52 From Domains to Requirements Lecture Notes in Software Engineering 53

3. An Ontology of Domain Facets

3. An Ontology of Domain Facets
3.0.1. Definitions
Definition: Domain. An area of activity which some software

is to support (or supports) or partially or fully automate (resp.
Start of Lecture 3: DOMAINS: Intrinsics — Rules & Regulations| automates).

e The term ‘application domain’ is considered synonymous with the
term ‘domain’.

Definition: Domain Description. A textual, informal or formal
document which describes a domain as it is.

© Dines Bjgmer 2010, Fredsvej 11, DK-2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 10, 2010, 12:07 November 10, 2010, 12:07, Budapest Lectures, Oct. 11-22, 2010 © Dines Bigmer 2010, Fredsvej 11, DK-2840 Holte, Denmark

54 From Domains to Requirements Lecture Notes in Software Engineering 55

3. An Ontology of Domain Facets 3. An Ontology of Domain Facets

Usually a domain description is a set of documents with many parts Definition: Domain Engineering.

recording many facets of the domain: The e The engineering of the development of a domain description, from

PY [q
business processes, — identification of domain stakeholders, via

e intrinsics, — domain acquisition,

e support technology, — domain analysis,

e rules and regulations, — terminologisation,

e management and organisation, and the and

e human behaviours. — domain description
to

— domain validation and

— domain verification.

@ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmar)

10, 2010, 12:07

hor 10, 2010, 12:07, Budapest Lectures, Oct. 11-22, 2010 @ Dines Bjgrner 2010, Frodsvej 11, DK 2840 Holte,

56 From Domains to Requirements

3. An Ontology of Domain Facets

Definition: Domain Facet.
e By a domain facet we understand

— one amongst a finite set of generic ways of analysing a domain:
— A view of the domain, such that the different facets cover
conceptually different views,

— and such that these views together cover the domain.

e We consider here the following domain facets:

— business processes, — management and organisation,
— intrinsics, and
— support technology, — human behaviour.

— rules and regulations,

© Dines Bjgmer 2010, Fredsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 10, 2010, 12:07

58 From Domains to Requirements

3. An Ontology of Domain Facets

3.0.3. Business Processes
3.0.3.1. A Characterisation

e By a business process we shall understand
— a behaviour
—of an enterprise, a business, an institution, a factory.

3.0.3.2. An Example

e The business processes of transportationevolves around

— freights or passengers
— being transported along routes
— by a vehicle (car, train, aircraft, ship)

— “propelled” by some locomotive force.

@ Dines Bigmer 2010, Frodsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 10, 2010, 12:07

Lecture Notes in Software Engincering

3. An Ontology of Domain Facets

3.0.2. What Can Be Observed

e “Whether you can observe a thing or not depends on the theory which
you use. It is the theory which decides what can be observed.”

e Albert Einstein objecting to the placing of observables at the heart
of the new quantum mechanics, during Heisenberg’s 1926 lecture at
Berlin; related by Heisenberg, quoted in Unification of Fundamen-
tal Forces (1990) by Abdus Salam ISBN 0521371406.

November 10, 2010, 12:07, Budapest Lectures, Oct. 11-22, 2010 © Dines Bigmer 2010, Fredsvej 11, DK-2840 Holte, Denmark

Lecture Notes in Software Engineering 59

3. An Ontology of Domain Facets 3.1. Intrinsics

3.1. Intrinsics
Definition: Intrinsics.

e By the intrinsics of a domain we shall understand
— those phenomena and concepts of a domain

— which are basic to any of the other facets,

— with such a domain intrinsics initially covering at least one
stakeholder view.

November 10, 2010, 12:07, Budapest Lectures, Oct. 11-22, 2010

@ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

60 From Domains to Requirements

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.1. Net Topology Descriptors

3.1.1. Net Topology Descriptors
Instead of dealing with the entire phenomenon of a net, that is, the
real, physical, geographic “thing”, we can describe essentials of a net,
for example how its hub and links are connected.

56. One way of abstractly modelling a net descriptor is as a map, nd,
from hub identifiers to simple maps, lihis, from link identifiers to hub
identifiers,

57.such that
(a) for all hi in (the definition set of) nd it is the case that
(b) if hi maps to lihi,

(¢) and in that link identifier to hub identifier map, li maps to hi’,
(d) then hi’ is different from hi and

(e) hi" maps to an lihi" in which li is defined and maps to hi.

(f)

f) And there are only such pairings.

62 From Domains to Requirements

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.1. Net Topology Descriptors

From a net one can construct its net descriptor:

value
conND: N — ND
conND(n) =
[hir=[li=hi|li:LLhi"HIl € obs Lis(getH(hi,n))A{hi,hi'}=obs HIs(getL(li,n))]|
hi:HI-hi € xtrHIs(n) |

Lecture Notes in Software Engincering

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.1. Net Topology Descriptors

61

type

56. ND' = HI s (LI & HI)
56. ND = {|nd:ND-wf ND(nd)|}
value

57. wiND: ND' — Bool

57. wiND(nd) =

57(a). V hi:HI'hi € dom nd =

57(b). let lihi = nd(hi) in

57(c). VLI - 1i € dom lihi =

57(c). let hi' = (nd(hi))(li) in

57(d). hi # hi' A

57(e). hi' € dom nd A li € dom(nd(hi)) A hi=(nd(hi))(li)
57(f). end end

Lecture Notes in Software Engineering
3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.2. Link States and Link State Spaces

63

3.1.2. Link States and Link State Spaces

e We introduce the notions of

— the state of a link,

— the state of a hub,

— the state space of a link and
— the state space of a hub.

e States abstract directions of movement.
e Links are, by our previous definitions, bi-directional:

— from one of the connected hubs to the other,

—and vice versa.
e And hubs are multi-directional:

— from potentially any link via the hub to potentially any link.

