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1.3. The RSL Predicate Calculus
1.3.1. Propositional Expressions

• Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values
(true or false [or chaos]).

• Then:

false, true

a, b, ..., c ∼a, a∧b, a∨b, a⇒b, a=b, a6=b

• are propositional expressions having Boolean values.

• ∼, ∧, ∨, ⇒, = and 6= are Boolean connectives (i.e., operators).

• They can be read as: not, and, or, if then (or implies), equal and not equal.
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1.3.2. Simple Predicate Expressions

• Let identifiers (or propositional expressions) a, b, ..., c designate
Boolean values,

• let x, y, ..., z (or term expressions) designate non-Boolean values

• and let i, j, . . ., k designate number values,

• then:

false, true

a, b, ..., c
∼a, a∧b, a∨b, a⇒b, a=b, a 6=b
x=y, x6=y,
i<j, i≤j, i≥j, i 6=j, i≥j, i>j

• are simple predicate expressions.
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1.3.3. Quantified Expressions

• Let X, Y, . . ., C be type names or type expressions,

• and let P(x), Q(y) and R(z) designate predicate expressions in
which x, y and z are free.

• Then:

∀ x:X • P(x)
∃ y:Y • Q(y)
∃ ! z:Z • R(z)

• are quantified expressions — also being predicate expressions.
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Example 13 . . . . . . . . . . . . . . . . Predicates Over Net Quantities:

• From earlier examples we show some predicates:

• Example 1: Right hand side of function definition is two way link(l):

∃ lσ:LΣ • lσ ∈ obs HΣ(l)∧card lσ=2
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• Example 3:

– The Sorts + Observers + Axioms part:

∗ Right hand side of the wellformedness function wf N(n) defini-
tion:
∀ n:N • card obs Hs(n)≥2 ∧ card obs Ls(n)≥1 ∧ axioms 2.–
3., 5.–6., and 8., (Page 13)

∗ Right hand side of the wellformedness function wf N(hs,ls) defi-
nition:
card hs≥2 ∧ card ls≥1 ...
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– The Cartesians + Maps + Wellformedness part:

∗ Right hand side of the wf HUBS wellformedness function definition:
∀ hi:HI • hi ∈ dom hubs ⇒ obs HIhubs(hi)=hi

∗ Right hand side of the wf LINKS wellformedness function definition:
∀ li:LI • li ∈ dom links ⇒ obs LIlinks(li)=li

∗ Right hand side of the wf N(hs,ls,g) wellformedness function definition:
[ c ] dom hs = dom g ∧
[ d ] ∪ {dom g(hi)|hi:HI • hi ∈ dom g} = dom links ∧
[ e ] ∪ {rng g(hi)|hi:HI • hi ∈ dom g} = dom g ∧
[ f ] ∀ hi:HI • hi ∈ dom g ⇒ ∀ li:LI • li ∈ dom g(hi) ⇒ (g(hi))(li)6=hi
[ g ] ∀ hi:HI • hi ∈ dom g ⇒ ∀ li:LI • li ∈ dom g(hi) ⇒

∃ hi′:HI • hi′ ∈ dom g ⇒ ∃ ! li:LI • li ∈ dom g(hi) ⇒
(g(hi))(li) = hi′ ∧ (g(hi′))(li) = hi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .End of Example 13
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1.4. λ-Calculus + Functions
1.4.1. The λ-Calculus Syntax

type /∗ A BNF Syntax: ∗/
〈L〉 ::= 〈V〉 | 〈F〉 | 〈A〉 | ( 〈A〉 )
〈V〉 ::= /∗ variables, i.e. identifiers ∗/
〈F〉 ::= λ〈V〉 • 〈L〉
〈A〉 ::= ( 〈L〉〈L〉 )

value /∗ Examples ∗/
〈L〉: e, f, a, ...
〈V〉: x, ...
〈F〉: λ x • e, ...
〈A〉: f a, (f a), f(a), (f)(a), ...
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1.4.2. Free and Bound Variables
Let x, y be variable names and e, f be λ-expressions.

• 〈V〉: Variable x is free in x.

• 〈F〉: x is free in λy •e if x 6= y and x is free in e.

