Lecture Notes in Software Engineering 99

Start of Lecture 4: DOMAINS: Scripts — Human Behaviour

Lecture Notes in Software Engineering 101

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.1. Routes as Scripts

3.4.1. Routes as Scripts
3.4.1.1. Paths

92. A path is a triple:
(a) a hub identifier, h;, a link identifier, [;, and another hub identifier,
hy., distinct from h;,

(b) such that there is a link ¢ with identifier /; in a net n such that
{h;, h;.} are the hub identifiers that can be observed from /.

type

92. Pth = HI x LI x HI

axiom

92(a). V (hi,li,hi):Pth - 3 n:NI:L -1 € obs Ls(n) =
92(b). obs LI(1)=li A obs HIs(l)={hi,hi}

100

3. 3. An Ontology of Domain Facets 3.4. Scripts

3.4. Scripts

Definition: Scripts.

e A script is plan of action.

e By a domain script we shall, more specifically, understand

— the structured, almost, if not outright,

— formally expressed, wording of a set of

— rules and regulations.

e Sce also

— license and

— contract.

Definitions follow.

102

From Domains to Requirements
3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.1. Routes as Scripts 3.4.1.1. Paths

93. From a net one can extract all its paths:

)if [is a link of the net,

a
C

(
(b) I; its identifier,

(¢) {hj, hi.} the identifiers of its connected hubs,

(d) then (hy, 1, hy,) and (hy, 1;, hj) are paths of the net.

value

93. paths: N — Pth-set

93(a)
d)
b)

93
93
93

(
(
(
(

C

)

paths(n) =
{(hi,1j,hk),(hk1j;hi)[1:L,Jj:LLhi hk:HI1 € obs Ls(n) A
lj=obs LI(1) A
{hi,hk}=obs HIs(1)}

Lecture Notes in Software Engineering 103
3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.1. Routes as Scripts 3.4.1.1. Paths

94. From a net descriptor one can (likewise) extract all its paths:
(a) Let h;, hy. be any two distinet hub identifiers of the net descriptor
(definition set),
(b) such that they both map into a link identifier /;,
(c) then (h;,1;, hy,) and (hy, 1}, hj) are paths of the net.
value

93. paths: ND — Pth-set
93. paths(nd) =

94(a). {(hi,]j,hk),(hk.1j,hi)[hi;hk:HL1j:LI - hiZhk A {hi,hk}Cdom nd =

94(b). lj € dom nd(hi)N dom nd(hk)}

Lecture Notes in Software Engineering 105

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.1. Routes as Scripts 3.4.1.2. Routes

96. From a net, n, we can generate the possibly infinite set of finite and
possibly infinite routes:
(a) <> is a path (basis clause 1);
(b) if p is a path of n then < p > is a path of n (basis clause 2);
(c¢)if 7 and 7" are non-empty routes of n
i. and the last h; of 7 is the same as the first h; of !
ii. then the concatenation of 7 and r’ is a route
(induction clause).

(d) Only such routes which can be formed by a (finite, respectively
infinite) application of basis clauses Items 96(a) and 96(b) and
induction clause Item 96(c) are routes (extremal clause).

104 From Domains to Requiremen ts
3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.1. Routes as Scripts 3.4.1.2. Routes

3.4.1.2. Routes

95. A route of a net is a sequence of zero, one or more paths such that

(a) all paths of a route are paths of the net and

(b) adjacent paths in the sequence “share” hub identifiers.

type

95. R = Pth*

axiom

95. ViR, dn:N-

95(a). elems r C paths(n) A

95(b). V¥V iNat- {i,i+1}Cinds r =

95(b). let (_,_hi)=r(i), (hi,_,_)=r(i+1) in hi=hi"end

106 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.1. Routes as Scripts 3.4.1.2. Routes

value
96. routes: NIND — R-infset
96. routes(nond) =

96(a). letrs={(} U

96(b). {(p)|p:Pth:p € paths(nond)} U

96((c))ii. {rrrrrR-remsArersA

96((c))i. 3 hi,hi’hi" hi:H li:LI -

96((c))i. r=r((hi,Ji,hi)) Ar=((hi' i hi)) 1 A
96((c))i. hi=hi"} in

96(d). rs end

Lecture Notes in Software Engineering 107

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.2. Bus Timetables as Scripts

3.4.2. Bus Timetables as Scripts
3.4.2.1. Buses

97. Buses are vehicles,

98. with bus identifiers being the same as vehicle identifiers.

type
97. B
98. BI C VI

3.4.2.2. Bus Stops

99. A link bus stop indicates the link (by its identifier), the from and to
hub identifiers, and the fraction “down the link” from the from to
the to hub identifiers.

type
99. BS = mkL BS(sel thi:HI,sel li:LI,sel f:F sel thi:HI)

November 12, 2010, 10:24, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark

Lecture Notes in Software Engineering 109

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.2. Bus Timetables as Scripts 3.4.2.3. Bus Routes

value
n:N
type
100. BSL = BS*
101. BR = {|(r,bsl):(RxBSL)-wf_BR(r,bsl)|}
value
101. wf_BR: BR — Bool
101. wiBR(r,bsl) = 3 m:N,r:Rer € routes(n) A is_embedded_in(r,bsl)

101(a). is_embedded_in: BR — Bool

101(a). is_embedded_in(r,bsl) =

101(b). Fil:Nat* - len il=len bslAinds ilCinds rAascending(il) =
(
(
(

101(c). ViNat-ie€ indsil =

101(c). let (hilj,hk) = r(il(i)),(hi']j’,£hk) = bsl(i) in
101(c) hi=hi’ A li=1f A hk=hK end A

102. V i:Nat - {i,i+1}Cinds il =

102. let (hilj,f;hk)=bsl(i),(hi\]j,f hk)=bsl(i+1) in
102. hi=hi A lj=lj’ A hk=hK = f<f end

ascending: Nat™ — Bool, ascending(il) = V i:Nat-{i,i+1}Cinds il = il(i)<il(i+1)

November 12, 2010, 10:24, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgmer 2010, Fredsvej 11, DK 2810 Holte, Denmark

108 From Domains to Requirements.

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.2. Bus Timetables as Scripts 3.4.2.3. Bus Routes

3.4.2.3. Bus Routes

100. A bus stop list is a sequence of two or more bus stops, bsl.

101. A bus route, br, is a pair of a net route, r, and a bus stop list , bsl,

such that route 7 is a route of n and such that bsl is embedded in
r. If

(a) there exists an index list, il, of ascending indices of the route r
and of the length of bsl

(b) such that the ith path of r

(¢) share from and to hub identifiers and link identifier with the ¢(7)th
bus stop of bsl

then bsl is embedded in 7r.

