{N} / \mathrm{x}](\lambda y \cdot P)) \equiv \lambda z \cdot \boldsymbol{s u b s t}([\mathrm{~N} / \mathrm{z}] \boldsymbol{\operatorname { s u b }} \boldsymbol{\operatorname { c o s }}([\mathrm{z} / \mathrm{y}] \mathrm{P}))$,
if $y \neq x$ and $y$ is free in $N$ and $x$ is free in $P$ (where $\mathbf{z}$ is not free in $(N P)$ ).

1. An RSL Primer 1.4. 入-Calaculus + Functions 1.4.4. The $\lambda$-Calculus Symax

## Example 13

## Network Traffic

- We model traffic by introducing a number of model concepts.
- We simplify,
- without loosing the essence of this example, namely to show the use of $\lambda$ functions,
- by omitting consideration of dynamically changing nets.
- These are introduced next:
- Let us assume a net, $n: N$.
- There is a dense set, $T$, of times - for which we omit giving an appropriate definition.
- There is a sort, $V$, of vehicles.
- TS is a dense subset of $T$.
- For each $t s: T S$ we can define a minimum and a maximum time.


### 1.4.4. $\alpha$-Renaming and $\beta$-Reduction

- $\alpha$-renaming: $\lambda \mathrm{x} \cdot \mathrm{M}$

If $x, y$ are distinct variables then replacing $x$ by $y$ in $\lambda x \cdot M$ results in $\lambda y \cdot \boldsymbol{s u b s t}([y / x] M)$. We can rename the formal parameter of a $\lambda$ function expression provided that no free variables of its body M thereby become bound.

- $\beta$-reduction: $(\lambda x \cdot \mathrm{M})(\mathrm{N})$

All free occurrences of $x$ in $M$ are replaced by the expression $N$ provided that no free variables of N thereby become bound in the result. $(\lambda x \cdot M)(N) \equiv \operatorname{subst}([N / x] M)$

- The $\mathcal{M I N}$ and $\mathcal{M} \mathcal{A X}$ functions are meta-linguistic.
- At any moment some vehicles, $v: V$, have a pos:Position on the net and $V P$ records those.
- A Position is either on a link or at a hub.
- An onLink position can be designated by the link identifier, the identifiers of the from and to hubs, and the fraction, $f: F$, of the distance down the link from the from hub to the to hub.
- An atHub position just designates the hub (by its identifier).
- Traffic, tf:TF, is now a continuous function from Time to NP ("recordings").
- Modelling traffic in this way entails a ("serious") number of wellformedness conditions. These are defined in wf_TF (omitted: ...).

```
value
 \(\mathrm{n}: \mathrm{N}\)
type
 T, V
 TS = T-infset
axiom
 \(\forall \mathrm{ts}: \mathrm{TS} \cdot \exists \mathrm{tmin}, \mathrm{tmax}: \mathrm{T}: \mathrm{tmin} \in \mathrm{ts} \wedge \mathrm{tmax} \in \mathrm{ts} \wedge \forall \mathrm{t}: \mathrm{T} \cdot \mathrm{t} \in \mathrm{ts} \Rightarrow \mathrm{tmin} \leq \mathrm{t} \leq \mathrm{tmax}\)
 that is: ts \(=\{\mathcal{M} \mathcal{I} \mathcal{N}(\mathrm{ts}) . . \mathcal{M} \mathcal{A X}(\mathrm{ts})\}]\)
type
 \(\mathrm{VP}=\mathrm{V} \underset{m}{ } \mathrm{Pos}\)
 \(\mathrm{TF}^{\prime}=\mathrm{T} \rightarrow \mathrm{VP}, \quad \mathrm{TF}=\left\{\left|\mathrm{tf}: \mathrm{TF}^{\prime} \cdot \mathrm{wf}_{-} \mathrm{TF}(\mathrm{tf})(\mathrm{n})\right|\right\}\)
 Pos \(=\) onL \(\mid\) atH
 onL \(==m k L P o s(h i: H I, l i: L I, f: F, h i: H I), \quad\) atH \(==m k H P o s(h i: H I)\)
value
 wf_TF: TF \(\rightarrow \mathrm{N} \rightarrow\) Bool
 wf_TF \((\mathrm{tf})(\mathrm{n}) \equiv \ldots\)
 \(\mathcal{D O} \mathcal{M A \mathcal { I }}:\) TF \(\rightarrow\) TS
 \(\mathcal{M I N}, \mathcal{M} \mathcal{A X}: T S \rightarrow T\)
```

- The function insert_V is here defined in terms of a pair of pre/post conditions.
- The pre-condition can be prescribed as follows:
- The insertion time $t$ must be within to open interval of time points in the traffic $t f$ to which insertion applies.
- The vehicle $v$ must not be among the vehicle positions of $t f$.
- The vehicle must be the only vehicle "contained" in the "inserted" traffic $v t f$.
pre: $\mathcal{M I N}(\mathcal{D O M A I N}(\mathrm{tf}) \leq \mathrm{t} \leq \mathcal{M A X}(\mathcal{D O} \mathcal{M A I N}(\mathrm{tf})) \wedge$
$\forall \mathrm{t}^{\mathrm{t}}: \mathrm{T} \cdot \mathrm{t}^{\prime} \in \mathcal{D} \mathcal{O} \mathcal{M A \mathcal { A }} \mathcal{N}(\mathrm{tf}) \Rightarrow \mathrm{v} \notin \operatorname{dom} \mathrm{tf}\left(\mathrm{t}^{\prime}\right) \wedge$
$\mathcal{M I N}(\mathcal{D O M A I N}(\mathrm{vtf}))=\mathrm{t} \wedge$
$\forall \mathrm{t}^{\prime}: \mathrm{T} \cdot \mathrm{t}^{\prime} \in \mathcal{D} \mathcal{O} \mathcal{M} \mathcal{A} \mathcal{I N}(\mathrm{vtf}) \Rightarrow \operatorname{dom} \operatorname{vtf}\left(\mathrm{t}^{\prime}\right)=\{\mathrm{v}\}$
- We have defined the continuous, composite entity of traffic.
- Now let us define an operation of inserting a vehicle in a traffic.
- To insert a vehicle, $v$, in a traffic, $t f$, is prescribable as follows:
- the vehicle, $v$, must be designated;
- a time point, $t$, "inside" the traffic $t f$ must be stated;
- a traffic, $v t f$, from time $t$ of vehicle $v$ must be stated;
- as well as traffic, $t f$, into which $v t f$ is to be "merged"
- The resulting traffic is referred to as $t f^{\prime}$.
value
insert $\mathrm{V}: \mathrm{V} \times \mathrm{T} \times \mathrm{TF} \rightarrow \mathrm{TF} \rightarrow \mathrm{TF}$
insert_ $V(v, t, v t f)(t f)$ as $t f$

