1.3. The RSL Predicate Calculus 1.3.1. Propositional Expressions

- Let identifiers (or propositional expressions) **a**, **b**, ..., **c** designate Boolean values (**true** or **false** [or **chaos**]).
- Then:

308

false, true

- a, b, ..., c ~a, a \land b, a \lor b, a \Rightarrow b, a=b, a \neq b
- are propositional expressions having Boolean values.
- \sim , \land , \lor , \Rightarrow , = and \neq are Boolean connectives (i.e., operators).
- They can be read as: not, and, or, if then (or implies), equal and not equal.

Lecture Notes in Software Engineering	2. Simple Predicate Expressions	310	From Domains to Requirement
1. 4. An Ontology of Requirements Constructions 1.3. The RSL Predicate Calculus 1.3		1. 4. An Ontology of Requirements	Constructions 1.3. The RSL Predicate Calculus 1.3.3. Quantified Expressions
September 14, 2010, 12:36, Budapest Lectures, Oct. 11-22, 2010	C Diese Bjørner 2010, Fredsvej 11, DK-2840 Holte, Denmark	S Dines Bjørner 2010, Fredsvej 11, DK-2840 Holte, Denmark	Budapest Lactures, Oct. 11-22, 2010 September 14, 2010, 12:3

1.3.3. Quantified Expressions

- \bullet Let X, Y, ..., C be type names or type expressions,
- and let $\mathcal{P}(x)$, $\mathcal{Q}(y)$ and $\mathcal{R}(z)$ designate predicate expressions in which x, y and z are free.
- Then:
- $\forall \mathbf{x}: \mathbf{X} \cdot \mathcal{P}(x) \\ \exists \mathbf{y}: \mathbf{Y} \cdot \mathcal{Q}(y) \\ \exists \mathbf{y}: \mathbf{Z} \cdot \mathcal{R}(z)$
- are quantified expressions also being predicate expressions.

Start of Lecture 9: RSL: Logic, A-Calculus, Fctl. Specs.

1.3.2. Simple Predicate Expressions

- \bullet Let identifiers (or propositional expressions) ${\sf a}, {\sf b}, \, ..., \, {\sf c}$ designate Boolean values,
- let x, y, ..., z (or term expressions) designate non-Boolean values
- \bullet and let $i,\,j,\,\ldots,\,k$ designate number values,
- then:

false, true

a, b, ..., c \sim a, a \wedge b, a \vee b, a \Rightarrow b, a=b, a \neq b x=y, x \neq y, i<j, i \leq j, i \geq j, i \neq j, i \geq j, i>j

• are simple predicate expressions.

September 14, 2010, 12:36, Budapest Lectures, Oct. 11-22, 2010

Example 13 Predicates Over Net Quantities:

- From earlier examples we show some predicates:
- Example 1: Right hand side of function definition $is_two_way_link(l)$: $\exists l\sigma: L\Sigma \cdot l\sigma \in obs_H\Sigma(l) \land card l\sigma=2$

• Example 3:

312

- The **Sorts + Observers + Axioms** part:
 - * Right hand side of the wellformedness function $wf_N(n)$ definition:
 - $\forall n:N \cdot \text{card } obs_Hs(n) \ge 2 \land \text{card } obs_Ls(n) \ge 1 \land \text{axioms } 2.-3., 5.-6., \text{ and } 8., (Page 13)$
 - * Right hand side of the wellformedness function $wf_N(hs, ls)$ defi-
 - nition:

card $hs \geq 2 \land card ls \geq 1 \dots$

September 14, 2010, 12:36, Budapest Lectures, Oct. 11-22, 2010	mer 2010, Fredsvej 11, DK-2840 Holte, Denmark	S Dies Bjøner 2010, Fredsvej 11, DK-2840 Holte, Denmark	Budapest Lectures, Oct. 11-22, 2010 September 14, 2010, 12:36
Lecture Notes in Software Engineering	313	314	From Domains to Requirements
1. 4. An Ontology of Requirements Constructions 1.3. The RSL Predicate Calculus 1.3.3. Quantified Expression	5	1. 4. An Ontology of Requirements Constru-	close 1.4. λ -Calculus + Functions
 The Cartesians + Maps + Wellformedness part: * Right hand side of the wf_HUBS wellformedness function ∀ hi:HI · hi ∈ dom hubs ⇒ obs_Hlhubs(hi)=hi * Right hand side of the wf_LINKS wellformedness function ∀ li:LI · li ∈ dom links ⇒ obs_Lllinks(li)=li * Right hand side of the wf_N(hs,ls,g) wellformedness funct [c] dom hs = dom g ∧ [d] ∪ {dom g(hi) hi:HI · hi ∈ dom g} = dom links ∧ [e] ∪ {rng g(hi) hi:HI · hi ∈ dom g} = dom g ∧ [f] ∀ hi:HI · hi ∈ dom g ⇒ ∀ li:LI · li ∈ dom g(hi) ⇒ [g] ∀ hi:HI · hi ∈ dom g ⇒ ∃ ! li:LI · li ∈ dom g(hi) = (g(hi))(li) = hi ∧ (g(hi))(li) = hi 	definition: ion definition: · (g(hi))(li)≠hi		us + Functions Calculus Syntax ers */
End (of Example 13		