• 〈A〉: x is free in f (e) if it is free in either f or e (i.e., also in both).
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1.4.3. Substitution

• subst([N/x]x) ≡ N;

• subst([N/x]a) ≡ a,

for all variables a6= x;

• subst([N/x](P Q)) ≡ (subst([N/x]P) subst([N/x]Q));

• subst([N/x](λx•P )) ≡ λ y•P;

• subst([N/x](λ y•P)) ≡ λy• subst([N/x]P),

if x6=y and y is not free in N or x is not free in P;

• subst([N/x](λy•P)) ≡ λz•subst([N/z]subst([z/y]P)),

if y6=x and y is free in N and x is free in P

(where z is not free in (N P)).
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1.4.4. α-Renaming and β-Reduction

• α-renaming: λx•M

If x, y are distinct variables then replacing x by y in λx•M results
in λy•subst([y/x]M). We can rename the formal parameter of a λ-
function expression provided that no free variables of its body M
thereby become bound.

• β-reduction: (λx•M)(N)

All free occurrences of x in M are replaced by the expression N
provided that no free variables of N thereby become bound in the
result. (λx•M)(N) ≡ subst([N/x]M)
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Example 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Network Traffic:

• We model traffic by introducing a number of model concepts.

• We simplify,

– without loosing the essence of this example, namely to show the use of λ–
functions,

– by omitting consideration of dynamically changing nets.

• These are introduced next:

– Let us assume a net, n:N.

– There is a dense set, T, of times – for which we omit giving an appropriate
definition.

– There is a sort, V, of vehicles.

– TS is a dense subset of T.

– For each ts:TS we can define a minimum and a maximum time.
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– The MIN and MAX functions are meta-linguistic.

– At any moment some vehicles, v:V, have a pos:Pos ition on the net
and VP records those.

– A Pos ition is either on a link or at a hub.

– An onLink position can be designated by the link identifier, the
identifiers of the from and to hubs, and the fraction, f:F, of the
distance down the link from the from hub to the to hub.

– An atHub position just designates the hub (by its identifier).

– Traffic, tf:TF, is now a continuous function from T ime to NP
(“recordings”).

– Modelling traffic in this way entails a (“serious”) number of well-
formedness conditions. These are defined in wf TF (omitted: ...).
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value

n:N
type

T, V
TS = T-infset

axiom

∀ ts:TS • ∃ tmin,tmax:T: tmin ∈ ts ∧ tmax ∈ ts ∧ ∀ t:T • t ∈ ts ⇒ tmin ≤ t ≤ tmax
[ that is: ts = {MIN (ts)..MAX (ts)} ]

type

VP = V →m Pos
TF′ = T → VP, TF = {|tf:TF′

•wf TF(tf)(n)|}
Pos = onL | atH
onL == mkLPos(hi:HI,li:LI,f:F,hi:HI), atH == mkHPos(hi:HI)

value

wf TF: TF→ N → Bool

wf TF(tf)(n) ≡ ...
DOMAIN : TF → TS
MIN ,MAX : TS → T
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• We have defined the continuous, composite entity of traffic.

• Now let us define an operation of inserting a vehicle in a traffic.

• To insert a vehicle, v, in a traffic, tf , is prescribable as follows:

– the vehicle, v, must be designated;

– a time point, t, “inside” the traffic tf must be stated;

– a traffic, vtf , from time t of vehicle v must be stated;

– as well as traffic, tf , into which vtf is to be “merged”.

• The resulting traffic is referred to as tf ′.

value

insert V: V × T × TF → TF → TF
insert V(v,t,vtf)(tf) as tf′
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• The function insert V is here defined in terms of a pair of pre/post
conditions.

• The pre-condition can be prescribed as follows:

– The insertion time t must be within to open interval of time points
in the traffic tf to which insertion applies.

– The vehicle v must not be among the vehicle positions of tf .

– The vehicle must be the only vehicle “contained” in the “inserted”
traffic vtf .

pre: MIN (DOMAIN (tf)≤t≤MAX (DOMAIN (tf)) ∧
∀ t′:T • t′ ∈ DOMAIN (tf) ⇒ v 6∈ dom tf(t′) ∧
MIN (DOMAIN (vtf)) = t ∧
∀ t′:T•t′ ∈ DOMAIN (vtf) ⇒ dom vtf(t′)={v}
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• The post condition “defines” tf ′, the traffic resulting from merging
vtf with tf :

– Let ts be the time points of tf and vtf , a time interval.

– The result traffic, tf ′, is defines as a λ-function.