64

From Domains to Requirements

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.2. Link States and Link State Spaces

o [et

— the observed hub identifiers of a link £ be {h;, hy, },
—then link ¢ can potentially be in any one of the four link states:

= {{(hj,), (hys By s {(Rgs by)}y {(hs hy) }oand {{3}}}

e Any one particular link may

— always remain in one and the same state,

—or it may from time to time undergo transitions between any
subset of the potential link state space.

66

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.2. Link States and Link State Spaces

type

58. LY = (HIxHI)-set

59. LQO = LX-set

value

60. generate full LY: L — LY

60. generate full L3(1) =

60. {}U{(hi’hi")|hi,hi HIFhi#hi'A{hi’hi"}=obs HIs(1) }
60. generate L) L — LS

60. let fullLo = generate full LX(1) in
60. {{},U{o|o:LE-cCfullLo}} end
61. obs LX: L — LY

62.

obs L): L — LY-set

cture Notes in Software Engineering 65

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.2. Link States and Link State Spaces

8.
29.
60.

61.
62.

Link states, lo: L3, are set of pairs of hub identifiers.
Link state spaces are set of link states.

From a link one can generate the link state space of all potential link
states.

From a link one can observe the current link state lo: LY.

From a link one can observe the link state space lw:LS).

cture Notes in Software Engineering 67

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.3. Hub States and Hub State Spaces

63.

64.
65.

66.
67.

3.1.3. Hub States and Hub State Spaces

Hub states, ho:HY, are sets of pairs of link identifiers ((I;,1}.)),
designating that if ([;,[},) is in the current hub state then movement
can take place from the link designated by [; (via hub h) to the link
designated by [j.

Hub state spaces are set of hub states.

From a hub one can generate the hub state space of all potential hub
states.

From a hub one can observe the current hub state ho: H?>..

From a hub one can observe the hub state space hw:H().

68 From Domains to Requirements

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.3. Hub States and Hub State Spaces

type

63. HX = (LIxLI)-set

64. HQ = HX-set

value

65. generate full HY: H — HX

65. generate full HX(h) =

65. {FU{ (0, 10))1 LI{18 i} Cobs Lls(h)}

60. generate HC2: H — HQ
60. let fullHo = generate full HX(h) in
60. {{}U{o|o:HX-.oCfullHo}} end

66. obs HY: H — HX
66. obs H{2: H — HX-set

70 From Domains to Requirements
3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.5. Concrete Types for Simple Entities

3.1.5. Concrete Types for Simple Entities

e As an alternative for, or as a step of refinement from the earlier sorts
of nets, hubs and links

e one can simplify matters by concrete types for these simple entities.

70. Nets are Cartesians of sets of hubs and links.

71. A link is a Cartesian of a link identifier, a set of exactly two hub
identifiers, a link state, a link state space, and a number of presently
further unspecified link attributes.

72. A hub is a Cartesian of a hub identifier, a set of zero, one or more link
identifiers, a hub state, a hub state space, and a number of presently
further unspecified hub attributes.

Lecture Notes in Software Engineering 69
3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.4. State and State Space Wellformedness

3.1.4. State and State Space Wellformedness
68. States must be in appropriate state spaces.
69. State spaces must be subsets of all potential appropriate states.

axiom
VN LLh:H-1€ obs Ls(n) A h € obs Hs(n) =
58. obs LY(1) € obs LO(I) A
59. obs LO(1) C generate full LY (1) A
58. obs HX(h) € obs HQ(h) A
59. obs HQ(h) C generate full HY(h)

theorems:
VN LLh:H-1€ obs Ls(n) A h € obs Hs(n) =
obs LX(1) € {(hi,hi")|hi hi"H-{hi’hi"} Cobs HIs(1)} A
obs HY(h) C {(1i1i")|1i' 1t L-{1i’1i"} Cobs Lls(h)}

Lecture Notes in Software Engineering 71

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.5. Concrete Types for Simple Entities

type

70. N = H-set x L-set

71. L :: obs LI:LI x obs_HIs:HI-set x LY x L{ x LAtrs
72. H :: obs HI:HI x obs_LIs:LI-set x HY x HQ x HAtrs

72 From Domains to Requirements

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.5. Concrete Types for Simple Entities

We leave it to the reader to narrate the wellformedness constraints.

axiom
V (hs,s):N - Is#£{} = card hs > 2 A
V1AL - {1 P} Cls A T = obs LI(I)obs LI(I) A
¥ Ik - {0} Chs A hih’ = obs HI(I)#obs HI(hY) A
V 1:(li)his lo lw latrs):L - 1 € Is =
card his=2 A hisC{obs HI(h")|h":H - h" € hs} A
lo € generate full LY (1) A
lo € lw C generate full LY (1) A
V h:(hi,lis;ho hw hatrs):H - h € hs =
lisC {obs LII)|IL - I € Is} A
ho € generate full HX(h) A
ho € hw C generate full HX(h)

© Dines Bjgmer 2010, Fredsvej 11, DK-2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 10, 2010, 12:0

74 From Domains to Requirement ts

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.6. Example Hub Crossings

The top left hub/link diagram (1.) thus can be claimed to depict hub state {(A, B),
(4,0), (A4, D), (B,0), (C,D), (D, A)}.

