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10 From Domains to Requirements

2. An Ontology of Specification Entities

Definition: Specification.
e We use the term ‘specification’

e to cover the concepts of domain descriptions, requirements prescrip-
tions and software designs.

e More specifically a specification is a definition, usually consisting
of many definitions.

Definition: Entity. By an entity we shall understand
e cither a simple entity,
e an action,
® an event

e or a behaviour.
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2. An Ontology of Specification Entities

2. An Ontology of Specification Entities
Definition: Ontology.

e In philosophy: A systematic account of Existence.
e [0 us:

— An explicit formal specification of how to represent the phe-
nomena and concepts

— that are assumed to exist in some area of interest (some uni-
verse of discourse)

— and the relationships that hold among them.
Further clarification:

— An ontology is a catalogue of concepts and their relationships

— including properties as relationships to other concepts.
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2. An Ontology of Specification Entities 2.1. Simple Entities

2.1. Simple Entities
Definition: Simple Entity. By a simple entity we shall loosely
understand

e an individual, static or inert dynamic and that simple entities
“roughly correspond” to what we shall think of as values.

e We shall further allow simple entities to be

— either atomic

— or composite, i.e., in the latter case having decomposable sub-
entities.
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2. An Ontology of Specification Entities 2.1. Simple Entities

e Simple entities have attributes.
e Composite entities have

— attributes,
— sub-entities and

— a mereology, the latter explains how the sub-entities are formed

into the simple entity.

2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.2. Unique Hub and Link Identifiers

om Domain
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s to Requirements

2.1.2. Unique Hub and Link Identifiers
4. There are hub identifiers and there are link identifiers.
5. From a hub one can observe its hub identifier.
6. From a link one can observe its link identifier.
7. Hubs of a net have unique hub identifiers.
8. Links of a net have unique hub identifiers.

type
A HI LI
value
5. obs HI: H — HI
6. obs LI: L — LI
axiom
7. VN, hhiH - {hh}Cobs Hs(n) A h#£h' = obs _HI(h)#£obs HI(Iv)
8 VN, LI'L - {11} Cobs_Ls(n) A 14l = obs_LI(1)7#obs_LI(I)
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2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.1. Net, Hubs and Links

2.1.1. Net, Hubs and Links
1. There are nets, hubs and links.
2. A net contains zero, one or more hubs.

3. A net contains zero, one or more links.

type
1. N,H L

value
2. obs Hs: N — H-set
3. obs.Ls: N — L-set
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2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.3. Observability of Hub and Link Identifiers

2.1.3. Observability of Hub and Link Identifiers

9. From every hub (of a net) we can observe the identifiers of the zero,
one or more distinct links (of that net) that the hub is connected to.

value

9. obs Lls: H— LI-set
axiom

9. VnNh:Hh € obs Hs(n) = V li:LIli € obs LIs(h) = L exists(li)(n)
value

L exists: LI — N — Bool

L exists(li)(n) = 3 LIl € obs Ls(n)Aobs_LI(1)=li
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2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.3. Observability of Hub and Link Identifiers

10. From every link (of a net) we can observe the identifiers of the exactly
two (distinct) hubs (of that net) that the link is connected to.

value

10. obs Hls: L — Hl-set
axiom

10. ¥V n:N,LL1 € obs Ls(n) =

10.  card obs HIs(1)=2 A V hi:HI'hi € obs HIs(l) = H exists(hi)(n)
value

H exists: HI — N — Bool

H exists(hi)(n) = 3 h:H:h € obs_Hs(n)Aobs HI(h)=hi

2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.5. Hub and Link Attributes

2.1.5. Hub and Link Attributes

In preparation for later descriptions, narrative and formal, we make a
slight detour to deal with hub and link attributes — but we omit, at
present, from describing these attributes.

12. hub and link attributes, HAtrs and LAtrs, include the hub and link
identifiers that can be observed from hubs and links, respecively.

