
360 From Domains to Requirements

Start of Lecture 10: RSL: Imperative & Process Specs.
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1. 4. An Ontology of Requirements Constructions 1.6. Imperative Constructs

1.6. Imperative Constructs
1.6.1. Statements and State Changes

Unit

value

stmt: Unit → Unit

stmt()

• The Unit clause, in a sense, denotes “an underlying state”

– which we, for simplicity, can consider as

– a mapping from identifiers of declared variables into their values.

• Statements accept no arguments and, usually, operate on the state

– through “reading” the value(s) of declared variables and

– through “writing”, i.e., assigning values to such declared variables.

• Statement execution thus changes the state (of declared variables).

• Unit → Unit designates a function from states to states.

• Statements, stmt, denote state-to-state changing functions.

• Affixing () as an “only” arguments to a function “means” that () is an argument of type Unit.
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1.6.2. Variables and Assignment

0. variable v:Type := expression
1. v := expr

1.6.3. Statement Sequences and skip

2. skip

3. stm 1;stm 2;...;stm n

1.6.4. Imperative Conditionals

4. if expr then stm c else stm a end

5. case e of: p 1→S 1(p 1),...,p n→S n(p n) end
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1. 4. An Ontology of Requirements Constructions 1.6. Imperative Constructs 1.6.5. Iterative Conditionals

1.6.5. Iterative Conditionals

6. while expr do stm end

7. do stmt until expr end

1.6.6. Iterative Sequencing

8. for i in list • P(list(i)) do S(list(i)) end

9. for e in set • P(e) do S(e) end
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1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs

1.7. Process Constructs
1.7.1. Process Channels

• Let A, B and C stand for three types of (channel) messages

• and i:IIdx, j:JIdx for channel array indexes, then:

channel

c:A
channel

{k[ i ]|i:IIdx}:B
{ch[ i,j ]i:IIdx,j:JIdx}:C
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1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.1. Process Channels

Example 17 . . . . . . . . . . Modelling Connected Links and Hubs:

• Examples (17–20) are building up a model of one form of meaning
of a transport net.

– We model the movement of vehicles around hubs and links.

– We think of each hub, each link and each vehicle to be a process.

– These processes communicate via channels.
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1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.1. Process Channels

• We assume a net, n : N , and a set, vs, of vehicles.

• Each vehicle can potentially interact

– with each hub and

– with each link.

• Array channel indices (vi,hi):IVH and (vi,li):IVL serve to effect these interactions.

• Each hub can interact with each of its connected links and indices (hi,li):IHL serves
these interactions.

type

N, V, VI
value

n:N, vs:V-set

obs VI: V → VI
type

H, L, HI, LI, M
IVH = VI×HI, IVL = VI×LI, IHL = HI×LI
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1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.1. Process Channels

• We need some auxiliary quantities in order to be able to express sub-
sequent channel declarations.

• Given that we assume a net, n : N and a set of vehicles, vs : V S, we
can now define the following (global) values:

– the sets of hubs, hs, and links, ls of the net;

– the set, ivhs, of indices between vehicles and hubs,

– the set, ivls, of indices between vehicles and links, and

– the set, ihls, of indices between hubs and links.

value

hs:H-set = obs Hs(n), ls:L-set = obs Ls(n)
his:HI-set = {obs HI(h)|h:H•h ∈ hs}, lis:LI-set = {obs LI(h)|l:L•l ∈ ls},
ivhs:IVH-set = {(obs VI(v),obs HI(h))|v:V,h:H•v ∈ vs∧h ∈ hs}
ivls:IVL-set = {(obs VI(v),obs LI(l))|v:V,l:L•v ∈ vs∧l ∈ ls}
ihls:IHL-set = {(hi,li)|h:H,(hi,li):IHL• h ∈ hs∧hi=obs HI(h)∧li ∈ obs LIs(h)}
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1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.1. Process Channels

• We are now ready to declare the channels:

– a set of channels, {vh[ i ]|i:IVH•i∈ivhs} between vehicles and all po-
tentially traversable hubs;

– a set of channels, {vh[ i ]|i:IVH•i∈ivhs} between vehicles and all po-
tentially traversable links; and

– a set of channels, {hl[ i ]|i:IHL•i∈ihls}, between hubs and connected
links.

channel

{vh[ i ] | i:IVH • i ∈ ivhs} : M
{vl[ i ] | i:IVL • i ∈ ivls} : M
{hl[ i ] | i:IHL • i ∈ ihls} : M

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .End of Example 17
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1.7.2. Process Definitions

• A process definition is a function definition.