Photo 2 shows a semaphore which seems to be able to display all kinds of states.

Figure 2: A General Purpose Traffic Light

The point of this example is to show that a hub may take on many states, that not all
hub states may be desirable (viz., lead to crossing traffic if so interpreted), and that
to reach from one hub state to another one must change the state.

@ Dines Bigmer 2010, Frodsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 10, 2010, 12:07

Lecture Notes in Software Engineering 73

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.6. Example Hub Crossings

3.1.6. Example Hub Crossings

|y - -
m

L

_J

Figure 1: Four “Safe” Flows

November 10, 2010, 12:07, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark

Lecture Notes in Software Engineering 75
3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.7. Actions Continued

3.1.7. Actions Continued

73. The action change HX: takes a hub, A, in some state, and a desired
next state, ho', and results in a hub, h/, which
(a) has the same hub identifier as h,
is connected to the same links as h,
has the same hub state space as h,
has the same attributes (names and values) as h,
(b) but whose state may have changed.
73(b). The new state of b’ ought be ho’, but electro-mechanical or other
failures in setting the state may set the new state to any state of the

potential states of h (i.e., h’), not just to any state in the hub state
space of h.

November 10, 2010, 12:07, Budapest Lectures, Oct. 11-22, 2010 @ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

76

From Domains to Requirements

3. An Ontology of Domain Facets 3.1. Intrinsics 3.1.7. Actions Continued

value

73. change HY: H x HX — H

73. change HY((hi lis,ho hw hatrs),ho’) =
73(b). let ho” € generate full HYs in
73(a). (hilis,ho”’ hw hatrs) end

e Had we specified that the resulting state must be ho’

e then we had prescribed a requirements to a change operation.

e As it is now we have described a domain phenomenon, namely that
operations may fail.

© Dines Bjgmer 2010, Fredsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 10, 2010, 12:0

78 From Domains to Requirement ts

3. An Ontology of Domain Facets 3.2. Support Technologies 3.2.1. Traffic Signals

3.2.1. Traffic Signals
A traffic signal represents a technology in support of visualising hub
states and in effecting state changes.

74. A hub state is now modelled as a triple: the link identifier /; (“coming
from”), a colour (red, , and green), and another the link
identifier [; (“going to”).

75. Signalling is now a sequence of one or more pairs of next hub states
and time intervals:

< (hoy,tiy), (hog, ti9), ..., (hop_1,tin_1), (hop, tip) >,n >0

Budapest Lectures, Oct. 11-22, 2010 November 10, 2010, 12:07

Lecture Notes in Software Engineering 7

3. An Ontology of Domain Facets 3.2. Support Technologies

3.2. Support Technologies

Definition: Support Technology. By a support technology we
understand

e a facet of a domain,

e one which reflects its (current) dependency on

— human, — electronic and /or

— mechanical, — other technologies

— electro-mechanical,

(i.e., tools) in order to carry out its business processes.

November 10, 2010, 12:07, Budapest Lectures, Oct. 11-22, 2010 © Dines Bigmer 2010, Fredsvej 11, DK-2840 Holte, Denmark

Lecture Notes in Software Engineering 79

3. An Ontology of Domain Facets 3.2. Support Technologies 3.2.1. Traffic Signals

e The idea of a signalling is

— to first change the designated hub to state hoy,

—then wait ti1 time units,

— then set the designated hub to state hoo,

— then wait tio time units,

— etcetera, ending with final state o,

—and a (supposedly) long time interval ti,,

— before any decisions are to be made as to another signalling.
e The set of hub states {hoy, hoo, ..., ho, 1} of

< (hoy,tiy), (hoo, tio), ..., (hop_1, tin_1), (hon, tiy) >,n >0
are called intermediate states.

e Their purpose is to secure an orderly vehicle-wise safe signal tran-
sitions from red to green etc.

November 10, 2010, 12:07, Budapest Lectures, Oct. 11-22, 2010 @ Din

es Bjgrmer 2010, Frodsvej 11, DK 2840 Holte, Denmark

80 From Domains to Requirements

3. An Ontology of Domain Facets 3.2. Support Technologies 3.2.1. Traffic Signals

76. A street signal (a semaphore) is now abstracted as a map from pairs
of hub states to signalling sequences.

The idea is that given a hub one can observe its semaphore, and given
the state, ho (not in the above set), of the hub “to be signalled” and
the state hoy, into which that hub is to be signalled “one looks up”
under that pair in the semaphore and obtains the desired signalling.

type

74. HY = LI x Colour x LI

74. Colour == red | yellow | green

75. Signalling = (HX x TIT)*

75. TI

76. Sempahore = (HXXHY) p Signalling
value

76. obs Semaphore: H — Sempahore

82 From Domains to Requirement ts
3. An Ontology of Domain Facets 3.2. Support Technologies 3.2.2. Traffic “Control”

3.2.2. Traffic “Control”

78. Given two hub states, hojpj and hog, g, where hoji¢ designates
a present hub state and ho,, g designates a desired next hub state
after signalling.