13. These can be observed from hubs and links of nets.

14. And these can be provided as arguments when construction hubs
and links.

type 13. obs HI: HAtrs — HI
12. HAtrs, LAtrs 13. obs LIs: HAtrs — Ll-set
value 14. obs_LI: LAtrs — LI
13. obs HAtrs: H — HAtrs 14. obs_HIs: LAtrs — HI-set

14. obs LAtrs: L — LAtrs
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2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.4. A Theorem

2.1.4. A Theorem
2.1.4.1. Links implies Hubs

11. It follows from the above that if a net has at least one link then it
has at least two hubs.

theorem:
11. ¥V n:N - card obs Ls(n)>1 = card obs Hs(n)>2
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2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.6. Hub and Link Generators

2.1.6. Hub and Link Generators
15. From [a (full) set of] hub attributes
(a) including an empty set of observable link identifiers
one can generate a hub with

(a) the hub identifier being that of the argument hub attributes,

(b) the link identifiers of the hub being argument the empty set of
link identifiers of the hub attributes and

(¢) the argument hub attributes being those of the resulting hub,

15. genH: HAtrs — H

15. genH(hatrs) as h

15(a). pre obs Lls(hatrs)={}

15(a). post obs_HI(h)=obs_HI(hatrs)
15(b). A obs LIs(h)={}

15(c). A obs HAtrs(h)=hatrs
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2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.6. Hub and Link Generators

16. From the set of hub attributes and a net one can “similarly” generate
a hub which is not a hub of the net.

17. From the set of link attributes one can “similarly” generate a link.

18. From the set of link attributes and a net one can “similarly” generate
a link which is not a link of the net.

where the reader is to narrate and formalise the “similarities”!
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2. An Ontology of Specification Entities 2.2. States

2.2. States
Definition: State. By a state we shall understand

e a collection of one or more simple entities.

2.3. Actions
Definition: Action. By an action we shall understand

e something which potentially changes a state,
e that is, a function application to a state

e which potentially changes that state.
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2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.6. Hub and Link Generators

21

16. genH: HAtrs — N — H

16. genH(hatrs)(n) as h

16.  pre obs Lls(hatrs)={}

16. A ~3 W:H:h' € obs Hs(n) A obs HI(I')=obs_HI(hatrs)
16. post h ¢ obs Hs(n)

16. A obs_HI(h)=obs_HI(hatrs)

16. A obs_LIs(h)={}

16. A obs HAtrs(h)=hatrs

17. genL: LAtrs — L 18. genL(latrs)(n) as 1

17. genL(latrs) as | 18. pre card obs Lls(latrs)=2

17.  pre card obs Hls(latrs)=2 18. A obs_Lls(latrs) Cxtr Lls(n)

17.  post obs LI(1)=obs LI(latrs) 18.  post 1 & obs Ls(n)

17. A obs_LI(1)=obs_LI(latrs) 18. A obs_LI(1)=obs_LI(latrs)

17. A obs_HIs(l)=obs_HIs(latrs) 18. A obs_HIs(1)Cobs_HIs(latrs)
18. A obs LAtrs(l)=latrs

18. genl: LAtrs — N — L
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2.3.1. Insert Hubs
19. One can insert a hub, A, into a net, n.
The hub to be inserted
20. must not be a hub of the net and

21. h cannot already be connected to any links.

That is, we can only insert “isolated” hubs.
The result of inserting a hub, h, into a net, n, is a new net, n’,

22. which is like n except that it now also has the hub A.
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2. An Ontology of Specification Entities 2.3. Actions 2.3.1. Insert Hubs

value
19. insertH: HAtrs — N = N
19. insertH(hatrs)(n) as n'
19. let h = genH(hatrs)(n) in
20. pre h ¢ obs Hs(n)
21. A obs Lls(h) = {}
22. post obs Ls(n)=obsLs(n)
22. A obs Hs(n')=obs Hs(n)u{h}
22. A obs HAtrs(h)=hatrs
19. end

