Start of Lecture 9: RSL: Logic, Λ-Calculus, Fctl. Specs.

\qquad
3. The rsL Predicate Calculus 1.3.2. Simple Predicate Expressions

1.3.2. Simple Predicate Expressions

- Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values,
- let $\mathrm{x}, \mathrm{y}, \ldots, \mathrm{z}$ (or term expressions) designate non-Boolean values
- and let $\mathrm{i}, \mathrm{j}, \ldots, \mathrm{k}$ designate number values,
- then:
false, true
a, b, ..., c
$\sim \mathrm{a}, \mathrm{a} \wedge \mathrm{b}, \mathrm{a} \vee \mathrm{b}, \mathrm{a} \Rightarrow \mathrm{b}, \mathrm{a}=\mathrm{b}, \mathrm{a} \neq \mathrm{b}$
$x=y, x \neq y$,
$i<j, i \leq j, i \geq j, i \neq j, i \geq j, i>j$
- are simple predicate expressions.

1.3. The RSL Predicate Calculus
 1.3.1. Propositional Expressions

- Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values (true or false [or chaos])
- Then:
false, true
$a, b, \ldots, c \sim a, a \wedge b, a \vee b, a \Rightarrow b, a=b, a \neq b$
- are propositional expressions having Boolean values
$-\sim, \wedge, \vee, \Rightarrow,=$ and \neq are Boolean connectives (i.e., operators).
- They can be read as: not, and, or, if then (or implies), equal and not equal.

310
\qquad From Domains to Requirements

1.3.3. Quantified Expressions

- Let $\mathrm{X}, \mathrm{Y}, \ldots, \mathrm{C}$ be type names or type expressions,
- and let $\mathcal{P}(x), \mathcal{Q}(y)$ and $\mathcal{R}(z)$ designate predicate expressions in which x, y and z are free.
- Then:
$\forall \mathrm{x}: \mathrm{X} \cdot \mathcal{P}(x)$
\exists y:Y• $\mathcal{Q}(y)$
$\exists!z: Z \cdot \mathcal{R}(z)$
- are quantified expressions - also being predicate expressions.

Example 13

Predicates Over Net Quantities

- From earlier examples we show some predicates:
- Example 1: Right hand side of function definition is_two_way_link(I):
$\exists|\sigma: L \Sigma \cdot| \sigma \in$ obs_HL(I) \wedge card $/ \sigma=2$
\qquad

1. 4. An onotogsy of Resurienenst Consmactions 1.3 . The RsL Predicate Calculus 1.3.3. Quantified Expressions

- The Cartesians + Maps + Wellformedness part:
* Right hand side of the wf_HUBS wellformedness function definition: \forall hi:HI \cdot hi \in dom hubs \Rightarrow obs_HIhubs(hi)=hi
* Right hand side of the wf_LINKS wellformedness function definition: \forall li:LI $\cdot l i \in$ dom links \Rightarrow obs_Lllinks(li)=li
* Right hand side of the $w f_{-} N(h s, l s, g)$ wellformedness function definition: [c] dom $h s=\operatorname{dom} g \wedge$
$[d] \cup\{\operatorname{dom} g(h i) \mid h i: H I \cdot h i \in \operatorname{dom} g\}=$ dom links \wedge
$[e] \cup\{\operatorname{rng} g(h i) \mid h i: H I \cdot h i \in \operatorname{dom} g\}=\operatorname{dom} g \wedge$
$[f] \forall h i: H I \cdot h i \in \operatorname{dom} g \Rightarrow \forall \quad l i: L l \cdot l i \in \operatorname{dom} g(h i) \Rightarrow(g(h i))(l i) \neq h i$
$[g] \forall h i: H I \cdot h i \in \operatorname{dom} g \Rightarrow \forall l i: L I \cdot l i \in \operatorname{dom} g(h i) \Rightarrow$
$\exists h i: H I \cdot h i \in \operatorname{dom} g \Rightarrow \exists!l i: L I \cdot l i \in \operatorname{dom} g(h i) \Rightarrow$

$$
(g(h i))(l i)=h i \wedge(g(h i))(l i)=h i
$$

End of Example 13

- Example 3:
- The Sorts + Observers + Axioms part:
* Right hand side of the wellformedness function wf_N(n) definition:
$\forall n: N \cdot$ card obs_Hs $(n) \geq 2 \wedge$ card obs_Ls $(n) \geq 1 \wedge$ axioms 2 .3., 5.-6., and 8., (Page 13)
* Right hand side of the wellformedness function wf_N(hs,/s) definition:
card $h s \geq 2 \wedge$ card $\mid s \geq 1 \ldots$

