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3. An Ontology of Domain Facets

3. An Ontology of Domain Facets
3.0.1. Definitions
Definition: Domain. An area of activity which some software

is to support (or supports) or partially or fully automate (resp.
Start of Lecture 3: DOMAINS: Intrinsics — Rules & Regulations| automates).

e The term ‘application domain’ is considered synonymous with the
term ‘domain’.

Definition: Domain Description. A textual, informal or formal
document which describes a domain as it is.
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Usually a domain description is a set of documents with many parts Definition: Domain Engineering.

recording many facets of the domain: The e The engineering of the development of a domain description, from

PY [ q . . . . .
business processes, — identification of domain stakeholders, via

e intrinsics, — domain acquisition,

e support technology, — domain analysis,

e rules and regulations, — terminologisation,

e management and organisation, and the and

e human behaviours. — domain description
to

— domain validation and

— domain verification.
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Definition: Domain Facet.
e By a domain facet we understand

— one amongst a finite set of generic ways of analysing a domain:
— A view of the domain, such that the different facets cover
conceptually different views,

— and such that these views together cover the domain.

e We consider here the following domain facets:

— business processes, — management and organisation,
— intrinsics, and
— support technology, — human behaviour.

— rules and regulations,
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3.0.3. Business Processes
3.0.3.1. A Characterisation

e By a business process we shall understand
— a behaviour
—of an enterprise, a business, an institution, a factory.

3.0.3.2. An Example

e The business processes of transportationevolves around

— freights or passengers
— being transported along routes
— by a vehicle (car, train, aircraft, ship)

— “propelled” by some locomotive force.
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3.0.2. What Can Be Observed

e “Whether you can observe a thing or not depends on the theory which
you use. It is the theory which decides what can be observed.”

e Albert Einstein objecting to the placing of observables at the heart
of the new quantum mechanics, during Heisenberg’s 1926 lecture at
Berlin; related by Heisenberg, quoted in Unification of Fundamen-
tal Forces (1990) by Abdus Salam ISBN 0521371406.
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3.1. Intrinsics
Definition: Intrinsics.

e By the intrinsics of a domain we shall understand
— those phenomena and concepts of a domain

— which are basic to any of the other facets,

— with such a domain intrinsics initially covering at least one
stakeholder view.
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3.1.1. Net Topology Descriptors
Instead of dealing with the entire phenomenon of a net, that is, the
real, physical, geographic “thing”, we can describe essentials of a net,
for example how its hub and links are connected.

56. One way of abstractly modelling a net descriptor is as a map, nd,
from hub identifiers to simple maps, lihis, from link identifiers to hub
identifiers,

57.such that
(a) for all hi in (the definition set of) nd it is the case that
(b) if hi maps to lihi,

(¢) and in that link identifier to hub identifier map, li maps to hi’,
(d) then hi’ is different from hi and

(e) hi" maps to an lihi" in which li is defined and maps to hi.

(f)

f) And there are only such pairings.
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From a net one can construct its net descriptor:

value
conND: N — ND
conND(n) =
[hir=[li=hi|li:LLhi"HIl € obs Lis(getH(hi,n))A{hi,hi'}=obs HIs(getL(li,n)) ]|
hi:HI-hi € xtrHIs(n) |
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type

56. ND' = HI s (LI & HI)
56. ND = {|nd:ND-wf ND(nd)|}
value

57. wiND: ND' — Bool

57. wiND(nd) =

57(a).  V hi:HI'hi € dom nd =

57(b). let lihi = nd(hi) in

57(c). VLI - 1i € dom lihi =

57(c). let hi' = (nd(hi))(li) in

57(d). hi # hi' A

57(e). hi' € dom nd A li € dom(nd(hi)) A hi=(nd(hi))(li)
57(f). end end
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3.1.2. Link States and Link State Spaces

e We introduce the notions of

— the state of a link,

— the state of a hub,

— the state space of a link and
— the state space of a hub.

e States abstract directions of movement.
e Links are, by our previous definitions, bi-directional:

— from one of the connected hubs to the other,

—and vice versa.
e And hubs are multi-directional:

— from potentially any link via the hub to potentially any link.
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o [et

— the observed hub identifiers of a link £ be {h;, hy, },
—then link ¢ can potentially be in any one of the four link states:

= {{(hj, ), (hys By s {(Rgs by )}y {(hs hy) }oand {{3}}}

e Any one particular link may

— always remain in one and the same state,

—or it may from time to time undergo transitions between any
subset of the potential link state space.
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type

58. LY = (HIxHI)-set

59. LQO = LX-set

value

60. generate full LY: L — LY

60. generate full L3(1) =

60.  {}U{(hi’hi")|hi,hi HIFhi#hi'A{hi’hi"}=obs HIs(1) }
60. generate L) L — LS

60.  let fullLo = generate full LX(1) in
60.  {{},U{o|o:LE-cCfullLo}} end
61. obs LX: L — LY

62.

obs L): L — LY-set
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8.
29.
60.

61.
62.

Link states, lo: L3, are set of pairs of hub identifiers.
Link state spaces are set of link states.

From a link one can generate the link state space of all potential link
states.

From a link one can observe the current link state lo: LY.

From a link one can observe the link state space lw:LS).
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63.

64.
65.

66.
67.

3.1.3. Hub States and Hub State Spaces

Hub states, ho:HY, are sets of pairs of link identifiers ((I;,1}.)),
designating that if ([;,[},) is in the current hub state then movement
can take place from the link designated by [; (via hub h) to the link
designated by [j.

Hub state spaces are set of hub states.

From a hub one can generate the hub state space of all potential hub
states.

From a hub one can observe the current hub state ho: H?>..

From a hub one can observe the hub state space hw:H().
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type

63. HX = (LIxLI)-set

64. HQ = HX-set

value

65. generate full HY: H — HX

65. generate full HX(h) =

65. {FU{ (0, 10) )1 LI{18 i} Cobs Lls(h)}

60. generate HC2: H — HQ
60. let fullHo = generate full HX(h) in
60.  {{}U{o|o:HX-.oCfullHo}} end

66. obs HY: H — HX
66. obs H{2: H — HX-set
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3.1.5. Concrete Types for Simple Entities

e As an alternative for, or as a step of refinement from the earlier sorts
of nets, hubs and links

e one can simplify matters by concrete types for these simple entities.

70. Nets are Cartesians of sets of hubs and links.

71. A link is a Cartesian of a link identifier, a set of exactly two hub
identifiers, a link state, a link state space, and a number of presently
further unspecified link attributes.

72. A hub is a Cartesian of a hub identifier, a set of zero, one or more link
identifiers, a hub state, a hub state space, and a number of presently
further unspecified hub attributes.
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3.1.4. State and State Space Wellformedness
68. States must be in appropriate state spaces.
69. State spaces must be subsets of all potential appropriate states.

axiom
VN LLh:H-1€ obs Ls(n) A h € obs Hs(n) =
58. obs LY(1) € obs LO(I) A
59. obs LO(1) C generate full LY (1) A
58. obs HX(h) € obs HQ(h) A
59. obs HQ(h) C generate full HY(h)

theorems:
VN LLh:H-1€ obs Ls(n) A h € obs Hs(n) =
obs LX(1) € {(hi,hi")|hi hi"H-{hi’hi"} Cobs HIs(1)} A
obs HY(h) C {(1i1i")|1i' 1t L-{1i’1i"} Cobs Lls(h)}
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type

70. N = H-set x L-set

71. L :: obs LI:LI x obs_HIs:HI-set x LY x L{ x LAtrs
72. H :: obs HI:HI x obs_LIs:LI-set x HY x HQ x HAtrs
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We leave it to the reader to narrate the wellformedness constraints.

axiom
V (hs,s):N - Is#£{} = card hs > 2 A
V1AL - {1 P} Cls A T = obs LI(I)obs LI(I) A
¥ Ik - {0} Chs A hih’ = obs HI(I)#obs HI(hY) A
V 1:(li)his lo lw latrs):L - 1 € Is =
card his=2 A hisC{obs HI(h")|h":H - h" € hs} A
lo € generate full LY (1) A
lo € lw C generate full LY (1) A
V h:(hi,lis;ho hw hatrs):H - h € hs =
lisC {obs LII)|IL - I € Is} A
ho € generate full HX(h) A
ho € hw C generate full HX(h)
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The top left hub/link diagram (1.) thus can be claimed to depict hub state {(A, B),
(4,0), (A4, D), (B,0), (C,D), (D, A)}.