Theorem:
e [nserting a proper hub in a well-formed net
e that is, a net satisfying all relevant axioms,

e results in a likewise well-formed net.
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2. An Ontology of Specification Entities 2.3. Actions 2.3.2. Remove Hubs

value
23. removeH: H — N 5 N
26. removeH(h)(n) as n'
24. pre h € obs Hs(n)
25. A obs Lls(h) = {}
27. post obs Ls(n)=obsLs(n)
28. A obs Hs(n')=obs Hs(n)\{h}

e Please note the almost line-by-line similarity of the insert and remove
hub descriptions

e and that the only difference between these descriptions are the

e membership, union, respectively set difference operations (¢, €, U
respectively \ ).
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2. An Ontology of Specification Entities 2.3. Actions 2.3.2. Remove Hubs

2.3.2. Remove Hubs

23. One can remove a hub, h, from a net, n.
The hub to be removed

24. must be a hub of the net and

25. h cannot be connected to any links.

That is, the hub, A, may earlier — in is membership of the net — have
been connected to links, but these must already, at the time of hub
removal, have been removed, see below.

That is, we can only remove “isolated” hubs.
26. The result of removing a hub, h, from a net, n, is a new net, n’,
27. which is like n
28. except that it now no longer has hub h.
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2. An Ontology of Specification Entities 2.3. Actions 2.3.3. Insert Links

2.3.3. Insert Links
29. One can insert a link, ¢, into a net, n.
The link to be inserted must
30. not be a link of the net,
31. but the observable hub identifiers must be those of hubs of the net.
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2. An Ontology of Specification Entities 2.3. Actions 2.3.3. Insert Links

The result of inserting a link, ¢, into a net,

32.
33.
34.
30.

36.

37.
38.

39.

n, is a new net, n/,

in which ¢ is now a member.

Let hj., by, be the two (distinct) hub identifiers of £ and

let hj, hj, be the two (distinct) hubs of n which are identified by
hi» g

All hubs of net n except hj, hy, are the same as in n and are un-
changed in n/.

The two hubs hj, hy, of n become hubs h;, h;{ of n/

such that only the observable identifiers of connected links have
changed to now also include the identifier of link ¢,

and such that the observed attributes are those of the argument.

30

2. An Ontology of Specification Entities 2.3. Actions 2.3.3. Insert Links

xtrHIs: N — Hl-set
xtrHIs(n) = {obs HI(h)|h:H-h € obs Hs(n)}

getH: HI - N 5 H
getH(hi)(n) = let h:H - h € obs Hs(n) A obs HI(h)=hi in h end
pre 3 h:H - h € obs Hs(n) A obs HI(h)=hi

Lecture Notes in Software Engineering 29

2. An Ontology of Specification Entities 2.3. Actions 2.3.3. Insert Links

value
29.
32.
30.
31.
33.
34.
35.
31.
36.
37.
38.
38.
39.

insertL: L x LAtrs — N = N
insertL(l,latrs)(n) as o
pre | ¢ obs Ls(n)
A obs_HIs(I)CxtrHIs(n)
post obs Ls(n) = obs Ls(n) U {1}
A let {hji,hki}=obs Hls(1
let (hj,hk) = (getH(hji)
{hj,hk}Cobs Hs(n)
A obs Hs(n)\{hj,hk} = obs Hs(n')\{hj,hk}
A let (hj,hk) = (getH(hji)(n'),getH(hki)(n)) in
obs LIs(hk) = obs LIs(hk) U {obs LI(1)}
A obs Lls(hj) = obs_Lls(hj) U {obs LI(l)} end end end
A obs LAtrs(l) = latrs

) in
(n),getH(hki)(n)) in
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2. An Ontology of Specification Entities 2.3. Actions 2.3.4. Remove Links

2.3.4. Remove Links

40. One can remove a link, ¢, from a net, n.

The link to be removed must

41. be a link of the net.
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2. An Ontology of Specification Entities 2.3. Actions 2.3.4. Remove Links

The result of removing a link, ¢, from a net,

42.n, is a new net, n’,

43. in which ¢ is no longer a member.

44. Let hj,;, by, be the two (distinct) hub identifiers of £ and

45.let hj, hy. be the two (distinct) hubs of n which are identified by
hjis g

46. hj, hy, are in n'.