– For any t′′ in the time interval

– if t′′ is less than t, the insertion time, then tf ′ is as tf ;

– if t′′ is t or larger then tf ′ applied to t′′, i.e., tf ′(t′′)

∗ for any v′ : V different from v yields the same as (tf (t))(v′),

∗ but for v it yields (vtf (t))(v).
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post: tf′ = λt′′

•

let ts = DOMAIN (tf) ∪ DOMAIN (vtf) in

if MIN (ts) ≤ t′′ ≤ MAX (ts)
then

((t′′<t) → tf(t′′),
(t′′≥t) → [ v′7→ if v′6=v then (tf(t))(v′) else (vtf(t))(v) end

|v′:V•v′ ∈ vehicles(tf) ])
else chaos end

end

assumption: wf TF(vtf)∧wf TF(tf)
theorem: wf TF(tf′)

value

vehicles: TF → V-set

vehicles(tf) ≡ {v|t:T,v:V•t ∈ DOMAIN (tf)∧v ∈ dom tf(t)}
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1.4.5. Function Signatures
For sorts we may want to postulate some functions:

type

A, B, ..., C
value

obs B: A → B
...
obs C: A → C

• These functions cannot be defined.

• Once a domain is presented

– in which sort A and sorts or types B, ... and C occurs

– these observer functions can be demonstrated.
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Example 15 . . . . . . . . . . . . . . . . . . . . . . . . Hub and Link Observers:

• Let a net with several hubs and links be presented.

• Now observer functions

– obs Hs and

– obs Ls

can be demonstrated:

– one simply “walks” along the net, pointing out

– this hub and

– that link,

– one-by-one

– until all the net has been visited.
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• The observer functions

– obs HI and

– obs LI

can be likewise demonstrated, for example:

– when a hub is “visited”

– its unique identification

– can be postulated (and “calculated”)

– to be the unique geographic position of the hub

– one which is not overlapped by any other hub (or link),

• and likewise for links.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .End of Example 15
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1.4.6. Function Definitions
Functions can be defined explicitly:

type

A, B
value

f: A → B [ a total function ]
f(a expr) ≡ b expr

g: A
∼
→ B [ a partial function ]

g(a expr) ≡ b expr
pre P(a expr)
P: A → Bool

• a expr, b expr are

• A, respectively B valued expressions

• of any of the kinds illustrated in earlier and later sections of this
primer.
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Or functions can be defined implicitly:

value

f: A→B
f(a expr) as b
post P(a expr,b)
P: A×B→Bool

g: A
∼
→B

g(a expr) as b
pre P′(a expr)
post P(a expr,b)
P′: A→Bool

where b is just an identifier.
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• Finally functions, f, g, ..., can be defined in terms of axioms

• over function identifiers, f, g, ..., and over identiers of function argu-
ments and results.

type

A, B, C, D, ...
value

f: A → B
g: C → D
...

axiom

∀ a:A, b:B, c:C, d:D, ...
P1(f,a,b) ∧ ... ∧ Pm(f,a,b)
...
Q1(g,c,d) ∧ ... ∧ Qn(g,c,d)
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Example 16 . .Axioms over Hubs, Links and Their Observers:

• The axioms displayed in Items 2–3 and 5–8 on Page 12 of Sect.

• demonstrates how a number of entities and observer functions are
constrained

• (that is, partially defined) by function signatures.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .End of Example 16
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1.5. Other Applicative Expressions
1.5.1. Simple let Expressions

Simple (i.e., nonrecursive) let expressions:

let a = Ed in Eb(a) end

is an “expanded” form of:

(λa.Eb(a))(Ed)
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1.5.2. Recursive let Expressions
Recursive let expressions are written as:

let f = λa•E(f,a) in B(f,a) end

let f = (λg•λa•E(g,a))(f) in B(f.a) end

let f = F(f) in E(f,a) end where F ≡ λg•λa•E(g,a)
let f = YF in B(f,a) end where YF = F(YF)

• We read f = YF as “f is a fix point of F”.
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1.5.3. Non-deterministic let Clause

• The non-deterministic let clause:

let a:A • P(a) in B(a) end

• expresses the non-deterministic selection of a value a of type A

• which satisfies a predicate P(a) for evaluation in the body B(a).