From Domains to Requirements

Oct 11-22 2010 September 14 2010 12:3

From Domains to Requ

1.4.3. Substitution

- **1.4.2. Free and Bound Variables** Let x, y be variable names and e, f be λ -expressions.
- $\langle \mathbf{V} \rangle$: Variable x is free in x.
- $\langle F \rangle$: x is free in $\lambda y \cdot e$ if $x \neq y$ and x is free in e.
- $\langle A \rangle$: x is free in f(e) if it is free in either f or e (i.e., also in both).

September 14, 2010, 12:36, Budapest Lectures, Oct. 11-22, 2010	© Dines Bjørner 2010, Fredsvej 11, DK-2840 Holte, Denmark
Lecture Notes in Software Engineering	317
1. 4. An Ontology of Requirements Constructions 1.4. λ -Calculus + Funct	ions 1.4.4. α -Renaming and β -Reduction

1.4.4. α -Renaming and β -Reduction

• α -renaming: $\lambda x \cdot M$

If x, y are distinct variables then replacing x by y in $\lambda x \cdot M$ results in $\lambda y \cdot subst([y/x]M)$. We can rename the formal parameter of a λ function expression provided that no free variables of its body M thereby become bound.

• β -reduction: $(\lambda \times M)(N)$

All free occurrences of x in M are replaced by the expression N provided that no free variables of N thereby become bound in the result. $(\lambda x \cdot M)(N) \equiv subst([N/x]M)$

• subst([N/x]x) $\equiv N$;

316

 $\bullet \, \textbf{subst}([N/x]a) \equiv a,$

for all variables $a \neq x$;

- $\bullet \textbf{ subst}([N/x](P\ Q)) \equiv (\textbf{subst}([N/x]P)\ \textbf{subst}([N/x]Q));$
- subst([N/x]($\lambda x \cdot P$)) $\equiv \lambda y \cdot P$;
- subst([N/x]($\lambda y \cdot P$)) $\equiv \lambda y \cdot subst([N/x]P)$,

if $x \neq y$ and y is not free in N or x is not free in P;

• $subst([N/x](\lambda y \cdot P)) \equiv \lambda z \cdot subst([N/z]subst([z/y]P)),$

if $y \neq x$ and y is free in N and x is free in P (where z is not free in (N P)).

318

1. 4. An Ontology of Requirements Constructions 1.4. λ -Calculus + Functions 1.4.4. α -Renaming and β -Reduction

Example 14 Network Traffic:

- We model traffic by introducing a number of model concepts.
- We simplify,

C Dines Rigner 2010 Fredsvei 11 DK-2840 Holte Denmari

- without loosing the essence of this example, namely to show the use of $\lambda-$ functions,
- by omitting consideration of dynamically changing nets.
- These are introduced next:
 - Let us assume a net, n:N.
 - There is a dense set, ${\it T}_{\rm r}$ of times for which we omit giving an appropriate definition.
 - There is a sort, V, of vehicles.
 - -TS is a dense subset of T.
 - For each *ts:TS* we can define a minimum and a maximum time.

- The \mathcal{MIN} and \mathcal{MAX} functions are meta-linguistic.
- At any moment some vehicles, v:V, have a pos:Position on the net and VP records those.
- A *Pos*ition is either on a link or at a hub.
- An onLink position can be designated by the link identifier, the identifiers of the from and to hubs, and the fraction, f:F, of the distance down the link from the from hub to the to hub.
- An *atH*ub position just designates the hub (by its identifier).
- Traffic, *tf:TF*, is now a continuous function from *T*ime to *NP* ("recordings").
- Modelling traffic in this way entails a ("serious") number of well-formedness conditions. These are defined in $wf_{-}TF$ (omitted: ...).