An RSL Primer

- The post condition "defines" $t f^{\prime}$, the traffic resulting from merging $v t f$ with $t f$
- Let $t s$ be the time points of $t f$ and $v t f$, a time interval.
- The result traffic, $t f^{\prime}$, is defines as a $\lambda$-function.
- For any $t^{\prime \prime}$ in the time interval
- if $t^{\prime \prime}$ is less than $t$, the insertion time, then $t f^{\prime}$ is as $t f$;
- if $t^{\prime \prime}$ is $t$ or larger then $t f^{\prime}$ applied to $t^{\prime \prime}$, i.e., $t f^{\prime}\left(t^{\prime \prime}\right)$
* for any $v^{\prime}: V$ different from $v$ yields the same as $(t f(t))\left(v^{\prime}\right)$,
* but for $v$ it yields $(v t f(t))(v)$.

```
post: \(\mathrm{tf}=\lambda \mathrm{t}^{\prime \prime}\).
 let ts \(=\mathcal{D} \mathcal{O} \mathcal{M} \mathcal{A I N}(\mathrm{tf}) \cup \mathcal{D O} \mathcal{M} \mathcal{A I N}(\mathrm{vtf})\) in
 if \(\mathcal{M I N}(\mathrm{ts}) \leq \mathrm{t}^{\prime \prime} \leq \mathcal{M} \mathcal{A X}(\mathrm{ts})\)
 then
 \(\left(\left(\mathrm{t}^{\prime \prime}<\mathrm{t}\right) \rightarrow \mathrm{tf}\left(\mathrm{t}^{\prime \prime}\right)\right.\),
 \(\left(t^{\prime \prime} \geq t\right) \rightarrow\left[v^{\prime} \mapsto\right.\) if \(v^{\prime} \neq v\) then \((t f(t))\left(v^{\prime}\right)\) else \((v t f(t))(v)\) end
 \(\left.\left.\mathrm{v}^{\prime}: \mathrm{V} \cdot \mathrm{v}^{\prime} \in \operatorname{vehicles}(\mathrm{tf})\right]\right)\)
 else chaos end
 end
assumption: wf_TF(vtf) \(\wedge w f\) _ \(T F(t f)\)
theorem: wf_TF(tf')
value
vehicles: TF \(\rightarrow\) V-set
vehicles \((\mathrm{tf}) \equiv\{\mathrm{v} \mid \mathrm{t}: \mathrm{T}, \mathrm{v}: \mathrm{V} \cdot \mathrm{t} \in \mathcal{D} \mathcal{O} \mathcal{M} \mathcal{A} \mathcal{I} \mathcal{N}(\mathrm{tf}) \wedge \mathrm{v} \in \operatorname{dom} \operatorname{tf}(\mathrm{t})\}\)
```


## Example 14

Hub and Link Observers:

- Let a net with several hubs and links be presented.
- Now observer functions
- obs_Hs and
- obs_Ls
can be demonstrated:
- one simply "walks" along the net, pointing out
- this hub and
- that link,
- one-by-one
- until all the net has been visited.


### 1.4.5. Function Signatures

For sorts we may want to postulate some functions:

## type

```
A, B, ..., C
```

value

```
obs_B: A -> B
...
obs_C: A }->\mathrm{ C
```

- These functions cannot be defined.
- Once a domain is presented
- in which sort A and sorts or types B, ... and C occurs
- these observer functions can be demonstrated.
- The observer functions
- obs_HI and
- obs_LI
can be likewise demonstrated, for example:
- when a hub is "visited"
- its unique identification
- can be postulated (and "calculated")
- to be the unique geographic position of the hub
- one which is not overlapped by any other hub (or link),
- and likewise for links.

End of Example 14

### 1.4.6. Function Definitions

Functions can be defined explicitly:

type	
A, B	$\mathrm{g}: \mathrm{A} \xrightarrow{\sim} \mathrm{B}$ [a partial function]
value	$\mathrm{g}(\mathrm{a}$ _expr) $\equiv$ b_expr
$\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ [ a total function]	pre P (a_expr)
$\mathrm{f}(\mathrm{a}$ _expr $) \equiv$ b_expr	P: A $\rightarrow$ Bool

Or functions can be defined implicitly:

```
value g: A\xrightarrow{}{~}\textrm{B}
 f: A->B g(a_expr) as b
 f(a_expr) as b pre P'(a_expr)
 post P(a_expr,b) post P(a_expr,b)
 P:A}\times\textrm{B}->\textrm{Bool
 P': A}->\mathrm{ Bool
```

where $b$ is just an identifier.

An RSL Primer

## Example 15 . .Axioms over Hubs, Links and Their Observers:

- The axioms displayed in Items 7-10 on Page 14 of Sect.
- demonstrates how a number of entities and observer functions are constrained
- (that is, partially defined) by function signatures.

End of Example 15

### 1.5. Other Applicative Expressions

### 1.5.1. Simple let Expressions

Simple (i.e., nonrecursive) let expressions:
let $\mathrm{a}=\mathcal{E}_{d}$ in $\mathcal{E}_{b}(\mathrm{a})$ end
is an "expanded" form of:

$$
\left(\lambda \mathrm{a} . \mathcal{E}_{b}(\mathrm{a})\right)\left(\mathcal{E}_{d}\right)
$$

$\qquad$

### 1.5.3. Non-deterministic let Clause

- The non-deterministic let clause
let $a: A \cdot \mathcal{P}(a)$ in $\mathcal{B}(a)$ end
- expresses the non-deterministic selection of a value a of type A
- which satisfies a predicate $\mathcal{P}(a)$ for evaluation in the body $\mathcal{B}(a)$.
- If no $a: A \bullet P(a)$ the clause evaluates to chaos.


### 1.5.2. Recursive let Expressions

Recursive let expressions are written as:

```
let f}=\lambdaa\cdotE(f,a) in B(f,a) end
let f}=(\lambdag.\lambdaa\cdotE(g,a))(f) in B(f.a) end
let f=F(f) in E(f,a) end where F \equiv\lambdag.\lambdaa.E(g,a)
let f}=\mathbf{YF}\mathrm{ in B(f,a) end where YF = F(YF)
```

- We read $\mathbf{f}=\mathrm{YF}$ as " $f$ is a fix point of $F$ ".


## An RSL Primer

1. An RSL Primer 1.5. Other Applicative Expressions 1.5.4. Pattern and "Widd Card" let Expressions

### 1.5.4. Pattern and "Wild Card" let Expressions

Patterns and wild cards can be used:

$$
\begin{aligned}
& \text { let }\{a\} \cup s=\operatorname{set} \text { in } \ldots \text { end } \\
& \text { let }\{a, \ldots\} \cup s=\operatorname{set} \text { in } \ldots \text { end } \\
& \text { let }(a, b, \ldots, c)=\operatorname{cart} \text { in } \ldots \text { end } \\
& \text { let }(a,-, \ldots, c)=\operatorname{cart} \text { in } \ldots \text { end } \\
& \text { let }\langle a\rangle \nprec=\operatorname{list} \text { in } \ldots \text { end } \\
& \text { let }\langle a,-, b\rangle \ell \ell=\text { list in } \ldots \text { end } \\
& \text { let }[a \mapsto b] \cup m=\operatorname{map} \text { in } \ldots \text { end } \\
& \text { let }[a \mapsto b,-] \cup m=\operatorname{map} \text { in } \ldots \text { end }
\end{aligned}
$$

### 1.5.5. Conditionals

if b_expr then c_expr else a_expr
end
if b_expr then c_expr end $\equiv / *$ same as: $* /$
if b_expr then c_expr else skip end
if b_expr_1 then c_expr_1
elsif b_expr_2 then c_expr_2
elsif b_expr_3 then c_expr_3
elsif b_expr_n then c_expr_n end
case expr of
choice_pattern_1 $\rightarrow$ expr_1,
choice_pattern_2 $\rightarrow$ expr_2
...
choice_pattern_n_or_wild_card $\rightarrow$ expr_n end
I. An RSL Primer 1.5. Other Applicative Expressions 1.5.5. Conditional.
11. If the command is of the form 2 oldH(hi', l,hi') then
$\star 1$ hi' must be the identifier of a hub in hs,
$\star s 2$ I must not be in Is and its identifier must (also) not be observable in Is , and
$\star 3$ hi" must be the identifier of a(nother) hub in hs.
12. If the command is of the form 1 oldH 1 new $\mathrm{H}(\mathrm{hi}, \mathrm{l}, \mathrm{h})$ then
$\star 1$ hi must be the identifier of a hub in hs,
*2 I must not be in Is and its identifier must (also) not be observable in Is, and
$\star 3 \mathrm{~h}$ must not be in hs and its identifier must (also) not be observable in hs.