47. All hubs of net n except hj, hy, are the same as in n and are un-
changed in n/.

48. The two hubs h;, hy, of n become hubs h., h;C of n/

49. such that only the observable identifiers of connected links have
changed to now no longer include the identifier of link £.
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2. An Ontology of Specification Entities 2.3. Actions 2.3.5. Two Theorems

2.3.5. Two Theorems
2.3.5.1. Idempotency

e With the preconditions satisfied by the insert and remove actions
e one can prove that first inserting a hub (link) into a net and

e then removing that hub (link) from the resulting net restores the
original net:

theorem
vV nn:NhHILL-

pre insertH(h)(n) A removeH(h)(n’) A insertL(l)(n) A removel(l)(n) =

removeH(h)(insertH(h)(n)) = n A removeL(l)(insertL(1)(n))
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2. An Ontology of Specification Entities 2.3. Actions 2.3.4. Remove Links

value

40. removeL: L — N = N

42. removeL(l)(n) as o

41. pre | € obs Ls(n)

43. post obs Ls(n) = obs Ls(n) \ {l}

44. A let {hji,hki}=obs Hls(l) in

45. let (hj,hk) = (getH(hji)(n),getH(hki)(n)) in
46. {hj,hk}Cobs Hs(n)

47. A obs Hs(n)\{hj,hk} = obs Hs(n')\{hj,hk}

48. A let (hjhk) = (getH(hji)(n'),getH(hki)(n)) in
49. obs_LIs(hk) = obs_LIs(hk) \ {obs_LI(1)}

49. A obs_Lls(hj) = obs LIs(hj) \ {obs LI(1)} end end end
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2. An Ontology of Specification Entities 2.3. Actions 2.3.5. Two Theorems 2.3.5.2. Reachability

2.3.5.2. Reachability
e Any net that satisfies the axioms above

e can be constructed by sequences of insert hub and link actions.

theorem
let n nil:N - obs_Hs(n nil)=obs_Ls(nnil)={} in
V n:N F axioms 7. and 8 on page 14.; 9 on page 15. 10 on page 16. -
3 hl:H*, 1.L* - let " = insertHs(hl)(n nil) in insertHs(ll)(n)=n end
end

insertHs: H* — N 5 N
insertLs: L* — N 5 N

insertHs(hl)(n) = case hl of () — n, (h)"hl' — insertHs(hl')(insertH(h)(n)) end
insertLs(1l)(n) = case Il of () — n, (I)"1I' — insertLs(Il')(insertL(1)(n)) end
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2. An Ontology of Specification

From Domains to Requirements
Entities 2.3. Actions 2.3.5. Two Theorems 2.3.5.2. Reachability

Informal proof: An informal proof goes like this:
e Take a net.

e For every hub, h, in that net,
—let B/ be a version of h which has
x the same hub identifier,

* an empty set of observable link identifiers (of connected links)
x and otherwise all other attributes of h,

—let A/ be a member of the list of hubs — and only such hubs.

— Let every and only such links in n be members of the list of links.
e Performing first the insertion of all hubs and then the insertions of

all links will “turn the trick” !

end of informal proof.
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2. An Ontology of Specification Entities 2.4. Events

e A mudslide across a railway track or a road segment (i.e., a link)
represents an event

— that effectively “removes” the link, or at least a segment of a link
e Similarly if

— a train and/or automobile bridge collapses or

—a tunnel gets flooded or catches fire.

How are we to model such, and other events?

Lecture Notes in Software Engincering

2. An Ontology of Specification Entities 2.4. Events

2.4. Events
Definition: Event.

e An event is something that occurs instantaneously.

e Events are manifested by certain state changes, and by certain
interactions between behaviours or processes.

e The occurrence of events may “trigger” [further| actions.

e How the triggering, i.e., the invocation of functions are brought
about is usually left implied, or unspecified.
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50. We choose to model the event” “disappearance” of a segment of a
link identified by [;: L1 as the composition of the following actions:
(a) the removal of link I:L being affected, where I;: L1 identifies the
link in the network;
(b) the insertion of two hubs, b/, h"":H | corresponding to “points” (on
link /:L) on either side of the mudslide or bridge — or other; and
(¢) the insertion of two links, I/,1":
link and the new hubs.