Lecture Notes in Software Engineering	
---------------------------------------	--

Sentember 14, 2010, 12:36, Budanest Lectures, Oct, 11-22, 2010

321

C Dines Bigrner 2010 Fredsvei 11 DK-2840 Holte Denmar

1. 4. An Ontology of Requirements Constructions 1.4. λ -Calculus + Functions 1.4.4. α -Renaming and β -Reduction

- We have defined the continuous, composite entity of traffic.
- Now let us define an operation of inserting a vehicle in a traffic.
- \bullet To insert a vehicle, v, in a traffic, tf, is prescribable as follows:
 - $-\operatorname{the}$ vehicle, v, must be designated;
 - $-\operatorname{a}$ time point, t, ``inside'' the traffic tf must be stated;
 - $-\operatorname{a}$ traffic, vtf , from time t of vehicle v must be stated;
 - $-\operatorname{as}$ well as traffic, tf , into which vtf is to be "merged".
- The resulting traffic is referred to as tf'.

value

 $\begin{array}{l} \text{insert_V: V \times T \times TF } \rightarrow \text{TF} \rightarrow \text{TF} \\ \text{insert_V(v,t,vtf)(tf) as tf} \end{array}$

320

s Oct 11-22 2010 September 14 2010 12:3

From Domains to Require

1. 4. An Ontology of Requirements Constructions 1.4. λ -Calculus + Functions 1.4.4. α -Renaming and β -Reduction value n:N type T. V TS = T-infset axiom $\forall \mathsf{ts}:\mathsf{TS} \cdot \exists \mathsf{tmin},\mathsf{tmax}:\mathsf{T}: \mathsf{tmin} \in \mathsf{ts} \land \mathsf{tmax} \in \mathsf{ts} \land \forall \mathsf{t}:\mathsf{T} \cdot \mathsf{t} \in \mathsf{ts} \Rightarrow \mathsf{tmin} < \mathsf{t} < \mathsf{tmax}$ [that is: $ts = \{\mathcal{MIN}(ts)..\mathcal{MAX}(ts)\}$] type $VP = V \implies Pos$ $TF' = T \rightarrow VP.$ $\mathsf{TF} = \{|\mathsf{tf}:\mathsf{TF}' \cdot \mathsf{wf}_\mathsf{TF}(\mathsf{tf})(\mathsf{n})|\}$ $\mathsf{Pos} = \mathsf{onL} \mid \mathsf{atH}$ onL == mkLPos(hi:HI,li:LI,f:F,hi:HI), atH == mkHPos(hi:HI) value

 $\begin{array}{l} \mathsf{wf}_{-}\mathsf{TF} \colon \mathsf{TF} \to \mathsf{N} \to \mathbf{Bool} \\ \mathsf{wf}_{-}\mathsf{TF}(\mathsf{tf})(\mathsf{n}) \equiv \dots \\ \mathcal{DOMAIN} \colon \mathsf{TF} \to \mathsf{TS} \\ \mathcal{MIN}, \mathcal{MAX} \colon \mathsf{TS} \to \mathsf{T} \end{array}$

C Dines Bjørner 2010, Fredsvej 11, DK-2840 Holte, Denmark

322

1. 4. An Ontology of Requirements Constructions 1.4. λ -Calculus + Functions 1.4.4. α -Renaming and β -Reduction

- The function *insert_V* is here defined in terms of a pair of pre/post conditions.
- The pre-condition can be prescribed as follows:
 - The insertion time t must be within to open interval of time points in the traffic tf to which insertion applies.
 - $-\operatorname{The}$ vehicle v must not be among the vehicle positions of tf.
 - The vehicle must be the only vehicle "contained" in the "inserted" traffic vtf.

 $\begin{array}{l} \mathbf{pre:} \ \mathcal{MIN}(\mathcal{DOMAIN}(\mathsf{tf}){\leq}\mathsf{t}{\leq}\mathcal{MAX}(\mathcal{DOMAIN}(\mathsf{tf})) \land \\ \forall \ \mathsf{t'}{:}\mathsf{T} \cdot \mathsf{t'} \in \mathcal{DOMAIN}(\mathsf{tf}) \Rightarrow \mathsf{v} \not\in \mathbf{dom} \ \mathsf{tf}(\mathsf{t'}) \land \end{array}$