## Example 16 . Choice Pattern Case Expressions: Insert Links:

We consider the meaning of the Insert operation designators.
9. The insert operation takes an Insert command and a net and yields either a new net or chaos for the case where the insertion command "is at odds" with, that is, is not semantically well-formed with respect to the net.
10. We characterise the "is not at odds", i.e., is semantically well-formed, that is:

- pre_int_Insert(op)(hs,ls),
as follows: it is a propositional function which applies to Insert actions, op, and nets, (hs.ls), and yields a truth value if the below relation between the command arguments and the net is satisfied. Let (hs,ls) be a value of type $N$.

13. If the command is of the form 2 new $H\left(h^{\prime}, l, h^{\prime}\right)$ then
$\star 1 \mathrm{~h}$ - left to the reader as an exercise (see formalisation!),
$\star 2 \mathrm{I}$ - left to the reader as an exercise (see formalisation !), and
$\star 3 \mathrm{h"}$ - left to the reader as an exercise (see formalisation !).
Conditions concerning the new link (second $\star \mathrm{s}$, $\star 2$, in the above three cases) can be expressed independent of the insert command category.

## value

```
 9 int_Insert: Insert }->\textrm{N}\xrightarrow{}{~}\textrm{N
 10' pre_int_Insert: Ins }->\textrm{N}->\mathrm{ Bool
 10\prime\prime}\mathrm{ pre_int_Insert(Ins(op))(hs,ls) 三
*2 s_l(op)\not\in ls ^ obs_LI(s_I(op)) }\not\in\mathrm{ iols(ls) ^
 case op of
 11) 2oldH(hi',,,hi') }->{\mathrm{ hi',hi'}}}\in\mathrm{ iohs(hs),
 12) 1oldH1newH(hi,l,h) }
 hi \in iohs(hs) ^ h\not\in hs ^ obs_HI(h)\not\in iohs(hs),
 13) 2newH(h,l,h') }
 {h',}\mp@subsup{h}{}{\prime\prime}}\cap\textrm{hs}={}\wedge{obs_HI(h'),obs_Hl(h')}\cap iohs(hs)={
 end
```

16. When a new link is joined to an existing hub then the observable link identifiers of that hub must be updated to reflect the link identifier of the new link.
17. When an existing link is removed from a remaining hub then the observable link identifiers of that hub must be updated to reflect the removed link (identifier).

## value

aLI: $\mathrm{H} \times \mathrm{LI} \rightarrow \mathrm{H}, \mathrm{rLI}: \mathrm{H} \times \mathrm{LI} \xrightarrow{\sim} \mathrm{H}$
16: aLI(h,li) as $h^{\prime}$
pre li $\notin$ obs_LIs(h)
post obs_Lls $\left(\mathrm{h}^{\prime}\right)=\{\mathrm{li}\} \cup$ obs_Lls $(\mathrm{h}) \wedge$ non_I_eq(h,h')
17: $\mathrm{rLI}\left(\mathrm{h}^{\prime}, \mathrm{li}\right)$ as h
pre li $\in$ obs_Lls $\left(\mathrm{h}^{\prime}\right) \wedge$ card obs_Lls( $\left.\mathrm{h}^{\prime}\right) \geq 2$
post obs_Lls(h) $=$ obs_Lls(h') $\backslash\{\mathrm{li}\} \wedge$ non_l_eq(h, $\left.\mathrm{h}^{\prime}\right)$
14. Given a net, (hs,ls), and given a hub identifier, (hi), which can be observed from some hub in the net, $\mathrm{xtr} \mathrm{H}(\mathrm{hi})(\mathrm{hs}, \mathrm{ls})$ extracts the hub with that identifier.
15. Given a net, (hs,ls), and given a link identifier, (li), which can be observed from some link in the net, xtr_L(i)(hs,ls) extracts the hub with that identifier.
value
14: $x \operatorname{tr} \mathrm{H}: \mathrm{HI} \rightarrow \mathrm{N} \xrightarrow{\sim} \mathrm{H}$
14: xtr _H(hi)(hs,_) $\equiv$ let $\mathrm{h}: \mathrm{H} \cdot \mathrm{h} \in \mathrm{hs} \wedge$ obs_HI(h)=hi in h end pre hi $\in$ iohs(hs)
15: $x$ tr_L: $\mathrm{HI} \rightarrow \mathrm{N} \xrightarrow{\sim} \mathrm{H}$
15: xtr_L(li)(_, Is $) \equiv$ let I:L.I $\in$ Is $\wedge$ obs_LI(I) $=$ li in I end pre $\mathrm{li} \in \operatorname{iols}(\mathrm{ls})$

## An RSL Primer

18. If the Insert command is of kind $2 n e w H\left(h^{\prime}, \mathrm{l}, \mathrm{h}^{\prime \prime}\right)$ then the updated net of hubs and links, has

- the hubs hs joined, $\cup$, by the set $\left\{h^{\prime}, h^{\prime \prime}\right\}$ and
- the links Is joined by the singleton set of $\{\mid\}$.

19. If the Insert command is of kind 1oldH1newH(hi,l,h) then the updated net of hubs and links, has
19.1 : the hub identified by hi updated, hi', to reflect the link connected to that hub
19.2 : The set of hubs has the hub identified by hi replaced by the updated hub hi and the new hub.
19.2 : The set of links augmented by the new link.
20. If the Insert command is of kind 2 oldH(hi', I, hi") then
20.1-2 : the two connecting hubs are updated to reflect the new link,
20.3 : and the resulting sets of hubs and links updated.
int_Insert(op)(hs,ls) $\equiv$
$\star_{i}$ case op of
182 new $H\left(h^{\prime}, l, h^{\prime \prime}\right) \rightarrow\left(h s \cup\left\{h^{\prime}, h^{\prime \prime}\right\}\right.$, Is $\left.\cup\{\mid\}\right)$,
19 1oldH1newH(hi,l,h) $\rightarrow$
19.1 let $\mathrm{h}^{\prime}=$ aLI(xtr_H(hi,hs),obs_LI(I)) in
$19.2\left(h s \backslash\left\{x t r \_H(h i, h s)\right\} \cup\{h, h\}\right.$, Is $\left.\cup\{I\}\right)$ end,
$20 \quad$ 2oldH(hi', , hi' $) \rightarrow$
20.1 let hs $\delta=\{$ aLI (xtr_H(hi',hs),obs_LI(I)),
$20.2 \quad$ aLI(xtr_H(hi",hs),obs_LI(I)) $\}$ in
20.3 (hs $\backslash\left\{\right.$ xtr_H ${ }^{\prime}$ hi',hs), xtr_H(hi',hs) $\} \cup h s \delta$, ls $\left.\cup\{I\}\right)$ end
$\star_{j}$ end
$\star_{k}$ pre pre_int_Insert(op)(hs,ls)
$\qquad$