102. We must allow for two or more stops along a bus route to be adjacent

on the same link — in which case the corresponding fractions must
likewise be ascending.

© Dines Bjpmer 2010, Fredsvej 11, DK-2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 12, 2010, 10:24

110 From Domains to Requirements
3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.2. Bus Timetables as Scripts 3.4.2.4. Bus Schedule

3.4.2.4. Bus Schedule

103. A timed bus stop is a pair of a time and a bus stop.
104. A timed bus stop list is a sequence of timed bus stops.

105. A bus schedule is a pair of a route and a timed bus stop list such

that

e there is a net of which the routes is indeed a route,

e the bus stop list of the timed bus stop list is embedded in the
route, and

e ‘later” listed bus stops register later times.

106. SimpleBusSchedules remove routes from BusRoutes.

© Dines Bipmer 2010, Frodsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 12, 2010, 10:24

Lecture Notes in Software Engineering 111

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.2. Bus Timetables as Scripts 3.4.2.4. Bus Schedule

type

103. TBS :: sel T:T sel bs:BS

104. TBSL = TBS*

105. BusSched = {](r,thsl):(RxTBSL)-wf _BusSched(r,thsl)| }

value

105. wf BusSched: BusSched — Bool

105. wf BusSched(r,thsl) =

105, I n:Nr € routes(n)

105. A let bsl:SBS = (sel BS(thsl(i))[i:[1..len tbsl]) in is_embedded_in(r,bsl) end
105. AV i:Nat-{i,i+1}Cinds tbsl = sel T(tbsl(i))<sel T(tbsl(i+1))
type

106. SBS = {|bsl:BS*3 n:N.r:Rr € routes(n)Ais_embedded_in(r,bsl)| }

Lecture Notes in Software Engineering 113

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.2. Bus Timetables as Scripts 3.4.2.5. Timetable

type

107. BLNm

value

108. same_bus_schedule: BusSched x BusSched — Bool
108. same bus schedule((r1,btll),(r2,btl2)) =

108. rl =12 A len btll = btl2 A

108. (sel BS(btl1(i))]i:[1..1en btll |)=(sel BS(btl2(i))[i:[1..1en btl2])
type

109. BNo

110. RBS :: sel R:R sel btbl:(BNo m SBS)

111. TBL = BLNm 7 RBS

112. TT = ND x TBL

113. TT = {|tt:TT-wf TT(tt)|}

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.2. Bus Timetables as Scripts 3.4.2.5. Timetable

3.4.2.5. Timetable
The concept of a bus line captures all those bus schedules which ply the same bus
route but at different times. A timetable is made up from distinctly named bus lines.

107. A bus line has a unique bus line name.

108. We say that two bus schedules are the same if they are based on the same route
and if they differ only in their times.

109. Each of the different bus routes of a bus line has a unique bus number.

110. A route bus schedule pairs a route with simple bus schedules for each of a number
of busses (identified by their bus number).

111. A bus timetable (listing, map) maps bus line names to route bus schedules.
112. A timetable is a pair, a net and a table.
113. A well-formed timetable must satisfy same bus schedules within each bus line

114. All bus numbers are distinet across bus lines.

114 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.2. Bus Timetables as Scripts 3.4.2.5. Timetable

value

113. wiTT: TT — Bool

113, wf TT(_ thl) =

113. V bln:BLNm-bln € dom thl =

113. V bno,bno:BNo - {bno,bno’}Cdom sel btbl(tbl(bln)) =

113. same_bus schedule(sel R(tbl(bln)),sel btbl(tbl(bln))(bno),
113. sel R(tbl(bIn)),sel btbl(tbl(bln))(bno)) A
114, V bln',bln:BLNm - {bln'bln"} Cdom tbl A bln'#bln" =

114. dom sel btbl(tbl(bln)) N dom sel btbl(tbl(bln")) = {}

Lecture Notes in Software Engineering 11

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.3. Route and Bus Timetable Denotations

3.4.3. Route and Bus Timetable Denotations

e What are routes and bus timetables scripting 7

e Routes (list of connected link traversal designations) script that one
may transport people or freight along the sequence of designated
links.

e Bus timetables script (at least) two things:

— the set of bus traffics on the net which satisfy the bus timetable,
and

— information that potential and actual bus passengers may, within
some measure of statistics (and probability), rely upon for their
bus transport.

November 12, 2010, 10:24, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgmer 2010, Fredsvej 11, DK-2840 Holte, Denmark

Lecture Notes in Software Engineering 117

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts

3.4.4. Licenses and Contracts
Definition: License.

e A license is

—a script
— specifically expressing a permission to act;
— is freedom of action;

— Is a permission granted by competent authority to engage in
a business or occupation or in an activity otherwise unlawful;

— a document, plate, or tag evidencing a license granted;

—a grant by the holder of a copyright or patent to another of
any of the rights embodied in the copyright or patent short
of an assignment of all rights.

Licenses appear more to have morally than legally binding poser.

November 12, 2010, 10:24, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

116 From Domains to Requirements.

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.3. Route and Bus Timetable Denotations

e Here, we shall not develop the idea of bus timetables denoting certain
traffics.

— Instead we refer to our previously sketched model of traffics (Sect.
Pages 89-97).
e Route (designations) and bus timetables
—script potential and actual route travels, respectively
—script the dispatch of buses and their travelling.
e Bus timetables can also be seen as a form of contracts
— between the bus operators offering the bus services
—and potential and actual passengers,
— with the contract promising timely transport.

e [n the next section, Sect. , we shall sketch a language of bus service
contracts and bus service actions implied by such contracts.

© Dines Bjpmer 2010, Fredsvej 11, DK-2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 12, 2010, 10:24

118 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts

Definition: Contract.
e A contract

— is a special kind of license

— specifically expressing a legally binding agreement between
two or more parties —

— hence a document describing the conditions of the contract;

— a contract is business arrangement for the supply of goods or
services at fixed prices, times and locations.