• The below signatures are just examples.

• They emphasise that process functions must somehow express,

– in their signature,

• via which channels they wish to engage in input and output events.

• Processes P and Q are to interact, and to do so “ad infinitum”.

• Processes R and S are to interact, and to do so “once”, and then
yielding B, respectively D values.
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1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.2. Process Definitions

value

P: Unit → in c out {k[ i ]|i:IIdx} Unit

Q: i:KIdx → out c in k[ i ] Unit

P() ≡ ... c ? ... k[ i ] ! e ... ; P()
Q(i) ≡ ... c ! e ... k[ i ] ? ... ; Q(i)

k[i]!v k[i]?

c? c!e

P() Q(i)

Figure 9: The P —— Q Process
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1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.2. Process Definitions

Example 18 . . . . . . Communicating Hubs, Links and Vehicles:

• Hubs interact with links and vehicles:

– with all immediately adjacent links,

– and with potentially all vehicles.

• Links interact with hubs and vehicles:

– with both adjacent hubs,

– and with potentially all vehicles.

• Vehicles interact with hubs and links:

– with potentially all hubs.

– and with potentially all links.
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1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.2. Process Definitions

value

hub: hi:HI × h:H → in,out {hl[ (hi,li)|li:LI•li ∈ obs LIs(h) ]}
in,out {vh[ (vi,hi)|vi:VI•vi ∈ vis ]} Unit

link: li:LI × l:L → in,out {hl[ (hi,li)|hi:HI•hi ∈ obs HIs(l) ]}
in,out {vh[ (vi,li)|vi:VI•vi ∈ vis ]} Unit

vehicle: vi:VI → (Pos × Net) → v:V →
in,out {vh[ (vi,hi)|hi:HI•hi ∈ his ]}
in,out {vl[ (vi,li)|li:LI•li ∈ lis ]} Unit

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .End of Example 18

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 373

1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.3. Process Composition

1.7.3. Process Composition

• Let P and Q stand for names of process functions,

• i.e., of functions which express willingness to engage in input and/or
output events,

• thereby communicating over declared channels.

• Let P and Q stand for process expressions,

• and let Pi stand for an indexed process expression, then:

P ‖ Q Parallel composition
P ⌈⌉⌊⌋ Q Nondeterministic external choice (either/or)
P ⌈⌉ Q Nondeterministic internal choice (either/or)
P –‖ Q Interlock parallel composition
O { Pi | i:Idx } Distributed composition, O = ‖,⌈⌉⌊⌋,⌈⌉,–‖
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1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.3. Process Composition

Example 19 . . . . . . . . . . . . . . . . . . . . . . Modelling Transport Nets:

• The net, with vehicles, potential or actual, is now considered a process.

• It is the parallel composition of

– all hub processes,

– all link processes and

– all vehicle processes.

value

net: N → V-set → Unit

net(n)(vs) ≡
‖ {hub( obs HI(h))(h)|h:H•h ∈ obs Hs(n)} ‖
‖ {link( obs LI(l))(l)|l:L•l ∈ obs Ls(n)} ‖
‖ {vehicle(obs VI(v))(obs PN(v))(v)|v:V•v ∈ vs}

obs PN: V → (Pos×Net)
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• We illustrate a schematic definition of simplified hub processes.

• The hub process alternates, internally non-deterministically, ⌈⌉, be-
tween three sub-processes

– a sub-process which serves the link-hub connections,

– a sub-process which serves thos vehicles which communicate that
they somehow wish to enter or leave (or do something else with
respect to) the hub, and

– a sub-process which serves the hub itself — whatever that is !

hub(hi)(h) ≡
⌈⌉⌊⌋{let m = hl[ (hi,li) ] ? in hub(hi)(Ehℓ

(li)(m)(h)) end|i:LI•li ∈ obs LI(h)}

⌈⌉ ⌈⌉⌊⌋{let m = vh[ (vi,hi) ] ? in hub(vi)(Ehv
(vi)(m)(h)) end|vi:VI•vi ∈ vis}

⌈⌉ hub(hi)(Ehown
(h))
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• The three auxiliary processes:

– Ehℓ
update the hub with respect to (wrt.) connected link, li, infor-

mation m,

– Ehv
update the hub with wrt. vehicle, vi, information m,

– Ehown
update the hub with wrt. whatever the hub so decides. An

example could be signalling dependent on previous link-to-hub com-
municated information, say about traffic density.

