8 From Domains to Requirements

Start of Lecture 2: ONTOLOGY/

© Dines Bjgmer 2010, Fredsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 9, 2010, 15:33

10 From Domains to Requirements

2. An Ontology of Specification Entities

Definition: Specification.
e We use the term ‘specification’

e to cover the concepts of domain descriptions, requirements prescrip-
tions and software designs.

e More specifically a specification is a definition, usually consisting
of many definitions.

Definition: Entity. By an entity we shall understand
e cither a simple entity,
e an action,
® an event

e or a behaviour.

@ Dines Bigmer 2010, Frodsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 9, 2010, 15:33

Lecture Notes in Software Engineering 9

2. An Ontology of Specification Entities

2. An Ontology of Specification Entities
Definition: Ontology.

e In philosophy: A systematic account of Existence.
e [0 us:

— An explicit formal specification of how to represent the phe-
nomena and concepts

— that are assumed to exist in some area of interest (some uni-
verse of discourse)

— and the relationships that hold among them.
Further clarification:

— An ontology is a catalogue of concepts and their relationships

— including properties as relationships to other concepts.

November 9, 2010, 15:33, Budapest Lectures, Oct. 11-22, 2010 © Dines Bigmer 2010, Fredsvej 11, DK-2840 Holte, Denmark

Lecture Notes in Software Engineering 11

2. An Ontology of Specification Entities 2.1. Simple Entities

2.1. Simple Entities
Definition: Simple Entity. By a simple entity we shall loosely
understand

e an individual, static or inert dynamic and that simple entities
“roughly correspond” to what we shall think of as values.

e We shall further allow simple entities to be

— either atomic

— or composite, i.e., in the latter case having decomposable sub-
entities.

November 0, 2010, 15:33, Budapest Lectures, Oct. 11-22, 2010 @ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

From Domains to Requirements

2. An Ontology of Specification Entities 2.1. Simple Entities

e Simple entities have attributes.
e Composite entities have

— attributes,
— sub-entities and

— a mereology, the latter explains how the sub-entities are formed

into the simple entity.

2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.2. Unique Hub and Link Identifiers

om Domain

Budapest Lectures, Oct. 11-22, 2010 November 9, 2010, 15:33

s to Requirements

2.1.2. Unique Hub and Link Identifiers
4. There are hub identifiers and there are link identifiers.
5. From a hub one can observe its hub identifier.
6. From a link one can observe its link identifier.
7. Hubs of a net have unique hub identifiers.
8. Links of a net have unique hub identifiers.

type
A HI LI
value
5. obs HI: H — HI
6. obs LI: L — LI
axiom
7. VN, hhiH - {hh}Cobs Hs(n) A h#£h' = obs _HI(h)#£obs HI(Iv)
8 VN, LI'L - {11} Cobs_Ls(n) A 14l = obs_LI(1)7#obs_LI(I)

November 0, 2010, 15:33

Lecture Notes in Software Engineering 13

2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.1. Net, Hubs and Links

2.1.1. Net, Hubs and Links
1. There are nets, hubs and links.
2. A net contains zero, one or more hubs.

3. A net contains zero, one or more links.

type
1. N,H L

value
2. obs Hs: N — H-set
3. obs.Ls: N — L-set

November 9, 2010, 15:33, Budapest Lectures, Oct. 11-22, 2010

Lecture Notes in Software Engineering 15
2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.3. Observability of Hub and Link Identifiers

2.1.3. Observability of Hub and Link Identifiers

9. From every hub (of a net) we can observe the identifiers of the zero,
one or more distinct links (of that net) that the hub is connected to.

value

9. obs Lls: H— LI-set
axiom

9. VnNh:Hh € obs Hs(n) = V li:LIli € obs LIs(h) = L exists(li)(n)
value

L exists: LI — N — Bool

L exists(li)(n) = 3 LIl € obs Ls(n)Aobs_LI(1)=li

November 0, 2010, 15:33, Budapest Lectures, Oct. 11-22, 2010

16 From Domains to Requirements
2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.3. Observability of Hub and Link Identifiers

10. From every link (of a net) we can observe the identifiers of the exactly
two (distinct) hubs (of that net) that the link is connected to.

value

10. obs Hls: L — Hl-set
axiom

10. ¥V n:N,LL1 € obs Ls(n) =

10. card obs HIs(1)=2 A V hi:HI'hi € obs HIs(l) = H exists(hi)(n)
value

H exists: HI — N — Bool

H exists(hi)(n) = 3 h:H:h € obs_Hs(n)Aobs HI(h)=hi

2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.5. Hub and Link Attributes

2.1.5. Hub and Link Attributes

In preparation for later descriptions, narrative and formal, we make a
slight detour to deal with hub and link attributes — but we omit, at
present, from describing these attributes.