## value

21 int_Remove: $\operatorname{Rmv} \rightarrow \mathrm{N} \xrightarrow{\sim} \mathrm{N}$
22 int_Remove(Rmv(li))(hs,ls) 三
22(a)) let I = xtr_L(li)(Is), \{hi',hi'\} = obs_HIs(I) in
22(b)) let $\left\{h^{\prime}, h^{\prime}\right\}=\left\{x t r-H\left(h h^{\prime}, h s\right), x t r-H\left(h h^{\prime \prime}, h s\right)\right\}$ in
22(c)) let hs' = cond_rmv( $\left.\mathrm{h}^{\prime}, \mathrm{hs}\right) \cup$ cond_rmv_H(h $\mathrm{h}^{\prime \prime}$,hs) in
22(d)) (hs $\left.\backslash\left\{h^{\prime}, h^{\prime}\right\} \cup h s^{\prime}, \mid s \backslash\{1\}\right)$ end end end
22(a)) pre li $\in \operatorname{iols}(\mathrm{ls})$
cond_rmv: $\mathrm{LI} \times \mathrm{H} \times \mathrm{H}$-set $\rightarrow \mathrm{H}$-set
cond_rmv(li,h,hs) $\equiv$
$22((\mathrm{c}) \mathrm{i})$ if obs_Hls(h)=\{li\} then $\}$
22((c))ii) else $\{s L I(l i, h)\}$ end
pre li $\in$ obs_HIs(h)
End of Example 16
21. The remove command is of the form $\operatorname{Rmv}(\mathrm{li})$ for some li.
22. We now sketch the meaning of removing a link:
(a) The link identifier, li, is, by the pre_int_Remove pre-condition, that of a link, I, in the net
(b) That link connects to two hubs, let us refer to them as $h^{\prime}$ and $h^{\prime}$.
(c) For each of these two hubs, say $h$, the following holds wrt. removal of their connecting link:
i. If $I$ is the only link connected to $h$ then hub $h$ is removed. This may mean that

- either one


## - or two hubs

are also removed when the link is removed
ii. If I is not the only link connected to h then the hub h is modified to reflect that it is no longer connected to $l$.
(d) The resulting net is that of the pair of adjusted set of hubs and links
$\qquad$

An RSL Primer

### 1.5.6. Operator/Operand Expressions

```
Expr) ::=
 <Prefix_Op\rangle \Expr>
 |Expr\rangle \langleInfix_Op\rangle \Expr>
 \Expr\rangle \Suffix_Op\rangle
 | ...
\langlePrefix_Op\rangle ::=
 - |~|\cup|| | card | len | inds | elems | hd | tl | dom | rng
\langleInfix_Op\rangle ::=
 = |\not=| \equiv| + |- |*| \uparrow|/|<|\leq| \geq| > |^| \vee | =>
 |\in|\not\in|\cup|\cap|\|\subset|\subseteq|\supseteq| \ ^^| \ |
\langleSuffix_Op\rangle::=!
```


## End of Lecture 9: RSL: Logic, $\Lambda$-Calculus, Fctl. Specs.

## Start of Lecture 10: RSL: Imperative \& Process Specs.

### 1.6. Imperative Constructs

1.6.1. Statements and State Changes

Unit
value
stmt: Unit $\rightarrow$ Unit
stmt()

- The Unit clause, in a sense, denotes "an underlying state"
- which we, for simplicity, can consider as
- a mapping from identifiers of declared variables into their values.
- Statements accept no arguments and, usually, operate on the state
- through "reading" the value(s) of declared variables and
- through "writing", i.e., assigning values to such declared variables
- Statement execution thus changes the state (of declared variables).
- Unit $\rightarrow$ Unit designates a function from states to states.
- Statements, stmt, denote state-to-state changing functions.
- Affixing () as an "only" arguments to a function "means" that () is an argument of type Unit


### 1.6.5. Iterative Conditionals

6. while expr do stm end
7. do stmt until expr end

### 1.6.6. Iterative Sequencing

8. for i in list $\cdot \mathrm{P}($ list(i)) do $\mathrm{S}($ list(i)) end
9. for e in set $\cdot \mathrm{P}(\mathrm{e})$ do $\mathrm{S}(\mathrm{e})$ end

## Example 17

Modelling Connected Links and Hubs:

- Examples (17-20) are building up a model of one form of meaning of a transport net.
- We model the movement of vehicles around hubs and links.
- We think of each hub, each link and each vehicle to be a process.
- These processes communicate via channels.


### 1.7. Process Constructs

### 1.7.1. Process Channels

- Let A, B and C stand for three types of (channel) messages
- and i:Ildx, j:Jldx for channel array indexes, then:

```
channel
 c:A
channel
 {k[i]|i:IIdx}:B
 {ch[i,j]i:IIdx,j:JIdx}:C
```

- We assume a net, $n: N$, and a set, $v s$, of vehicles.
- Each vehicle can potentially interact
- with each hub and
- with each link.
- Array channel indices (vi,hi):IVH and (vi,li):IVL serve to effect these interactions.
- Each hub can interact with each of its connected links and indices (hi,li):IHL serves these interactions.

```
type
 N, V, VI
value
 n:N, vs:V-set
 obs_VI: V }->\textrm{VI
type
 H, L, HI, LI, M
 IVH=VI }\times\textrm{HI},\textrm{IVL}=\textrm{VI}\times\textrm{LI},\textrm{IHL}=\textrm{HI}\times\textrm{LI
```

- We need some auxiliary quantities in order to be able to express subsequent channel declarations.
- Given that we assume a net, $n: N$ and a set of vehicles, $v s: V S$, we can now define the following (global) values:
- the sets of hubs, $h s$, and links, $l s$ of the net;
- the set, ivhs, of indices between vehicles and hubs,
- the set, ivls, of indices between vehicles and links, and
- the set, ihls, of indices between hubs and links.


## value

```
hs:H-set = obs_Hs(n), Is:L-set = obs_Ls(n)
his:HI-set = {obs_HI(h)|h:H\cdoth \in hs}, lis:Ll-set = {obs_LI(h)||:L.I | Is},
ivhs:IVH-set = {(obs_VI(v),obs_HI(h))|v:V,h:H\cdotv \in vs }\\textrm{h}\in\textrm{hs}
iv|s:IVL-set = {(obs_VI(v),obs_LI(I))|v:V,I:L.v v vs \I G Is }
ihls:IHL-set = {(hi,li)|h:H,(hi,li):IHL\cdoth G hs \hi=obs_HI(h)^li i obs_Lls(h)}
```