Ehℓ
: LI → M → H → H

Ehv
: VI → M → H → H

Ehown
: H → H

• The student is encouraged to sketch/define similarly schematic link
and vehicle processes.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .End of Example 19
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1.7.4. Input/Output Events

• Let c and k[i] designate channels of type A

• and e expression values of type A, then:

[ 1 ] c?, k[ i ]? input A value
[ 2 ] c!e, k[ i ]!e output A value

value

[ 3 ] P: ... → out c ..., P(...) ≡ ... c!e ... offer an A value,
[ 4 ] Q: ... → in c ..., Q(...) ≡ ... c? ... accept an A value
[ 5 ] S: ... → ..., S(...) = P(...)‖Q(...) synchronise and communicate

• [5] expresses the willingness of a process to engage in an event that

– [1,3] “reads” an input, respectively

– [2,4] “writes” an output.

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

378 From Domains to Requirements

1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.4. Input/Output Events

Example 20 . . . . . . . . . . . . . . . . . .Modelling Vehicle Movements:

• Whereas hubs and links are modelled as basically static, passive, that
is, inert, processes we shall consider vehicles to be “highly” dynamic,
active processes.

• We assume that a vehicle possesses knowledge about the road net.

– The road net is here abstracted as an awareness of

– which links, by their link identifiers,

– are connected to any given hub, designated by its hub identifier,

– the length of the link,

– and the hub to which the link is connected “at the other end”, also
by its hub identifier
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• A vehicle is further modelled by its current position on the net in terms
of either hub or link positions

– designated by appropriate identifiers

– and, when “on a link” “how far down the link”, by a measure of a
fraction of the total length of the link, the vehicle has progressed.

type

Net = HI →m (LI →m HI)
Pos = atH | onL
atH == mk atH(hi:HI)
onL == mk onL(fhi:HI,li:LI,f:F,thi:HI)
F = {|f:Real•0≤f≤1|}
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• We first assume that the vehicle is at a hub.

• There are now two possibilities (1–2] versus [4–8]).

– Either the vehicle remains at that hub

∗ [1] which is expressed by some non-deterministic wait

∗ [2] followed by a resumption of being that vehicle at that location.

– [3] Or the vehicle (driver) decides to “move on”:

∗ [5] Onto a link, li,

∗ [4] among the links, lis, emanating from the hub,

∗ [6] and towards a next hub, hi′.

– [4,6] The lis and hi′ quantities are obtained from the vehicles own knowledge of
the net.

– [7] The hub and the chosen link are notified by the vehicle of its leaving the hub
and entering the link,

– [8] whereupon the vehicle resumes its being a vehicle at the initial location on
the chosen link.
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• The vehicle chooses between these two possibilities by an internal non-deterministic
choice ([3]).

type

M == mk L H(li:LI,hi:HI) | mk H L(hi:HI,li:LI)
value

vehicle: VI → (Pos × Net) → V → Unit

vehicle(vi)(mk atH(hi),net)(v) ≡
[ 1 ] (wait ;
[ 2 ] vehicle(vi)(mk atH(hi),net)(v))
[ 3 ] ⌈⌉
[ 4 ] (let lis=dom net(hi) in

[ 5 ] let li:LI•li ∈ lis in

[ 6 ] let hi′=(net(hi))(li) in

[ 7 ] (vh[ (vi,hi) ]!mk H L(hi,li)‖vl[ (vi,li) ]!mk H L(hi,li));
[ 8 ] vehicle(vi)(mk onL(hi,li,0,hi′),net)(v)
[ 9 ] end end end)
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1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.4. Input/Output Events

• We then assume that the vehicle is on a link and at a certain distance “down”, f,
that link.

• There are now two possibilities ([1–2] versus [4–7]).

– Either the vehicle remains at that hub

∗ [1′] which is expressed by some non-deterministic wait

∗ [2′] followed by a resumption of being that vehicle at that location.

– [3′] Or the vehicle (driver) decides to “move on”.

– [4′] Either

∗ [5′] The vehicle is at the very end of the link and signals the link and the hub
of its leaving the link and entering the hub,

∗ [6′] whereupon the vehicle resumes its being a vehicle at hub h′.

– [7′] or the vehicle moves further down, some non-zero fraction down the link.