1.4. λ-Calculus + Functions
 1.4.1. The λ-Calculus Syntax

type /* A BNF Syntax: */
$\langle\mathrm{L}\rangle::=\langle\mathrm{V}\rangle|\langle\mathrm{F}\rangle|\langle\mathrm{A}\rangle \mid(\langle\mathrm{A}\rangle)$
$\langle\mathrm{V}\rangle::=/ *$ variables, i.e. identifiers $* /$
$\langle\mathrm{F}\rangle::=\lambda\langle\mathrm{V}\rangle \cdot\langle\mathrm{L}\rangle$
$\langle\mathrm{A}\rangle::=(\langle\mathrm{L}\rangle\langle\mathrm{L}\rangle)$
value / $*$ Examples */
$\langle L\rangle:$ e, f, a, ...
$\langle\mathrm{V}\rangle: \mathrm{x}, \ldots$
$\langle F\rangle: \lambda \mathrm{x} \cdot \mathrm{e}, \ldots$
$\langle A\rangle: f a,(f a), f(a),(f)(a), \ldots$

1.4.2. Free and Bound Variables

Let x, y be variable names and e, f be λ-expressions.

- $\langle\mathrm{V}\rangle$: Variable x is free in x.
- $\langle\mathrm{F}\rangle: x$ is free in $\lambda y \cdot e$ if $x \neq y$ and x is free in e.
- $\langle\mathrm{A}\rangle: x$ is free in $f(e)$ if it is free in either f or e (i.e., also in both).

Lecture Notes in Software Engineering \qquad ns 1.4. λ
$\lambda-$ Calculus + Functions 1.4.4. $\alpha-$ Renaming and β-Reduction

1.4.4. α-Renaming and β-Reduction

- α-renaming: $\lambda x \cdot \mathrm{M}$

If x, y are distinct variables then replacing x by y in $\lambda \mathrm{x} \cdot \mathrm{M}$ results in $\lambda y \cdot \mathbf{s u b s t}([y / x] M)$. We can rename the formal parameter of a λ function expression provided that no free variables of its body M thereby become bound.

- β-reduction: $(\lambda x \cdot M)(N)$

All free occurrences of x in M are replaced by the expression N provided that no free variables of N thereby become bound in the result. $(\lambda \times \cdot M)(N) \equiv \boldsymbol{\operatorname { s u b s t }}([\mathrm{N} / \mathrm{x}] \mathrm{M})$

1.4.3. Substitution

- $\boldsymbol{\operatorname { s u b }} \boldsymbol{\operatorname { c o s }}([\mathrm{N} / \mathrm{x}] \mathrm{x}) \equiv \mathrm{N}$
- $\boldsymbol{\operatorname { s u b s t }}([\mathrm{N} / \mathrm{x}] \mathrm{a}) \equiv \mathrm{a}$,
for all variables $a \neq x$;
- $\boldsymbol{\operatorname { s u b s t }}([\mathrm{N} / \mathrm{x}](\mathrm{P} Q)) \equiv(\boldsymbol{\operatorname { s u b s t }}([\mathrm{N} / \mathrm{x}] \mathrm{P}) \boldsymbol{\operatorname { s u b }} \boldsymbol{\operatorname { s u t }}([\mathrm{N} / \mathrm{x}] \mathrm{Q}))$;
- $\boldsymbol{\operatorname { s u b s t }}([\mathrm{N} / \mathrm{x}](\lambda x \cdot P)) \equiv \lambda \mathrm{y} \cdot \mathrm{P} ;$
- $\boldsymbol{\operatorname { s u b }} \boldsymbol{\operatorname { s i n }}([\mathrm{N} / \mathrm{x}](\lambda \mathrm{y} \cdot \mathrm{P})) \equiv \lambda y$. $\boldsymbol{\operatorname { s u b s t }}([\mathrm{N} / \mathrm{x}] \mathrm{P})$,
if $\mathbf{x} \neq \mathrm{y}$ and y is not free in N or x is not free in P ;
- $\boldsymbol{\operatorname { s u b s t }}([\mathrm{N} / \mathrm{x}](\lambda \mathrm{y} \cdot \mathrm{P})) \equiv \lambda \mathrm{z} \cdot \boldsymbol{\operatorname { s u b s t }}([\mathrm{N} / \mathrm{z}] \boldsymbol{\operatorname { s u b }} \boldsymbol{\operatorname { s i n }}([\mathrm{z} / \mathrm{y}] \mathrm{P}))$,
if $y \neq x$ and y is free in N and x is free in P
(where z is not free in (N P).