Photo 2 shows a semaphore which seems to be able to display all kinds of states.

Figure 2: A General Purpose Traffic Light

The point of this example is to show that a hub may take on many states, that not all
hub states may be desirable (viz., lead to crossing traffic if so interpreted), and that
to reach from one hub state to another one must change the state.
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3.1.6. Example Hub Crossings

|y - -
m

L

_J

Figure 1: Four “Safe” Flows

November 10, 2010, 12:07, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark

Lecture Notes in Software Engineering 75
3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.7. Actions Continued

3.1.7. Actions Continued

73. The action change HX: takes a hub, A, in some state, and a desired
next state, ho', and results in a hub, h/, which
(a) has the same hub identifier as h,
is connected to the same links as h,
has the same hub state space as h,
has the same attributes (names and values) as h,
(b) but whose state may have changed.
73(b). The new state of b’ ought be ho’, but electro-mechanical or other
failures in setting the state may set the new state to any state of the

potential states of h (i.e., h’), not just to any state in the hub state
space of h.
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value

73. change HY: H x HX — H

73.  change HY((hi lis,ho hw hatrs),ho’) =
73(b).  let ho” € generate full HYs in
73(a).  (hilis,ho”’ hw hatrs) end

e Had we specified that the resulting state must be ho’

e then we had prescribed a requirements to a change operation.

e As it is now we have described a domain phenomenon, namely that
operations may fail.
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3.2.1. Traffic Signals
A traffic signal represents a technology in support of visualising hub
states and in effecting state changes.

74. A hub state is now modelled as a triple: the link identifier /; (“coming
from”), a colour (red, , and green), and another the link
identifier [; (“going to”).

75. Signalling is now a sequence of one or more pairs of next hub states
and time intervals:

< (hoy,tiy), (hog, ti9), ..., (hop_1,tin_1), (hop, tip) >,n >0

Budapest Lectures, Oct. 11-22, 2010 November 10, 2010, 12:07
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3. An Ontology of Domain Facets 3.2. Support Technologies

3.2. Support Technologies

Definition: Support Technology. By a support technology we
understand

e a facet of a domain,

e one which reflects its (current) dependency on

— human, — electronic and /or

— mechanical, — other technologies

— electro-mechanical,

(i.e., tools) in order to carry out its business processes.
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e The idea of a signalling is

— to first change the designated hub to state hoy,

—then wait ti1 time units,

— then set the designated hub to state hoo,

— then wait tio time units,

— etcetera, ending with final state o,

—and a (supposedly) long time interval ti,,

— before any decisions are to be made as to another signalling.
e The set of hub states {hoy, hoo, ..., ho, 1} of

< (hoy,tiy), (hoo, tio), ..., (hop_1, tin_1), (hon, tiy) >,n >0
are called intermediate states.

e Their purpose is to secure an orderly vehicle-wise safe signal tran-
sitions from red to green etc.

November 10, 2010, 12:07, Budapest Lectures, Oct. 11-22, 2010 @ Din
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76. A street signal (a semaphore) is now abstracted as a map from pairs
of hub states to signalling sequences.

The idea is that given a hub one can observe its semaphore, and given
the state, ho (not in the above set), of the hub “to be signalled” and
the state hoy, into which that hub is to be signalled “one looks up”
under that pair in the semaphore and obtains the desired signalling.

type

74. HY = LI x Colour x LI

74. Colour == red | yellow | green

75. Signalling = (HX x TIT)*

75. TI

76. Sempahore = (HXXHY) p Signalling
value

76. obs Semaphore: H — Sempahore
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3.2.2. Traffic “Control”

78. Given two hub states, hojpj and hog, g, where hoji¢ designates
a present hub state and ho,, g designates a desired next hub state
after signalling.