79. Now signalling is a sequence of one or more successful hub state
changes.

value

78. signalling: HX x HY — H — H

79. signalling(hoypit,hoe,q)(h) =

79. let sema = obs Semaphore(h) in

79. let sg = sema(hoyyjt,hoy,q) in

79. signal sequence(sg)(h) end end

79. pre (hoj,it,ho,,q) € dom obs Semaphore(h)

Lecture Notes in Software Engineering 81

3. An Ontology of Domain Facets 3.2. Support Technologies 3.2.1. Traffic Signals

77. A hub semaphore, sema, contains only such hub states as are ob-
served in the hub state space.

(a) Let hsps be the set of “from/to” hub state pairs in sema.
(b) Then hs is the set of all hub states mentioned in hsps.

(¢) To hs join all the hub states mentioned in any signalling, sg, of
sema.

77. hub_state space: Sempahore — HY-set

77. hub state space(sema) =

77(a). let hsps={hsp|hsp:(HXxHX)hsp € dom sema} in

77(b). let hs={ho’ ho”|ho’ ho”:H¥-(ho' ho'')€ hsps} in

77(c). hs U U{{ho|(ho ti):(HEXTI)-(ho,ti)€ elems sg}|sg:Signallingsg €
77. end end

axiom

77. ¥V h:H - U obs HQ(h) = hub state space(obs Semaphore(h))

Lecture Notes in Software Engineering 83

3. An Ontology of Domain Facets 3.2. Support Technologies 3.2.2. Traffic “Control”

79. signal sequence(())(h) = h
79. signal sequence(((ho,ti)) "sg)(h) =
79. let ho' = change HY(h)(ho) in

79. if ho’ # ho then chaos
79. else wait(ti); signal sequence(sg)(h) end end

e If a desired hub state change fails (chaos) then we do not define the
outcome of signalling.

84

From Domains to Requirements

3. An Ontology of Domain Facets 3.3. Rules and Regulations

3.3. Rules and Regulations
Definition: Rule. A rule stipulates a regulating principle.

e In the context of modelling domain rules we shall understand a
domain rule

— as some text

— whose meaning is a predicate

— over a pair of suitably chosen domain states.
e We may assume that

— a domain action or a domain event

— takes place in the first of these states and
— results in the second of these states.

e [f the predicate is true

— then we say that the rule has been obeyed,

© Dines Bjgmer 2010, Fredsvej 11, DK 2840 Holte, Denmark

Budapest Lectures, Oct. 11-22, 2010 November 10, 2010, 12:07

86

From Domains to Requirements

3. An Ontology of Domain Facets 3.3. Rules and Regulations

Usually a domain rule is paired with a possibly remedying regulation.
Definition: Regulation.

e A regulation stipulates that
—an action be taken

— in order to remedy a previous action which violated a rule.
e That is,

— a regulation is some text

— which designates a possibly composite action,
— that is, a state-to-state change

— which ostensibly results in a state

— in which the rule, “attached” to the regulation, now holds.

@ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmar)

Budapest Lectures, Oct. 11-22, 2010 Novel

10, 2010, 12:07

Lecture Notes in Software Engineering 8

— otherwise that it has been violated.

November 10, 2010, 12:07, Budapest Lectures, Oct. 11-22, 2010

© Dines Bjorner 2010, Fredsvej 11, DK 2840 Holte, Denmark

Lecture Notes in Software Engineering

87
3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.1. Vehicles

3.3.1. Vehicles
80. Vehicles are further undefined quantities except that

(a) vehicles have unique identifiers,
(b) vehicles are either positioned
i. at/in hubs
ii. or on links, in some fractional (non-zero) distance from a hub
toward the connecting hub.

81. From a net (sort) one can observe all the vehicles of the net.!

82. No two vehicles so observed have the same identifier.

1Thus a concrete net type, in addition to hubs and links (now) also contains vehicles.

@ Dines Bjgrner 2010, Frodsvej 11, DK 2840 Holte,

88 From Domains to Requirements

3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.1. Vehicles

type
80 \Y%
80(a). VI

(b)
80((b))ii. LP == onL(li:LI,thi:HLE:F thi:HI)
80((b))ii. F = {|t:F-0<t<1]}
value
80(a). obs VI V. — VI
80(h). obs VP:V — VP
81. obs_Vs: N — V-set
axiom
82. Vwv:V.veEobsVshn) =
82. 3 onL(li,thi,f,thi):VP - onL(li,thi,f,thi)=obs VP(v) =
82. 3 1.l € obs Ls(n)Ali=obs LI(1)A{fhi,thi}=obs HIs(1) Vv
82. 3 atH(hi):VP - atH(hi)=obs_VP(v) =
82. 3 h:H:h € obs Hs(n)Ahi=obs HI(h)
% From Domains to Reqirements

3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.2. Traffic 3.3.2.1. Wellformedness of Traffic 3.3.2.1.1 Static Wellformedness

3.3.2.1.1. e Static Wellformednesse

85. We define a predicate over vehicle positions.

(a) Every vehicle in the traffic has a proper position on the net, either at a hub or
along a link.