 $\mathcal{MIN}(\mathcal{DOMAIN}(\mathsf{vtf})) = \mathsf{t} \land \\ \forall \mathsf{t}:\mathsf{T}\cdot\mathsf{t}' \in \mathcal{DOMAIN}(\mathsf{vtf}) \Rightarrow \mathsf{dom} \mathsf{vtf}(\mathsf{t}') = \{\mathsf{v}\}$

323

-22 2010 September 14 2010 12:3

From Domains to Requi

- The post condition "defines" tf', the traffic resulting from merging vtf with tf:
 - Let ts be the time points of tf and vtf, a time interval.
 - The result traffic, tf', is defines as a λ -function.
 - For any t'' in the time interval
 - if t'' is less than t, the insertion time, then tf' is as tf;
 - $-\operatorname{if} t''$ is t or larger then tf' applied to t'', i.e., tf'(t'')
 - * for any v' : V different from v yields the same as (tf(t))(v'), * but for v it yields (vtf(t))(v).

ecture Notes in Softwa	re Engineering
------------------------	----------------

Sentember 14, 2010, 12:36, Budanest Lectures, Oct, 11-22, 2010

325

C Dines Bigmer 2010 Fredsvei 11 DK-2840 Holte Denmar

1.4.5. Function Signatures

1. 4. An Ontology of Requirements Constructions 1.4. λ-Calculus + Functions 1.4.5. Function Signature

For sorts we may want to postulate some functions:

type

A, B, ..., C value obs_B: $A \rightarrow B$... obs C: $A \rightarrow C$

- These functions cannot be defined.
- Once a domain is presented
 - $-\operatorname{in}$ which sort A and sorts or types $B,\,\ldots\,$ and C occurs
 - these observer functions can be demonstrated.

 $\begin{array}{l} \text{post: } \mathsf{tf} = \lambda \mathsf{t}^{:} \\ & \text{let } \mathsf{ts} = \mathcal{DOMAIN}(\mathsf{tf}) \cup \mathcal{DOMAIN}(\mathsf{vtf}) \text{ in} \\ & \text{if } \mathcal{MIN}(\mathsf{ts}) \leq \mathsf{t}^{:} \leq \mathcal{MAX}(\mathsf{ts}) \\ & \text{then} \\ & ((\mathsf{t}^{:} < \mathsf{t}) \to \mathsf{tf}(\mathsf{t}^{:}), \\ & (\mathsf{t}^{:} \geq \mathsf{t}) \to \mathsf{tf}(\mathsf{t}^{:}), \\ & (\mathsf{t}^{:} \geq \mathsf{t}) \to [\mathsf{v} \mapsto \mathsf{if} \; \mathsf{v} \neq \mathsf{v} \; \mathsf{then} \; (\mathsf{tf}(\mathsf{t}))(\mathsf{v}) \; \mathsf{else} \; (\mathsf{vtf}(\mathsf{t}))(\mathsf{v}) \; \mathsf{end} \\ & | \mathsf{v} : \mathsf{V} \cdot \mathsf{v} \in \mathsf{vehicles}(\mathsf{tf})]) \\ & \text{else chaos end} \\ & \text{end} \\ & \text{assumption: } \mathsf{wf}_{-}\mathsf{TF}(\mathsf{vtf}) \land \mathsf{wf}_{-}\mathsf{TF}(\mathsf{tf}) \\ & \text{theorem: } \mathsf{wf}_{-}\mathsf{TF}(\mathsf{tf}) \\ & \text{value} \\ & \mathsf{vehicles: } \; \mathsf{TF} \to \mathsf{V}\text{-set} \\ & \mathsf{vehicles}(\mathsf{tf}) \equiv \{\mathsf{v} | \mathsf{t} : \mathsf{T}, \mathsf{v} : \mathsf{V} \cdot \mathsf{t} \in \mathcal{DOMAIN}(\mathsf{tf}) \land \mathsf{v} \in \mathsf{dom} \; \mathsf{tf}(\mathsf{t}) \} \end{array}$

	3

1. 4. An Ontology of Requirements Constructions 1.4. λ -Calculus + Functions 1.4.5. Function Signatures

Example 15 Hub and Link Observers:

- Let a net with several hubs and links be presented.
- Now observer functions
 - $-\operatorname{obs_Hs}$ and

C Dines Rigner 2010 Fredsvei 11 DK-2840 Holte Denmari

- $-obs_Ls$
- can be demonstrated:
- $-\,{\rm one}$ simply "walks" along the net, pointing out
- $-\operatorname{this}\,\operatorname{hub}\,\operatorname{and}\,$
- that link,
- one-by-one
- until all the net has been visited.