© Dines Bipmer 2010, Frodsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 12, 2010, 10:24

Lecture Notes in Software Engineering 119

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts

e In software development a contract specifies what is to be de-
veloped:

— (1) a domain description,

— (2) a requirements prescription, or

— (3) a software design;

or a combination of these (1-2, 2-3, 1-3).

November 12, 2010, 10:24, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark

Lecture Notes in Software Engineering 121

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts

e For a comprehensive treatment of licenses and contracts we refer to
[Chapter 10, Sect. 10.6 (Pages 309--326) [jaist-db10]][jaist-mono].

e We shall illustrate fragments of a language for bus service contracts.
e The background for the bus contract language is the following.

— In many large cities around FEurope the city or provincial govern-
ment secures public transport in the form of bus services operated
by many different private companies.

— Earlier lectures illustrated the concept of bus (service) timetables.

— The bus services implied by such a timetable, for a city area —
with surrounding suburbs etc. — need not be implemented by
just one company, but can be contracted, by the city government
public transport office, to several companies, each taking care of
a subset of the timetable.

¥ 12, 2010, 10:24, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrer 2010, Fredsvej 11, DK 2840 Holte, Denmar)

120

From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts

e A contract further specifies

— how it might, or must be developed;

— criteria for acceptance of what has been developed;
— delivery dates for the developed items;

— who the “parties” to the contract are:

x the client and
x the developer, etc.

© Dines Bjpmer 2010, Fredsvej 11, DK-2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 12, 2010, 10:24

122

From Domains to Requirements,

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts

— Different bus operators then take care of non-overlapping parts
and all take care of the full timetable.

— It may even be that extra buses need be scheduled, on the fly, in
connection with major sports or concert or other events.

— Bus operators may experience vehicle breakdowns or bus driver
shortages and may be forced to subcontract other, even otherwise
competing bus operators to “step in” and alleviate the problem.

@ Dines Bjgrmer 2010, Fredsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 No

Lecture Notes in Software Engineering 123

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.1. Contracts

3.4.4.1. Contracts

Schematically we may represent a bus contract as follows:

Contract cn between contractee ci and contractor cj:
This contract contracts ¢j in the period [t,t'] to
perform the following services with respect to timetable tt:
operate bus lines {blj;,bljs,....blj, }
subject to the following occasional exceptions:
cancellation of bus tours:
{(bljg,{bnog,,....bno,, })....} subject to conditions cht
insertion of bus tours on lines
{blj,,bljs.....blj, } subject to conditions ibt
subcontracting bus tours on lines
{bljs,bljs,...,blj, } subject to conditions scbt.

November 12, 2010, 10:24, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark

Lecture Notes in Software Engineering 125
3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.1. Contracts

We abstract the above quoted “one or more of three kinds of excep-
tions” as one possibly empty clause for each of these alternatives.

119. A bus contract now contains a header, a timetable, the subject bus
lines and the exceptions,

120. such that

(a) line names mentioned in the contract are those of the bus lines of
the timetable, and

(b) bus (tour) numbers are those of the appropriate bus lines in the
timetable.

121. The calendar period is for at least one full day, midnight to midnight.

122. A named contract is a pair of a contract name and a contract.

November 12, 2010, 10:24, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

124 From Domains to Requiremen ts
3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.1. Contracts

115. A bus contract has a header with the distinct names of a contractee
and a contractor and a time interval.

116. A bus contract presents a timetable.

117. A bus contract presents a set of bus lines (by their identifiers) such
that these are in the timetable.
118. And a bus contract may list one or more of three kinds of “excep-
tions”:
(a) cancellation of one or more named bus tours on one or more bus lines subject
to certain (specified) conditions;
(b) insertion of one or more extra bus tours on one or more bus lines subject to
certain (specified) conditions;
(¢) subcontracting one or more unspecified bus tours on one or more bus lines
subject to certain (specified) conditions — to further unspecified contractors.

© Dines Bjpmer 2010, Fredsvej 11, DK-2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 12, 2010, 10:24

126 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.1. Contracts

type

115. CNm, CId, D, T, CON

115. CH = Cld x CId x (DxD)
116. CT =TT

117. CLs = BLNm-set

118. CE = (CA x IN x SC) x CON
118(a). CA = BLNm » BNo-set
118(b). IN = BLNm s> BNo-set
118(c). SC = BLNm-set

119. CO' =CH x CT x CLs x CE
120. CO = {|co:COwf CO(co)| }
122, NCO = CNm x CO

Lecture Notes in Software Engineering 127

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.1. Contracts

value

120. wf-CO: CO' — Bool

120. wf CO((ce,cr,(d,d)),(nd,tbl),cls,((blns,blns,bls),con)) =
117. ce # cr A

120(a) cls € dom thl A

120(b). V¥ bli,bli:BLNm - bli € dom blns A bli' € dom blns' =
120(a). {bli,bli} C dom thl A

120(b) blns(bli) U blns(bli) € dom sel btbtl(tbl(bli)) A
120(a) bls C dom thl A

121. d<d

. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.2. Contractual Actions

123. A bus operator action is either a commence, a cancellation, an inser-
tion or a subcontracting action. All actions refer to the (name of)
the contract with respect to which the action is contracted.

(a) A commence action designator states the bus line concerned and
the bus number of that line.

(b) A cancellation action designator states the bus line concerned and
the bus number of that line.

(c) An insertion action designator states the bus line concerned and
the bus number of that line — for which an extra bus is to be
inserted.4

(d) A subcontracting action designator, besides the name of the con-

tract with respect to which the subcontract is a subcontract, state
a named contract (whose contract name is unique).

“The insertion of buses in connection with either unscheduled or extraordinary (sports, concerts, etc.) events can be handled by special, initial contracts.

¥ 12, 2010, 10:24, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrer 2010, Fredsvej 11, DK 2840 Holte, Denmar)

128 From Domains to Requirements.

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.2. Contractual Actions

3.4.4.2. Contractual Actions

For contract cn commence bus tour, line: bli and bus no.: bno
For contract cn cancel bus tour, line: bli and bus no.: bno
For contract cn insert extra bus tour, line: bli and bus no.: bno

Subcontract with respect to contract cn the following:
Contract cn'”: for the calendar period [d,d'| contractee ci contracts contractor ¢j
to perform the following services with respect to timetable tt:
operate bus lines {blj;,bljs,...,blj,, }
subject to the following occasional exceptions:
cancellation of bus tours:
{(blje,{bnog,,....bno, }),...} subject to conditions cht
insertion of bus tours on lines
{(blj;,{bnoj,...,.bno;, }),...} subject to conditions ibt
subcontracting bus tours on lines
{bljs,bljs,....blj} subject to conditions scht.