(b) No two vehicles of the traffic can occupy exactly the same link position. (That
is, the link positions onL(li,hi,f,hi") and onL(li,hi,f',hi") must have the two frac-
tions (f, f) differ — be it ever so “minutely”).

We first define two auxiliary functions:?

value
obs_HIs: N — HI-set
obs Hls(n) = {obs HI(h)|h:H-h € obs Hs(n)}
obs_LIs: N — Ll-set
obs_LIs(n) = {obs LI(h)|l:L:] € obs Ls(n)}

2They really ought to have been defined much earlier!

@ Dines Bigmer 2010, Frodsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 10, 2010, 12:07

Lecture Notes in Software Engineering 89
3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.2. Traffic

3.3.2. Traffic

83. By traffic we understand a continuous function from time to a pair
of nets and position of vehicles.

84. By time we understand a dense set of points with dense and points

being mathematical concepts [wayne.d.blizard.90,J.van.Benthen.Logic.Time91].

type
83. TF =T — (sel net:N x sel veh pos:(V m VP))
84. T

3.3.2.1. Wellformedness of Traffic
e Expressing the wellformedness of traffic is not a simple matter.

e We shall approach this task in a number of “small steps”.

November 10, 2010, 12:07, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmar) 1

Lecture Notes in Software Engineering 91
3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.2. Traffic 3.3.2.1. Wellformedness of Traffic 3.3.2.1.1 Static Wellformedness

85. proper_vehicle_positions: TF — Bool
85. proper_vehicle_positions(tf) =
85. V t:T - t € DOMAIN tf -

85. let (n,vps) = tf(t) in

85(a) V v:Vev € dom vpris net_position(vps(v))(n)

85(b) YV v:Vev' € dom vp A v£v'=-diff_net_pos(vps(v),vps(v))
85. end

85(a). ismnet_position: VP — N — Bool

85(a). ismet_position(vp)(n) =

85(a). case vp of

85(a). atH(hi) — hi € obs_HIs(n),

85(a). onL(1i,fhi,f,thi) — 1i € obs_LIs(n)A{fhi,thi} Cobs Hls(n)
85(a). end

85(b). diff net_pos: VP x VP — Bool

85(h). diff net_pos(vp,vp) =

85(b). case (vp,vp') of

85(b). (atH(hi),atH(hi)) — true,

85(b). (onL(li,fhi,f,thi),onL(li,fhi.f,thi)) — ££,

85(b). _ — true

85(h). end

November 10, 2010, 12:07, Budapest Lectures, Oct. 11-22, 2010 @ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

92

From
3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.2. Traffic 3.3.2.1. Wellformedness of Traffic 3.3.2.1.1 Static Wellforn

3.3.2.1.2. ¢ Dynamic Wellformednesse

86. Vehicles, when moving, move monotonically, that is,

(a) if a vehicle, at some time, ¢, is at a link position onL(li,hi,f,hi’)
where f is not infinitesimally close to 1, then that vehicle will, at
some later time ¢/, infinitesimally close to ¢, be at link position
onL(li,hi,,hi") where f is infinitesimally close to f;

(b) if the vehicle, at some time, ¢, is at a link position onL(li,hi,f,hi")
where f is indeed infinitesimally close to 1, then that vehicle will,
at some infinitesimally later time ', be at hub position atH(hi’);

(c) and if the vehicle, at some time, ¢, is at a hub position atHP(hi)
then the vehicle will at some infinitesimally later time ¢’ either be
at hub position atHP(hi) or at some link position onL(li,hi,f,hi’)
where f is infinitesimally close to 0.

© Dines Bjgmer 2010, Fredsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 10, 2010, 12:07

94

ins to Requirements

Fi
3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.2. Traffic 3.3.2.1. Wellformedness of Traffic 3.3.2.1.2 Dynamic

87. If a vehicle is (has been) moving along a link /; and is now,
e at time ¢, at position onlL(l;, hj, f, hy), that is, moving from h;
to hy,
e then it cannot at a subsequent, infinitesimally close time, ¢, be at
a position
e onl(l;, hy., f', hj), that is, moving in the opposite direction, hj. to

hy.

@ Dines Bigmer 2010, Frodsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 10, 2010, 12:07

Lecture Notes in Software Engineering 93

3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.2. Traffic 3.3.2.1. Wellformedness of Traffic 3.3.2.1.2 Dynamic Wellformedness

value

86. monotonic: TF — Bool

86. monotonic(tf) =

86. VYV t,t°T - {t,t}Cpomamtf -

86. let (n,vps) = tf(t),(n,vps)=tf(t') in

86. INFINITESIMALLY CLOSE (t,t)At<t'=

86. V v:V-v € dom vps N dom vps' -

86. case (vps(v),vps(v)) of

86(a). (onL(1i,fhi,f thi),onL(1i,thi,f thi)) —
86(a). f<f A INFINITESIMALLY CLOSE (f,f),
86(h). (onL(li,fhif thi),atH(thi)) —
86(b). INFINITESIMALLY CLOSE (f,1),
86(c). (atH(hi),atH(hi)) — true,