Oct 11-22 2010 Sentember 14 2010 12:3

From Domains to Requir

- The observer functions
 - $-\operatorname{obs_HI}$ and
 - $-\operatorname{obs_LI}$

can be likewise demonstrated, for example:

- $\mbox{ when a hub is "visited"}$
- its unique identification
- can be postulated (and "calculated")
- to be the unique geographic position of the hub
- one which is not overlapped by any other hub (or link),

1. 4. An Ontology of Requirements Constructions 1.4. λ -Calculus + Functions 1.4.6. Function Definitions

g: $A \xrightarrow{\sim} B$

g(a_expr) **as** b

pre P'(a_expr)

P': A→Bool

post P(a_expr,b)

• and likewise for links.

..... End of Example 15

C Dines Bigmer 2010 Fredsvei 11 DK-2840 Holte Denmar

329

Lecture	Notes	in	Software	Engineerin

Sentember 14 2010 12:36 Budanest Lectures Oct 11-22 2010

Or functions can be defined implicitly:

value

f: $A \rightarrow B$ f(a_expr) **as** b **post** P(a_expr,b) P: $A \times B \rightarrow Bool$

where b is just an identifier.

1. 4. An Untology of Requirements Constructions 1.4. A-Calculus + Functions 1.4.U. Function Definit

1.4.6. Function Definitions

Functions can be defined explicitly:

type

328

А, В	g: $A \xrightarrow{\sim} B$ [a partial function]
value	$g(a_expr) \equiv b_expr$
f: $A \rightarrow B$ [a total function]	$\mathbf{pre} \ P(a_expr)$
$f(a_expr) \equiv b_expr$	$P: A \to \mathbf{Bool}$

• a_expr, b_expr are

C Dires Biarner 2010 Fredsvei 11 DK-2840 Holte Denmark

- A, respectively B valued expressions
- of any of the kinds illustrated in earlier and later sections of this primer.

		~
3	3	υ

- Finally functions, f, g, ..., can be defined in terms of axioms
- \bullet over function identifiers, $f,\,g,\,...,$ and over identiers of function arguments and results.

1. 4. An Ontology of Requirements Constructions 1.4. λ-Calculus + Functions 1.4.6. Function Definitions

type

A, B, C, D, ... **value** f: A \rightarrow B g: C \rightarrow D ... **axiom** \forall a:A, b:B, c:C, d:D, ... $\mathcal{P}_1(f,a,b) \land \dots \land \mathcal{P}_m(f,a,b)$... $\mathcal{Q}_1(g,c,d) \land \dots \land \mathcal{Q}_n(g,c,d)$

C Dines Bierner 2010, Fredsvei 11, DK-2840 Holte, Denmark

September 14, 2010, 12:36, Budapest Lectures, Oct. 11-22, 2010

Example 16 ... Axioms over Hubs, Links and Their Observers:

- The axioms displayed in Items 2–3 and 5–8 on Page 12 of Sect.
- demonstrates how a number of entities and observer functions are constrained
- (that is, partially defined) by function signatures.
 - End of Example 16

1.5. Other Applicative Expressions 1.5.1. Simple let Expressions

Simple (i.e., nonrecursive) **let** expressions:

let $\mathbf{a} = \mathcal{E}_d$ in $\mathcal{E}_b(\mathbf{a})$ end

is an "expanded" form of:

 $(\lambda \mathbf{a}. \mathcal{E}_b(\mathbf{a}))(\mathcal{E}_d)$

332

September 14, 2010, 12:36, Budapest Lectures, Oct. 11-22, 2010	C Dines Bjørner 2010, Fredsvej 11, DK-2840 Holte, Denmark	C Dines Bjørner 2010, Fredsvej 11, DK-2840 Holte, Denma
	202	201
Lecture Notes in Software Engineering	333	334
1. 4. An Ontology of Requirements Constructions 1.5. Other Applicative Expressions 1.5.	.2. Recursive let Expressions	1. 4 An Ontol

1.5.2. Recursive let Expressions

Recursive **let** expressions are written as:

let $f = \lambda a \cdot E(f,a)$ in B(f,a) end let $f = (\lambda g \cdot \lambda a \cdot E(g,a))(f)$ in B(f,a) end let f = F(f) in E(f,a) end where $F \equiv \lambda g \cdot \lambda a \cdot E(g,a)$ let $f = \mathbf{Y}F$ in B(f,a) end where $\mathbf{Y}F = F(\mathbf{Y}F)$

• We read f = YF as "f is a fix point of F".