• If no a:A • P(a) the clause evaluates to chaos.
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1.5.4. Pattern and “Wild Card” let Expressions
Patterns and wild cards can be used:

let {a} ∪ s = set in ... end

let {a, } ∪ s = set in ... end

let (a,b,...,c) = cart in ... end

let (a, ,...,c) = cart in ... end

let 〈a〉̂ℓ = list in ... end

let 〈a, ,b〉̂ℓ = list in ... end

let [ a 7→b ] ∪ m = map in ... end

let [ a 7→b, ] ∪ m = map in ... end
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1.5.5. Conditionals
if b expr then c expr else a expr
end

if b expr then c expr end ≡ /∗ same as: ∗/
if b expr then c expr else skip end

if b expr 1 then c expr 1
elsif b expr 2 then c expr 2
elsif b expr 3 then c expr 3
...
elsif b expr n then c expr n end

case expr of

choice pattern 1 → expr 1,
choice pattern 2 → expr 2,
...
choice pattern n or wild card → expr n end
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Example 17 . Choice Pattern Case Expressions: Insert Links:

We consider the meaning of the Insert operation designators.

21. The insert operation takes an Insert command and a net and yields
either a new net or chaos for the case where the insertion command
“is at odds” with, that is, is not semantically well-formed with respect
to the net.

22. We characterise the “is not at odds”, i.e., is semantically well-formed,
that is:

• pre int Insert(op)(hs,ls),

as follows: it is a propositional function which applies to Insert actions,
op, and nets, (hs.ls), and yields a truth value if the below relation
between the command arguments and the net is satisfied. Let (hs,ls)
be a value of type N.
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23. If the command is of the form 2oldH(hi′,l,hi′) then

⋆1 hi′ must be the identifier of a hub in hs,

⋆s2 l must not be in ls and its identifier must (also) not be observable
in ls, and

⋆3 hi′′ must be the identifier of a(nother) hub in hs.

24. If the command is of the form 1oldH1newH(hi,l,h) then

⋆1 hi must be the identifier of a hub in hs,

⋆2 l must not be in ls and its identifier must (also) not be observable
in ls, and

⋆3 h must not be in hs and its identifier must (also) not be observable
in hs.
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25. If the command is of the form 2newH(h′,l,h′′) then

⋆1 h′ — left to the reader as an exercise (see formalisation !),

⋆2 l — left to the reader as an exercise (see formalisation !), and

⋆3 h′′ — left to the reader as an exercise (see formalisation !).

Conditions concerning the new link (second ⋆s, ⋆2, in the above three
cases) can be expressed independent of the insert command category.
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value

21 int Insert: Insert → N
∼
→ N

22′ pre int Insert: Ins → N → Bool

22′′ pre int Insert(Ins(op))(hs,ls) ≡
⋆2 s l(op) 6∈ ls ∧ obs LI(s l(op)) 6∈ iols(ls) ∧

case op of

23) 2oldH(hi′,l,hi′′) → {hi′,hi′′}∈ iohs(hs),
24) 1oldH1newH(hi,l,h) →

hi ∈ iohs(hs) ∧ h 6∈ hs ∧ obs HI(h) 6∈ iohs(hs),
25) 2newH(h′,l,h′′) →

{h′,h′′}∩ hs={} ∧ {obs HI(h′),obs HI(h′′)}∩ iohs(hs)={}
end

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 September 14, 2010, 12:36

Lecture Notes in Software Engineering 341

1. 4. An Ontology of Requirements Constructions 1.5. Other Applicative Expressions 1.5.5. Conditionals

26. Given a net, (hs,ls), and given a hub identifier, (hi), which can be
observed from some hub in the net, xtr H(hi)(hs,ls) extracts the hub
with that identifier.

27. Given a net, (hs,ls), and given a link identifier, (li), which can be
observed from some link in the net, xtr L(li)(hs,ls) extracts the hub
with that identifier.

value

26: xtr H: HI → N
∼
→ H

26: xtr H(hi)(hs, ) ≡ let h:H•h ∈ hs ∧ obs HI(h)=hi in h end

pre hi ∈ iohs(hs)

27: xtr L: HI → N
∼
→ H

27: xtr L(li)( ,ls) ≡ let l:L•l ∈ ls ∧ obs LI(l)=li in l end

pre li ∈ iols(ls)
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28. When a new link is joined to an existing hub then the observable link
identifiers of that hub must be updated to reflect the link identifier of
the new link.