• The vehicle chooses between these two possibilities by an internal non-deterministic
choice ([3]).
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type

M == mk L H(li:LI,hi:HI) | mk H L(hi:HI,li:LI)
value

δ:Real = move(h,f) axiom 0<δ≪1
vehicle(vi)( mk onL(hi,li,f,hi′),net)(v) ≡
[ 1′ ] (wait ;
[ 2′ ] vehicle(vi)(mk onL(hi,li,f,hi′),net)(v))
[ 3′ ] ⌈⌉
[ 4′ ] (case f of

[ 5′ ] 1 → ((vl[ vi,hi′ ]!mk L H(li,hi′)‖vh[ vi,li ]!mk L H(li,hi′));
[ 6′ ] vehicle(vi)(mk atH(hi′),net)(v)),
[ 7′ ] → vehicle(vi)(mk onL(hi,li,f+δ,hi′),net)(v)
[ 8′ ] end)
move: H × F → F

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .End of Example 20
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1.8. Simple RSL Specifications

• Besides the above constructs RSL also possesses module-oriented

– scheme, – class and – object

constructs.

• We shall not cover these here.

• An RSL specification is then simply

– a sequence of one or more clusters of

∗ zero, one or more sort and/or type definitions,

∗ zero, one or more variable declarations,

∗ zero, one or more channel declarations,

∗ zero, one or more value definitions (including functions) and

∗ zero, one or more and axioms.

• We can illustrate these specification components schematically:
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type

A, B, C, D, E, F, G

Hf = A-set, Hi = A-infset

J = B×C×...×D

Kf = E∗, Ki = Eω

L = F→m G

Mt = J → Kf, Mp = J
∼
→ Ki

N == alpha | beta | ... | omega

O == mk Hf(as:Hf)

| mk Kf(el:Kf) | ...

P = Hf | Kf | L | ...

variable

vhf:Hf := 〈〉
channel

chf:F, chg:G, {chb[ i ]|i:A}:B

value

va:A, vb:B, ..., ve:E

f1: A → B, f2: C
∼
→ D

f1(a) ≡ Ef1(a)

f2: E → in|out chf F

f2(e) ≡ Ef2(e)

f3: Unit → in chf out chg Unit

...

axiom

Pi(f1,va),

Pj(f2,vb),

...

Pk(f3,ve)
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1. 4. An Ontology of Requirements Constructions 1.8. Simple RSL Specifications

• The ordering of these clauses is immaterial.

• Intuitively the meaning of these definitions and declarations are the following.

– The type clause introduces a number of user-defined type names;

∗ the type names are visible anywhere in the specification;

∗ and either denote sorts or concrete types.

– The variable clause declares some variable names;

∗ a variable name denote some value of decalred type;

∗ the variable names are visible anywhere in the specification:

· assigned to (‘written’) or

· values ‘read’.

– The channel clause declares some channel names;

∗ either simple channels or arrays of channels of some type;

∗ the channel names are visible anywhere in the specification.
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– The value clause bind (constant) values to value names.

∗ These value names are visible anywhere in the specification.

∗ The specification

type

A
value

a:A

∗ non-deterministically binds a to a value of type A.

∗ Thuis includes, for example

type

A, B
value

f: A → B

∗ which non-deterministically binds f to a function value of type
A→B.
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Example 21 . . . . . . . . . . . . . . . . . . . . . . . . A Neat Little “System”:

• We present a self-contained specification of a simple system:

– The system models

∗ vehicles moving along a net, vehicle,

∗ the recording of vehicles entering links, enter sensor,

∗ the recording of vehicles leaving links, leave sensor, and

∗ the road pricing payment of a vehicle having traversed (entered
and left) a link.

– Note

∗ that vehicles only pay when completing a link traversal;

∗ that ‘road pricing’ only commences once a vehicle enters the first
link after possibly having left an earlier link (and hub); and

∗ that no road pricing payment is imposed on vehicles entering,
staying-in (or at) and leaving hubs.
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– We assume the following:

∗ that each link is somehow associated with two pairs of sensors:

· a pair of enter and leave sensors at one end, and

· a pair of enter and leave sensors at the other end;

and

∗ a road pricing process

· which records pairs of link enterings and leavings,

· first one, then, after any time interval, the other,

· with leavings leading to debiting of traversal fees;

• Our first specification

– define types,

– assume a net value,

– declares channels and

– state signatures of all processes.
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• ves stand for vehicle entering (link) sensor channels,

• vls stand for vehicle leaving (link) sensor channels,

• rp stand for ‘road pricing’ channel

• enter sensor(hi,li) stand for vehicle entering [sensor] process from hub
hi to link ( li).