12. hub and link attributes, HAtrs and LAtrs, include the hub and link
identifiers that can be observed from hubs and links, respecively.

13. These can be observed from hubs and links of nets.

14. And these can be provided as arguments when construction hubs
and links.

type 13. obs HI: HAtrs — HI
12. HAtrs, LAtrs 13. obs LIs: HAtrs — Ll-set
value 14. obs_LI: LAtrs — LI
13. obs HAtrs: H — HAtrs 14. obs_HIs: LAtrs — HI-set

14. obs LAtrs: L — LAtrs

@ Dines Bigmer 2010, Frodsvej 11, DK 2840 Holte, D

Lecture Notes in Software Engineering 17

2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.4. A Theorem

2.1.4. A Theorem
2.1.4.1. Links implies Hubs

11. It follows from the above that if a net has at least one link then it
has at least two hubs.

theorem:
11. ¥V n:N - card obs Ls(n)>1 = card obs Hs(n)>2

Lecture Notes in Software Engineering 19

2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.6. Hub and Link Generators

2.1.6. Hub and Link Generators
15. From [a (full) set of] hub attributes
(a) including an empty set of observable link identifiers
one can generate a hub with

(a) the hub identifier being that of the argument hub attributes,

(b) the link identifiers of the hub being argument the empty set of
link identifiers of the hub attributes and

(¢) the argument hub attributes being those of the resulting hub,

15. genH: HAtrs — H

15. genH(hatrs) as h

15(a). pre obs Lls(hatrs)={}

15(a). post obs_HI(h)=obs_HI(hatrs)
15(b). A obs LIs(h)={}

15(c). A obs HAtrs(h)=hatrs

20 From Domains to Requirements
2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.6. Hub and Link Generators

16. From the set of hub attributes and a net one can “similarly” generate
a hub which is not a hub of the net.

17. From the set of link attributes one can “similarly” generate a link.

18. From the set of link attributes and a net one can “similarly” generate
a link which is not a link of the net.

where the reader is to narrate and formalise the “similarities”!

© Dines Bjgmer 2010, Fredsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 9, 2010, 15:33

29 From Domains to Requirement ts

2. An Ontology of Specification Entities 2.2. States

2.2. States
Definition: State. By a state we shall understand

e a collection of one or more simple entities.

2.3. Actions
Definition: Action. By an action we shall understand

e something which potentially changes a state,
e that is, a function application to a state

e which potentially changes that state.

@ Dines Bigmer 2010, Frodsvej 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 9, 2010, 15:33

Lecture Notes in Software Engincering

2. An Ontology of Specification Entities 2.1. Simple Entities 2.1.6. Hub and Link Generators

21

16. genH: HAtrs — N — H

16. genH(hatrs)(n) as h

16. pre obs Lls(hatrs)={}

16. A ~3 W:H:h' € obs Hs(n) A obs HI(I')=obs_HI(hatrs)
16. post h ¢ obs Hs(n)

16. A obs_HI(h)=obs_HI(hatrs)

16. A obs_LIs(h)={}

16. A obs HAtrs(h)=hatrs

17. genL: LAtrs — L 18. genL(latrs)(n) as 1

17. genL(latrs) as | 18. pre card obs Lls(latrs)=2

17. pre card obs Hls(latrs)=2 18. A obs_Lls(latrs) Cxtr Lls(n)

17. post obs LI(1)=obs LI(latrs) 18. post 1 & obs Ls(n)

17. A obs_LI(1)=obs_LI(latrs) 18. A obs_LI(1)=obs_LI(latrs)

17. A obs_HIs(l)=obs_HIs(latrs) 18. A obs_HIs(1)Cobs_HIs(latrs)
18. A obs LAtrs(l)=latrs

18. genl: LAtrs — N — L

November 9, 2010, 15:33, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmar

Lecture Notes in Software Engineering

2. An Ontology of Specification Entities 2.3. Actions 2.3.1. Insert Hubs

23

2.3.1. Insert Hubs
19. One can insert a hub, A, into a net, n.
The hub to be inserted
20. must not be a hub of the net and

21. h cannot already be connected to any links.

That is, we can only insert “isolated” hubs.
The result of inserting a hub, h, into a net, n, is a new net, n’,

22. which is like n except that it now also has the hub A.

November 0, 2010, 15:33, Budapest Lectures, Oct. 11-22, 2010 @ Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

24 From Domains to Requirements

2. An Ontology of Specification Entities 2.3. Actions 2.3.1. Insert Hubs

value
19. insertH: HAtrs — N = N
19. insertH(hatrs)(n) as n'
19. let h = genH(hatrs)(n) in
20. pre h ¢ obs Hs(n)
21. A obs Lls(h) = {}
22. post obs Ls(n)=obsLs(n)
22. A obs Hs(n')=obs Hs(n)u{h}
22. A obs HAtrs(h)=hatrs
19. end

Theorem:
e [nserting a proper hub in a well-formed net
e that is, a net satisfying all relevant axioms,

e results in a likewise well-formed net.