From Domains to Requirements

Example 14

Network Traffic:

- We model traffic by introducing a number of model concepts.
- We simplify,
- without loosing the essence of this example, namely to show the use of λ functions,
- by omitting consideration of dynamically changing nets.
- These are introduced next:
- Let us assume a net, $n: N$.
- There is a dense set, T, of times - for which we omit giving an appropriate definition.
- There is a sort, V, of vehicles.
$-T S$ is a dense subset of T.
- For each t s:TS we can define a minimum and a maximum time.
- The $\mathcal{M I N}$ and $\mathcal{M A X}$ functions are meta-linguistic.
- At any moment some vehicles, $v: V$, have a pos:Position on the net and VP records those.
- A Position is either on a link or at a hub.
- An onLink position can be designated by the link identifier, the identifiers of the from and to hubs, and the fraction, $f: F$, of the distance down the link from the from hub to the to hub.
- An atHub position just designates the hub (by its identifier).
- Traffic, tf:TF, is now a continuous function from Time to NP ("recordings").
- Modelling traffic in this way entails a ("serious") number of wellformedness conditions. These are defined in $w f_{-} T F$ (omitted: ...).
- We have defined the continuous, composite entity of traffic.
- Now let us define an operation of inserting a vehicle in a traffic.
- To insert a vehicle, v, in a traffic, $t f$, is prescribable as follows:
- the vehicle, v, must be designated;
- a time point, t, "inside" the traffic $t f$ must be stated;
- a traffic, $v t f$, from time t of vehicle v must be stated;
- as well as traffic, $t f$, into which $v t f$ is to be "merged".
- The resulting traffic is referred to as $t f^{\prime}$.

value

insert_V: $\mathrm{V} \times \mathrm{T} \times \mathrm{TF} \rightarrow \mathrm{TF} \rightarrow \mathrm{TF}$
insert_ $\mathrm{V}(\mathrm{v}, \mathrm{t}, \mathrm{vtf})(\mathrm{tf})$ as tf
\qquad
value
n:N
type
T, V
TS $=T$-infset
axiom
$\forall \mathrm{ts}: \mathrm{TS} \cdot \exists \mathrm{tmin}, \mathrm{tmax}: \mathrm{T}: \mathrm{tmin} \in \mathrm{ts} \wedge \mathrm{tmax} \in \mathrm{ts} \wedge \forall \mathrm{t}: \mathrm{T} \cdot \mathrm{t} \in \mathrm{ts} \Rightarrow \mathrm{tmin} \leq \mathrm{t} \leq \mathrm{tmax}$ [that is: ts $=\{\mathcal{M I N}(\mathrm{ts}) . . \mathcal{M} \mathcal{A X}(\mathrm{ts})\}]$

$$
\mathrm{VP}=\mathrm{V}_{\vec{m}} \text { Pos }
$$

$$
\mathrm{TF}=\mathrm{T} \xrightarrow{\rightarrow} \mathrm{VP}_{,}, \quad \mathrm{TF}=\{|\mathrm{tf}: \mathrm{TF} \cdot \mathrm{wf}-\mathrm{TF}(\mathrm{tf})(\mathrm{n})|\}
$$

$$
\text { Pos }=\mathrm{onL} \mid \mathrm{atH}
$$

onL == mkLPos(hi:HI,li:LI,f:F,hi:HI), atH == mkHPos(hi:HI)
value
wf_TF: TF $\rightarrow \mathrm{N} \rightarrow$ Bool
$w f$ _Tf(tf) $(\mathrm{n}) \equiv \ldots$
DOMAIN: $\mathrm{TF} \rightarrow \mathrm{TS}$
$\mathcal{M I N}, \mathcal{M A X}: T S \rightarrow T$