29. When an existing link is removed from a remaining hub then the
observable link identifiers of that hub must be updated to reflect the
removed link (identifier).

value

aLI: H × LI → H, rLI: H × LI
∼
→ H

28: aLI(h,li) as h′

pre li 6∈ obs LIs(h)
post obs LIs(h′) = {li} ∪ obs LIs(h) ∧ non I eq(h,h′)

29: rLI(h′,li) as h
pre li ∈ obs LIs(h′) ∧ card obs LIs(h′)≥2
post obs LIs(h) = obs LIs(h′) \ {li} ∧ non I eq(h,h′)
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30. If the Insert command is of kind 2newH(h’,l,h”) then the updated net of hubs and
links, has

• the hubs hs joined, ∪, by the set {h′,h′′} and

• the links ls joined by the singleton set of {l}.

31. If the Insert command is of kind 1oldH1newH(hi,l,h) then the updated net of hubs
and links, has

31.1 : the hub identified by hi updated, hi′, to reflect the link connected to that hub.

31.2 : The set of hubs has the hub identified by hi replaced by the updated hub hi′

and the new hub.

31.2 : The set of links augmented by the new link.

32. If the Insert command is of kind 2oldH(hi’,l,hi”) then

32.1–.2 : the two connecting hubs are updated to reflect the new link,

32.3 : and the resulting sets of hubs and links updated.
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int Insert(op)(hs,ls) ≡
⋆i case op of

30 2newH(h′,l,h′′) → (hs ∪ {h′,h′′},ls ∪ {l}),
31 1oldH1newH(hi,l,h) →
31.1 let h′ = aLI(xtr H(hi,hs),obs LI(l)) in

31.2 (hs\{xtr H(hi,hs)}∪{h,h′},ls ∪{l}) end,
32 2oldH(hi′,l,hi′′) →
32.1 let hsδ = {aLI(xtr H(hi′,hs),obs LI(l)),
32.2 aLI(xtr H(hi′′,hs),obs LI(l))} in

32.3 (hs\{xtr H(hi′,hs),xtr H(hi′′,hs)}∪ hsδ,ls ∪{l}) end

⋆j end

⋆k pre pre int Insert(op)(hs,ls)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 September 14, 2010, 12:36

Lecture Notes in Software Engineering 345

1. 4. An Ontology of Requirements Constructions 1.5. Other Applicative Expressions 1.5.5. Conditionals

33. The remove command is of the form Rmv(li) for some li.

34. We now sketch the meaning of removing a link:

(a) The link identifier, li, is, by the pre int Remove pre-condition, that of a link, l,
in the net.

(b) That link connects to two hubs, let us refer to them as h′ and h′.

(c) For each of these two hubs, say h, the following holds wrt. removal of their
connecting link:

i. If l is the only link connected to h then hub h is removed. This may mean
that

• either one

• or two hubs

are also removed when the link is removed.

ii. If l is not the only link connected to h then the hub h is modified to reflect
that it is no longer connected to l.

(d) The resulting net is that of the pair of adjusted set of hubs and links.
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value

33 int Remove: Rmv → N
∼
→ N

34 int Remove(Rmv(li))(hs,ls) ≡
34(a)) let l = xtr L(li)(ls), {hi′,hi′′} = obs HIs(l) in

34(b)) let {h′,h′′} = {xtr H(hi′,hs),xtr H(hi′′,hs)} in

34(c)) let hs′ = cond rmv(h′,hs) ∪ cond rmv H(h′′,hs) in

34(d)) (hs\{h′,h′′} ∪ hs′,ls\{l}) end end end

34(a)) pre li ∈ iols(ls)

cond rmv: LI × H × H-set → H-set

cond rmv(li,h,hs) ≡
34((c))i) if obs HIs(h)={li} then {}
34((c))ii) else {sLI(li,h)} end

pre li ∈ obs HIs(h)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . End of Example 17
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1.5.6. Operator/Operand Expressions

〈Expr〉 ::=
〈Prefix Op〉 〈Expr〉
| 〈Expr〉 〈Infix Op〉 〈Expr〉
| 〈Expr〉 〈Suffix Op〉
| ...

〈Prefix Op〉 ::=
− | ∼ | ∪ | ∩ | card | len | inds | elems | hd | tl | dom | rng

〈Infix Op〉 ::=
= | 6= | ≡ | + | − | ∗ | ↑ | / | < | ≤ | ≥ | > | ∧ | ∨ | ⇒
| ∈ | 6∈ | ∪ | ∩ | \ | ⊂ | ⊆ | ⊇ | ⊃ | ̂ | † | ◦

〈Suffix Op〉 ::= !
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End of Lecture 9: RSL: Logic, Λ-Calculus, Fctl. Specs.
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