© Dines Bjgmer 2010, Fredsvej 11, DK 2840 Holte, Denmark

2 From Domains to Requirement ts

2. An Ontology of Specification Entities 2.3. Actions 2.3.2. Remove Hubs

value
23. removeH: H — N 5 N
26. removeH(h)(n) as n'
24. pre h € obs Hs(n)
25. A obs Lls(h) = {}
27. post obs Ls(n)=obsLs(n)
28. A obs Hs(n')=obs Hs(n)\{h}

e Please note the almost line-by-line similarity of the insert and remove
hub descriptions

e and that the only difference between these descriptions are the

e membership, union, respectively set difference operations (¢, €, U
respectively \).

Lecture Notes in Software Engineering 25

2. An Ontology of Specification Entities 2.3. Actions 2.3.2. Remove Hubs

2.3.2. Remove Hubs

23. One can remove a hub, h, from a net, n.
The hub to be removed

24. must be a hub of the net and

25. h cannot be connected to any links.

That is, the hub, A, may earlier — in is membership of the net — have
been connected to links, but these must already, at the time of hub
removal, have been removed, see below.

That is, we can only remove “isolated” hubs.
26. The result of removing a hub, h, from a net, n, is a new net, n’,
27. which is like n
28. except that it now no longer has hub h.

Lecture Notes in Software Engineering 27

2. An Ontology of Specification Entities 2.3. Actions 2.3.3. Insert Links

2.3.3. Insert Links
29. One can insert a link, ¢, into a net, n.
The link to be inserted must
30. not be a link of the net,
31. but the observable hub identifiers must be those of hubs of the net.

28

2. An Ontology of Specification Entities 2.3. Actions 2.3.3. Insert Links

The result of inserting a link, ¢, into a net,

32.
33.
34.
30.

36.

37.
38.

39.

n, is a new net, n/,

in which ¢ is now a member.

Let hj., by, be the two (distinct) hub identifiers of £ and

let hj, hj, be the two (distinct) hubs of n which are identified by
hi» g

All hubs of net n except hj, hy, are the same as in n and are un-
changed in n/.

The two hubs hj, hy, of n become hubs h;, h;{ of n/

such that only the observable identifiers of connected links have
changed to now also include the identifier of link ¢,

and such that the observed attributes are those of the argument.

30

2. An Ontology of Specification Entities 2.3. Actions 2.3.3. Insert Links

xtrHIs: N — Hl-set
xtrHIs(n) = {obs HI(h)|h:H-h € obs Hs(n)}

getH: HI - N 5 H
getH(hi)(n) = let h:H - h € obs Hs(n) A obs HI(h)=hi in h end
pre 3 h:H - h € obs Hs(n) A obs HI(h)=hi

Lecture Notes in Software Engineering 29

2. An Ontology of Specification Entities 2.3. Actions 2.3.3. Insert Links

value
29.
32.
30.
31.
33.
34.
35.
31.
36.
37.
38.
38.
39.

insertL: L x LAtrs — N = N
insertL(l,latrs)(n) as o
pre | ¢ obs Ls(n)
A obs_HIs(I)CxtrHIs(n)
post obs Ls(n) = obs Ls(n) U {1}
A let {hji,hki}=obs Hls(1
let (hj,hk) = (getH(hji)
{hj,hk}Cobs Hs(n)
A obs Hs(n)\{hj,hk} = obs Hs(n')\{hj,hk}
A let (hj,hk) = (getH(hji)(n'),getH(hki)(n)) in
obs LIs(hk) = obs LIs(hk) U {obs LI(1)}
A obs Lls(hj) = obs_Lls(hj) U {obs LI(l)} end end end
A obs LAtrs(l) = latrs

) in
(n),getH(hki)(n)) in

Lecture Notes in Software Engineering 31

2. An Ontology of Specification Entities 2.3. Actions 2.3.4. Remove Links

2.3.4. Remove Links

40. One can remove a link, ¢, from a net, n.

The link to be removed must

41. be a link of the net.

32 From Domains to Requirements

2. An Ontology of Specification Entities 2.3. Actions 2.3.4. Remove Links

The result of removing a link, ¢, from a net,

42.n, is a new net, n’,

43. in which ¢ is no longer a member.

44. Let hj,;, by, be the two (distinct) hub identifiers of £ and

45.let hj, hy. be the two (distinct) hubs of n which are identified by
hjis g

46. hj, hy, are in n'.

47. All hubs of net n except hj, hy, are the same as in n and are un-
changed in n/.

48. The two hubs h;, hy, of n become hubs h., h;C of n/

49. such that only the observable identifiers of connected links have
changed to now no longer include the identifier of link £.