79. Now signalling is a sequence of one or more successful hub state
changes.

value

78. signalling: HX x HY — H — H

79. signalling(hoypit,hoe,q)(h) =

79.  let sema = obs Semaphore(h) in

79.  let sg = sema(hoyyjt,hoy,q) in

79. signal sequence(sg)(h) end end

79. pre (hoj,it,ho,,q) € dom obs Semaphore(h)
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77. A hub semaphore, sema, contains only such hub states as are ob-
served in the hub state space.

(a) Let hsps be the set of “from/to” hub state pairs in sema.
(b) Then hs is the set of all hub states mentioned in hsps.

(¢) To hs join all the hub states mentioned in any signalling, sg, of
sema.

77. hub_state space: Sempahore — HY-set

77. hub state space(sema) =

77(a). let hsps={hsp|hsp:(HXxHX)hsp € dom sema} in

77(b).  let hs={ho’ ho”|ho’ ho”:H¥-(ho' ho'')€ hsps} in

77(c).  hs U U{{ho|(ho ti):(HEXTI)-(ho,ti)€ elems sg}|sg:Signallingsg €
77.  end end

axiom

77. ¥V h:H - U obs HQ(h) = hub state space(obs Semaphore(h))
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79. signal sequence(())(h) = h
79. signal sequence(((ho,ti)) "sg)(h) =
79.  let ho' = change HY(h)(ho) in

79.  if ho’ # ho then chaos
79.  else wait(ti); signal sequence(sg)(h) end end

e If a desired hub state change fails (chaos) then we do not define the
outcome of signalling.
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3.3. Rules and Regulations
Definition: Rule. A rule stipulates a regulating principle.

e In the context of modelling domain rules we shall understand a
domain rule

— as some text

— whose meaning is a predicate

— over a pair of suitably chosen domain states.
e We may assume that

— a domain action or a domain event

— takes place in the first of these states and
— results in the second of these states.

e [f the predicate is true

— then we say that the rule has been obeyed,

© Dines Bjgmer 2010, Fredsvej 11, DK 2840 Holte, Denmark
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Usually a domain rule is paired with a possibly remedying regulation.
Definition: Regulation.

e A regulation stipulates that
—an action be taken

— in order to remedy a previous action which violated a rule.
e That is,

— a regulation is some text

— which designates a possibly composite action,
— that is, a state-to-state change

— which ostensibly results in a state

— in which the rule, “attached” to the regulation, now holds.

@ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmar)

Budapest Lectures, Oct. 11-22, 2010 Novel

10, 2010, 12:07

Lecture Notes in Software Engineering 8

— otherwise that it has been violated.
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3.3.1. Vehicles
80. Vehicles are further undefined quantities except that

(a) vehicles have unique identifiers,
(b) vehicles are either positioned
i. at/in hubs
ii. or on links, in some fractional (non-zero) distance from a hub
toward the connecting hub.

81. From a net (sort) one can observe all the vehicles of the net.!

82. No two vehicles so observed have the same identifier.

1Thus a concrete net type, in addition to hubs and links (now) also contains vehicles.
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type
80 \Y%
80(a). VI

(b)
80((b))ii. LP == onL(li:LI,thi:HLE:F thi:HI)
80((b))ii. F = {|t:F-0<t<1]}
value
80(a).  obs VI V. — VI
80(h).  obs VP:V — VP
81. obs_Vs: N — V-set
axiom
82. Vwv:V.veEobsVshn) =
82. 3 onL(li,thi,f,thi):VP - onL(li,thi,f,thi)=obs VP(v) =
82. 3 1.l € obs Ls(n)Ali=obs LI(1)A{fhi,thi}=obs HIs(1) Vv
82. 3 atH(hi):VP - atH(hi)=obs_VP(v) =
82. 3 h:H:h € obs Hs(n)Ahi=obs HI(h)
% From Domains to Reqirements
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3.3.2.1.1. e Static Wellformednesse

85. We define a predicate over vehicle positions.

(a) Every vehicle in the traffic has a proper position on the net, either at a hub or
along a link.