© Dines Bjpmer 2010, Fredsvej 11, DK-2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 12, 2010, 10:24

130 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.2. Contractual Actions

type
123. Act = Com | Can | Ins | Sub

123(a). Com == mkCom(sel cn:CNm,sel bli:BLNm,sel bno:BNo)
123(b). Can == mkCan(sel cn:CNm,sel bli:BLNm,sel bno:BNo)
123(c). Ins == mklns(sel cn:CNm,sel bli:BLNm,sel bno:BNo)
123(d). Sub == mkSub(sel cn:CNm,sel con:NCO)

@ Dines Bjgrmer 2010, Fredsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 No

Lecture Notes in Software Engineering 131

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.3. Wellformedness of Contractual Actions

3.4.4.3. Wellformedness of Contractual Actions

124. In order to express wellformedness conditions, that is, pre-conditions,
for the action designators we introduce a context which map contract
names to contracts.

125. Wellformedness of a contract is now expressed with respect to a
context.

type

124. CTX = CNm CO

value

125. wi Act: Act — CTX — Bool

November 12, 2010, 10:24, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark

Lecture Notes in Software Engineering 133

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.3. Wellformedness of Contractual Actions

127. cancellation and insertion commands have the same static wellformed-
ness conditions as have commence command.

127, wt Act(mkCan(cnm,bln,bno))(ctx) = wi_Act(mkCom(cnm,bln,bno))(ctx)
127, wf Act(mkIns(cnm,bln,bno))(ctx) = wi Act(mkCom(cnm,bln,bno))(ctx)

November 12, 2010, 10:24, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

132 From Domains to Requiremen ts

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.3. Wellformedness of Contractual Actions

e Let a defined cnm entry in ctx be a contract:

((ce,cr),(nd,tbl),cls,(blns,bls,bls’),(d,d")).
126. If cmd is a commence command mkCom(cnm,bln,bno), then

(a) contract name cnm must be defined in context ctx;

(b) bus line name bln must be defined in the contract, that is, in cls,
and

(¢) bus number bno must be defined in the bus table part of table tbl.

126. wf Act(mkCom(cnm,bln,bno))(ctx) =

126(a). cnm € dom ctx A

126. let ((ce,cr),(nd,tbl),cls,(blns,bls,bls’),(d,d")) = ctx(cnm) in
126(b). bln € cls A

126(c). bno € dom sel btbl(tbl(bln)) end

© Dines Bjpmer 2010, Fredsvej 11, DK-2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 12, 2010, 10:24

134 From Domains to Requirements
3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.3. Wellformedness of Contractual Actions

128. If cmd is a subcontract command then

Let the subcontract command and the cnm named contract in ctx
be

mkSub(cnm,nco:(cnm’,(ce’ cr’,(d”,d"")),(nd’,tbl’),cls’,(blns’,bls” bls"")))
respectively ((ce,cr,(d,d")), (nd,tbl), cls, (blns,bls,bls")).

(a) contract name cnm must be defined in context ctx;

(b) contract name cnm’ must not be defined in context ctx;

(¢) the calendar period of the subcontract must be within that of the
contract from which it derives;

(d) the net descriptors nd and nd’ must be identical;
(e) the tables tbl and tbl’ and must be identical and

(f) the set, cls’, of bus line names that are the scope of the subcon-
tracting must be a subset of bls’.

Lecture Notes in Software Engineering 135 136 From Domains to Requirements.

3. 3. An Ontology of Domain Facets 3.4. Scripts 3.4.4. Licenses and Contracts 3.4.4.3. Wellformedness of Contractual Actions
3. 3. An Ontology of Domain Facets 3.4, Scripts 3.4.4. Licenses and Contracts 3.4.4.3. Wellformedness of Contractual Actions

e We do not here bring any narrated or formalised description of the

128(a). cnm € dom ctx A semantics of contracts and actions.

128. let co’ = ((ce,cr,(d,d’)),(nd,thl),cls,(blns,blng’ bls’)) = ctx(cnm) in e First such a description would be rather lengthy

128. wf_Act(mkSub(cnm,nco: (enm’ co:((ce/,er’,(d”,d”)),(nd’ tbl') cls’, (blns’ bins” bls™))))) (ctx)

128(b). cnm’ & dom thl A
" n !
ﬁgg) dd§ d i: =dA e Secondly a specification would be more of a requirements prescrip-
. il =1 .
128(c). thl' = tbl A tion.
128(f). cls’ C bly' end

o Wellformedness of contracts, wf_CO(co) and wf_CO(co’), secures other constraints.

November 12, 2010, 10:24, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark @ Dines Bjarner 2010, Fredsvej 11, DK-2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 12, 2010, 10:24

Lecture Notes in Software Engineering 137 138 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.5. Management and Organisation 3. 3. An Ontology of Domain Facets 3.5. Management and Organisation

3.5. Management and Organisation

Definition: Management. e Board-directed actions target mainly financial resources: obtain-

ing new funds through conversion of goodwill into financial re-

e Management is about resources: sources, acquiring and selling “competing” or “supplementary”
— their acquisition, business units.
— scheduling (over time), e Strategic actions convert financial resources into production, ser-
— allocation (over locations), vice supplies and resources and vice-versa — and in this these
— deployment (in performing actions) and actions schedule availability of such resources.
— disposal (“retirement”). e Jactical actions mainly allocate resources.

e We distinguish between e Operational actions order, monitor and control the deployment

of resources in the performance of actions.

— board-directed, — tactical and
— strategic, — operational
actions.

Lecture Notes in Software Engineering 139

3. 3. An Ontology of Domain Facets 3.5. Management and Organisation

Definition: Organisation.
e Organisation is about

— the “grand scale”,
* executive and strategic
« national, continental or global (world wide)

— (i) allocation of major resource (e.g., business) units, whether
in a hierarchical, in a matrix, or in some other organigram-
specified structure,

— (ii) as well as the clearly defined relations (which information,
decisions and actions are transferred) between these units,
and

— (iii) organisational dynamics.

