
360 From Domains to Requirements

Start of Lecture 10: RSL: Imperative & Process Specs.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 361

1. 4. An Ontology of Requirements Constructions 1.6. Imperative Constructs

1.6. Imperative Constructs
1.6.1. Statements and State Changes

Unit

value

stmt: Unit → Unit

stmt()

• The Unit clause, in a sense, denotes “an underlying state”

– which we, for simplicity, can consider as

– a mapping from identifiers of declared variables into their values.

• Statements accept no arguments and, usually, operate on the state

– through “reading” the value(s) of declared variables and

– through “writing”, i.e., assigning values to such declared variables.

• Statement execution thus changes the state (of declared variables).

• Unit → Unit designates a function from states to states.

• Statements, stmt, denote state-to-state changing functions.

• Affixing () as an “only” arguments to a function “means” that () is an argument of type Unit.

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

362 From Domains to Requirements

1. 4. An Ontology of Requirements Constructions 1.6. Imperative Constructs 1.6.2. Variables and Assignment

1.6.2. Variables and Assignment

0. variable v:Type := expression
1. v := expr

1.6.3. Statement Sequences and skip

2. skip

3. stm 1;stm 2;...;stm n

1.6.4. Imperative Conditionals

4. if expr then stm c else stm a end

5. case e of: p 1→S 1(p 1),...,p n→S n(p n) end

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 363

1. 4. An Ontology of Requirements Constructions 1.6. Imperative Constructs 1.6.5. Iterative Conditionals

1.6.5. Iterative Conditionals

6. while expr do stm end

7. do stmt until expr end

1.6.6. Iterative Sequencing

8. for i in list • P(list(i)) do S(list(i)) end

9. for e in set • P(e) do S(e) end

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

364 From Domains to Requirements

1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs

1.7. Process Constructs
1.7.1. Process Channels

• Let A, B and C stand for three types of (channel) messages

• and i:IIdx, j:JIdx for channel array indexes, then:

channel

c:A
channel

{k[i]|i:IIdx}:B
{ch[i,j]i:IIdx,j:JIdx}:C

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 365

1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.1. Process Channels

Example 17 Modelling Connected Links and Hubs:

• Examples (17–20) are building up a model of one form of meaning
of a transport net.

– We model the movement of vehicles around hubs and links.

– We think of each hub, each link and each vehicle to be a process.

– These processes communicate via channels.

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

366 From Domains to Requirements

1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.1. Process Channels

• We assume a net, n : N , and a set, vs, of vehicles.

• Each vehicle can potentially interact

– with each hub and

– with each link.

• Array channel indices (vi,hi):IVH and (vi,li):IVL serve to effect these interactions.

• Each hub can interact with each of its connected links and indices (hi,li):IHL serves
these interactions.

type

N, V, VI
value

n:N, vs:V-set

obs VI: V → VI
type

H, L, HI, LI, M
IVH = VI×HI, IVL = VI×LI, IHL = HI×LI

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 367

1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.1. Process Channels

• We need some auxiliary quantities in order to be able to express sub-
sequent channel declarations.

• Given that we assume a net, n : N and a set of vehicles, vs : V S, we
can now define the following (global) values:

– the sets of hubs, hs, and links, ls of the net;

– the set, ivhs, of indices between vehicles and hubs,

– the set, ivls, of indices between vehicles and links, and

– the set, ihls, of indices between hubs and links.

value

hs:H-set = obs Hs(n), ls:L-set = obs Ls(n)
his:HI-set = {obs HI(h)|h:H•h ∈ hs}, lis:LI-set = {obs LI(h)|l:L•l ∈ ls},
ivhs:IVH-set = {(obs VI(v),obs HI(h))|v:V,h:H•v ∈ vs∧h ∈ hs}
ivls:IVL-set = {(obs VI(v),obs LI(l))|v:V,l:L•v ∈ vs∧l ∈ ls}
ihls:IHL-set = {(hi,li)|h:H,(hi,li):IHL• h ∈ hs∧hi=obs HI(h)∧li ∈ obs LIs(h)}

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

368 From Domains to Requirements

1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.1. Process Channels

• We are now ready to declare the channels:

– a set of channels, {vh[i]|i:IVH•i∈ivhs} between vehicles and all po-
tentially traversable hubs;

– a set of channels, {vh[i]|i:IVH•i∈ivhs} between vehicles and all po-
tentially traversable links; and

– a set of channels, {hl[i]|i:IHL•i∈ihls}, between hubs and connected
links.

channel

{vh[i] | i:IVH • i ∈ ivhs} : M
{vl[i] | i:IVL • i ∈ ivls} : M
{hl[i] | i:IHL • i ∈ ihls} : M

. .End of Example 17

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 369

1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.2. Process Definitions

1.7.2. Process Definitions

• A process definition is a function definition.