322

- The function insert_V is here defined in terms of a pair of pre/post conditions.
- The pre-condition can be prescribed as follows:
- The insertion time t must be within to open interval of time points in the traffic $t f$ to which insertion applies.
- The vehicle v must not be among the vehicle positions of $t f$.
- The vehicle must be the only vehicle "contained" in the "inserted" traffic $v t f$.

```
pre: \mathcal{MIN}(\mathcal{DOMAIN}(\textrm{tf})\leq\textrm{t}\leq\mathcal{MAXX}(\mathcal{DOMA\mathcal{NN}}(\textrm{tf}))\wedge
    \forall\mp@subsup{t}{}{\prime}:T\cdot\mp@subsup{t}{}{\prime}\in\mathcal{DOMA\mathcal{AN}}(\textrm{tf})=>v\not\in\operatorname{dom}tf(\mp@subsup{\textrm{t}}{}{\prime})\wedge
    MIN(\mathcal{DOMAINN(vtf))}=\textrm{t}\wedge
    * t':T\cdott't}\in\mathcal{DO\mathcal{MAINN}}(\textrm{vtf})=>\operatorname{dom}vtf(\mp@subsup{\textrm{t}}{}{\prime})={v
```

- The post condition "defines" $t f^{\prime}$, the traffic resulting from merging $v t f$ with $t f$:
- Let $t s$ be the time points of $t f$ and $v t f$, a time interval.
- The result traffic, $t f^{\prime}$, is defines as a λ-function.
- For any $t^{\prime \prime}$ in the time interval
- if $t^{\prime \prime}$ is less than t, the insertion time, then $t f^{\prime}$ is as $t f$;
- if $t^{\prime \prime}$ is t or larger then $t f^{\prime}$ applied to $t^{\prime \prime}$, i.e., $t f^{\prime}\left(t^{\prime \prime}\right)$
* for any $v^{\prime}: V$ different from v yields the same as $(t f(t))\left(v^{\prime}\right)$,
* but for v it yields $(v t f(t))(v)$.

1.4.5. Function Signatures

For sorts we may want to postulate some functions:

type

$$
\mathrm{A}, \mathrm{~B}, \ldots, \mathrm{C}
$$

value

obs_B: A \rightarrow B
...
obs_C: A \rightarrow C

- These functions cannot be defined.
- Once a domain is presented
- in which sort A and sorts or types B, ... and C occurs
- these observer functions can be demonstrated.

```
post: \(\mathrm{tf}=\lambda \mathrm{t}^{\prime \prime}\).
    let ts \(=\mathcal{D O} \mathcal{M A I N}(\mathrm{tf}) \cup \mathcal{D O} \mathcal{M A \mathcal { A } N}(\mathrm{vtf})\) in
    if \(\mathcal{M I N}(\mathrm{ts}) \leq \mathrm{t}^{\prime \prime} \leq \mathcal{M} \mathcal{A X}\) ( ts )
        then
            \(\left(\left(\mathrm{t}^{\prime}<\mathrm{t}\right) \rightarrow \mathrm{tf}\left(\mathrm{t}^{\prime}\right)\right.\),
            \(\left(t^{\prime} \geq t\right) \rightarrow\left[v^{\prime} \mapsto\right.\) if \(v^{\prime} \neq v\) then \((t f(t))\left(v^{\prime}\right)\) else \((v t f(t))(v)\) end
                \(\left.\left.\mid v^{\prime}: V \cdot v^{\prime} \in \operatorname{vehicles}(\mathrm{tf})\right]\right)\)
        else chaos end
    end
assumption: wf_TF(vtf) \(\wedge w f\) _TF(tf)
theorem: wf_TF(tf)
value
vehicles: TF \(\rightarrow\) V-set
vehicles \((\mathrm{tf}) \equiv\{\mathrm{v} \mid \mathrm{t}: \mathrm{T}, \mathrm{v}: \mathrm{V} \cdot \mathrm{t} \in \mathcal{D} \mathcal{O} \mathcal{M} \mathcal{A} \mathcal{I} \mathcal{N}(\mathrm{tf}) \wedge \mathrm{v} \in \operatorname{dom} \mathrm{tf}(\mathrm{t})\}\)
```

326

Example 15

\qquad

- Let a net with several hubs and links be presented.
- Now observer functions
- obs_Hs and
- obs_Ls
can be demonstrated:
- one simply "walks" along the net, pointing out
- this hub and
- that link,
- one-by-one
- until all the net has been visited.