Ontology of Requirements Constructions 1.5. Other Applicative Expressions 1.5.3. Non-deterministic let Clause

1.5.3. Non-deterministic let Clause

• The non-deterministic **let** clause:

let a:A $\cdot \mathcal{P}(a)$ in $\mathcal{B}(a)$ end

- expresses the non-deterministic selection of a value **a** of type **A**
- which satisfies a predicate $\mathcal{P}(a)$ for evaluation in the body $\mathcal{B}(a)$.
- If no $a:A \bullet P(a)$ the clause evaluates to **chaos**.

From Domains to Requi

335

5 Oct 11-22 2010 Sentember 14 2010 12:3

From Domains to Require

1.5.4. Pattern and "Wild Card" let Expressions

Patterns and *wild cards* can be used:

 $\begin{array}{l} \textbf{let } \{a\} \cup s = set \textbf{ in } \dots \textbf{ end} \\ \textbf{let } \{a,_\} \cup s = set \textbf{ in } \dots \textbf{ end} \end{array}$

let $\langle a \rangle^{\hat{}} \ell = \text{list in } \dots \text{ end}$ let $\langle a, \underline{}, b \rangle^{\hat{}} \ell = \text{list in } \dots \text{ end}$

Sentember 14, 2010, 12:36 Budanest Lectures, Oct. 11-22, 2010

Lecture Notes in Software Enginee

let $[a \mapsto b] \cup m = map$ in ... end let $[a \mapsto b,] \cup m = map$ in ... end

1. 4 An Ontology of Requirements Constructions 1.5. Other Applicative Expressions 1.5.5. Conditionals

Example 17 . Choice Pattern Case Expressions: Insert Links: We consider the meaning of the Insert operation designators.

- 21. The insert operation takes an Insert command and a net and yields either a new net or **chaos** for the case where the insertion command "is at odds" with, that is, is not semantically well-formed with respect to the net.
- 22. We characterise the "is not at odds", i.e., is semantically well-formed, that is:
 - pre_int_Insert(op)(hs,ls),

as follows: it is a propositional function which applies to Insert actions, op, and nets, (hs.ls), and yields a truth value if the below relation between the command arguments and the net is satisfied. Let (hs,ls) be a value of type N.

1.5.5. Conditionals

if b_expr then c_expr end $\equiv /*$ same as: */if b_expr then c_expr else skip end

if b_expr_1 then c_expr_1
elsif b_expr_2 then c_expr_2
elsif b_expr_3 then c_expr_3

elsif b_expr_n then c_expr_n end

$\mathbf{case} \; \mathbf{expr} \; \mathbf{of}$

© Dines Biarner 2010 Fredsvei 11 DK-2840 Holte Denmark

choice_pattern_1 \rightarrow expr_1, choice_pattern_2 \rightarrow expr_2,

choice_pattern_n_or_wild_card $\rightarrow expr_n end$

338

1. 4. An Ontology of Requirements Constructions 1.5. Other Applicative Expressions 1.5.5. Conditionals

- 23. If the command is of the form 20ldH(hi',I,hi') then
 - $\star 1$ hi' must be the identifier of a hub in hs,
 - $\star s2$ l must not be in ls and its identifier must (also) not be observable in ls, and
 - $\star 3$ hi" must be the identifier of a(nother) hub in hs.
- 24. If the command is of the form 1oldH1newH(hi,l,h) then
 - $\star 1$ hi must be the identifier of a hub in hs,
 - $\star 2 \mbox{ l}$ must not be in ls and its identifier must (also) not be observable in ls, and
 - \star 3 h must not be in hs and its identifier must (also) not be observable in hs.

© Dines Bigrner 2010 Fredsvei 11 DK-2840 Holte Denmar

337

tures Oct 11-22 2010 Sentember 14 2010 12-

1. 4. An Ontology of Requirements Constructions 1.5. Other Applicative Expressions 1.5.5. Conditionals

25. If the command is of the form $2\text{new}H(h^{\prime},I,h^{\prime\prime})$ then

- $\star 1 \text{ h}'$ left to the reader as an exercise (see formalisation !),
- $\star 2\,\text{I}$ left to the reader as an exercise (see formalisation !), and
- $\star 3 h''$ left to the reader as an exercise (see formalisation !).