• The below signatures are just examples.

• They emphasise that process functions must somehow express,

– in their signature,

• via which channels they wish to engage in input and output events.

• Processes P and Q are to interact, and to do so “ad infinitum”.

• Processes R and S are to interact, and to do so “once”, and then
yielding B, respectively D values.

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

370 From Domains to Requirements

1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.2. Process Definitions

value

P: Unit → in c out {k[i]|i:IIdx} Unit

Q: i:KIdx → out c in k[i] Unit

P() ≡ ... c ? ... k[i] ! e ... ; P()
Q(i) ≡ ... c ! e ... k[i] ? ... ; Q(i)

k[i]!v k[i]?

c? c!e

P() Q(i)

Figure 9: The P —— Q Process

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 371

1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.2. Process Definitions

Example 18 Communicating Hubs, Links and Vehicles:

• Hubs interact with links and vehicles:

– with all immediately adjacent links,

– and with potentially all vehicles.

• Links interact with hubs and vehicles:

– with both adjacent hubs,

– and with potentially all vehicles.

• Vehicles interact with hubs and links:

– with potentially all hubs.

– and with potentially all links.

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

372 From Domains to Requirements

1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.2. Process Definitions

value

hub: hi:HI × h:H → in,out {hl[(hi,li)|li:LI•li ∈ obs LIs(h)]}
in,out {vh[(vi,hi)|vi:VI•vi ∈ vis]} Unit

link: li:LI × l:L → in,out {hl[(hi,li)|hi:HI•hi ∈ obs HIs(l)]}
in,out {vh[(vi,li)|vi:VI•vi ∈ vis]} Unit

vehicle: vi:VI → (Pos × Net) → v:V →
in,out {vh[(vi,hi)|hi:HI•hi ∈ his]}
in,out {vl[(vi,li)|li:LI•li ∈ lis]} Unit

. .End of Example 18

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 373

1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.3. Process Composition

1.7.3. Process Composition

• Let P and Q stand for names of process functions,

• i.e., of functions which express willingness to engage in input and/or
output events,

• thereby communicating over declared channels.

• Let P and Q stand for process expressions,

• and let Pi stand for an indexed process expression, then:

P ‖ Q Parallel composition
P ⌈⌉⌊⌋ Q Nondeterministic external choice (either/or)
P ⌈⌉ Q Nondeterministic internal choice (either/or)
P –‖ Q Interlock parallel composition
O { Pi | i:Idx } Distributed composition, O = ‖,⌈⌉⌊⌋,⌈⌉,–‖

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

374 From Domains to Requirements

1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.3. Process Composition

Example 19 . Modelling Transport Nets:

• The net, with vehicles, potential or actual, is now considered a process.

• It is the parallel composition of

– all hub processes,

– all link processes and

– all vehicle processes.

value

net: N → V-set → Unit

net(n)(vs) ≡
‖ {hub(obs HI(h))(h)|h:H•h ∈ obs Hs(n)} ‖
‖ {link(obs LI(l))(l)|l:L•l ∈ obs Ls(n)} ‖
‖ {vehicle(obs VI(v))(obs PN(v))(v)|v:V•v ∈ vs}

obs PN: V → (Pos×Net)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 375

1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.3. Process Composition

• We illustrate a schematic definition of simplified hub processes.

• The hub process alternates, internally non-deterministically, ⌈⌉, be-
tween three sub-processes

– a sub-process which serves the link-hub connections,

– a sub-process which serves thos vehicles which communicate that
they somehow wish to enter or leave (or do something else with
respect to) the hub, and

– a sub-process which serves the hub itself — whatever that is !

hub(hi)(h) ≡
⌈⌉⌊⌋{let m = hl[(hi,li)] ? in hub(hi)(Ehℓ

(li)(m)(h)) end|i:LI•li ∈ obs LI(h)}

⌈⌉ ⌈⌉⌊⌋{let m = vh[(vi,hi)] ? in hub(vi)(Ehv
(vi)(m)(h)) end|vi:VI•vi ∈ vis}

⌈⌉ hub(hi)(Ehown
(h))

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

376 From Domains to Requirements

1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.3. Process Composition

• The three auxiliary processes:

– Ehℓ
update the hub with respect to (wrt.) connected link, li, infor-

mation m,

– Ehv
update the hub with wrt. vehicle, vi, information m,

– Ehown
update the hub with wrt. whatever the hub so decides. An

example could be signalling dependent on previous link-to-hub com-
municated information, say about traffic density.