(d) I;: LT must identify a link I:L of net n:N.

:L, between the hubs of the original

50(b). newH: N — H-set — H

0(b). newH(n)(hs) = let h:H - h & hs A obs LIs(h)={} in h end
50(c). newlL: N — L-set — (HIxHI) — L
0(c). newL(n)(Is)(hi,hi")

= let L -1 ¢ Is A obs HIs(l)={hi’hi'} in | enc
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2. An Ontology of Specification Entities 2.4. Events

value
50. event_link disappearance: LI — N 5 N
50(a). let I = xtrL(li)(n) in
50(a). let {hijhi'} = obs HIs(l) in
50(a). let n' = removeli(1)(n) in
(b). let h'=newH(n)(obs Hs(n)) in
50(b). let h" = newH(n)(obs Hs(n)u{h}) in
(b). let n" = insertH(h')(insertH(h")(n)) in
(c). let ] = newL(n)(obs Ls(n))(obs HI(l),hi') in
50(c). let I'= newL(n)(obs Ls(n)U{l'})(obs HI(h"),hi") in
(c)
(

d). preli € xtrLIs(n)
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2. An Ontology of Specification Entities 2.5. Behaviours 2.5.1. Behaviour Prescriptions

2.5.1. Behaviour Prescriptions
e Usually behaviours follow a prescription.
e In the case of net construction we refer to the prescription as a
construction plan.
2.5.1.1. Construction Plans

51. The plan for constructing a net can be abstracted as

(a) a map, PLAN, which to each hub identifier associates

(b) a link-to-hub identifier map, LHIM, from the identifiers of links
emanating from the hub to identifiers of connected hubs.

type
51(a). PLAN = HI z» LHIM
51(b). LHIM = LI s HI

insertL(1') (insertL(I')(n")) end end end end end end end end
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2. An Ontology of Specification Entities 2.5. Behaviours

2.5. Behaviours
Definition: Behaviour.

e By behaviour we shall understand the way in which something
functions or operates.

e In the context of domain engineering behaviour is a concept as-
sociated with phenomena, in particular manifest entities.

e And then behaviour is that which can be observed about the
value of the entity and its interaction with an environment.

e A simple, sequential behaviour is a sequence of zero, one or more
actions and events.
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2. An Ontology of Specification Entities 2.5. Behaviours 2.5.1. Behaviour iptions 2.5.1.2. of C ion Plans

2.5.1.2. Wellformedness of Construction Plans

52. Wellformed net construction plans satisfy three conditions:

(a) All Links are Two-way Links:

1. Let hy. be any hub identifier of the construction plan.
ii. For all link identifiers, [;, of the LIHM, lhimy,, mapped into by
hi,
iii. let hy be the hub identifier mapped into by I; in lhimy,,
iv. then [; is in the link-to-hub-identifier map, [himy, mapped into

by hy,
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2. An Ontology of Specification Entities 2.5. Behaviours 2.5.1. Behaviour iptions 2.5.1.2. of C ion Plans

(b) Using Hub Identifier Occurrences are Defined:
i. Let lhim be any link-to-hub-identifier map of a construction
plan.
ii. For every hub identifier, h;, mapped to by a link identifier, [;,
in lhim
iii. there exists a hub identifier, iy, that maps into ;; and

52(a). all links are two way links: PLAN — Bool

52(a). all links are two way links(plan) =

52((a))i.  V hk:HI-hk € dom plan =

52((a))ii. V 1j:LI - ]j € dom plan(hk) =

52((a))iii. let hl = (plan(hk))(lj) in

52((a))iv lj € dom plan(hl) end

52(b). hub identifier occurrences are defined: PLAN — Bool
52(b). hub identifier occurrences are defined(plan) =

52((b))i. ¥V hlim:HLIM-hlim € rng plan

52((b))ii. vV 1j:LI - lj € dom lhim =

52((b))iii. 3 hk:HI - hk € dom plan A lj € dom plan(hk)

