
Lecture Notes in Software Engineering 207

Start of Lecture 6: REQUIREMENTS – from Extension “out”

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

208 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension

4.2.4. Extension

Definition: Extension.

• Domain extension is a domain requirements facet.

• It is an operation performed on a domain description or a require-

ments prescription.

• It effectively extends a domain description by entities, functions,
events and/or behaviours conceptually possible, but not neces-
sarily humanly or technologically feasible in the domain (as it
was).

• Figure 5 on the facing page abstracts some of the extensions to nets:
the plaza entry and exit booths.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 209

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension

Entry
Booth

Exit
Booth

Car

Car

Exit Booth
Exit Gate

Enter Sensor Exit Sensor
Exit Booth

Entry Booth
Exit Sensor

Exit Booth
Enter Sensor

Payment Display & Acceptor

Ticket Collector

Entry Booth
Exit Gate

Vehicle
Direction

Vehicle
Direction

Entry Booth

Ticket Dispensor

Figure 5: Entry and Exit Tool Booths

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

210 From Domains to Requirements4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension

• The following is a prolonged example.

• It contains three kinds of formalisations:

– a RAISE/CSP model,

– a Duration Calculus model [zcc+mrh2002,olderogdirks2008] and

– a Timed Automata model [AluDil:94,olderogdirks2008].

• The narrative for all three models are given when narrating the
RAISE/CSP model.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 211

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.1. Intuition

4.2.4.1. Intuition

• A toll road system is delimited by toll plazas with entry and exit
booths with their gates.

• To get access, from outside, to the roads within the toll road system,
a car must pass through an entry booth and its entry gate. To leave
the roads within the toll road system a car must pass through an
exit booth and its exit gate.

• Cars collect tickets upon entry and return these tickets upon exit
and pay a fee for having driven on the toll roads.

• The gates help ensure that cars have collected tickets and have paid
their dues.

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

212 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.1. Intuition

exit sensorgateticket dispenserentry sensor

Car

Figure 6: A toll plaza entry booth

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 2134. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions

4.2.4.2. Descriptions

4.2.4.2.1. • A RAISE/CSP Model•
We use the CSP property [TheSEBook123,CARH:Electronic] of RSL.

⊕ Toll Booth Plazas ⊕

• With respect to toll road systems we focus on just their plazas: that
is, where cars enter and leave the systems.

• The below description is grossly simplified: instead of plazas having
one or more entry and one or more exit booths (both with gates),
we just assume one (pair: booth/gate) of each.

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

214 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.1 A RAISE/CSP Model

141. A toll plaza consists of a one pair of an entry booth and and entry
gate and one pair of an exit booth and an exit gate.

142. Entry booths consist of an entry sensor, a ticket dispenser and an
exit sensor.

143. Exit booths consist of an entry sensor, a ticket collector, a payment
display and a payment component.

type

141. PZ = (EB×G) × (XB×G)
142. EB = ...

143. XB = ...

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 215

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.1 A RAISE/CSP Model

⊕ Cars ⊕

144. There are vehicles.

145. Vehicles have unique vehicle identifications.

type

144. V
145. VId
value

145. obs VId: V → VId
axiom

145. ∀ v,v′:V • v6=v′ ⇒ obs VId(v) 6= obs VId(v′)

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

216 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.1 A RAISE/CSP Model

⊕ Entry Booths ⊕

• The description now given is an idealisation.

• It assumes that everything works:

– that the vehicles behave as expected and

– that the electro-mechanics of booths and gates do likewise.

146. An entry sensor registers whether a car is entering the entry booth
or not,

(a) that is, for the duration of the car passing the entry sensor that
sensor senses the car identification cid

(b) otherwise it senses “nothing”.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 217

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.1 A RAISE/CSP Model

147. A ticket dispenser

(a) either holds a ticket or does not hold a ticket, i.e., no ticket;

(b) normally it does not hold a ticket;

(c) the ticket dispenser holds a ticket soon after a car has passed the
entry sensor;

(d) the passing car collects the ticket –

(e) after which the ticket dispenser no longer holds a ticket.