November 12, 2010, 10:24, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark

Lecture Notes in Software Engineering 141

3. 3. An Ontology of Domain Facets 3.5. Management and Organisation 3.5.1. Transport System Examples

3.5.1. Transport System Examples
We shall only present sketchy examples of management and organsation.

e Executive actions:

— Deciding on major re-organisation of a transport net
* (for example introduction of toll roads or freeways,
* road pricing,
« major bridges across wide waters [potentially connecting two
hitherto unconnected nets,
« and their management)
are executive actions.

—So are decisions on merging or splitting transport from or into
several transport services.

T 12, 2010, 10:24, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrer 2010, Fredsvej 11, DK 2840 Holte, Denmar)

140 From Domains to Requirements.

3. 3. An Ontology of Domain Facets 3.5. Management and Organisation

Definition: Management & Organisation.
e The composite term management and organisation

— applies in connection with management as outlined just above
and

— with organisation also outlined above.

e The term then emphasises the relations between the organisa-
tion and management of an enterprise.

The borderlines within management actions and across organisation
“layouts” are fuzzy.

@ Dines Bjarner 2010, Fredsvej 11, DK-2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 12, 2010, 10:24

142 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.5. Management and Organisation 3.5.1. Transport System Examples

— Reorganising an enterprise

« from one characterised by a “deep” hierarchy of management
layers (a hierarchy which may very well exemplify highly cen-
tralised both administrative and functional monitoring and con-
trol)

* Into a matrix of two “shallow” hierarchies, one which addresses
tactical and operational management and one which addresses
executive and strategic management — with the former (the
operations) being replicated across geographical areas while the
latter applies “globally” —

such reorganisations reflect executive actions (but are carried out
by strategic and tactical management).

@ Dines Bjgrmer 2010, Fredsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 No

Lecture Notes in Software Engineering 143

3. 3. An Ontology of Domain Facets 3.5. Management and Organisation 3.5.1. Transport System Examples

e Strategic actions: Adding or removing transport links, or major reor-
ganisation of bus timetables are strategic actions. Splitting a(n own)
contract into what is still to be operated and subcontracting other
parts, for definite, to other bus operators are also strategic actions.

e Tactical actions: Insertion and cancellation of bus services are tac-
tical actions. Subcontracting some parts of a timetable demanded
service, for a short while, to other bus operators could be considered
tactical actions.

e Operational actions: Commencing and thus, in general, allocating
drivers to and sending these off on bus services are operational ac-
tions. So are announcing insertion of new (unscheduled) and cancel-
lation of scheduled routes.

November 12, 2010, 10:24, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark

Lecture Notes in Software Engineering 145

3. 3. An Ontology of Domain Facers 3.6. Human Behaviour

¥ 12, 2010, 10:24, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrer 2010, Fredsvej 11, DK 2840 Holte, Denmar)

144 From Domains to Requirements.

3. 3. An Ontology of Domain Facets 3.6. Human Behaviour

3.6. Human Behaviour
Definition: Human Behaviour.

e By human behaviour we shall here understand

— the way a human follows the enterprise rules and regulations

— as well as interacts with a machine:
* dutifully honouring specified (machine dialogue or) protocols,
x or negligently so,
x or sloppily not quite so,
x or even criminally not so!

e Human behaviour is a facet of the domain.

— We shall thus model human behaviour also in terms of it

tailing to react properly,

— i.e., humans as non-deterministic agents!

@ Dines Bjarner 2010, Fredsvej 11, DK-2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 12, 2010, 10:24

146 3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets From Domains to Requirements

3.7. Towards Theories of Domain Facets

@ Dines Bjgrmer 2010, Fredsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 No

Lecture Notes in Software Engineering 147

3. 3. An Ontology of Domain Facers 3.7. Towards Theories of Domain Facets 3.7.1. A Theory of Intrinsics
& y

3.7.1. A Theory of Intrinsics

Lecture Notes in Software Engineering 149

3. 3. An Ontology of Domain Facets 3. 7. Towards Theories of Domain Facets 3.7.2. Theories of Support Technologies 3.7.2.1. An Example

e For all intrinsic traffics, itf, and for all optical sensor technologies,
og, the following must hold:
— Let stf be the traffic sampled by the optical gates.
— For all time points, t, in the sampled traffic,
— those time points must also be in the intrinsic traffic,
—and, for all trains, tn, in the intrinsic traffic at that time,
— the train must be observed by the optical gates, and
—the actual position of the train and the sampled position must
somehow be checkable to be close, or identical to one another.

Since hubs change state with time, n:N, the net needs to be part of any
model of traffic.

148 From Domains to Requiremen ts

. 3. An Ontology of Domain Facets J./. Towards \eories of 'omain Facets 3./.2. ieories of Support Technologies
3 2y 3.7. Towards Theories of Domain F: 3.7.2. Theories of Support Technologi

3.7.2. Theories of Support Technologies
3.7.2.1. An Example

e Traffic (tf:TF), intrinsically, is a total function over some time in-
terval, from time (t:T) to continuously positioned (p:P) vehicles
(tn:TN).

e Conventional optical sensors sample, at regular intervals, the intrinsic
train traffic.

e The result is a sampled traffic (stf:sTF).

e Hence the collection of all optical sensors, for any given net, is a
partial function from intrinsic (itf) to sampled train traffics (stf).

e We need to express quality criteria that any optical sensor technology
should satisty — relative to a necessary and sufficient description of
a closeness predicate.

150 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.2. Theories of Support Technologies 3.7.2.1. An Example

type

T, TN

P =HP | LP

NetTraffic :: net:N x trf:(V 7 P)

iITF = T — NetTraffic

STF =T s NetTraffic

oG = iTF = sTF
value

[close] ¢: NetTraffic x TN x NetTraffic = Bool
axiom

Vitt:iTF, 0g:0G - let stt = og(itt) in

VTt € dom stt -
t € DOM itt AV Tn:TN - tn € dom trf(itt(t))
= tn € dom trf(stt(t)) A c(itt(t),tn,stt(t)) end

Lecture Notes in Software Engineering 151

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.2. Theories of Support Technologies 3.7.2.2. General

3.7.2.2. General
e The formal requirements can be narrated:
— Let ©, and ©, designate the spaces of intrinsic and actual-world configurations
(contexts and states).