52(c). mno_junk: PLAN — Bool

52(c). no junk(plan) = dom plan = U{rng(plan(hi))/hi:HIhi € dom plan

Lect:

ure Notes in Software Engineering. 45

2. An Ontology of Specification Entities 2.5. Behaviours 2.5.1. Behaviour Prescriptions 2.5.1.2. of C ion Plans

(c) No Junk:

e To secure consistency between hub and link identifiers of a con-
struction plan we impose:
— all the defined hub identifiers of a construction plan are in the
range of some link to hub identifier map of that plan;
—and each of the hub identifiers of some link to hub identifier
map are defined in the construction plan are in the range of
some link to hub identifier map of that plan.

value

52. wf PLAN: PLAN — Bool

52.  wf PLAN(plan) =

52(a).  all links are two way links(plan) A

52(b).  hub identifier occurrences are defined(plan) A
52(c).  mno_junk(plan)
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2.5.2. Augmented Construction Plans
e Hubs and links in nets possess attributes (cf. Item 4 on page 14.).
e Some attributes have already been dealt with:

— the identifiers of hubs and links that can be observed from hubs,
respectively links (cf. Items 4. and 7?7 on page 77.) and

— the identifiers of hubs that can be observed from links and the
identifiers of links that can be observed from hubs (cf. Items 9.
and 10 on page 16.).

e In addition hubs and links in nets possess further attributes:
e spatial location of hubs and links,

o (locally ascribed) names of hubs and links,

e lengths of links,

e ctcetera.
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2. An Ontology of ification Entities 2.5. iours 2.5.2. [¢ ion Plans

We therefore augment construction plans to also reveal these attributes.

type
APLAN = PLAN x HInfo x Llnfo
HInfo = HI 7 HAtrs
LInfo = LI s LAtrs

10 November 9, 2010, 15:33
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2. An Ontology of ification Entities 2.5. iours 2.5.3.

2.5.3. Sequential Construction Behaviours

54. From an augmented construction plan one can “extract” initial in-
formation about

(a) all hubs and
(b) all links.
value

54(a). xtrH: HI — APLAN — HI x HAtrs, xtrH(hi)(_hinfo, ) = hinfo(hi)
54(b). xtrL: LI — APLAN — LAtrs, xtrL(li)(_,_linfo) = linfo(li)

Lecture Notes in Software Engineering 49
2. An Ontology of Specification Entities 2.5. i 2.5.2.

ion Plans

53. The wellformedness of an augmented plan secures that

(a) all hubs identifiers defined in the construction plan are “detailed”
in the hub information component, and that

(b) all links identifiers used in the construction plan are “detailed” in
the in the link information component.

value

53. wf APLAN: APLAN — Bool

53.  wf APLAN(plan,hinfo linfo) =

53(a).  dom plan = dom hinfo A

53(b).  U{dom lhim|lhim:LHIM-1him € rang plan}=dom linfo
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55. A net construction behaviour can be (functionally and non-deterministically’
modelled as

(a) a sequence of hub insertions followed by
(b) a sequence of link insertions.

value

55. net_construction: HInfox LInfo — (HI-set xLI-set) — N — N

55. net_construction(hinfo,linfo)(his lis)(n) =

55.  case (hislis) of

55(a). ({hi}U his,_) —

55(a). net_construction(hinfo,linfo)(hislis)(insertH (hinfo(hi))(n)),
55(b). ({}{li}U lis) —

55(b). net_construction(hinfo linfo)({},lis") (insertL(linfo(li))(n)),

55. () —n
55. end
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2. An Ontology of Specification Entities 2.5. i 2.5.3. ial C

The net_construction function is initialised with the full sets of hub and
link identifiers and with an empty net:

net_construction(hinfo,linfo)(dom hinfo,dom linfo)(n nil)
value
n nil:N - obs Hs(n nil) = {} = obs_Ls(n nil)

e The net_construction behaviour shown above defines only a subset
of all the valid behaviours that will construct a net according to the
augmented plan (plan,hinfo,linfo).

e Other valid behaviours would start with constructing at least two
hubs but could then go onto construct some of the (zero, one or more)
links that connect some of the already constructed hubs, etcetera.

e We challenge the reader to precise narrate and formally define such
net_construction behaviours.
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