148. An exit sensor

(a) registers the identification of a car leaving the toll booth

(b) otherwise it senses “nothing”.

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

218 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.1 A RAISE/CSP Model

⊕ Gates ⊕

149. A gate

(a) is either closed or open;

(b) it is normally closed;

(c) if a car is entering it is secured set to close (as a security measure);

(d) once a car has collected a ticket it is set to open;

(e) and once a car has passed the exit sensor it is again set to close.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 219

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.1 A RAISE/CSP Model

⊕ The Entry Plaza System ⊕

type

C, CI
G = open | close
TK == Ticket | no ticket

value

obs CI: (C|Ticket) → CI
channel

entry sensor:CI
ticket dispenser:Ticket
exit sensor:CI
gate ch:G

value

vs:V-set

eb:EB,xb:XB,eg,xg:G

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

220 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.1 A RAISE/CSP Model

system: G × EB × V-set × XB × G
system(eg,eb,vs,xb,xg) ≡
‖{car(obs CI(c),c)|c:C•c ∈ cs} ‖ entry booth(eb) ‖ entry gate(eg) ‖ ...

car: CI × C → out entry sensor,exit sensor
in ticket dispenser Unit

car(ci,c) ≡
entry sensor ! ci ;
let ticket = ticket dispenser ? assert: ticket 6= no ticket in

ticket dispenser ! no ticket ;
exit sensor ! ci ;
car(add(ticket,c)) end

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 221

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.1 A RAISE/CSP Model

entry booth: Unit → in entry sensor, exit sensor
out ticket dispenser
out gate ch Unit

entry booth(b) ≡
gate ch ! close ;
let ci = entry sensor ? in

ticket dispenser ! make ticket(cid) ;
let res = ticket dispenser ? in assert: res = no ticket ;
gate ch ! open ;
let ci′ = exit sensor ? in assert: ci′ = ci ;
gate ch ! close ;
entry booth(add Ticket(ticket,b)) end end end

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

222 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.1 A RAISE/CSP Model

entry gate: G → in gate Unit

entry gate(g) ≡
case gate ch ? of

close → exit gate(close) assert: g = open,
open → exit gate(open) assert: g = close

end

add Ticket: Ticket × C
∼
→ C

pre add Ticket(t,c): ∼has Ticket(c)
post: add Ticket(t,c): has Ticket(c)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 223

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.1 A RAISE/CSP Model

has Ticket: (C|B) → Bool

obs Ticket: (C|B)
∼
→ Ticket

pre obs Ticket(cb): has Ticket(cb)

rem Ticket: (C
∼
→ C) | (B

∼
→ B)

pre rem Ticket(cb): has Ticket(cb)
post rem Ticket(cb): ∼has Ticket(cb)

• In the next section, “A Duration Calculus Model”, we shall start
refining the descriptions given above.

• We do so in order to handle failures of vehicles to behave as expected
and of the electro-mechanics of booths and gates.

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

224 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.2 A Duration Calculus Model

4.2.4.2.2. • A Duration Calculus Model•

• We use the Duration Calculus [zcc+mrh2002,olderogdirks2008] exten-
sion to RSL.

• We abstract the channels of the RAISE/CSP model

• to now be Boolean-valued variables.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 225

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.2 A Duration Calculus Model

type

ES = Bool [true=passing, false=not passing]
TD = Bool [true=ticket, false=no ticket]
G = Bool [true=open, false=closing⌈⌉closed⌈⌉opening]
XS = Bool [true=car has just passed, false=car passing⌈⌉no-one passing

variable

entry sensor:ES := false ;
ticket dispenser:TD := false ;
gate:G := false ;
exit sensor:XS := false ;

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

226 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.2 A Duration Calculus Model

150. No matter its position, the gate must be closed within no more than
δeg time units after the entry sensor has registered that a car is
entering the toll booth.