Conditions concerning the new link (second \star s, \star 2, in the above three cases) can be expressed independent of the insert command category.

```
value
 21 int Insert: Insert \rightarrow N \xrightarrow{\sim} N
       pre_int_Insert: Ins \rightarrow N \rightarrow Bool
  22'
         pre_int_lnsert(lns(op))(hs,ls) \equiv
                 s_l(op) \notin ls \land obs_Ll(s_l(op)) \notin iols(ls) \land
\star 2
    case op of
  23)
             2oldH(hi',l,hi'') \rightarrow \{hi',hi''\} \in iohs(hs),
             1 \text{oldH1} \text{newH(hi,l,h)} \rightarrow
  24)
            hi ∈ iohs(hs) \land h∉ hs \land obs_HI(h)∉ iohs(hs),
             2\text{newH}(h',l,h'') \rightarrow
 25)
            \{h',h''\} \cap hs = \{\} \land \{obs_HI(h'),obs_HI(h'')\} \cap iohs(hs) = \{\}
    end
```

September 14, 2010, 12:36, Budapest Lectures, Oct. 11-22, 2010	C Dines Bjørner 2010, Fredsvej 11, DK-2840 Holte, Denmark
Lecture Notes in Software Engineering	341
1. 4. An Ontology of Requirements Constructions 1.5. Other Applicative Expressions 1.5.5. Cond	itionals

- 26. Given a net, (hs,ls), and given a hub identifier, (hi), which can be observed from some hub in the net, $xtr_H(hi)(hs,ls)$ extracts the hub with that identifier.
- 27. Given a net, (hs,ls), and given a link identifier, (li), which can be observed from some link in the net, xtr_L(li)(hs,ls) extracts the hub with that identifier.

value

```
26: xtr_H: HI \rightarrow N \xrightarrow{\sim} H
```

26: xtr_H(hi)(hs,_) \equiv let h:H·h \in hs \land obs_HI(h)=hi in h end pre hi \in iohs(hs)

27: xtr_L:
$$HI \rightarrow N \xrightarrow{\sim} H$$

27: $xtr_L(Ii)(_,Is) \equiv let I:L \cdot I \in Is \land obs_LI(I)=Ii in I end$ pre Ii $\in iols(Is)$

- 28. When a new link is joined to an existing hub then the observable link identifiers of that hub must be updated to reflect the link identifier of the new link.
- 29. When an existing link is removed from a remaining hub then the observable link identifiers of that hub must be updated to reflect the removed link (identifier).

value

C Dines Bigmer 2010, Fredsvei 11, DK-2840 Holte, Denmari

© Dines Biarner 2010 Fredsvei 11 DK-2840 Holte Denmari

```
aLI: H \times LI \rightarrow H, rLI: H \times LI \xrightarrow{\sim} H

28: aLl(h,li) as h'

pre li \notin obs\_Lls(h)

post obs\_Lls(h') = \{li\} \cup obs\_Lls(h) \land non\_l\_eq(h,h')

29: rLl(h',li) as h

pre li \in obs\_Lls(h') \land card obs\_Lls(h') \ge 2

post obs\_Lls(h) = obs\_Lls(h') \setminus \{li\} \land non\_l\_eq(h,h')
```

```
Budapest Lectures, Oct. 11-22, 2010 September 14, 2010, 12:36
```

Sentembe

Lecture

- the hubs hs joined, \cup , by the set {h',h"} and
- the links is joined by the singleton set of {I}.
- 31. If the Insert command is of kind 10ldH1newH(hi,l,h) then the updated net of hubs and links, has
- 31.1 : the hub identified by hi updated, hi', to reflect the link connected to that hub.
- $31.2\,$: The set of hubs has the hub identified by hi replaced by the updated hub hi' and the new hub.
- 31.2 : The set of links augmented by the new link.
- 32. If the Insert command is of kind 20ldH(hi',I,hi") then
- 32.1–.2 : the two connecting hubs are updated to reflect the new link,
 - 32.3 : and the resulting sets of hubs and links updated.