34 From Domains to Requirement ts
2. An Ontology of Specification Entities 2.3. Actions 2.3.5. Two Theorems

2.3.5. Two Theorems
2.3.5.1. Idempotency

e With the preconditions satisfied by the insert and remove actions
e one can prove that first inserting a hub (link) into a net and

e then removing that hub (link) from the resulting net restores the
original net:

theorem
vV nn:NhHILL-

pre insertH(h)(n) A removeH(h)(n’) A insertL(l)(n) A removel(l)(n) =

removeH(h)(insertH(h)(n)) = n A removeL(l)(insertL(1)(n))

Lecture Notes in Software Engineering 33

2. An Ontology of Specification Entities 2.3. Actions 2.3.4. Remove Links

value

40. removeL: L — N = N

42. removeL(l)(n) as o

41. pre | € obs Ls(n)

43. post obs Ls(n) = obs Ls(n) \ {l}

44. A let {hji,hki}=obs Hls(l) in

45. let (hj,hk) = (getH(hji)(n),getH(hki)(n)) in
46. {hj,hk}Cobs Hs(n)

47. A obs Hs(n)\{hj,hk} = obs Hs(n')\{hj,hk}

48. A let (hjhk) = (getH(hji)(n'),getH(hki)(n)) in
49. obs_LIs(hk) = obs_LIs(hk) \ {obs_LI(1)}

49. A obs_Lls(hj) = obs LIs(hj) \ {obs LI(1)} end end end

Lecture Notes in Software Engineering 35

2. An Ontology of Specification Entities 2.3. Actions 2.3.5. Two Theorems 2.3.5.2. Reachability

2.3.5.2. Reachability
e Any net that satisfies the axioms above

e can be constructed by sequences of insert hub and link actions.

theorem
let n nil:N - obs_Hs(n nil)=obs_Ls(nnil)={} in
V n:N F axioms 7. and 8 on page 14.; 9 on page 15. 10 on page 16. -
3 hl:H*, 1.L* - let " = insertHs(hl)(n nil) in insertHs(ll)(n)=n end
end

insertHs: H* — N 5 N
insertLs: L* — N 5 N

insertHs(hl)(n) = case hl of () — n, (h)"hl' — insertHs(hl')(insertH(h)(n)) end
insertLs(1l)(n) = case Il of () — n, (I)"1I' — insertLs(Il')(insertL(1)(n)) end

36

2. An Ontology of Specification

From Domains to Requirements
Entities 2.3. Actions 2.3.5. Two Theorems 2.3.5.2. Reachability

Informal proof: An informal proof goes like this:
e Take a net.

e For every hub, h, in that net,
—let B/ be a version of h which has
x the same hub identifier,

* an empty set of observable link identifiers (of connected links)
x and otherwise all other attributes of h,

—let A/ be a member of the list of hubs — and only such hubs.

— Let every and only such links in n be members of the list of links.
e Performing first the insertion of all hubs and then the insertions of

all links will “turn the trick” !

end of informal proof.

38

2. An Ontology of Specification Entities 2.4. Events

e A mudslide across a railway track or a road segment (i.e., a link)
represents an event

— that effectively “removes” the link, or at least a segment of a link
e Similarly if

— a train and/or automobile bridge collapses or

—a tunnel gets flooded or catches fire.

How are we to model such, and other events?

Lecture Notes in Software Engincering

2. An Ontology of Specification Entities 2.4. Events

2.4. Events
Definition: Event.

e An event is something that occurs instantaneously.

e Events are manifested by certain state changes, and by certain
interactions between behaviours or processes.

e The occurrence of events may “trigger” [further| actions.

e How the triggering, i.e., the invocation of functions are brought
about is usually left implied, or unspecified.

Lecture Notes in Software Engineeri

39
2. An Ontology of Specification Entities 2.4. Events

37

50. We choose to model the event” “disappearance” of a segment of a
link identified by [;: L1 as the composition of the following actions:
(a) the removal of link I:L being affected, where I;: L1 identifies the
link in the network;
(b) the insertion of two hubs, b/, h"":H | corresponding to “points” (on
link /:L) on either side of the mudslide or bridge — or other; and
(¢) the insertion of two links, I/,1":
link and the new hubs.

(d) I;: LT must identify a link I:L of net n:N.