151. A ticket must be in the ticket dispenser within δet time units after
the entry sensor has registered that a car is entering the toll booth.

152. The ticket is in the ticket dispenser at most δtdc time units

153. The gate must be open within δgo time units after a ticket has been
collected.

154. The exit sensor is registering (i.e., is on) the identification of exiting
cars and is not registering anything when no car is passing (i.e., is
off).

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 227

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.2 A Duration Calculus Model

150. ∼(⌈entry sensor⌉ ; (ℓ = δeg ∧ ⌈gate⌉))
151. ∼(⌈entry sensor⌉ ; (ℓ = δet ∧ ⌈∼ticket dispenser⌉))
152. �(⌈∼ticket dispenser⌉ ⇒ ℓ < δtdc)
153. ∼(⌈ticket dispenser⌉ ; (⌈∼ticket dispenser ∧ ∼gate⌉ ∧ ℓ ≥ δgo))
154. �(⌈gate=closing⌉ ⇒ ⌈∼ exit sensor⌉)

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

228 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.3 A Timed Automata Model

4.2.4.2.3. • A Timed Automata Model•

• A timed automaton [AluDil:94,olderogdirks2008] for a configuration of
an entry gate, its entry booth and a car is shown in Fig. 7 on the
next page.

• Figure 8 on page 231 shows the a car, an exit booth and its exit gate
interactions.

• They are more-or-less “derived” from the example of Sect. 7.5 of
[[]Alur & Dill, 1994]AluDil:94 (Pages 42–45).

• The right half of the car timed automaton of Fig. 7 on the next page

– is to be thought of as the same as the left half of the car timed
automaton of Fig. 8 on page 231,

– cf. the vertical dotted (...) line.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 229

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.3 A Timed Automata Model

x

e

c

td

tc

o

tc

x

e

c

Entry Booth Car

ig

ca

ca

o:open, ig: idle gate, c:close, ib: idle booth, ca:cruise around,e:entry, td:ticket deposit, tc:ticket collection, x:exit

ib

c

o

_

_

Cd

On

Cd: closed, Cg:closing, On:open, Og:opening

Plaza j

Entry Gate

keg > 5

keg < 7_

keg:=0

keg < 7

keg:=0 keg > 5_

Og Cg

ig o

Figure 7: A timed automata model of gate, entry booth and car interactions

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

230 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.3 A Timed Automata Model

value

eg,xg:G, eb:EB, xb:XB, vs:V-set

System: G×EV×V-set×XB×G → Unit

System(eg,eb,vs,xb,xg) ≡
Entry Gate(eg) ‖ Entry Booth(eb) ‖
‖{Car(obs CId(c),c)|ci:C,v:C•c ∈ cs} ‖
Exit Booth(xb) ‖ Exit Gate(xg)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 231

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.4. Extension 4.2.4.2. Descriptions 4.2.4.2.3 A Timed Automata Model

e

pd

td

x

o

pd

e
tc

c

p
p

Car

Plaza k

Exit Booth

x

Exit Gate

ca

ca

ib

ig c

ig

ca:cruise around, ib:idle, e:entry, td:ticket deposit, pd:payment display, p: payment, x:exit, c:close, o:open, ig:idle gate

kxg:=0
c

kxg < 7_

o
kxg:=0

kxg < 7

kxg > 5

kxg > 5_

_

o

On

Cd

Cg Og

Figure 8: A timed automata model of car, exit booth and gate interactions

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

232 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.5. Fitting

4.2.5. Fitting
Definition: Fitting.

• By domain requirements fitting we understand an operation

– which takes n domain requirements prescriptions, dri
(i = {1..n}),

– claimed to share m independent sets of tightly related sets of simple en-
tities, actions, events and/or behaviours