Ehℓ
: LI → M → H → H

Ehv
: VI → M → H → H

Ehown
: H → H

• The student is encouraged to sketch/define similarly schematic link
and vehicle processes.

. .End of Example 19

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 377

1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.4. Input/Output Events

1.7.4. Input/Output Events

• Let c and k[i] designate channels of type A

• and e expression values of type A, then:

[1] c?, k[i]? input A value
[2] c!e, k[i]!e output A value

value

[3] P: ... → out c ..., P(...) ≡ ... c!e ... offer an A value,
[4] Q: ... → in c ..., Q(...) ≡ ... c? ... accept an A value
[5] S: ... → ..., S(...) = P(...)‖Q(...) synchronise and communicate

• [5] expresses the willingness of a process to engage in an event that

– [1,3] “reads” an input, respectively

– [2,4] “writes” an output.

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

378 From Domains to Requirements

1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.4. Input/Output Events

Example 20Modelling Vehicle Movements:

• Whereas hubs and links are modelled as basically static, passive, that
is, inert, processes we shall consider vehicles to be “highly” dynamic,
active processes.

• We assume that a vehicle possesses knowledge about the road net.

– The road net is here abstracted as an awareness of

– which links, by their link identifiers,

– are connected to any given hub, designated by its hub identifier,

– the length of the link,

– and the hub to which the link is connected “at the other end”, also
by its hub identifier

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 379

1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.4. Input/Output Events

• A vehicle is further modelled by its current position on the net in terms
of either hub or link positions

– designated by appropriate identifiers

– and, when “on a link” “how far down the link”, by a measure of a
fraction of the total length of the link, the vehicle has progressed.

type

Net = HI →m (LI →m HI)
Pos = atH | onL
atH == mk atH(hi:HI)
onL == mk onL(fhi:HI,li:LI,f:F,thi:HI)
F = {|f:Real•0≤f≤1|}

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

380 From Domains to Requirements

1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.4. Input/Output Events

• We first assume that the vehicle is at a hub.

• There are now two possibilities (1–2] versus [4–8]).

– Either the vehicle remains at that hub

∗ [1] which is expressed by some non-deterministic wait

∗ [2] followed by a resumption of being that vehicle at that location.

– [3] Or the vehicle (driver) decides to “move on”:

∗ [5] Onto a link, li,

∗ [4] among the links, lis, emanating from the hub,

∗ [6] and towards a next hub, hi′.

– [4,6] The lis and hi′ quantities are obtained from the vehicles own knowledge of
the net.

– [7] The hub and the chosen link are notified by the vehicle of its leaving the hub
and entering the link,

– [8] whereupon the vehicle resumes its being a vehicle at the initial location on
the chosen link.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 381

1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.4. Input/Output Events

• The vehicle chooses between these two possibilities by an internal non-deterministic
choice ([3]).

type

M == mk L H(li:LI,hi:HI) | mk H L(hi:HI,li:LI)
value

vehicle: VI → (Pos × Net) → V → Unit

vehicle(vi)(mk atH(hi),net)(v) ≡
[1] (wait ;
[2] vehicle(vi)(mk atH(hi),net)(v))
[3] ⌈⌉
[4] (let lis=dom net(hi) in

[5] let li:LI•li ∈ lis in

[6] let hi′=(net(hi))(li) in

[7] (vh[(vi,hi)]!mk H L(hi,li)‖vl[(vi,li)]!mk H L(hi,li));
[8] vehicle(vi)(mk onL(hi,li,0,hi′),net)(v)
[9] end end end)

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

382 From Domains to Requirements

1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.4. Input/Output Events

• We then assume that the vehicle is on a link and at a certain distance “down”, f,
that link.

• There are now two possibilities ([1–2] versus [4–7]).

– Either the vehicle remains at that hub

∗ [1′] which is expressed by some non-deterministic wait

∗ [2′] followed by a resumption of being that vehicle at that location.

– [3′] Or the vehicle (driver) decides to “move on”.

– [4′] Either

∗ [5′] The vehicle is at the very end of the link and signals the link and the hub
of its leaving the link and entering the hub,

∗ [6′] whereupon the vehicle resumes its being a vehicle at hub h′.

– [7′] or the vehicle moves further down, some non-zero fraction down the link.

• The vehicle chooses between these two possibilities by an internal non-deterministic
choice ([3]).