1.4.6. Function Definitions

Functions can be defined explicitly:

```
type
    A,B}\quadg:A\xrightarrow{}{~}\textrm{B}[\mathrm{ [a partial function]
value
    f: A }->\textrm{B}\mathrm{ [a total function]
g(a_expr) \equivb_expr
    pre P(a_expr)
    f(a_expr) \equivb_expr
P: A }->\mathrm{ Bool
```

- a_expr, b_expr are
- A, respectively B valued expressions
- of any of the kinds illustrated in earlier and later sections of this primer.

330 \qquad

- Finally functions, $f, \mathrm{~g}, \ldots$, can be defined in terms of axioms
- over function identifiers, $f, \mathrm{~g}, \ldots$, and over identiers of function arguments and results.

type

A, B, C, D, ...

value

f: $\mathrm{A} \rightarrow \mathrm{B}$
g: $\mathrm{C} \rightarrow \mathrm{D}$
axiom

$$
\begin{aligned}
& \forall \mathrm{a}: \mathrm{A}, \mathrm{~b}: \mathrm{B}, \mathrm{c}: \mathrm{C}, \mathrm{~d}: \mathrm{D}, \ldots \\
& \mathcal{P}_{1}(\mathrm{f}, \mathrm{a}, \mathrm{~b}) \wedge \ldots \wedge \mathcal{P}_{m}(\mathrm{f}, \mathrm{a}, \mathrm{~b}) \\
& \ldots \\
& \mathcal{Q}_{1}(\mathrm{~g}, \mathrm{c}, \mathrm{~d}) \wedge \ldots \wedge \mathcal{Q}_{n}(\mathrm{~g}, \mathrm{c}, \mathrm{~d})
\end{aligned}
$$

Example 16 . Axioms over Hubs, Links and Their Observers:

- The axioms displayed in Items 2-3 and 5-8 on Page 12 of Sect.
- demonstrates how a number of entities and observer functions are constrained
- (that is, partially defined) by function signatures.

End of Example 16
\qquad

1.5.2. Recursive let Expressions

Recursive let expressions are written as:
let $f=\lambda a \cdot E(f, a)$ in $B(f, a)$ end
let $f=(\lambda g \cdot \lambda a \cdot E(g, a))(f)$ in $B(f . a)$ end
let $\mathrm{f}=\mathrm{F}(\mathrm{f})$ in $\mathrm{E}(\mathrm{f}, \mathrm{a})$ end where $\mathrm{F} \equiv \lambda \mathrm{g} \cdot \lambda \mathrm{a} \cdot \mathrm{E}(\mathrm{g}, \mathrm{a})$
let $f=\mathbf{Y F}$ in $B(f, a)$ end where $Y F=F(\mathbf{Y F})$

- We read $\mathrm{f}=\mathrm{YF}$ as " f is a fix point of F ".

1.5. Other Applicative Expressions

1.5.1. Simple let Expressions

Simple (i.e., nonrecursive) let expressions:
let $\mathrm{a}=\mathcal{E}_{d}$ in $\mathcal{E}_{b}(\mathrm{a})$ end
is an "expanded" form of:
$\left(\lambda \mathrm{a} . \mathcal{E}_{b}(\mathrm{a})\right)\left(\mathcal{E}_{d}\right)$
\qquad

1.5.3. Non-deterministic let Clause

- The non-deterministic let clause:
let $a: A \cdot \mathcal{P}(a)$ in $\mathcal{B}(a)$ end
- expresses the non-deterministic selection of a value a of type A
- which satisfies a predicate $\mathcal{P}(\mathrm{a})$ for evaluation in the body $\mathcal{B}(a)$.
- If no $a: A \bullet P(a)$ the clause evaluates to chaos