(b) No two vehicles of the traffic can occupy exactly the same link position. (That
is, the link positions onL(li,hi,f,hi") and onL(li,hi,f',hi") must have the two frac-
tions (f, f) differ — be it ever so “minutely”).

We first define two auxiliary functions:?

value
obs_HIs: N — HI-set
obs Hls(n) = {obs HI(h)|h:H-h € obs Hs(n)}
obs_LIs: N — Ll-set
obs_LIs(n) = {obs LI(h)|l:L:] € obs Ls(n)}

2They really ought to have been defined much earlier!
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3.3.2. Traffic

83. By traffic we understand a continuous function from time to a pair
of nets and position of vehicles.

84. By time we understand a dense set of points with dense and points

being mathematical concepts [wayne.d.blizard.90,J.van.Benthen.Logic.Time91].

type
83. TF =T — (sel net:N x sel veh pos:(V m VP))
84. T

3.3.2.1. Wellformedness of Traffic
e Expressing the wellformedness of traffic is not a simple matter.

e We shall approach this task in a number of “small steps”.
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85. proper_vehicle_positions: TF — Bool
85. proper_vehicle_positions(tf) =
85. V t:T - t € DOMAIN tf -

85. let (n,vps) = tf(t) in

85(a) V v:Vev € dom vpris net_position(vps(v))(n)

85(b) YV v:Vev' € dom vp A v£v'=-diff_net_pos(vps(v),vps(v))
85. end

85(a). ismnet_position: VP — N — Bool

85(a). ismet_position(vp)(n) =

85(a).  case vp of

85(a). atH(hi) — hi € obs_HIs(n),

85(a). onL(1i,fhi,f,thi) — 1i € obs_LIs(n)A{fhi,thi} Cobs Hls(n)
85(a). end

85(b). diff net_pos: VP x VP — Bool

85(h). diff net_pos(vp,vp) =

85(b).  case (vp,vp') of

85(b). (atH(hi),atH(hi)) — true,

85(b).  (onL(li,fhi,f,thi),onL(li,fhi.f,thi)) — ££,

85(b). _ — true

85(h). end
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3.3.2.1.2. ¢ Dynamic Wellformednesse

86. Vehicles, when moving, move monotonically, that is,

(a) if a vehicle, at some time, ¢, is at a link position onL(li,hi,f,hi’)
where f is not infinitesimally close to 1, then that vehicle will, at
some later time ¢/, infinitesimally close to ¢, be at link position
onL(li,hi,,hi") where f is infinitesimally close to f;

(b) if the vehicle, at some time, ¢, is at a link position onL(li,hi,f,hi")
where f is indeed infinitesimally close to 1, then that vehicle will,
at some infinitesimally later time ', be at hub position atH(hi’);

(c) and if the vehicle, at some time, ¢, is at a hub position atHP(hi)
then the vehicle will at some infinitesimally later time ¢’ either be
at hub position atHP(hi) or at some link position onL(li,hi,f,hi’)
where f is infinitesimally close to 0.
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87. If a vehicle is (has been) moving along a link /; and is now,
e at time ¢, at position onlL(l;, hj, f, hy), that is, moving from h;
to hy,
e then it cannot at a subsequent, infinitesimally close time, ¢, be at
a position
e onl(l;, hy., f', hj), that is, moving in the opposite direction, hj. to

hy.
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3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.2. Traffic 3.3.2.1. Wellformedness of Traffic 3.3.2.1.2 Dynamic Wellformedness

value

86. monotonic: TF — Bool

86. monotonic(tf) =

86. VYV t,t°T - {t,t}Cpomamtf -

86. let (n,vps) = tf(t),(n,vps)=tf(t') in

86. INFINITESIMALLY CLOSE (t,t)At<t'=

86. V v:V-v € dom vps N dom vps' -

86. case (vps(v),vps(v)) of

86(a). (onL(1i,fhi,f thi),onL(1i,thi,f thi)) —
86(a). f<f A INFINITESIMALLY CLOSE (f,f),
86(h). (onL(li,fhif thi),atH(thi)) —
86(b). INFINITESIMALLY CLOSE (f,1),
86(c). (atH(hi),atH(hi)) — true,