86(c). (atH(hi),onL(li,hi f,thi)) —

86(c). INFINITESIMALLY CLOSE (0,f),

86. _ — true
86. end end

November 10, 2010, 12:07, Budapest Lectures, Oct. 11-22, 2010 © Dines Bigmer 2010, Fredsvej 11, DK-2840 Holte, Denmark

Lecture Notes in Software Engineering 95

3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.2. Traffic 3.3.2.1. Wellformedness of Traffic 3.3.2.1.2 Dynamic Wellformedness

value

87. God_does not_play dice’: TF — Bool

87. God does not_play dice(tf) =

87. V.t T {t,t}Coomamtf A t<t' A mrmvresmaLLy crosk (t,t)=>

87. let (n,vps) = tf(t),(n,vps)=tf(t) in
87. Vv:V.v e dom vps N dom vps =
817. case (vps(v),vps(v)) of
87. (onL(li,thi,_thi),onL(li,thi,_fhi))—false,
87. _ — true
87. end end
sAlbert Einstein: “l, at any rate, am convinced that He does not throw dice.” Letter to Max Born (4

December 1926); The Born-Einstein Letters (translated by Irene Born) (Walker and Company, New
York, 1971) ISBN 0-8027-0326-7. Reflects Einstein’s view of Quantum Mechanics at the time.

November 10, 2010, 12:07, Budapest Lectures, Oct. 11-22, 2010 @ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

96 From Domains to Requirements
3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.2. Traffic 3.3.2.1. of Traffic 3.3.2.1.2 Dynamic Wellformedn

88. If a vehicle is (has been) moving along and has,

e at time ¢, been at some position p, and

e at time ¢/, later than ¢, is at some position p’,

e then it must at all times ¢”” between ¢ and ' have been somewhere
on the net.

value

88. no_ghost vehicles: TF — Bool

88. no _ghost vehicles(tf) =

88. Vt,62T - {t,t'} Coomam tf A t<t’ =

88. let (n,vps) = tf(t),(n,vps)=tf(t) in

88. V v:V.v € dom vps N dom vps =

88. VT t<t'<t =

88. let (n',vps’) = tf(t") in v € dom vps’ end
88. end

© Dines Bjgmer 2010, Fredsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 10, 2010, 12:0

98 From Domains to Requirements
3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.4. Another Traffic Regulator

3.3.4. Another Traffic Regulator

e We present an abstraction of a more conventional traffic signal than
modelled in Items 74 on page 78 to 77 on page 81.

90. A traffic signal now simply shows an entry permit: either red,
or green at the hub when “leaving” any link, i.e., at the entry to a
hub from any link.

type

90. EP == red | yellow | green

90. HY = LI m EP

axiom

90. V h:H - obs Lls(h)=dom obs HX(h)

e We leave it to the reader to express a constraint over hub state spaces
as to how there must be hub states such that entry from any link is
possible.

@ Dines Bigmer 2010, Frodsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 10, 2010, 12:07

Lecture Notes in Software Engineering 97

3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.3. Traffic Rules (I of 11)

3.3.3. Traffic Rules (I of 1)

89. A vehicle must not move from a hub, h;, into a link ¢ (from hub (identified by)
hi to hub (identified by) h;) which is closed in direction (h;, h;), that is, where
(hi, hj) is not in the current state of link.

rule:

89. Vt£TF 4T - t € DOMAIN(tf) =
89. let (n,tp) = tf(t) in

89. VwviV.vedomtp=

89. case tp(v) of

89. atH(hi) —

89. let t:T - t'’>t A t' € DOMAIN(tr') A INFINITESIMALLY_CLOSE(t,t') in
89. let (n'tp) = tf(t) in

89. 3 li:LLhi"HL£:F hi"HI -

89. hi'=hi A INFINITIEIMALLY_CLOSE(f,0) A

89. tp'(v) = onL(li,hi’f hi") A(hihi") & obs L¥(getL(lin’))

89. — ..

89. end_end end end

November 10, 2010, 12:07, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjorner 2010, Fredsvej 11, DK 2840 Holte, Denmark

Lecture Notes in Software Engineering 99

3. An Ontology of Domain Facets 3.3. Rules and Regulations 3.3.5. Traffic Rules (11 of 11)

3.3.5. Traffic Rules (Il of II)

91. Vehicles must not enter a hub if entry permission is not green.

rule:

91. VtETFT : t € DOMAIN(tf) =
91. let (n,vps) = tf(t) in

91. Vwv:V-:-vé&dom vps =

91. case vps(v) of

91. onL(li,hi,fhi’) —

91. INFINITESIMALLY_CLOSE(f,1) A

91. let ho = obs HX(getH(hi'n)),

91. tT - t>t A INFINITESIMALLY _CLOSE(t,t') in

91. let (n',vps) = vps(t) in

91. ho(li) # green A vps(v) # atH(hi') assert: vps(v) = onL(li,hi,f hi)
91. end end

91. I

91. endend

November 10, 2010, 12:07, Budapest Lectures, Oct. 11-22, 2010 @ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

Lecture Notes in Software Engineering 99

[End of Lecture 3: DOMAINS: Intrinsics — Rules & Regulations|

November 10, 2010, 12:07, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark

398 From Domains to Requirements
2.5.1.2 Wellformedness of Construction Plans 43

2.5.2 Augmented Construction Plans 47
2.5.3 Sequential Construction Behaviours 50
‘Lect. # 3: DOMAINS: Intrinsics — Rules & Regulations 52
3 An Ontology of Domain Facets 53
3.0.1 Definitions 53
3.0.2What Can Be Observed 57
3.0.3 Business Processes .. 58
3.0.3.1 A Characterisation 58

3.0.3.2 An Example . . . 58
31dntrinsics 59
3.1.1 Net Topology Descriptors 60
3.1.2 Link States and Link State Spaces 63
3.1.3 Hub States and Hub State Spaces 67
3.1.4 State and State Space Wellformedness 69
3.1.5 Concrete Types for Simple Entities 70
3.1.6 Example Hub Crossings 73
3.1.7 Actions Continued L 75

3.2 Support Technologieso "
3.2.1 Traffic Signals L 78
3.2.2 Traffic “Control” 82

3.3 Rules and Regulations 84
331 Vehicles L 87
332 Traffic 89
3.3.2.1 Wellformedness of Traffic 89

3.3.2.1.1 Static Wellformedness 90

3.3.2.1.2 Dynamic Wellformedness 92

3.33 Traffic Rules (I of 1) . . o oo 97
3.3.4 Another Traffic Regulator 98
335 Traffic Rules (ILof 1)o 99

@ Dines Bigmer 2010, Frodsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 10, 2010, 12:07

Lecture Notes in Software Engineering 397

B Slide Table-of-Contents

Contents
|Lect. #1: COVER & INTRODUCTION 0
1 Introduction 5
L1 The Problem 5
1.2 The Triptych Approach 6
s
2 An Ontology of Specification Entities 9
2.1 Simple Entities 11
2.1.1 Net, Hubs and Links Lo 13
2.1.2 Unique Hub and Link Identifiers 14
2.1.3 Observability of Hub and Link Identifiers 15
214 ATREOreM . . . L 17
2.1.4.1 Links implies Hubs L L 17
2.1.5 Hub and Link Attributes 18
2.1.6 Hub and Link Generators 19
225tates L 22
23 ACHIONS . . L 22
2.3.1 Insert Hubs 23
2.3.2 Remove Hubs 25
2.3.3 Insert Links 27
234 Remove Links 31
235 Two Theorems 34
2351 1dempotency 34
2.35.2 Reachability 35
24 EVENtS 37
25 Behaviours 41
2.5.1 Behaviour Prescriptions 42
2511 Construction Plans 42

November 10, 2010, 12:07, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark

Lecture Notes in Software Engineering 399

|Lect. # 4: DOMAINS: Scripts — Human Behaviour 98

35 SCriPts © . 99

3.5.1 Routes as SCHPES o o 100

3511 Paths . . o o 100

3512 Routes 103

3.5.2 Bus Timetables as Scripts . .. 106

3.5.2.1 Buses .. 106

3.5.2.2 Bus Stops 106

3523 BusRoutes 107

3.5.24 Bus Schedule 109

3525 Timetable 111

3.5.3 Route and Bus Timetable Denotations 114

3.5.4 Licenses and Contracts 116

3541 Contracts 122

3.5.4.2 Contractual Actions o127

3.5.4.3 Wellformedness of Contractual Actions 130

3.6 Management and Organisation 136

3.6.1 Transport System Examples 140

3.7 Human Behaviour Lo 143

3.8 Towards Theories of Domain Facets 145

3.8 1 A Theory of INtrinsiCs 146

3.8.2 Theories of Support Technologies 147

3.8.2.1 An Example . ..o 14r

3.8.22 General 150

3.8.3 A Theory of Rules & Regulations 151

3.8.4 A Theory of Management & Organisation 161

3.8.5 A Theory of Human Behaviour 162

|Lect. #5: REQUIREMENTS — up to and incl. Determination 164

4 An Ontology of Requirements Constructions

4.1 Business Process Re-engineering
4.1.1 The Kinds of Requirements e

4.1.2 Goals Versus Requirements
4.1.2.1 Goals of a Toll Road System

November 10, 2010, 12:07, Budapest Lectures, Oct. 11-22, 2010 @ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

400 From Domains to Requirements

4.1.2.2 Goals of Toll Road System Software

4.1.2.3 Arguing Goal-satisfaction of a Toll Road System

4.1.2.4 Arguing Goal-satisfaction of Toll Road System Software

4.1.3 Re-engineered Nets

4.2 Domain Requirements .
4.2.1 Projection

4.2.1.1 Example .

4.2.2 Instantiation

4.2.2.1 Example

4.2.2.2 Abstraction: From Concrete Toll Road Nets to Abstract Nets 201

4.2.2.3 Theorem

4.2.3 Determination

4.2.3.1 Example

‘Lect. # 6: REQUIREMENTS - from Extension “out” 207
424 EXEension

4.2.4.1 Intuition
4.2.4.2 Descriptions
4.2.4.2.1 A RAISE/CSP Model

4.2.4.2.1 Toll Booth Plazas

42421 Cars

4.2.4.2.1 Entry Booths

4.2.4.2.1 Gates

4.2.4.2.1 The Entry Plaza System

4.2.42.2 A Duration Calculus Model

4.24.2.3 A Timed Automata Model

4.2.5 Fitting
4.2.5.1 Examples

4.3 Interface Requirements
4.3.1 But First: On Shared Phenomena and Concepts
4.3.2 Shared Simple Entities
4.3.2.1 Example