1.5.4. Pattern and "Wild Card" let Expressions

Patterns and wild cards can be used:

$$
\begin{aligned}
& \text { let }\{a\} \cup s=\text { set in } \ldots \text { end } \\
& \text { let }\{a, \ldots\} \cup s=\operatorname{set} \text { in } \ldots \text { end } \\
& \text { let }(a, b, \ldots, c)=\operatorname{cart} \text { in } \ldots \text { end } \\
& \text { let }(a, \ldots, \ldots, c)=\operatorname{cart} \text { in } \ldots \text { end } \\
& \text { let }\langle a\rangle \prec \ell=\text { list in } \ldots \text { end } \\
& \text { let }\langle a,, b\rangle \ell=\text { list in } \ldots \text { end } \\
& \text { let }[a \mapsto b] \cup m=\operatorname{map} \text { in } \ldots \text { end } \\
& \text { let }[a \mapsto b,-] \cup m=\operatorname{map} \text { in } \ldots \text { end }
\end{aligned}
$$

\qquad

Example 17 . Choice Pattern Case Expressions: Insert Links:

We consider the meaning of the Insert operation designators.
21. The insert operation takes an Insert command and a net and yields either a new net or chaos for the case where the insertion command "is at odds" with, that is, is not semantically well-formed with respect to the net.
22. We characterise the "is not at odds", i.e., is semantically well-formed, that is:

- pre_int_Insert(op)(hs,ls),
as follows: it is a propositional function which applies to Insert actions, op, and nets, (hs.ls), and yields a truth value if the below relation between the command arguments and the net is satisfied. Let (hs,ls) be a value of type N .

1.5.5. Conditionals

if b_expr then c_expr else a_expr
end
if b_expr then c_expr end $\equiv / *$ same as: $* /$ if b_expr then c_expr else skip end
if b_expr_1 then c_expr_1
elsif b_expr_2 then c_expr_2
elsif b_expr_3 then c_expr_3
elsif b_expr_n then c_expr_n end
case expr of
choice_pattern_1 \rightarrow expr_1,
choice_pattern_2 \rightarrow expr_2
.
choice_pattern_n_or_wild_card \rightarrow expr_n end

```
1. 4. An onotoge fremuiemens\mathrm{ Costaccioms 1.5. Other Applicative Expressions 1.5.5. Conditionals}
```

23. If the command is of the form $201 \mathrm{dH}\left(\mathrm{hi}^{\prime}, \mathrm{l}, \mathrm{hi}^{\prime}\right)$ then
$\star 1$ hi' must be the identifier of a hub in hs,
$\star s 2 \mathrm{I}$ must not be in Is and its identifier must (also) not be observable in Is , and
$\star 3$ hi" must be the identifier of a(nother) hub in hs.
24. If the command is of the form 1oldH1new $\mathrm{H}(\mathrm{hi}, \mathrm{l}, \mathrm{h})$ then
$\star 1$ hi must be the identifier of a hub in hs,
$\star 2$ I must not be in Is and its identifier must (also) not be observable in Is, and
$\star 3 \mathrm{~h}$ must not be in hs and its identifier must (also) not be observable in hs.
25. If the command is of the form $2 n e w H\left(h^{\prime}, l, h^{\prime \prime}\right)$ then
$\star 1 \mathrm{~h}$ - left to the reader as an exercise (see formalisation!),
$\star 2 I$ - left to the reader as an exercise (see formalisation!), and
$\star 3 \mathrm{~h}^{\prime \prime}$ - left to the reader as an exercise (see formalisation!).
Conditions concerning the new link (second $\star \mathrm{s}$, $\star 2$, in the above three cases) can be expressed independent of the insert command category.
\qquad
26. Given a net, (hs,ls), and given a hub identifier, (hi), which can be observed from some hub in the net, $x t_{-} \mathrm{H}(\mathrm{hi})(\mathrm{hs}, \mathrm{ls})$ extracts the hub with that identifier.
27. Given a net, (hs,ls), and given a link identifier, (li), which can be observed from some link in the net, $x \operatorname{tr} \mathrm{~L}(\mathrm{li})(\mathrm{hs}, \mathrm{ls})$ extracts the hub with that identifier.