— For each intrinsic configuration model — that we know is support technology
assisted —

— there exists a support technology solution,

— that is, a total function from all intrinsic configurations to corresponding actual
configurations.

e If we are not convinced that there is such a function then there is little hope that
we can trust this technology

type

0;, Oq

ST =06; — 0
axiom

V sts:ST-set, st:ST - st € sts = V 0;:0;, 3 040 - st(0;) = 0,

© Dines Bjorner 2010, Fredsve] 11, DK 2810 Holte, Denmark

November 12, 2010, 10:24, Budapest Lectures, Oct. 11-22, 2010

Lecture Notes in Software Engineering 153

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.3. A Theory of Rules & Regulations

e A syntactic stimulus, sy sti, denotes a function, se sti:STI: © — O,
from any configuration to a next configuration

e A syntactic rule, sy rul:Rule, has as its semantics, its meaning,
rul:RUL,

—a predicate over current and next configurations, (0 x ©) —
Bool,

— where these next configurations have been caused, by the stimuli.
These stimuli express:

— If the predicate holds then the stimulus will result in a valid next
configuration.

November 12, 2010, 10:24, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

152 From Domains to Requirements.

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.3. A Theory of Rules & Regulations

3.7.3. A Theory of Rules & Regulations

e There are, abstractly speaking, usually three kinds of languages in-
volved wrt. (i.e., when expressing) rules and regulations (respectively
when invoking actions that are subject to rules and regulations).

— Two languages, Rules and Reg, exist for describing rules, respec-
tively regulations; and

— one, Stimulus, exists for describing the form of the [always current]
domain action stimuli.

© Dines Bjpmer 2010, Fredsvej 11, DK-2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 12, 2010, 10:24

154 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.3. A Theory of Rules & Regulations

type
Stimulus, Rule, ©
STI=6 — 06
RUL = (© x ©) — Bool
value

meaning: Stimulus — STI
meaning: Rule — RUL

valid: Stimulus x Rule — © — Bool
valid(sy sti,sy rul)(f) = meaning(sy rul)(,(meaning(sy sti))(6))

valid: Stimulus x RUL — © — Bool
valid(sy sti,se rul)(f) = se rul(f,(meaning(sy sti))(0))

© Dines Bipmer 2010, Frodsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 12, 2010, 10:24

&

Lecture Notes in Software Engineering 15

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.3. A Theory of Rules & Regulations

e A syntactic regulation, sy reg:Reg (related to a specific rule), stands
for, i.e., has as its semantics, its meaning,
— a semantic regulation, se reg:REG,
— which is a pair.
— This pair consists of

* a predicate, pre reg:Pre REG, where Pre REG = (O x 0) —
Bool,

x and a domain configuration-changing function, act reg:Act REG,
where Act REG = © — O,

x that is, both involving current and next domain configurations.

November 12, 2010, 10:24, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark

Lecture Notes in Software Engineering 157

3. 3. An Ontology of Domain Facets 3. 7. Towards Theories of Domain Facets 3.7.3. A Theory of Rules & Regulations

type
Reg
Rul and Reg = Rule x Reg
REG = Pre REG x Act REG
Pre REG =0 x © — Bool
Act REG=06 — 06

value
interpret: Reg — REG

¥ 12, 2010, 10:24, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrer 2010, Fredsvej 11, DK 2840 Holte, Denmar)

156 From Domains to Requirements.

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.3. A Theory of Rules & Regulations

— The two kinds of functions express:
x If the predicate holds,
* then the action can be applied.

e The predicate is almost the inverse of the rules functions.

e The action function serves to undo the stimulus function.

© Dines Bjpmer 2010, Fredsvej 11, DK-2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 12, 2010, 10:24

158 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.3. A Theory of Rules & Regulations

e The idea is now the following:

— Any action of the system, i.e., the application of any stimulus,

x may be an action in accordance with the rules,
* Or it may not.

— Rules therefore express whether stimuli are valid or not in the
current configuration.

— And regulations therefore express whether they should be applied,
and, if so, with what effort.

© Dines Bipmer 2010, Frodsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 12, 2010, 10:24

Lecture Notes in Software Engineering 159

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.3. A Theory of Rules & Regulations
y o

e More specifically,
— there is usually, in any current system configuration, given a set
of pairs of rules and regulations.
— Let (sy_rul,sy reg) be any such pair.
— Let sy_sti be any possible stimulus.
— And let 8 be the current configuration.

— Let the stimulus, sy sti, applied in that configuration result in a
next configuration, &', where 6 = (meaning(sy_sti))(9).

— Let & (= (meaning(sy sti))(#)) violate the rule, i.e., ~valid(sy_sti,sy_rul)(6

—then if predicate part, pre reg, of the meaning of the regulation,
sy_reg, holds in that violating next configuration, pre_reg(6,0’

—then the action part, act reg, of the meaning of the regulation,
sy_reg, must be applied, act_reg(#'), to remedy the situation.

November 12, 2010, 10:24, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark

Lecture Notes in Software Engineering 161

3. 3. An Ontology of Domain Facets 3. 7. Towards Theories of Domain Facets 3.7.3. A Theory of Rules & Regulations

e [t may be that the regulation predicate fails to detect applicability
of regulations actions.

e That is, the interpretation of a rule differs, in that respect, from the
interpretation of a regulation.

e Such is life in the domain, i.e., in actual reality

November 12, 2010, 10:24, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

160 From Domains to Requirements.

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.3. A Theory of Rules & Regulations

axiom
Y (sy_rul,sy reg):Rul_and Regs -
let se rul = meaning(sy rul),
(pre reg,act reg) = meaning(sy reg) in
V sy sti:Stimulus, 6:0 -
~valid(sy sti,se rul)(f)
= let ' = (meaning(sy sti))(d) in
pre_reg(0,6')
= I 1n6:0 - act reg(d)=nf A se rul(fnb)
end end

© Dines Bjpmer 2010, Fredsvej 11, DK-2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 12, 2010, 10:24

162 From Domains to Requirements

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.4. A Theory of Management & Organisation

3.7.4. A Theory of Management & Organisation

© Dines Bipmer 2010, Frodsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 12, 2010, 10:24

Lecture Notes in Software Engineering 163

3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.5. A Theory of Human Behaviour

3.7.5. A Theory of Human Behaviour

e Commensurate with the above, humans interpret rules and regula-
tions differently,

e and not always “consistently” — in the sense of repeatedly applying
the same interpretations.

e Our final specification pattern is therefore:

November 12, 2010, 10:24, Budapest Lectures, Oct. 11-22, 2010

© Dines Bjorner 2010, Fredsve] 11, DK 2810 Holte, Denmark

Lecture Notes in Software Engineering

165

3. 3. An Ontology of Domain

s 3.7. Towards Theories of Domain Facets 3.7.5. A Theory of Human Behaviour

e The above is, necessarily, sketchy:

— There is a possibly infinite variety of ways of interpreting some
rules.