4.3.3 Shared Actions
4.3.3.1 Example .

4.3.4 Shared Events

© Dines Bjgmer 2010, Fredsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 10, 2010, 12:07

402 From Domains to Requirements

1.1.2.2 Subtypes
Example 5: Net Subtypes

1.1.2.3 Sorts — Abstract Types
Example 6: Net Sorts

[Lect. # 8: RSL: Values & Operations 289
1.2 Concrete RSL Types: Values and Operations 290
121 Arithmetic L Lo
1.2.2 Set Expressions
1.2.2.1 Set Enumerations
Example 7: Set Expressions over Nets
1.2.2.2 Set Comprehension
Example 8: Set Comprehensions 297
1.2.3 Cartesian Expressions
1.2.3.1 Cartesian Enumerations
Example 9: Cartesian Net Types 299
1.2.4 List Expressions
1.2.4.1 List Enumerations L. 302
1.2.4.2 List Comprehension
Example 10: Routes in Nets
1.2.5 Map Expressions
1.2.5.1 Map Enumerations
1.2.5.2 Map Comprehension
Example 11: Concrete Net Type Construction
1.2.6 Set Operations
1.2.6.1 Set Operator Signatures 3
1.2.6.2 Set Examples
1.2.7 Cartesian Operations
1.2.8 List Operations
1.2.8.1 List Operator Signatures
1.2.8.2 List Operation Examples :
1.2.9 Map Operations
1.2.9.1 Map Operator Signatures and Map Operation Examples

@ Dines Bigmer 2010, Frodsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 10, 2010, 12:07

Lecture Notes in Software Engineering 401

4.3.4.1 Examples
4.3.5 Shared Behaviours
4.35.1 Example

4.4 Machine Requirements,
4.4.1 An Enumeration of Classes of Machine Requirements

Lect. # 11: CLOSING 246

5 Conclusion
5.1 What Have We Omitted
5.2 Domain Descriptions Are Not Normative
5.3 "Requirements Always Change”
5.4 What Can Be Described and Prescribed
5.5 What Have We Achieved — and What Not
5.6 Relation to Other Work
5.7 “Ideal” Versus Real Developments
5.8 Description Languages
5.9 Entailments
5.10 Domain Versus Ontology Engineering

6 Bibliographical Notes
6.1 Description Languages

Lect. # 7: RSL: Types

1 An RSL Primer
1.1 Types
1.1.1 Type Expressions .
1.1.1.1 Atomic Types

Example 1: Basic Net Attributes
1.1.1.2 Composite Types
Example 2: Composite Net Type Expressions .
1.1.2 Type Definitions
1.1.2.1 Concrete Types . .
Example 3: Composite Net Types
Example 4: Net Record Types: Insert Links

November 10, 2010, 12:07, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark

Lecture Notes in Software Engineering 403

|Lect. #9: RSL: Logic, A-Calculus, Fctl. Specs. 320

1.3 The RSL Predicate Calculus 321
1.3.1 Propositional Expressions 321
1.3.2 Simple Predicate Expressions 322
1.3.3 Quantified Expressions 323

Example 12: Predicates Over Net Quantities 324

1.4 A\-Calculus + Functions 327
1.4.1 The A-Calculus Syntax 327
1.4.2 Free and Bound Variables 328
1.4.3 Substitution 329
1.4.4 a-Renaming and (-Reduction 330

Example 13: Network Traffic 331
1.4.5 Function Signatures 338
Example 14: Hub and Link Observers . . 339
1.4.6 Function Definitions 341
Example 15: Axioms over Hubs, Links and Their Observers 344

1.5 Other Applicative Expressions 345
1.5.1 Simple let Expressions 345
1.5.2 Recursive let Expressions . . oL 346
1.5.3 Non-deterministic let Clause 347

1.5.4 Pattern and “Wild Card" let Expressions oL 348

155 Conditionals 349
Example 16: Choice Pattern Case Expressions: Insert Links 350

1.5.6 Operator/Operand Expressions 360

|Lect. # 10: RSL: Imperative & Process Specs. 360
1.6 Imperative CONSLIUCES o 361

1.6.1 Statements and State Changes
1.6.2 Variables and Assignment
1.6.3 Statement Sequences and skip
1.6.4 Imperative Conditionals
1.6.5 lterative Conditionals
1.6.6 Iterative Sequencing
1.7 Process Constructs
1.7.1 Process Channels

November 10, 2010, 12:07, Budapest Lectures, Oct. 11-22, 2010 @ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

404 From Domains to Requirements

1.7.2 Process Definitions

Example 18:
1.7.3 Process Composition 373
Example 19: 374
1.7.4 Input/Output Events 377
Example 20: .. 318
1.8 Simple RSL Specifications . 384
Example 21: 388
B Slide Table-of-Contents 397

© Dines Bjgmer 2010, Fredsvej 11, DK-2540 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 10, 2010, 12:07