value

26: x tr_ $\mathrm{H}: \mathrm{HI} \rightarrow \mathrm{N} \xrightarrow{\sim} \mathrm{H}$
26: x tr_H(hi)(hs,_) \equiv let $h: H \cdot h \in$ hs \wedge obs_HI(h)=hi in h end pre hi \in iohs(hs)
27: xtr_L: $\mathrm{HI} \rightarrow \mathrm{N} \xrightarrow{\sim} \mathrm{H}$
27: $x \operatorname{tr}_{2} \mathrm{~L}(\mathrm{li})\left(_, \mathrm{ls}\right) \equiv$ let $\mathrm{I}: \mathrm{L} \cdot \mid \in \mathrm{ls} \wedge$ obs_LI(I) $=\mathrm{li}$ in \mid end pre li $\in \operatorname{iols}(\mathrm{ls})$

```
value
    21 int_Insert: Insert }->\textrm{N}\xrightarrow{}{~}\textrm{N
    22' pre_int_Insert: Ins }->\textrm{N}->\mathrm{ Bool
    22\prime\prime}\mathrm{ pre_int_Insert(Ins(op))(hs,ls) 三
*2 s_l(op)\not\in ls ^ obs_LI(s_I(op)) }\not\in\textrm{iols}(\textrm{ls})
    case op of
    23) 2oldH(hi',,hi')}->{\mathrm{ hi',hi'} }}\mathrm{ iohs(hs),
    24) 1oldH1newH(hi,l,h)}
        hi \in iohs(hs) ^ h\not\in hs ^ obs_HI(h)\not\in iohs(hs),
    25) 2newH(h',l,h")}
        {h',h"}\caphs={} ^ {obs_HI(h'),obs_HI(h')}\cap iohs(hs)={}
    end
```

342

1. 4.An Onotoles of Reviriemens Comestarcions 1.5. Other Applicative Expressions 1.5.5. Conditionals
2. When a new link is joined to an existing hub then the observable link identifiers of that hub must be updated to reflect the link identifier of the new link.
3. When an existing link is removed from a remaining hub then the observable link identifiers of that hub must be updated to reflect the removed link (identifier).

value

aLI: $\mathrm{H} \times \mathrm{LI} \rightarrow \mathrm{H}, \mathrm{rLI}: \mathrm{H} \times \mathrm{LI} \xrightarrow{\sim} \mathrm{H}$
28: aLl(h,li) as h^{\prime}
pre li \notin obs_LIs(h)
post obs_Lls $\left(h^{\prime}\right)=\{\mathrm{li}\} \cup$ obs_Lls $(\mathrm{h}) \wedge$ non_I_eq $\left(\mathrm{h}, \mathrm{h}^{\prime}\right)$
29: $\mathrm{rLI}\left(\mathrm{h}^{\prime}, \mathrm{li}\right)$ as h
pre li \in obs_Lls(h^{\prime}) \wedge card obs_Lls $\left(\mathrm{h}^{\prime}\right) \geq 2$
post obs_Lls $(\mathrm{h})=$ obs_Lls $\left(\mathrm{h}^{\prime}\right) \backslash\{\mathrm{li}\} \wedge$ non_I_eq $\left(\mathrm{h}, \mathrm{h}^{\prime}\right)$
30. If the Insert command is of kind 2 new $\mathrm{H}\left(\mathrm{h}^{\prime}, \mathrm{l}, \mathrm{h}^{\prime \prime}\right)$ then the updated net of hubs and links, has

- the hubs hs joined, \cup, by the set $\left\{h^{\prime}, h^{\prime \prime}\right\}$ and
- the links Is joined by the singleton set of $\{I\}$.

31. If the Insert command is of kind 1oldH1newH(hi,l,h) then the updated net of hubs and links, has
31.1 : the hub identified by hi updated, hi', to reflect the link connected to that hub.
31.2 : The set of hubs has the hub identified by hi replaced by the updated hub hi and the new hub.
31.2 : The set of links augmented by the new link.
32. If the Insert command is of kind 2 oldH(hi', I, hi") then
32.1-. 2 : the two connecting hubs are updated to reflect the new link,
32.3 : and the resulting sets of hubs and links updated.
\qquad
33. The remove command is of the form $\mathrm{Rmv}(\mathrm{li})$ for some li.
34. We now sketch the meaning of removing a link:
(a) The link identifier, li, is, by the pre_int_Remove pre-condition, that of a link, I, in the net
(b) That link connects to two hubs, let us refer to them as h^{\prime} and h^{\prime}.
(c) For each of these two hubs, say h, the following holds wrt. removal of their connecting link:
i. If I is the only link connected to h then hub h is removed. This may mean that