• leave sensor(li,hi) stand for vehicle leaving [sensor] process from link
li to hub (hi).

• road pricing() stand for the unique ‘road pricing’ process.

• vehicle(vi)(...) stand for the vehicle vi process.
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type

N, H, HI, LI, VI
RPM == mk Enter L(vi:VI,li:LI) | mk Leave L(vi:VI,li:LI)

value

n:N
channel

{ves[ obs HI(h),li ]|h:H•h ∈ obs Hs(n)∧li ∈ obs LIs(h)}:VI
{vls[ li,obs HI(h) ]|h:H•h ∈ obs Hs(n)∧li ∈ obs LIs(h)}:VI
rp:RPM

type

Fee, Bal
LVS = LI →m VI-set, FEE = LI →m Fee, ACC = VI →m Bal

value

link: (li:LI × L) → Unit

enter sensor: (hi:HI × li:LI) → in ves[ hi,li ],out rp Unit

leave sensor: (li:LI × hi:HI) → in vls[ li,hi ],out rp Unit

road pricing: (LVS×FEE×ACC) → in rp Unit

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



392 From Domains to Requirements
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• To understand the sensor behaviours let us review the vehicle be-
haviour.

• In the vehicle behaviour defined in Example 20, in two parts, Slide 381
and Slide 383 we focus on the events

– [7] where the vehicle enters a link, respectively

– [5′] where the vehicle leaves a link.

• These are summarised in the schematic reproduction of the vehicle
behaviour description.

– We redirect the interactions between vehicles and links to become

– interactions between vehicles and enter and leave sensors.

value

δ:Real = move(h,f) axiom 0<δ≪1
move: H × F → F
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vehicle: VI → (Pos × Net) → V → Unit

vehicle(vi)(pos,net)(v) ≡
[ 1 ] (wait ;
[ 2 ] vehicle(vi)(pos,net)(v))
[ 3 ] ⌈⌉

case pos of

mk atH(hi) →
[ 4−6 ] (let lis=dom net(hi) in let li:LI•li ∈ lis in let hi′=(net(hi))(li) in

[ 7 ] ves[ hi,li ]!vi;
[ 8 ] vehicle(vi)(mk onL(hi,li,0,hi′),net)(v)
[ 9 ] end end end)

mk onL(hi,li,f,hi′) →
[ 4′ ] (case f of

[ 5′−6′ ] 1 → (vls[ li,hi ]!vi; vehicle(vi)(mk atH(hi′),net)(v)),
[ 7′ ] → vehicle(vi)(mk onL(hi,li,f+δ,hi′),net)(v)
[ 8′ ] end)

end
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• As mentioned on Slide 389 link behaviours are associated with two
pairs of sensors:

– a pair of enter and leave sensors at one end, and

– a pair of enter and leave sensors at the other end;

value

link(li)(l) ≡
let {hi,hi′} = obs HIs(l) in

enter sensor(hi,li) ‖ leave sensor(li,hi) ‖
enter sensor(hi′,li) ‖ leave sensor(li,hi′) end

enter sensor(hi,li) ≡
let vi = ves[ hi,li ]? in rp!mk Enter LI(vi,li); enter sensor(hi,li) end

leave sensor(li,hi) ≡
let vi = ves[ li,hi ]? in rp!mk Leave LI(vi,li); enter sensor(li,hi) end
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• The LVS component of the road pricing behaviour serves,

– among other purposes that are not mentioned here,

– to record whether the movement of a vehicles “originates” along a
link or not.

• Otherwise we leave it to the student to carefully read the formulas.

value

payment: VI × LI → (ACC × FEE) → ACC
payment(vi,li)(fee,acc) ≡
let bal′ = if vi ∈ dom acc then add(acc(vi),fee(li)) else fee(li) end

in acc † [ vi 7→ bal′ ] end

add: Fee × Bal → Bal [ add fee to balance ]
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road pricing(lvs,fee,acc) ≡ in rp
let m = rp? in

case m of

mk Enter LI(vi,li) →
road pricing(lvs†[ li7→lvs(li)∪{vi} ],fee,acc),

mk Leave LI(vi,li) →
let lvs′ = if vi ∈ lvs(li) then lvs†[ li7→lvs(li)\{vi} ] else lvs end,

acc′ = payment(vi,li)(fee,acc) in

road pricing(lvs′,fee,acc′)
end end end

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .End of Example 21
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End of Lecture 10: RSL: Imperative & Process Specs.
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