:L, between the hubs of the original

50(b). newH: N — H-set — H

0(b). newH(n)(hs) = let h:H - h & hs A obs LIs(h)={} in h end
50(c). newlL: N — L-set — (HIxHI) — L
0(c). newL(n)(Is)(hi,hi")

= let L -1 ¢ Is A obs HIs(l)={hi’hi'} in | enc

40 From Domains to Requirements

2. An Ontology of Specification Entities 2.4. Events

value
50. event_link disappearance: LI — N 5 N
50(a). let I = xtrL(li)(n) in
50(a). let {hijhi'} = obs HIs(l) in
50(a). let n' = removeli(1)(n) in
(b). let h'=newH(n)(obs Hs(n)) in
50(b). let h" = newH(n)(obs Hs(n)u{h}) in
(b). let n" = insertH(h')(insertH(h")(n)) in
(c). let] = newL(n)(obs Ls(n))(obs HI(l),hi') in
50(c). let I'= newL(n)(obs Ls(n)U{l'})(obs HI(h"),hi") in
(c)
(

d). preli € xtrLIs(n)

42 From Domains to Requirement ts

2. An Ontology of Specification Entities 2.5. Behaviours 2.5.1. Behaviour Prescriptions

2.5.1. Behaviour Prescriptions
e Usually behaviours follow a prescription.
e In the case of net construction we refer to the prescription as a
construction plan.
2.5.1.1. Construction Plans

51. The plan for constructing a net can be abstracted as

(a) a map, PLAN, which to each hub identifier associates

(b) a link-to-hub identifier map, LHIM, from the identifiers of links
emanating from the hub to identifiers of connected hubs.

type
51(a). PLAN = HI z» LHIM
51(b). LHIM = LI s HI

insertL(1') (insertL(I')(n")) end end end end end end end end

Lecture Notes in Software Engineering 41

2. An Ontology of Specification Entities 2.5. Behaviours

2.5. Behaviours
Definition: Behaviour.

e By behaviour we shall understand the way in which something
functions or operates.

e In the context of domain engineering behaviour is a concept as-
sociated with phenomena, in particular manifest entities.

e And then behaviour is that which can be observed about the
value of the entity and its interaction with an environment.

e A simple, sequential behaviour is a sequence of zero, one or more
actions and events.

Lecture Notes in Software Engineering 43

2. An Ontology of Specification Entities 2.5. Behaviours 2.5.1. Behaviour iptions 2.5.1.2. of C ion Plans

2.5.1.2. Wellformedness of Construction Plans

52. Wellformed net construction plans satisfy three conditions:

(a) All Links are Two-way Links:

1. Let hy. be any hub identifier of the construction plan.
ii. For all link identifiers, [;, of the LIHM, lhimy,, mapped into by
hi,
iii. let hy be the hub identifier mapped into by I; in lhimy,,
iv. then [; is in the link-to-hub-identifier map, [himy, mapped into

by hy,

44 From Domains to Requirements

2. An Ontology of Specification Entities 2.5. Behaviours 2.5.1. Behaviour iptions 2.5.1.2. of C ion Plans

(b) Using Hub Identifier Occurrences are Defined:
i. Let lhim be any link-to-hub-identifier map of a construction
plan.
ii. For every hub identifier, h;, mapped to by a link identifier, [;,
in lhim
iii. there exists a hub identifier, iy, that maps into ;; and

52(a). all links are two way links: PLAN — Bool

52(a). all links are two way links(plan) =

52((a))i. V hk:HI-hk € dom plan =

52((a))ii. V 1j:LI -]j € dom plan(hk) =

52((a))iii. let hl = (plan(hk))(lj) in

52((a))iv lj € dom plan(hl) end

52(b). hub identifier occurrences are defined: PLAN — Bool
52(b). hub identifier occurrences are defined(plan) =

52((b))i. ¥V hlim:HLIM-hlim € rng plan

52((b))ii. vV 1j:LI - lj € dom lhim =

52((b))iii. 3 hk:HI - hk € dom plan A lj € dom plan(hk)

52(c). mno_junk: PLAN — Bool

52(c). no junk(plan) = dom plan = U{rng(plan(hi))/hi:HIhi € dom plan

Lect:

ure Notes in Software Engineering. 45

2. An Ontology of Specification Entities 2.5. Behaviours 2.5.1. Behaviour Prescriptions 2.5.1.2. of C ion Plans

(c) No Junk:

e To secure consistency between hub and link identifiers of a con-
struction plan we impose:
— all the defined hub identifiers of a construction plan are in the
range of some link to hub identifier map of that plan;
—and each of the hub identifiers of some link to hub identifier
map are defined in the construction plan are in the range of
some link to hub identifier map of that plan.

value

52. wf PLAN: PLAN — Bool

52. wf PLAN(plan) =

52(a). all links are two way links(plan) A

52(b). hub identifier occurrences are defined(plan) A
52(c). mno_junk(plan)

Lect

ure Notes in Software Engineering 47
2. An Ontology of Specification Entities 2.5. iours 2.5.2. [¢ ion Plans

2.5.2. Augmented Construction Plans
e Hubs and links in nets possess attributes (cf. Item 4 on page 14.).
e Some attributes have already been dealt with:

— the identifiers of hubs and links that can be observed from hubs,
respectively links (cf. Items 4. and 7?7 on page 77.) and

— the identifiers of hubs that can be observed from links and the
identifiers of links that can be observed from hubs (cf. Items 9.
and 10 on page 16.).

e In addition hubs and links in nets possess further attributes:
e spatial location of hubs and links,

o (locally ascribed) names of hubs and links,

e lengths of links,

e ctcetera.