370

1. An RSL Primer 1.7. Process Constructs 1.7.2. Process Definitions

### 1.7.2. Process Definitions

- A process definition is a function definition.
- The below signatures are just examples.
- They emphasise that process functions must somehow express,
- in their signature,
- via which channels they wish to engage in input and output events.
- Processes $P$ and $Q$ are to interact, and to do so "ad infinitum".
- Processes $R$ and $S$ are to interact, and to do so "once", and then yielding $B$, respectively $D$ values.
- We are now ready to declare the channels:
- a set of channels, $\{v h[i] \mid i: I V H \cdot i \in i v h s\}$ between vehicles and all potentially traversable hubs;
- a set of channels, $\{v h[i] \mid i: I V H \cdot i \in i v h s\}$ between vehicles and all potentially traversable links; and
- a set of channels, $\{\mathrm{hl}[\mathrm{i}] \mid \mathrm{i}: \mathrm{IHL} \cdot \mathrm{i} \in \mathrm{ihls}\}$, between hubs and connected links.

```
channel
 {vh[i]| i:IVH .i ivivhs}:M
 {vl[i]| i:IVL .i i ivls}:M
 {h[[i]|i:IHL.i\inihls}:M
```

End of Example 17
$\qquad$

An RSL Primer

1. An RSL Primer 1.7. Process Constructs 1.7.2. Process Definitions
```
value
 P: Unit }->\mathrm{ in cout {k[i]|i:IIdx} Unit
 Q: i:KIdx }->\mathrm{ out c in k[i] Unit
 P()}\equiv\begin{array}{l}{\equiv\ldotsc?\ldotsk[i]!e...; P()}\\{\textrm{Q}(\textrm{i})}\\{\equiv\ldots\ldotsc!e\ldotsk[\textrm{i}]?\ldots;Q(i)}
```



Figure 9: The $\mathrm{P}-\mathrm{Q}$ Process

## Example $18 \ldots$... Communicating Hubs, Links and Vehicles:

- Hubs interact with links and vehicles:
- with all immediately adjacent links,
- and with potentially all vehicles.
- Links interact with hubs and vehicles:
- with both adjacent hubs,
- and with potentially all vehicles.
- Vehicles interact with hubs and links:
- with potentially all hubs.
- and with potentially all links.


### 1.7.3. Process Composition

- Let P and Q stand for names of process functions,
- i.e., of functions which express willingness to engage in input and/or output events,
- thereby communicating over declared channels.
- Let $\mathcal{P}$ and $\mathcal{Q}$ stand for process expressions,
- and let $\mathcal{P}_{i}$ stand for an indexed process expression, then:
$\mathcal{P} \| \mathcal{Q} \quad$ Parallel composition
$\mathcal{P} \square \mathcal{Q} \quad$ Nondeterministic external choice (either/or)
$\mathcal{P} \cap \mathcal{Q} \quad$ Nondeterministic internal choice (either/or)
$\mathcal{P} H \mathcal{Q} \quad$ Interlock parallel composition
$\mathcal{O}\left\{\mathcal{P}_{i} \mid\right.$ i:Idx $\}$ Distributed composition, $\mathcal{O}=\|, \Pi, \Pi, \#$

```
value
 hub: hi:HI > h:H -> in,out {hl[(hi,li)|li:LIli \in obs_Lls(h)]}
 in,out {vh[(vi,hi)|vi:Vl.vi \in vis]} Unit
link: li:LI }\times\textrm{I}:\textrm{L}->\mathrm{ in,out {hl[(hi,li)|hi:HI.hi }\in\mathrm{ obs_HIs(I)]}
 in,out {vh[(vi,li)|vi:Vl.vi \in vis]} Unit
vehicle: vi:VI }->\mathrm{ (Pos }\times\mathrm{ Net) }->\textrm{v}:\textrm{V}
 in,out {vh[(vi,hi)|hi:Hl.hi \in his]}
 in,out {v|[(vi,li)|li:LI.li | lis]} Unit
```

                                    End of Example 18
    An RSL Primer

## Example 19

## Modelling Transport Nets:

- The net, with vehicles, potential or actual, is now considered a process.
- It is the parallel composition of
- all hub processes,
- all link processes and
- all vehicle processes.
value
net: $\mathrm{N} \rightarrow \mathrm{V}$-set $\rightarrow$ Unit
net( n )(vs) $\equiv$
|| $\{$ hub( obs_HI(h))(h)|h:H•h obs_Hs(n)\} ||
$\|\{\operatorname{link}($ obs_LI(I))(I)|I:L.I $\in$ obs_Ls(n) $\} \|$
|| $\{$ vehicle(obs_VI(v))(obs_PN(v))(v)|v:V•v $\in$ vs $\}$
- We illustrate a schematic definition of simplified hub processes.
- The hub process alternates, internally non-deterministically, П, between three sub-processes
- a sub-process which serves the link-hub connections,
- a sub-process which serves thos vehicles which communicate that they somehow wish to enter or leave (or do something else with respect to) the hub, and
- a sub-process which serves the hub itself - whatever that is !

```
hub(hi)(h) \equiv
]{let m = hl[(hi,li)] ? in hub(hi)(\mathcal{E}\mp@subsup{h}{\ell}{}(li)(m)(h)) end|i:Ll|li \in obs_LI(h)}
 # \{let m = vh[(vi,hi)] ? in hub(vi)(\mathcal{E}
 \hub(hi)(\mathcal{E}}\mp@subsup{\mp@subsup{h}{\mathrm{ own }}{}}{(h)}{(h)
```


### 1.7.4. Input/Output Events

- Let c and $\mathrm{k}[\mathrm{i}]$ designate channels of type A
- and e expression values of type A , then:

$[1] c ?, \mathrm{k}[\mathrm{i}] ?$	input A value
$[2]$ c!e, $\mathrm{k}[\mathrm{i}]!\mathrm{e}$	output A value

value

[3] P: $\ldots \rightarrow$ out c $\ldots, \mathrm{P}(\ldots) \equiv \ldots$ cle $\ldots$	offer an A value,	
[4] Q: $\ldots \rightarrow$ in c $\ldots, \mathrm{Q}(\ldots) \equiv \ldots \mathrm{c}$ ? $\ldots$	accept an A value	
[5] S: $\ldots \rightarrow \ldots, \mathrm{S}(\ldots)=\mathrm{P}(\ldots) \\| \mathrm{Q}(\ldots)$	synchronise and communicate	

- [5] expresses the willingness of a process to engage in an event that
$-[1,3]$ "reads" an input, respectively
$-[2,4]$ "writes" an output.
- The three auxiliary processes:
$-\mathcal{E}_{h_{\ell}}$ update the hub with respect to (wrt.) connected link, li, information $m$,
$-\mathcal{E}_{h_{v}}$ update the hub with wrt. vehicle, vi, information $m$,
$-\mathcal{E}_{h_{\text {own }}}$ update the hub with wrt. whatever the hub so decides. An example could be signalling dependent on previous link-to-hub communicated information, say about traffic density.

$$
\begin{aligned}
& \mathcal{E}_{h_{\ell}}: \mathrm{LI} \rightarrow \mathrm{M} \rightarrow \mathrm{H} \rightarrow \mathrm{H} \\
& \mathcal{E}_{h_{v}}: \mathrm{VI} \rightarrow \mathrm{M} \rightarrow \mathrm{H} \rightarrow \mathrm{H} \\
& \mathcal{E}_{h_{\text {own }}}: \mathrm{H} \rightarrow \mathrm{H}
\end{aligned}
$$

- The student is encouraged to sketch/define similarly schematic link and vehicle processes.