• and map these into n+m domain requirements prescriptions, δrj

(j = {1..n+m}),

– where m of these, δrn+k
(k = {1..m})

– capture the m shared phenomena and concepts

– and the other n prescriptions, δrℓ
(ℓ = {1..n}),

– are like the n “input” domain requirements prescriptions, dri
(i = {1..n}),

– except that they now,

– (instead of the “more-or-less” shared prescriptions, that are now consolidated in δrn+k
)

– prescribe interfaces between δri
and δrn+k

for i : {1..n}.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 233
4. 4. An Ontology of Requirements Constructions 4.2. 2. Domain Requirements 4.2.5. Fitting 4.2.5.1. Examples

4.2.5.1. Examples

to be written

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

234 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.3. Interface Requirements

4.3. Interface Requirements

Definition: Interface Requirements.

• Interface requirements are those requirements

• which can on be expressed using professional terms

• from both the domain and the machine.

Thus, by interface requirements we understand

• the expression of expectations

• as to which software-software, or software-hardware interface

places (i.e., channels),

• inputs and outputs (including the semiotics of these input/outputs)

• there shall be in some contemplated computing system.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 235

4. 4. An Ontology of Requirements Constructions 4.3. Interface Requirements

Interface requirements can often, usefully, be classified in terms of

• shared data initialisation requirements,

• shared data refreshment requirements,

• computational data+control requirements,

• man-machine dialogue requirements,

• man-machine physiological requirements and

• machine-machine dialogue requirements.

Interface requirements constitute one requirements facet.

• Other requirements facets are:

– business process reengineering,

– domain requirements and

– machine requirements.

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

236 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.3. Interface Requirements 4.3.1. But First: On Shared Phenomena and Concepts

4.3.1. But First: On Shared Phenomena and Concepts

Definition: Shared Phenomenon or Concept.

• A shared phenomenon (or concept) is a phenomenon (respec-
tively a concept)

– which is present in some domain (say in the form of facts,
knowledge or information)

– and which is also represented in the machine (say in the form
of some entity, simple, action, event or behaviour).

• A phenomenon of a domain, when shared, becomes a concept of
the machine.

• We shall give some examples – but they are just illustrative.

• Proper narration and formalisation is left to the reader !

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 237

4. 4. An Ontology of Requirements Constructions 4.3. Interface Requirements 4.3.2. Shared Simple Entities

4.3.2. Shared Simple Entities

Definition: Shared Simple Entity.

• By a shared simple entity we mean a simple entity

– which both occurs

– in the domain (as a phenomenon or a concept)

– and in themachine.

• Simple entities that are shared between the domain and the
machine must initially be input to the machine.

• Dynamically arising simple entities must likewise be input

– and all such machine entities

– must have their attributes updated, when need arise.

• Requirements for shared simple entities

– thus entail requirements for their representation

– and for their human/machine and/or machine/machine transfer dialogue.

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

238 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.3. Interface Requirements 4.3.2. Shared Simple Entities 4.3.2.1. Example

4.3.2.1. Example

• Main shared entities are those of hubs and links.

• Representations of hubs and links “within” the machine

– necessarily abstracts many of the properties of hubs and links;

– some (such) attributes may not be represented altogether.

• As for human input,

– some man/machine dialogue

– based around a set of visual display unit screens

– with fields for the input of hub,

– respectively link attributes

can then be devised.

• Etc.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 239

4. 4. An Ontology of Requirements Constructions 4.3. Interface Requirements 4.3.3. Shared Actions

4.3.3. Shared Actions

Definition: Shared Action.

• By a shared action we mean an action

– that can only be partly computed by the machine.

– That is, the machine,

∗ in order to complete an action,

∗ may have to inquire with the domain

∗ (in order, say, to extract some measurable, time-varying
simple entity attribute value)

∗ in order to proceed in its computation.