343

es Oct 11-22 2010 September 14 2010 12:3

From Domains to Requi

 $int_lnsert(op)(hs,ls) \equiv$ \star_i case op of $2\mathsf{newH}(\mathsf{h}',\mathsf{I},\mathsf{h}'') \to (\mathsf{hs} \cup \{\mathsf{h}',\mathsf{h}''\},\mathsf{ls} \cup \{\mathsf{I}\}),$ 30 31 1oldH1newH(hi,l,h) \rightarrow let $h' = aLI(xtr_H(hi,hs),obs_LI(I))$ in 31.1 $(hs \{xtr_H(hi,hs)\} \cup \{h,h'\}, ls \cup \{l\})$ end, 31.2 32 $2oldH(hi',l,hi'') \rightarrow$ let $hs\delta = \{aLI(xtr_H(hi',hs),obs_LI(I))\}$ 32.1 32.2 aLI(xtr_H(hi["],hs),obs_LI(I))} in 32.3 $(hs \{xtr_H(hi',hs),xtr_H(hi'',hs)\} \cup hs\delta, ls \cup \{l\})$ end \star_i end \star_k pre pre_int_lnsert(op)(hs,ls)

14, 2010, 12:36, Budapest Lectures, Oct. 11-22, 2010	© Dines Bjørner 2010, Fredsvej 11, DK-2840 Holte, Denmark
Notes in Software Engineering	345

1. 4. An Ontology of Requirements Constructions 1.5. Other Applicative Expressions 1.5.5. Conditionals

- 33. The remove command is of the form Rmv(li) for some li.
- 34. We now sketch the meaning of removing a link:
 - (a) The link identifier, li, is, by the pre_int_Remove pre-condition, that of a link, l, in the net.
 - (b) That link connects to two hubs, let us refer to them as h' and h'.
 - (c) For each of these two hubs, say h, the following holds wrt. removal of their connecting link:
 - i. If I is the only link connected to \boldsymbol{h} then hub \boldsymbol{h} is removed. This may mean that
 - either one
 - \bullet or two hubs
 - are also removed when the link is removed.
 - ii. If I is not the only link connected to h then the hub h is modified to reflect that it is no longer connected to l.
 - (d) The resulting net is that of the pair of adjusted set of hubs and links.

346

1. 4. An Ontology of Requirements Constructions 1.5. Other Applicative Expressions 1.5.5. Conditionals

value

© Dines Biarner 2010 Fredsvei 11 DK-2840 Holte Denmari

 $\begin{array}{ll} \mbox{cond_rmv: } LI \times H \times H\mbox{-set} \to H\mbox{-set} \\ \mbox{cond_rmv}(li,h,hs) \equiv \\ 34((c))i) & \mbox{if } obs_Hls(h) = \{li\} \mbox{ then } \{\} \\ 34((c))ii) & \mbox{else } \{sLl(li,h)\} \mbox{ end} \\ \mbox{pre } li \in obs_Hls(h) \end{array}$

..... End of Example 17

September 14, 2010, 12:36, Budapest Lectures, Oct. 11-22, 2010

Lecture Notes in Software Engineering

September 14, 2010, 12:36, Budapest Lectures, Oct. 11-22, 2010

347

© Dines Bjørner 2010, Fredsvej 11, DK-2840 Holte, Denmark

C Dines Bjørner 2010, Fredsvej 11, DK-2840 Holte, Denmark

1.5.6. Operator/Operand Expressions

```
 \begin{array}{l} \langle \mathrm{Expr} \rangle ::= & \langle \mathrm{Prefix}_{-}\mathrm{Op} \rangle \langle \mathrm{Expr} \rangle \\ & | \langle \mathrm{Expr} \rangle \langle \mathrm{Infix}_{-}\mathrm{Op} \rangle \langle \mathrm{Expr} \rangle \\ & | \langle \mathrm{Expr} \rangle \langle \mathrm{Suffix}_{-}\mathrm{Op} \rangle \\ & | \dots \\ \langle \mathrm{Prefix}_{-}\mathrm{Op} \rangle ::= & \\ & - | \sim | \cup | \cap | \operatorname{\mathbf{card}} | \operatorname{\mathbf{len}} | \operatorname{\mathbf{inds}} | \operatorname{\mathbf{elems}} | \operatorname{\mathbf{hd}} | \operatorname{\mathbf{tl}} | \operatorname{\mathbf{dom}} | \operatorname{\mathbf{rng}} \\ \langle \mathrm{Infix}_{-}\mathrm{Op} \rangle ::= & \\ & = | \neq | \equiv | + | - | * | \uparrow | / | < | \leq | \geq | > | \land | \lor | \Rightarrow \\ & | \in | \notin | \cup | \cap | \setminus | \subset | \subseteq | \supseteq | \supset | \cap | \dagger | ^{\circ} \\ \langle \mathrm{Suffix}_{-}\mathrm{Op} \rangle ::= ! \end{array}
```

End of Lecture 9: RSL: Logic, A-Calculus, Fctl. Specs.