## End of Example 19

An RSL Primer

1. An RsL Primer 1.7. Process Constructs 1.7.4. Input/Output Events

## Example 20

## Modelling Vehicle Movements:

- Whereas hubs and links are modelled as basically static, passive, that is, inert, processes we shall consider vehicles to be "highly" dynamic, active processes
- We assume that a vehicle possesses knowledge about the road net.
- The road net is here abstracted as an awareness of
- which links, by their link identifiers,
- are connected to any given hub, designated by its hub identifier,
- the length of the link,
- and the hub to which the link is connected "at the other end", also by its hub identifier
- A vehicle is further modelled by its current position on the net in terms of either hub or link positions
- designated by appropriate identifiers
- and, when "on a link" "how far down the link", by a measure of a fraction of the total length of the link, the vehicle has progressed.

```
type
 Net = HI }\vec{m}(\textrm{LI}\vec{m
 Pos = atH | onL
 atH == mk_atH(hi:HI)
 onL == mk_onL(fhi:HI,li:LI,f:F,thi:HI)
 F={|f:Real}\cdot0\leqf\leq1|
```

- The vehicle chooses between these two possibilities by an internal non-deterministic choice ([3]).
type
$M==m k \_$L_H(li:LI,hi:HI) | mk_H_L(hi:HI,li:LI)
value
vehicle: $\mathrm{VI} \rightarrow($ Pos $\times$ Net $) \rightarrow \mathrm{V} \rightarrow$ Unit
vehicle(vi)(mk_atH(hi),net)(v) $\equiv$
[1] (wait ;
vehicle(vi)(mk_atH(hi),net)(v))
] $\Pi$
(let lis=dom net(hi) in
[5] let li:Ll.li $\in$ lis in
[6] let hi'=(net(hi))(li) in
[7] (vh[(vi,hi)]!mk_H_L(hi,li)\|vl[(vi,li)]!mk_H_L(hi,li));
[8] vehicle(vi)(mk_onL(hi,li,0,hi'),net)(v)
[9] end end end)
- We first assume that the vehicle is at a hub.
- There are now two possibilities (1-2] versus [4-8])
- Either the vehicle remains at that hub
* [1] which is expressed by some non-deterministic wait
* [2] followed by a resumption of being that vehicle at that location.
- [3] Or the vehicle (driver) decides to "move on":
* [5] Onto a link, li,
* [4] among the links, lis, emanating from the hub,
* [6] and towards a next hub, hi'.
- [4,6] The lis and hi' quantities are obtained from the vehicles own knowledge of the net.
- [7] The hub and the chosen link are notified by the vehicle of its leaving the hub and entering the link,
- [8] whereupon the vehicle resumes its being a vehicle at the initial location on the chosen link.

An RSL Primer

1. An RsL Primer 1.7. Process Constructs 1.7.4. Input/Output Events

- We then assume that the vehicle is on a link and at a certain distance "down", $f$ that link.
- There are now two possibilities ([1-2] versus [4-7]).
- Either the vehicle remains at that hub
* [1'] which is expressed by some non-deterministic wait
* [2'] followed by a resumption of being that vehicle at that location.
- [3'] Or the vehicle (driver) decides to "move on".
- [4'] Either
* [5'] The vehicle is at the very end of the link and signals the link and the hub of its leaving the link and entering the hub,
* [6'] whereupon the vehicle resumes its being a vehicle at hub $h^{\prime}$.
- [7'] or the vehicle moves further down, some non-zero fraction down the link.
- The vehicle chooses between these two possibilities by an internal non-deterministic choice ([3]).

```
type
 M == mk_L_H(li:LI,hi:HI) | mk_H_L(hi:HI,li:LI)
value
 \delta:Real = move(h,f) axiom 0<\delta<<1
 vehicle(vi)(mk_onL(hi,li,f,hi'),net)(v)\equiv
 [1'] (wait ;
 [2'] vehicle(vi)(mk_onL(hi,li,f,hi'),net)(v))
 [3'] П
 [4'] (case f of
 [5'] 1 -> ((vl[vi,hi']!mk_L_H(li,hi')|vh[vi,li]!mk_L_H(li,hi'));
 [6'] vehicle(vi)(mk_atH(hi'),net)(v)),
 [7'] _ }->\mathrm{ vehicle(vi)(mk_onL(hi,li,f+ f,hi'),net)(v)
 [8'] end)
move: H}\times\textrm{F}->\textrm{F
```


## End of Example 20

## type



### 1.8. Simple RSL Specifications

- Besides the above constructs RSL also possesses module-oriented
- scheme, - class and - object
constructs.
- We shall not cover these here.
- An RSL specification is then simply
- a sequence of one or more clusters of
* zero, one or more sort and/or type definitions,
* zero, one or more variable declarations,
* zero, one or more channel declarations,
* zero, one or more value definitions (including functions) and
* zero, one or more and axioms
- We can illustrate these specification components schematically:
- The ordering of these clauses is immaterial.
- Intuitively the meaning of these definitions and declarations are the following.
- The type clause introduces a number of user-defined type names;
* the type names are visible anywhere in the specification;
* and either denote sorts or concrete types.
- The variable clause declares some variable names;
* a variable name denote some value of decalred type;
* the variable names are visible anywhere in the specification: - assigned to ('written') or
- values 'read'.
- The channel clause declares some channel names;
* either simple channels or arrays of channels of some type;
* the channel names are visible anywhere in the specification.
- The value clause bind (constant) values to value names.
* These value names are visible anywhere in the specification.
* The specification

type	value
$A$	$a: A$

* non-deterministically binds a to a value of type A.
* Thuis includes, for example

```
type
value
 f: A }->\mathrm{ B
```

* which non-deterministically binds f to a function value of type $A \rightarrow B$.
- We assume the following:
* that each link is somehow associated with two pairs of sensors:
- a pair of enter and leave sensors at one end, and
- a pair of enter and leave sensors at the other end; and
* a road pricing process
- which records pairs of link enterings and leavings,
- first one, then, after any time interval, the other,
- with leavings leading to debiting of traversal fees;
- Our first specification
- define types,
- assume a net value,

$$
\begin{aligned}
& \text { - declares channels and } \\
& \text { - state signatures of all processes. }
\end{aligned}
$$

## Example 21

A Neat Little "System":

- We present a self-contained specification of a simple system:
- The system models
* vehicles moving along a net, vehicle,
* the recording of vehicles entering links, enter_sensor,
* the recording of vehicles leaving links, leave_sensor, and
* the road_pricing payment of a vehicle having traversed (entered and left) a link.
- Note
* that vehicles only pay when completing a link traversal;
* that 'road pricing' only commences once a vehicle enters the first link after possibly having left an earlier link (and hub); and
* that no road_pricing payment is imposed on vehicles entering, staying-in (or at) and leaving hubs.
- ves stand for vehicle entering (link) sensor channels,
- v/s stand for vehicle leaving (link) sensor channels,
- rp stand for 'road pricing' channel
- enter_sensor(hi,li) stand for vehicle entering [sensor] process from hub hi to link (li).
- leave_sensor(li,hi) stand for vehicle leaving [sensor] process from link li to hub (hi).
- road_pricing() stand for the unique 'road pricing' process.
- vehicle(vi)(...) stand for the vehicle vi process.