— A human, in carrying out an action, interprets applicable rules and
chooses one which that person believes suits some (professional,
sloppy, delinquent or criminal) intent.

— “Suits” means that it satisfies the intent,
* 1.e., yields true on the pre/post-configuration pair,
* when the action is performed —

* whether as intended by the ones who issued the rules and reg-
ulations or not.

— We do not cover the case of whether an appropriate regulation is
applied or not

November 12, 2010, 10:24, Budapest Lectures, Oct. 11-22, 2010

© Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

164 From Domains to Requirements.
3. 3. An Ontology of Domain Facets 3.7. Towards Theories of Domain Facets 3.7.5. A Theory of Human Behaviour
type
. (ad 3
Action = © — O-infset
value

hum int: Rule — © — RUL-infset
action: Stimulus — © — ©
hum beha: Stimulus x Rules — Action — © = O-infset
hum beha(sy sti,sy rul)(«)(#) as fset
post
Oset = a(0) A action(sy sti)(0) € Oset
AV 000" € fset =
3 se rul: RUL=se rul € hum int(sy rul)(8)=-se rul(6,0’)

© Dines Bjgmer 2010, Fredsvej 11, DK 2840 Holte, Denmark

Budapest Lectures, Oct. 11-22, 2010 November 12, 2010, 10:24

Lecture Notes in Software Engineering

165

End of Lecture 4: DOMAINS: Scripts — Human Behaviour|

November 12, 2010, 10:24, Budapest Lctures, Oct. 11-22, 2010

@ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

398 From Domains to Requirements

B Slide Table-of-Contents

Contents
lLect. #1: COVER & INTRODUCTION 0
1 Introduction 5
1.1 The Problem 5
1.2 The Triptych Approach 6
.
2 An Ontology of Specification Entities 9
2.1 Simple Entities 11
2.1.1 Net, Hubs and Links 13
2.1.2 Unique Hub and Link Identifiers 14
2.1.3 Observability of Hub and Link Identifiers 15
214 ATheorem 17
2.1.4.1 Links implies Hubs 17
2.1.5 Hub and Link Attributes 18
2.1.6 Hub and Link Generators 19
22 States 22
23 ACIONS . L L 22
231 nsert Hubs . . . o o o 23
232Remove Hubs 25
2.3.3 Insert Links 27
2.3.4 Remove Links 31
2.3.5 Two Theorems . 34
2351 Idempotency 34
2.3.5.2 Reachability e 35
A EVENtS . . L L 37
25 Behaviours L 41
2.5.1 Behaviour Prescriptions 42
25.1.1 Construction Plans 42

© Dines Bjgmer 2010, Fredsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 12, 2010, 10:24

400 From Domains to Requirements

lLect. # 4: DOMAINS: Scripts — Human Behaviour 99

BASCHPES © o o o 100

341 Routes as SCrIPES o 101

3411 Paths . . o o 101

3412 R0ULES . . L L. 104

3.4.2 Bus Timetables as Scripts . . 107

3.4.2.1 Buses 107

3.4.2.2 Bus Stops 107

3423 BusRoutes 108

3.42.4 BusSchedule 110

3.425 Timetable 112

3.4.3 Route and Bus Timetable Denotations 115

3.4.4 Licenses and Contracts 117

3441 Contracts 123

3.4.4.2 Contractual Actions 128

3.4.4.3 Wellformedness of Contractual Actions 131

3.5 Management and Organisation 137

3.5.1 Transport System Examples 141

3.6 Human Behaviour L 144

3.7 Towards Theories of Domain Facets 146

3.7.1 A Theory of Intrinsics 147

3.7.2 Theories of Support Technologies 148

3.7.2.1 An Example 148

3.7.2.2 General 151

3.7.3 A Theory of Rules & Regulations 152

3.7.4 A Theory of Management & Organisation 162

3.7.5 A Theory of Human Behaviour 163

lLect. #5: REQUIREMENTS — up to and incl. Determination 165

4 An Ontology of Requirements Constructions

4.1 Business Process Re-engineering
4.1.1 The Kinds of Requirements

4.1.2 Goals Versus Requirements
4.1.2.1 Goals of a Toll Road System

@ Dines Bigmer 2010, Frodsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 12, 2010, 10:24

Lecture Notes in Software Engincering

2.5.1.2 Wellformedness of Construction Plans
2.5.2 Augmented Construction Plans L
2.5.3 Sequential Construction Behaviours

|Lect. # 3: DOMAINS: Intrinsics — Rules & Regulations

3 An Ontology of Domain Facets

3.0.1 Definitions
3.0.2What Can Be Observed
3.0.3 Business Processes
3.0.3.1 A Characterisation
3.0.32AnExample
BLINFNSICS .« . . oL
3.1.1 Net Topology Descriptors

3.1.2 Link States and Link State Spaces . . .
3.1.3 Hub States and Hub State Spaces
3.1.4 State and State Space Wellformedness
3.1.5 Concrete Types for Simple Entities
3.1.6 Example Hub Crossings
3.1.7 Actions Continued
3.2 Support Technologies e
3.2.1 Traffic Signals L
3.2.2 Traffic “Control”
33 Rules and Regulations
331 Vehicles
332 Traffic . . .o
3.3.2.1 Wellformedness of Traffic
3.3.2.1.1 Static Wellformedness
3.3.2.1.2 Dynamic Wellformedness
333 Traffic Rules (Lof 1)
3.3.4 Another Traffic Regulator o
335 Traffic Rules (I1of 11) . . . oo

52

53
53
57
58

58
59

I

November 12, 2010, 10:24, Budapest Lectures, Oct. 11-22, 2010

© Dines Bigmer 2010, Fredsvej 11, DK-2840 Holte, Denmark

Lecture Notes in Software Engineering 401
4.1.2.2 Goals of Toll Road System Software 176