48

2. An Ontology of ification Entities 2.5. iours 2.5.2. [¢ ion Plans

We therefore augment construction plans to also reveal these attributes.

type
APLAN = PLAN x HInfo x Llnfo
HInfo = HI 7 HAtrs
LInfo = LI s LAtrs

10 November 9, 2010, 15:33

50
2. An Ontology of ification Entities 2.5. iours 2.5.3.

2.5.3. Sequential Construction Behaviours

54. From an augmented construction plan one can “extract” initial in-
formation about

(a) all hubs and
(b) all links.
value

54(a). xtrH: HI — APLAN — HI x HAtrs, xtrH(hi)(_hinfo,) = hinfo(hi)
54(b). xtrL: LI — APLAN — LAtrs, xtrL(li)(_,_linfo) = linfo(li)

Lecture Notes in Software Engineering 49
2. An Ontology of Specification Entities 2.5. i 2.5.2.

ion Plans

53. The wellformedness of an augmented plan secures that

(a) all hubs identifiers defined in the construction plan are “detailed”
in the hub information component, and that

(b) all links identifiers used in the construction plan are “detailed” in
the in the link information component.

value

53. wf APLAN: APLAN — Bool

53. wf APLAN(plan,hinfo linfo) =

53(a). dom plan = dom hinfo A

53(b). U{dom lhim|lhim:LHIM-1him € rang plan}=dom linfo

Lecture Notes in Software Engineering 51
2. An Ontology of Specification Entities 2.5. i 2.5.3.

55. A net construction behaviour can be (functionally and non-deterministically’
modelled as

(a) a sequence of hub insertions followed by
(b) a sequence of link insertions.

value

55. net_construction: HInfox LInfo — (HI-set xLI-set) — N — N

55. net_construction(hinfo,linfo)(his lis)(n) =

55. case (hislis) of

55(a). ({hi}U his,_) —

55(a). net_construction(hinfo,linfo)(hislis)(insertH (hinfo(hi))(n)),
55(b). ({}{li}U lis) —

55(b). net_construction(hinfo linfo)({},lis") (insertL(linfo(li))(n)),

55. () —n
55. end

52 From Domains to Requirements

2. An Ontology of Specification Entities 2.5. i 2.5.3. ial C

The net_construction function is initialised with the full sets of hub and
link identifiers and with an empty net:

net_construction(hinfo,linfo)(dom hinfo,dom linfo)(n nil)
value
n nil:N - obs Hs(n nil) = {} = obs_Ls(n nil)

e The net_construction behaviour shown above defines only a subset
of all the valid behaviours that will construct a net according to the
augmented plan (plan,hinfo,linfo).

e Other valid behaviours would start with constructing at least two
hubs but could then go onto construct some of the (zero, one or more)
links that connect some of the already constructed hubs, etcetera.

e We challenge the reader to precise narrate and formally define such
net_construction behaviours.

@ Dines Bjgrner 2010, Fredsve) 11, DK 2840 Holte, Denmark Budapest Lectures, Oct. 1122, 2010 November 9, 2010, 15:33

Lecture Notes in Software Engineering 397
B Slide Table-of-Contents

Contents

‘Lect. #1: COVER & INTRODUCTION 0

1 Introduction 5

1.1 The Problem L 5

1.2 The Triptych Approach 6

’

2 An Ontology of Specification Entities 9

2.1 Simple Entities 11

2.1.1 Net, Hubs and Links 13

2.1.2 Unique Hub and Link Identifiers e 14

2.1.3 Observability of Hub and Link Identifiers 15

214 ATREOTEM L L 17

2.1.4.1 Links implies Hubs L 17

2.1.5 Hub and Link Attributes 18

2.1.6 Hub and Link Generators 19

22States 22

23 ACtioNS . . L. 22

231 Insert Hubs 23

232 Remove Hubs 25

233 Insert Links 27

234 Remove Links 31

235 Two Theorems 34

2351 Idempotency 34

2352 Reachability 35

2A4EVENTS 37

25 Behaviours 41

2.5.1 Behaviour Prescriptions 42

2.5.1.1 Construction Plans 42

November 0, 2010, 15:33, Budapest Lectures, Oct, 11-22, 2010 © Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

From Domains to Requirements

End of Lecture 2:

ONTOLOGY|

© Dines Bjgmer 2010, Fredsvej 11, DK 2840 Holte, Denmark

398

2.5.1.2 Wellformedness of Construction Plans

2.5.2 Augmented Construction Plans
2.5.3 Sequential Construction Behaviours

|Lecl. # 3: DOMAINS: Intrinsics — Rules & Regulations

3 An Ontology of Domain Facets

3.1 What Can Be Observed
32lntrinsics
3.2.1 Net Topology Descriptors
3.2.2 Link States and Link State Spaces
3.2.3 Hub States and Hub State Spaces
3.2.4 State and State Space Wellformedness
3.2.5 Concrete Types for Simple Entities
3.2.6 Example Hub Crossings
3.2.7 Actions Continued

3.3 Support Technologies
3.3.1 Traffic Signals
3.3.2 Traffic “Control”

3.4 Rules and Regulations
341 Vehicles
342 raffico
3.4.2.1 Wellformedness of Traffic

3.4.2.1.1 Static Wellformedness

3.4.2.1.2 Dynamic Wellformedness

3.4.3 Traffic Rules (lof 1)
3.4.4 Another Traffic Regulator
3.4.5 Traffic Rules (I1of 1)

|Lecl. # 4: DOMAINS: Scripts — Human Behaviour

35 SCripts . .o
3.5.1 Routes as Scripts
3511 Paths
3512Routes

3.5.2 Bus Timetables as Scripts

© Dines Biprer 2010, Frodsvej 11, DK 2840 Holte, Denmark

Budapest Lectures, Oct. 11-22, 2010 November 9, 2010, 15:33

From Domains to Requirements,

Budapest Lectures, Oct. 11-22, 2010 November 9, 2010, 15:33

Lecture Notes in Software Engineering 399

3521 BUSES 106

3.5.2.2 Bus Stops 106

3.5.2.3 Bus Routes 107

3.5.2.4 Bus Schedule 109

3525 Timetable 111

3.5.3 Route and Bus Timetable Denotations 114
3.5.4 Licenses and Contracts 116
3541 Contracts 122

3.5.4.2 Contractual Actions 127

3.5.4.3 Wellformedness of Contractual Actions 130

3.6 Management and Organisation 136
3.6.1 Transport System Examples . 140

3.7 Human Behaviour 143
3.8 Towards Theories of Domain Facets 145
3.8.1 ATheory of Intrinsics 146
3.8.2 Theories of Support Technologies 147
3.821 An Example . . . 147

3.8.2.2 General 150

3.8.3 A Theory of Rules & Regulations 151
3.8.4 A Theory of Management & Organisation 161
3.8.,5 A Theory of Human Behaviour 162
‘Lect. #5: REQUIREMENTS - up to and incl. Determination 164
4 An Ontology of Requirements Constructions 165

4.1 Business Process Re-engineering . .
4.1.1 The Kinds of Requirements .
4.1.2 Goals Versus Requirements

4.1.2.1 Goals of a Toll Road System 174

4.1.2.2 Goals of Toll Road System Software 175

4.1.2.3 Arguing Goal-satisfaction of a Toll Road System 176

4.1.2.4 Arguing Goal-satisfaction of Toll Road System Software 177

4.1.3 Re-engineered Nets 179

4.2 Domain Requirements 190
421 Projection 192

November 9, 2010, 15:33, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark

Lecture Notes in Software Engineering 401
5 Conclusion 247
5.1 What Have We Omittedo 247
5.2 Domain Descriptions Are Not Normative 248
5.3 "Requirements Always Change” 249
5.4 What Can Be Described and Prescribed 251
5.5 What Have We Achieved —and What Not 253
5.6 Relation to Other Work 254
5.7 “Ideal” Versus Real Developments 257
5.8 Description Languages 259
5.9 Entailments 261
5.10 Domain Versus Ontology Engineering 262

6 Bibliographical Notes 263
6.1 Description Languages 263
266
1 An RSL Primer 265
LLITYPES o o o 265
1.1.1 Type Expressions 265

1.1.1.1 Atomic Types 265

Example 1: Basic Net Attributes 267

1.1.1.2 Composite Types .. 269

Example 2: Composite Net Type Expressions 270

1.1.2 Type Definitions 272

1.1.2.1 Concrete Types L0272

Example 3: Composite Net Types . 273

Example 4: Net Record Types: Insert Links 279

1.1.2.2 Subtypes 281

Example 5: Net Subtypes 282

1.1.2.3 Sorts — Abstract Types
Example 6: Net Sorts

November 9, 2010, 15:33, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrner 2010, Fredsvej 11, DK 2840 Holte, Denmark

400 From Domains to Requirements.
4211 Example . ..o 194

422 Instantiation 195
4221 Example 196

4.2.2.2 Abstraction: From Concrete Toll Road Nets to Abstract Nets 201

4.2.2.3 Theorem . . . L0202

4.2.3 Determination . 203
4.2.3.1 Example 204

|Lect. # 6: REQUIREMENTS - from Extension “out” 207
424 EXtension 208
4241 INtUILION .« L . o L 211