## type

N, H, HI, LI, VI
RPM $==$ mk_Enter_L(vi:VI,li:LI) | mk_Leave_L(vi:VI,li:LI)
value
n:N
channel
$\{$ ves[obs_HI(h),li] $\mid \mathrm{h}: \mathrm{H} \cdot \mathrm{h} \in$ obs_Hs(n)^li $\in$ obs_LIs(h) $\}: \mathrm{V} l$
$\left\{\right.$ vls $\left[\mathrm{li}, \mathrm{obs} \_\mathrm{HI}(\mathrm{h})\right] \mid \mathrm{h}: \mathrm{H} \cdot \mathrm{h} \in$ obs_Hs(n)$\wedge \mathrm{li} \in$ obs_Lls(h) $\}: \mathrm{VI}$
rp:RPM
type
Fee, Bal
$\mathrm{LVS}=\mathrm{LI} \underset{m}{\vec{m}} \mathrm{VI}$-set, FEE $=\mathrm{LI} \underset{m}{\vec{m}}$ Fee, $\mathrm{ACC}=\mathrm{VI} \underset{m}{\vec{m}} \mathrm{Ba}$
value
link: (li:LI $\times \mathrm{L}) \rightarrow$ Unit
enter_sensor: (hi:HI $\times$ li:LI) $\rightarrow$ in ves[hi,li $]$,out rp Unit
leave_sensor: ( li:LI $\times$ hi:HI) $\rightarrow$ in vs $[$ li,hi $]$,out rp Unit road_pricing: $(\mathrm{LVS} \times \mathrm{FEE} \times \mathrm{ACC}) \rightarrow$ in rp Unit

```
vehicle: VI }->\mathrm{ (Pos }\times Net) -> V -> Unit
vehicle(vi)(pos,net)(v) =
[1] (wait ;
2] vehicle(vi)(pos,net)(v))
[3] \
case pos of
mk_atH(hi) }
4-6] (let lis=dom net(hi) in let li:LI.li }\in\mathrm{ lis in let hi'=(net(hi))(li) in
[7] ves[hi,li]!vi;
8] vehicle(vi)(mk_onL(hi,li,0,hi'),net)(v)
end end end)
 mk_onL(hi,li,f,hi')
4'] (case f of
[5'-6'] 1 -> (vls[li,hi]!vi; vehicle(vi)(mk_atH(hi'),net)(v)),
- vehicle(vi)(mk_onL(hi,li,f+\delta,hi'),net)(v)
 end)
 end
```

- To understand the sensor behaviours let us review the vehicle behaviour.
- In the vehicle behaviour defined in Example 20, in two parts, Slide 382 and Slide 384 we focus on the events
- [7] where the vehicle enters a link, respectively
$-\left[5^{\prime}\right]$ where the vehicle leaves a link.
- These are summarised in the schematic reproduction of the vehicle behaviour description.
- We redirect the interactions between vehicles and links to become
- interactions between vehicles and enter and leave sensors.
value
$\delta:$ Real $=\operatorname{move}(\mathrm{h}, \mathrm{f})$ axiom $0<\delta \ll 1$
move: $\mathrm{H} \times \mathrm{F} \rightarrow \mathrm{F}$

An RSL Primer

1. An RSL Primer 1.8. Simple RSL Specifications

- As mentioned on Slide 390 link behaviours are associated with two pairs of sensors:
- a pair of enter and leave sensors at one end, and
- a pair of enter and leave sensors at the other end;
value
$\operatorname{link}(1 i)(I) \equiv$
let $\{$ hi,hi' $\}=$ obs_HIs(I) in
enter_sensor(hi,li) || leave_sensor(li,hi) ||
enter_sensor(hi',li) || leave_sensor(li,hi') end
enter_sensor(hi,li) $\equiv$
let vi $=$ ves[hi,li]? in rp!mk_Enter_LI(vi,li); enter_sensor(hi,li) end leave_sensor(li,hi) $\equiv$
let $v i=$ ves[li,hi]? in rp!mk_Leave_LI(vi,li); enter_sensor(li,hi) end
- The LVS component of the road_pricing behaviour serves,
- among other purposes that are not mentioned here,
- to record whether the movement of a vehicles "originates" along a link or not.
- Otherwise we leave it to the student to carefully read the formulas.


## value

payment: $\mathrm{VI} \times \mathrm{LI} \rightarrow(\mathrm{ACC} \times \mathrm{FEE}) \rightarrow \mathrm{ACC}$
payment(vi,li)(fee,acc) $\equiv$
let bal' $=$ if $\mathrm{vi} \in \operatorname{dom}$ acc then $\operatorname{add}(\operatorname{acc}(\mathrm{vi})$,fee(li)) else fee(li) end in acc $\dagger\left[\mathrm{vi} \mapsto\right.$ bal $\left.{ }^{\prime}\right]$ end
add: Fee $\times$ Bal $\rightarrow$ Bal [add fee to balance]

```
road_pricing(lvs,fee,acc) \(\equiv\) in rp
 let \(\mathrm{m}=\mathrm{rp}\) ? in
 case \(m\) of
 mk_Enter_LI(vi,li) -
 road_pricing(lvs \(\dagger[\operatorname{li} \mapsto \mathrm{lvs}(\mathrm{l}) \cup\{\) vi \(\}]\),fee,acc),
 mk_Leave_LI(vi,li) \(\rightarrow\)
 let Ivs' \(=\) if vi \(\in \operatorname{lvs}(\mathrm{li})\) then \(\operatorname{lvs} \dagger[\mathrm{li} \mapsto \mathrm{lvs}(\mathrm{li}) \backslash\{\) vi \(\}]\) else Ivs end,
 acc' \(=\) payment(vi,li) \((\) fee, acc) \()\) in
 road_pricing(lvs',fee,acc')
 end end end
```

End of Example 21

B Slide Table-of-Contents

## Contents

Lect. \# 1: COVER \& INTRODUCTION 0
1 Introduction 11 The Prolem $\ldots, \ldots \ldots \ldots \ldots$

Lect.\#2: ONTOLOGY
2 An Ontology of Specification Entities
2.1 Simple Entities
2.1.1 Net, Hubs and Links
2.1.2 Unique Hub and Link Identifiers
2.1.3 Observability of Hub and Link Identifiers
2.1.4 A Theorem.
2.1.4.1 Links implies Hubs
2.1.6 Hub and Link Generators
2.2 States
2.3 Action
2.3.1 Insert Hubs
2.3.3 Insert Links
2.3.4 Remove Links
2.3.5 Two Theorems
2.3.5.1 Idempotency
2.3.5.2 Reachability
2. 4 Events
2.5 Behaviours
25.1 Behaviour Prescriptions
25.1.1 Construction Plans

2.5.1.2 Wellformedness of Construction Plans
2.5.2 Augmented Construction Plans . .
2.5.3 Sequential Construction Behaviours

## An Ontology of Domain Facets

3.0.1 Definitions
3.02 What Can
3.0.2 What Can Be Observed
3.0.3 Business Processes
3.0.3.1 A Characte
3.0.3.2 An Example .
3.1 Intrinsics
3.1.1 Net Topology Descriptors .
3.1.2 Link States and Link State Spaces
3.1.3 Hub States and Hub State Spaces
3.1.4 State and State Space Wellformedness
3.1.5 Concrete Yypes for simp
3.1.7 Actions Continued.
3.2 Support Technologies
3.2.1 Traffic Signals
3.2.2 Traffic "Control"
3.3 Rules and Regulations
3.3.1 Vehicles .
3.3.1 Vehicles
3.3.2 Traffic
3.3.2.1 Wellformedness of Traffic
3.3.2.1.1 Static Wellformedness.
3.3.2.1.2 Dynamic Wellformedness
3.3.3 Traffic Rules (I of II)
3.3.4 Another Traffic Regulator
3.3. Traffic Rules (II of II).