4.1.2.3 Arguing Goal-satisfaction of a Toll Road System 177

4.1.2.4 Arguing Goal-satisfaction of Toll Road System Software 178

4.1.3 Re-engineered Nets 180

4.2 Domain Requirements 191
421 Projection 193
4211 Example . . . L 195

422 Instantiation L 196
4.2.2.1 Example 197

4.2.2.2 Abstraction: From Concrete Toll Road Nets to Abstract Nets 202

4.2.2.3 Theorem 203

423 Determination 204
4231 Example . .. 205

|Lect. # 6: REQUIREMENTS - from Extension “out” 208
424 EXCeNsion 209
4241 Intuition 212

4.2.4.2 Descriptions L.214

4.2.42.1 A RAISE/CSP Model . 214

4.2.4.2.1 Toll Booth Plazas . . L. 214

424271 Cars ..o 216

42421 Entry Booths 217

42421 Gates. 219

42421 The Entry Plaza System 220

42422 ADuration Calculus Model 225

42423 A Timed Automata Model 229

4.2.5 Fitting 233
4.2.5.1 Examples 234

4.3 Interface Requirements L. 235
4.3.1 But First: On Shared Phenomena and Concepts 237
4.3.2 Shared Simple Entities 238
4321 Example 239

4.3.3 Shared Actions 240
4.3.3.1 Example . . . o241

434 Shared Events 242

November 12, 2010, 10:24, Budapest Lctures, Oct. 11-22, 2010

@ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

402 From Domains to Requirements

4341 Examples . .. 243

4.3.5 Shared Behaviours 244

4.3.5.1 Example 245

4.4 Machine Requirements 246
4.4.1 An Enumeration of Classes of Machine Requirements 247

5 Conclusion 248
5.1 What Have We Omitted 248
5.2 Domain Descriptions Are Not Normative 249
5.3 "Requirements Always Change” 250
5.4 What Can Be Described and Prescribed 252
5.5 What Have We Achieved —and What Not e 254
5.6 Relation to Other Work 255
5.7 “Ideal” Versus Real Developments 258
5.8 Description Languages 260
5.9 Entailments 262
5.10 Domain Versus Ontology Engineering 263

6 Bibliographical Notes 264
6.1 Description Languages 264

1 An RSL Primer 266
LITYPES . o oo 266
111 Type EXPressions 266

LLLT Atomic TYPES . o ot v ot o e 266

Example 1: Basic Net Attributes 268

1.1.1.2 Composite Types 270

Example 2: Composite Net Type Expressions . . . L0271

112 Type Definitions oL 273

1.1.2.1 Concrete Typeso 273

Example 3: Composite Net Types 274

Example 4: Net Record Types: Insert Links e 280

© Dines Bjgmer 2010, Fredsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 12, 2010, 10:24

404 From Domains to Requirements
lLect. #9: RSL: Logic, A-Calculus, Fctl. Specs. 321
1.3 The RSL Predicate Calculus 322
1.3.1 Propositional Expressions 322

1.3.2 Simple Predicate EXpressions 323

1.3.3 Quantified Expressions 324
Example 12: Predicates Over Net Quantities . . . 325

1.4 A-Caleulus 4 FUNCLONS . . . o o oo 328
1.41 The A-Calculus Syntaxo 328

1.42 Free and Bound Variables 329

1.4.3 Substitution Lo 330

1.4.4 a-Renaming and B-Reduction 331
Example 13: Network Traffic 332

1.4.5 Function Signatures 339
Example 14: Hub and Link Observers 340

1.4.6 Function Definitions 342
Example 15: Axioms over Hubs, Links and Their Observers 345

1.5 Other Applicative EXpressions 346
1.5.1 Simple let Expressions 346

1.5.2 Recursive let EXpressions 347

1.5.3 Non-deterministic let Clause L. 348

1.5.4 Pattern and “Wild Card” let Expressions e 349

155 Conditionals L 350
Example 16: Choice Pattern Case Expressions: Insert Links 351

1.5.6 Operator/Operand Expressions 361

[Lect. # 10: RSL: Imperative & Process Specs. 361
1.6 Imperative CONSEIUCES o 362

1.6.1 Statements and State Changes . . 362

1.6.2 Variables and Assignment 363
1.6.3 Statement Sequences and skip 363
1.6.4 Imperative Conditionals 363
1.6.5 lterative Conditionals 364
1.6.6 lterative Sequencing 364

1.7 Process Constructs
1.7.1 Process Channels

@ Dines Bigmer 2010, Frodsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 12, 2010, 10:24

Lecture Notes in Software Engineering 403
L1222 Subtypes o 282
Example 5: Net Subtypes 283
1.1.2.3 Sorts — Abstract Types 289
Example 6: Net Sorts 290
|Lect. # 8: RSL: Values & Operations 290
1.2 Concrete RSL Types: Values and Operations 291
121 Arithmetico 291
122 Set Expressions 292
1221 Set Enumerations 292
Example 7: Set Expressions over Nets 293
1.2.2.2 Set Comprehension
E: le 8: Set Compreh
1.2.3 Cartesian Expressions

1.2.3.1 Cartesian Enumerations

Example 9: Cartesian Net Types 300
1.2.4 List EXPressions o 303
1.24.1 List Enumerations L 303
1.2.4.2 List Comprehension 304
Example 10: Routes in Nets 305
125 Map EXpressions 310
1.25.1 Map Enumerations 310
1.2.5.2 Map Comprehension 311
Example 11: Concrete Net Type Construction 312
1.2.6 Set Operations :
1.2.6.1 Set Operator Signatures
1.26.2 Set Examples
1.2.7 Cartesian Operations
128 List Operations

1.2.8.1 List Operator Signatures

1.2.8.2 List Operation Examples S
129 Map Operations

1.2.9.1 Map Operator Signatures and Map Operation Examples 320

November 12, 2010, 10:24, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark

Lecture Notes in Software Engineering 405
Example 17: Modelling Connected Links and Hubs 366
1.7.2 Process Definitions L
Example 18: Communicating Hubs, Links and Vehicles
1.7.3 Process Composition 3
Example 19: Modelling Transport Nets 375
1.7.4 Input/Output Events L E
E le 20: Modelling Vehicle M s .
1.8 Simple RSL Specifications
Example 21: A Neat Little "System” 389
B Slide Table-of-Contents 398

November 12, 2010, 10:24, Budapest Lctures, Oct. 11-22, 2010 @ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