86(c). (atH(hi),onL(li,hi f,thi)) —

86(c). INFINITESIMALLY CLOSE (0,f),

86. _ — true
86. end end
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3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.2. Traffic 3.3.2.1. Wellformedness of Traffic 3.3.2.1.2 Dynamic Wellformedness

value

87.  God_does not_play dice’: TF — Bool

87.  God does not_play dice(tf) =

87. V.t T {t,t}Coomamtf A t<t' A mrmvresmaLLy crosk (t,t)=>

87. let (n,vps) = tf(t),(n,vps)=tf(t) in
87. Vv:V.v e dom vps N dom vps =
817. case (vps(v),vps(v)) of
87. (onL(li,thi,_thi),onL(li,thi,_fhi))—false,
87. _ — true
87. end end
sAlbert Einstein: “l, at any rate, am convinced that He does not throw dice.” Letter to Max Born (4

December 1926); The Born-Einstein Letters (translated by Irene Born) (Walker and Company, New
York, 1971) ISBN 0-8027-0326-7. Reflects Einstein’s view of Quantum Mechanics at the time.
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88. If a vehicle is (has been) moving along and has,

e at time ¢, been at some position p, and

e at time ¢/, later than ¢, is at some position p’,

e then it must at all times ¢”” between ¢ and ' have been somewhere
on the net.

value

88. no_ghost vehicles: TF — Bool

88. no _ghost vehicles(tf) =

88. Vt,62T - {t,t'} Coomam tf A t<t’ =

88. let (n,vps) = tf(t),(n,vps)=tf(t) in

88. V v:V.v € dom vps N dom vps =

88. VT t<t'<t =

88. let (n',vps’) = tf(t") in v € dom vps’ end
88. end
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3.3.4. Another Traffic Regulator

e We present an abstraction of a more conventional traffic signal than
modelled in Items 74 on page 78 to 77 on page 81.

90. A traffic signal now simply shows an entry permit: either red,
or green at the hub when “leaving” any link, i.e., at the entry to a
hub from any link.

type

90. EP == red | yellow | green

90. HY = LI m EP

axiom

90. V h:H - obs Lls(h)=dom obs HX(h)

e We leave it to the reader to express a constraint over hub state spaces
as to how there must be hub states such that entry from any link is
possible.
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3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.3. Traffic Rules (I of 11)

3.3.3. Traffic Rules (I of 1)

89. A vehicle must not move from a hub, h;, into a link ¢ (from hub (identified by)
hi to hub (identified by) h;) which is closed in direction (h;, h;), that is, where
(hi, hj) is not in the current state of link.

rule:

89. Vt£TF 4T - t € DOMAIN(tf) =
89. let (n,tp) = tf(t) in

89. VwviV.vedomtp=

89. case tp(v) of

89. atH(hi) —

89. let t:T - t'’>t A t' € DOMAIN(tr') A INFINITESIMALLY_CLOSE(t,t') in
89. let (n'tp) = tf(t) in

89. 3 li:LLhi"HL£:F hi"HI -

89. hi'=hi A INFINITIEIMALLY_CLOSE(f,0) A

89. tp'(v) = onL(li,hi’f hi") A(hihi") & obs L¥(getL(lin’))

89. — ..

89. end_end end end
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3.3.5. Traffic Rules (Il of II)

91. Vehicles must not enter a hub if entry permission is not green.

rule:

91. VtETFT : t € DOMAIN(tf) =
91. let (n,vps) = tf(t) in

91. Vwv:V-:-vé&dom vps =

91. case vps(v) of

91. onL(li,hi,fhi’) —

91. INFINITESIMALLY_CLOSE(f,1) A

91. let ho = obs HX(getH(hi'n)),

91. tT - t>t A INFINITESIMALLY _CLOSE(t,t') in

91. let (n',vps) = vps(t) in

91. ho(li) # green A vps(v) # atH(hi') assert: vps(v) = onL(li,hi,f hi)
91. end end

91. I

91. endend
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[End of Lecture 3: DOMAINS: Intrinsics — Rules & Regulations|
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