- either one

- or two hubs
are also removed when the link is removed
ii. If I is not the only link connected to h then the hub h is modified to reflect that it is no longer connected to l.
(d) The resulting net is that of the pair of adjusted set of hubs and links

```
int_lnsert(op)(hs,ls) \equiv
* case op of
30 2newH(h',l,h) ->(hs \cup{\mp@subsup{h}{}{\prime},\mp@subsup{h}{}{\prime}},ls\cup{}}),
31 1oldH1newH(hi,l,h) }
31.1 let \mp@subsup{h}{}{\prime}= aLl(xtr_H(hi,hs),obs_LI(l)) in
            (hs \{xtr_H(hi,hs)}\cup{h,h},ls \cup{l}) end,
        2oldH(hi,l,hi') }
            let hs \delta = {aLI(xtr_H(hi,hs),obs_L(I)),
                                    aLI(xtr_H(hi",hs),obs_Ll(I))} in
            (hs {xtr_H(hi,hs),xtr-H(hi",hs)}\cup hs\delta,ls \cup{{}) end
* }\mp@subsup{}{j}{}\mathrm{ end
* }k\mathrm{ pre pre_int_Insert(op)(hs,ls)
```

346

$$
\text { 1. 4.An Onotogys of Revirienensts Constancions } 1.5 \text {. Other Applicative Expressions } 1.55 \text {. Conditionals }
$$

value
33 int_Remove: Rmv $\rightarrow \mathrm{N} \xrightarrow{\sim} \mathrm{N}$
34 int_Remove $(\operatorname{Rmv}(\mathrm{li}))(\mathrm{hs}, \mathrm{Is}) \equiv$
34(a)) let I = xtr_L(li)(Is), \{hi',hi'\} = obs_HIs(I) in
34(b)) let $\left\{\mathrm{h}^{\prime}, \mathrm{h}^{\prime \prime}\right\}=\left\{\mathrm{xtr} _\mathrm{H}\left(\mathrm{hi}^{\prime}\right.\right.$, hs $), \mathrm{xtr} _\mathrm{H}\left(\mathrm{hi}^{\prime \prime}\right.$, hs $\left.)\right\}$ in
34(c)) let hs' $=$ cond_rmv($\left.\mathrm{h}^{\prime}, \mathrm{hs}\right) \cup$ cond_rmv_H(h",hs) in
34(d)) (hs $\left.\backslash\left\{h^{\prime}, h^{\prime \prime}\right\} \cup h s^{\prime}, l s \backslash\{\mid\}\right)$ end end end
34(a)) pre li \in iols(ls)
cond_rmv: $\mathrm{LI} \times \mathrm{H} \times \mathrm{H}$-set $\rightarrow \mathrm{H}$-set
cond_rmv(li,h,hs) \equiv
$34((\mathrm{c}))$ i) if obs_HIs(h)=\{li\} then $\}$
34((c))ii) else \{sLI(li,h)\} end
pre li \in obs_HIs(h)
End of Example 17

1．5．6．Operator／Operand Expressions

〈Expr〉：：＝
\langle Prefix＿Op〉 〈Expr〉
｜〈Expr〉 〈Infix＿Op〉 〈Expr〉
｜〈Expr〉 〈Suffix＿Op〉
refix＿Op $\rangle::=$
$-|\sim| \cup|\cap|$ card｜len｜inds｜elems｜hd｜tl｜dom｜rng \langle Infix＿Op〉：：＝ $\quad|\neq|\equiv|+|-|*| \uparrow| /|<|\leq|\geq|>|\wedge| \vee| \Rightarrow$
$|\in| \notin|\cup| \cap|\backslash| \subset|\subseteq| \supseteq|\supset| \wedge|\dagger|^{\circ}$
\langle Suffix＿Op〉：：＝！

End of Lecture 9：RSL：Logic，Λ－Calculus，Fctl．Specs．