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

240 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.3. Interface Requirements 4.3.3. Shared Actions 4.3.3.1. Example

4.3.3.1. Example

• In order for a car driver to leave an exit toll booth

the following component actions must take place:

– (a) the driver inserts the electronic pass into the exit toll booth;
– (b) the exit toll booth scans and accepts the ticket and

∗ calculates the fee for the car journey

∗ from entry booth

∗ via the toll road net

∗ to the exit booth;

– (c) exit toll booth alerts the driver as to the cost and is requested
to pay this amount;

– (d) once the driver has paid

– (e) the exit booth toll gate is raised.

• Actions (a,d) are driver actions, (b,c,e) are machine actions.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 241

4. 4. An Ontology of Requirements Constructions 4.3. Interface Requirements 4.3.4. Shared Events

4.3.4. Shared Events

Definition: Shared Event.

• By a shared event we mean

– an event whose occurrence in the domain

– need be communicated to the machine

and, vice-versa,

– an event whose occurrence in the machine

– need be communicated to the domain.

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

242 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.3. Interface Requirements 4.3.4. Shared Events 4.3.4.1. Examples

4.3.4.1. Examples

• The arrival of a car at a toll plaza entry booth is an event

– that must be communicated to the machine

– so that the entry booth may issue a proper pass (ticket).

• Similarly for the arrival of a car at a toll plaza exit booth is an event

– that must be communicated to the machine

– so that the machine may request the return of the pass and com-
pute the fee.

• The end of that computation is an event

– that is communicated to the driver (in the domain)

– requesting that person to pay a certain fee

– after which the exit gate is opened.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 243

4. 4. An Ontology of Requirements Constructions 4.3. Interface Requirements 4.3.5. Shared Behaviours

4.3.5. Shared Behaviours

Definition: Shared Behaviour.

• By a shared behaviour we mean a behaviour

– many of whose actions and events occur both

– in the domain

– and in the machine

– (in some encoded form, and in the same squence).

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

244 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.3. Interface Requirements 4.3.5. Shared Behaviours 4.3.5.1. Example

4.3.5.1. Example

• A typical toll road net use behaviour is as follows:

– Entry at some toll plaza: receipt of electronic ticket,

– placement of ticket in special ticket “pocket” in front window,

– the raising of the entry booth toll gate;

– drive up to [first] toll road hub (with electronic registration of time of occur-
rence),

– drive down a selected link (with electronic registration of time of occurrence of
entry to and exit from link),

– then a repeated number of zero, one or more

∗ toll road hub and

∗ link visits –

∗ some of which may be “repeats” –

– ending with a drive down from a toll road hub to a toll plaza

– with the return of the electronic ticket, etc.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 245

4. 4. An Ontology of Requirements Constructions 4.4. Machine Requirements

4.4. Machine Requirements

Definition: Machine Requirements.

• Machine requirements are those requirements which, in principle,

– can be expressed without using professional domain terms

– (for which these requirements are established).

• Thus, by machine requirements,

– we understand requirements put specifically to,

– i.e., expected specifically from, the machine.

• We normally analyse machine requirements into

– performance requirements,

– dependability requirements,

– maintenance requirements,

– platform requirements and

– documentation requirements.

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

246 From Domains to Requirements

4. 4. An Ontology of Requirements Constructions 4.4. Machine Requirements 4.4.1. An Enumeration of Classes of Machine Requirements

4.4.1. An Enumeration of Classes of Machine Requirements

• We shall in these lecture notes not go into any detail about machine
requirements.

• But we shall classify machine requirements into a long list of specific
kinds of machine requirements.

• Performance

– Storage

– Time

– Software Size

• Dependability

– Accessability

– Availability

– Reliability

– Robustness

– Safety

– Security

• Maintenance

– Adaptive

– Corrective

– Perfective

– Preventive

• Platforms

– Development

– Demonstration

– Execution

– Maintenance

• Documentation

• Other

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

246 From Domains to Requirements

End of Lecture 6: REQUIREMENTS – from Extension “out”

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