4242 Descriptions 213

42421 ARAISE/CSP Model 213

42421 Toll Booth Plazas 213

42421 Cars ... 215

4.2.42.1 Entry Booths L 216

42421 Gates 218

42421 The Entry Plaza System 219

42422 ADuration Calculus Model 224

42423 A Timed Automata Model 228

25 FIttNG o 232
4251 Exampleso 233

4.3 Interface Requirements 234
4.3.1 But First: On Shared Phenomena and Concepts 236
4.3.2 Shared Simple Entities L 237
4321 Example . ..o 238

433 Shared Actions 239
4331 Example . .. L 240

434 Shared Events 241
4341 Examples 242

4.35 Shared Behaviours 243
4351 Example . ..o 244

4.4 Machine Requirements L 245
4.4.1 An Enumeration of Classes of Machine Requirements 246

© Dines Bjpmer 2010, Fredsvej 11, DK-2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 9, 2010, 15:33

402 From Domains to Requirements
|Lect. #8: RSL: Values & Operations 289
1.2 Concrete RSL Types: Values and Operations0 290
1.2.1 Arithmetic Lo 290
1.2.2 Set EXpressions 291
1221 Set Enumerations 291
Example 7: Set Expressions over Nets292
1.2.2.2 Set Comprehension 296
8: Set Compreh 297
1.2.3 Cartesian EXpressions 298
1.2.3.1 Cartesian Enumerations 298
Example 9: Cartesian Net Types 299
1.2.4 List EXPressions 302
1.2.4.1 List Enumerations 302
1.2.4.2 List Comprehension ... 303
Example 10: Routes in Nets . L. 304
1.2.5 Map EXPressions 309
1.25.1 Map Enumerations 809
1.25.2 Map Comprehension E
Example 11: Concrete Net Type Construction
1.26 Set Operations

1.2.6.1 Set Operator Signatures
1.2.6.2 Set Examples
1.2.7 Cartesian Operations

128 List Operations
1.2.8.1 List Operator Signatures 317
1.2.8.2 List Operation Examples B
1.2.9 Map Operations
1.2.9.1 Map Operator Signatures and Map Operation Examples
|Lect. #9: RSL: Logic, A-Calculus, Fctl. Specs. 320
1.3 The RSL Predicate Calculus 321
1.3.1 Propositional Expressions 321
1.3.2 Simple Predicate Expressions 322
1.3.3 Quantified Expressions, :

Example 12: Predicates Over Net Quantities 324

D Dines Bigmer 2010, Fredsvej 11, DK 2540 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 9, 2010, 15:33

Lecture Notes in Software Engineering 403

1.4 M-Calculus + Functions
1.4.1 The A-Calculus Syntax
1.4.2 Free and Bound Variables . .

1.4.3 Substitution
1.4.4 a-Renaming and /3-Reduction
Example 13: Network Traffic 331
1.4.5 Function SIgnatures 338
Example 14: Hub and Link Observers i 339
1.4.6 Function Definitions . 341
Example 15: Axioms over Hubs, Links and Their Observers L. 344
1.5 Other Applicative Expressions 345
1.5.1 Simple let Expressions 345
1.5.2 Recursive let Expressions 346
1.5.3 Non-deterministic let Clause 347
1.5.4 Pattern and “Wild Card” let Expressions 348
155 Conditionals L 349
Example 16: Choice Pattern Case Expressions: Insert Links 350
1.5.6 Operator/Operand Expressions 360
‘Lect. # 10: RSL: Imperative & Process Specs. 360
1.6 Imperative CONSLIUCES o o 361
1.6.1 Statements and State Changes . .. 361
1.6.2 Variables and Assignment 362
1.6.3 Statement Sequences and skip 362
1.6.4 Imperative Conditionals 362
1.6.5 Iterative Conditionals e 363
1.6.6 Iterative Sequencing 363
1.7 Process Constructs 364
1.7.1 Process Channels .. 364
Example 17: Modelling Connected Links and Hubs 365
1.7.2 Process Definitions 369
Example 18: Communicating Hubs, Links and Vehicles 371
1.7.3 Process Composition 373
Example 19: Modelling Transport Nets 374
1.7.4 Input/Output Events L 377

November 9, 2010, 15:33, Budapest Lectures, Oct. 11-22, 2010 © Dines Bjgrner 2010, Fredsvej 11, DK-2840 Holte, Denmark

404 From Domains to Requirements.
E; le 20: Modelling Vehicle M. S 378

1.8 Simple RSL Specifications 384
Example 21: A Neat Little “System™” 388

B Slide Table-of-Contents 397

© Dines Bjpmer 2010, Fredsvej 11, DK-2840 Holte, Denmark Budapest Lectures, Oct. 11-22, 2010 November 9, 2010, 15:33