## An RSL Primer

4.1.2.2 Gools of Toll Road System Sortware ............. Arguing Goal-statisaction of a Toll Road System
4.1.1.2.4 Arguing Gool-satisfaction of Toll Road System Softw
4.1.2.4 Arguing Goal-satisfaction of Toll Road System Software
4.1.3 Re-engineered Nets
4.2 Domain Requirements
4.2.1 Projection
4.2.1.1. Example
4.2.2 Instantiation...
4.2.2.2 Abstraction: From Concrete Toll Road Nets to Abstract Nets
4.2.3 Determination
4.2.3.1 Example

Lect. \# 6: REQUIREMENTS - from Extension "out"
4.2.4 Extension .
4.2.4.1 Intuition
4.2.4.2 Descriptions
4.2.4.2.1 A RAISE/CSP Model
4.2.4.2.1 Toll Booth Plazas
4.2.4.2.1 Cars
4.2.4.2.1 Entry
4.2.4.2.1 Entry Bo
4.2.4.2.1 Gates. .
4.2.4.2.1 The Entry Plaza System
4.2.4.2.2 A Duration Calculus Mod

4.3 Interface Requirements
4.3.1 But First: On Shared Phenomena and Concepts
4.3.2 Shared Simple Entities
4.3.3 Shared Actions
4.3.3 Shared Actions
4.3.3.1 Example
4.3.4 Shared Events.

Scripts.................
3.4.1.1 Paths
3.4.1.2 Routes
3.4.2 Bus Timetables as Scripts
3.4.2.1 Buses.
3.4.2.2 Bus Stop
3.4.2.3 Bus Routes
3.4.2.4 Bus Schedule
3.4.2.5 Timetable
3.4.3 Route and Bus Timetable Denotations
3.4.4.1 Contracts
3.4.4.2 Contractual Actions
3.4.4.
3.4.4.3 Wellformedness of Contractual Actions
3.5 Management and Organisation.
3.5.1 Transport System Examples

3.7 Towards Theories of Domain Fac
3.7.1 A Theory of Intrinsics.
3.7.2 Theories of Support Technologies
3.7.2.1 An Example
3.7.2.2 General
3.7.3 A Theory of Rules \& Regulations.
3.7.4 A Theory of Rules $\&$ Regulations . .
3.7.5 A Theory of Human Benhaviour . Organistion

Lect. \# 5: REQUIREMENTS - up to and incl. Determination
4 An Ontology of Requirements Constructions
Business Process Re-engineering
4.1.1 The Kinds of Requirements
4.1.1 The Kinds of Requirements $\ldots \ldots$. . . . .
4.1.2 Goals Versus Requirements.
4.1.2.1 Goals of a Toll Road System
 $\qquad$

402
Lecture Notes in Software Engineering 1

$$
\begin{aligned}
& \text { 4.3.4.1 Examples } \\
& \text { 4.3.5 Shared Behaviours. } \\
& \text { 4.3.5.1 Example } \\
& \text { Machin Requirements. }
\end{aligned}
$$

4.4. An Enumeration of Classes of Machine Requirements

5 Conclusion
5.1 What Have We Omitted
5.2 Domain Descriptions Are Not Normative
5.3 "Requirements Always Change
5.5 What Have We Achieved - and What Not
5.6 Relation to Other Work - and What
5.7 "Ideal" Versus Real Developments
5.8 Description Languages


## 6 Bibliographical Notes

6.1 Description Languages

Lect. \# 7: RSL: Types
1 An RSL Primer
1.1 Types
1.1.1
${ }_{1.111}$ Type Expressions
1.1.1.1 Atomic Types

Example 1: Basic Net Atrributes
111.
1.1.1.2 Composite Types.
Example 2: Composite Net Type Expressions

Example 3: Composite Net Types..........
Example 4: Net Record Types: Insert Links.
1.1.2.2 Subtypes

Example 5: Net Subtypes
Example 6: Net Sorts

## Lect. \# 8: RSL: Values \& Operations 1.2 Concrete RSL Types: Values and Operations

1.2.1 Arithmetic
1.2.2 Set Expression

Example 7: Set Expressions over Nets
1.2.2.2 Set Comprehension

Example 8: Set Comprehensions
1.2.3 Cartesian Expressions
12.3.1 Cartesian Enumerations.......
Example 9: Cartesian Net Types
1.2.4 List Expressions ............
1.2.4.1 List Enumerations.
1.2.4.2 List Comprehension

Example 10: Routes in Nets
1.2.5 Map Expressions
1.2.5.1 Map Enumerations

Example 11: Concrete Net Type Constructio
1.2.6 Set Operations.
1.2.6.1 Set Operator Signatures
1.2.6.2 Set Examples
1.2.7 Cartesian Operat
1.2.8.1 List Operator Signatures
1.2.8.2 List Operation Examples
1.2.9.1 Map Operator Signatures and Map Operation Examples


## An RSL Primer

#  <br> 1.7.3 Process Composition Example 19. Modelling Transport Nets <br> 1.7.4 Input/Output Events $\begin{aligned} & \text { Example 20: Modelling Vehicle Movements }\end{aligned}$ <br> 1.8 Simple RSL Specifications. 20: Modeling vehicle Move 

B Slide Table-of-Contents
1.3 The RSL Predicate Calculus,....
1.3.1 Propositional Expressions.
1.3.2 Simple Predicate Expression
1.3.3 Quantified Expressions
1.4 $\mathrm{\lambda}$-Calculus + Functions.
1.4.2 Free and Bound Variab
1.4.3 Substitution
1.4.4 $\alpha$-Renaming and $\beta$-Reduction

1.4.6 Function Definitions

5 Other Applicative Expme 15: Axioms over Hubs, Links and Their Observers
1.5.1 Simple let Expressions
1.5.1 Rimple let Expressions


Lect. \# 10: RSL: Imperative \& Process Specs.
1.6 Imperative Constructs
1.6.1 Statements and State Change
1.6.2 Variables and Assign
1.6.2 V ariables and Assignment .
1.6.3 Statement Sequences and skip
1.6.4 Statement Sequences and
1.6)
1.6.5 Iterative Conditionals
1.6 .6 terative Sequencing
1.7 Process Constructs
1.7.1 Process Channels
1.7.


[^0]:    Lecture Notes
    A Tentative Lecture Schedule
    Lecture 1: Introduction Mo.8.11.2010 5-8
    Lecture 2: Specification Ontology Mo.8.11.2010 9-52
    Entities: Simple Entities, Actions, Events, Behaviours
    Lecture 3: Domain Facets I Tu.9.11.2010
    Intrinsics, Support Technologies, Rules \& Regulations
    Lecture 4: Domain Facets II We.10.11.2010
    Scripts, Management \& Organisation, Human Behaviour
    Lecture 5: Requirements Facets I Th.11.11.2010
    Domain Requirements I: Projection, Instantiation, Determiniation
    Lecture 6: Requirements Facets II Fr.12.11.2010
    Domain Requirements II: Extension, Fitting
    Interface Requirements
    Machine Requirements

[^1]:    ${ }^{5-}$ provided that what remains is still a proper net