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 383

1. 4. An Ontology of Requirements Constructions 1.7. Process Constructs 1.7.4. Input/Output Events

type

M == mk L H(li:LI,hi:HI) | mk H L(hi:HI,li:LI)
value

δ:Real = move(h,f) axiom 0<δ≪1
vehicle(vi)(mk onL(hi,li,f,hi′),net)(v) ≡
[1′] (wait ;
[2′] vehicle(vi)(mk onL(hi,li,f,hi′),net)(v))
[3′] ⌈⌉
[4′] (case f of

[5′] 1 → ((vl[vi,hi′]!mk L H(li,hi′)‖vh[vi,li]!mk L H(li,hi′));
[6′] vehicle(vi)(mk atH(hi′),net)(v)),
[7′] → vehicle(vi)(mk onL(hi,li,f+δ,hi′),net)(v)
[8′] end)
move: H × F → F

. .End of Example 20

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

384 From Domains to Requirements

1. 4. An Ontology of Requirements Constructions 1.8. Simple RSL Specifications

1.8. Simple RSL Specifications

• Besides the above constructs RSL also possesses module-oriented

– scheme, – class and – object

constructs.

• We shall not cover these here.

• An RSL specification is then simply

– a sequence of one or more clusters of

∗ zero, one or more sort and/or type definitions,

∗ zero, one or more variable declarations,

∗ zero, one or more channel declarations,

∗ zero, one or more value definitions (including functions) and

∗ zero, one or more and axioms.

• We can illustrate these specification components schematically:

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 385

1. 4. An Ontology of Requirements Constructions 1.8. Simple RSL Specifications

type

A, B, C, D, E, F, G

Hf = A-set, Hi = A-infset

J = B×C×...×D

Kf = E∗, Ki = Eω

L = F→m G

Mt = J → Kf, Mp = J
∼
→ Ki

N == alpha | beta | ... | omega

O == mk Hf(as:Hf)

| mk Kf(el:Kf) | ...

P = Hf | Kf | L | ...

variable

vhf:Hf := 〈〉
channel

chf:F, chg:G, {chb[i]|i:A}:B

value

va:A, vb:B, ..., ve:E

f1: A → B, f2: C
∼
→ D

f1(a) ≡ Ef1(a)

f2: E → in|out chf F

f2(e) ≡ Ef2(e)

f3: Unit → in chf out chg Unit

...

axiom

Pi(f1,va),

Pj(f2,vb),

...

Pk(f3,ve)

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

386 From Domains to Requirements

1. 4. An Ontology of Requirements Constructions 1.8. Simple RSL Specifications

• The ordering of these clauses is immaterial.

• Intuitively the meaning of these definitions and declarations are the following.

– The type clause introduces a number of user-defined type names;

∗ the type names are visible anywhere in the specification;

∗ and either denote sorts or concrete types.

– The variable clause declares some variable names;

∗ a variable name denote some value of decalred type;

∗ the variable names are visible anywhere in the specification:

· assigned to (‘written’) or

· values ‘read’.

– The channel clause declares some channel names;

∗ either simple channels or arrays of channels of some type;

∗ the channel names are visible anywhere in the specification.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 387

1. 4. An Ontology of Requirements Constructions 1.8. Simple RSL Specifications

– The value clause bind (constant) values to value names.

∗ These value names are visible anywhere in the specification.

∗ The specification

type

A
value

a:A

∗ non-deterministically binds a to a value of type A.

∗ Thuis includes, for example

type

A, B
value

f: A → B

∗ which non-deterministically binds f to a function value of type
A→B.

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

388 From Domains to Requirements

1. 4. An Ontology of Requirements Constructions 1.8. Simple RSL Specifications

Example 21 . A Neat Little “System”:

• We present a self-contained specification of a simple system:

– The system models

∗ vehicles moving along a net, vehicle,

∗ the recording of vehicles entering links, enter sensor,

∗ the recording of vehicles leaving links, leave sensor, and

∗ the road pricing payment of a vehicle having traversed (entered
and left) a link.

– Note

∗ that vehicles only pay when completing a link traversal;

∗ that ‘road pricing’ only commences once a vehicle enters the first
link after possibly having left an earlier link (and hub); and

∗ that no road pricing payment is imposed on vehicles entering,
staying-in (or at) and leaving hubs.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 389

1. 4. An Ontology of Requirements Constructions 1.8. Simple RSL Specifications

– We assume the following:

∗ that each link is somehow associated with two pairs of sensors:

· a pair of enter and leave sensors at one end, and

· a pair of enter and leave sensors at the other end;

and

∗ a road pricing process

· which records pairs of link enterings and leavings,

· first one, then, after any time interval, the other,

· with leavings leading to debiting of traversal fees;

• Our first specification

– define types,

– assume a net value,

– declares channels and

– state signatures of all processes.

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

390 From Domains to Requirements

1. 4. An Ontology of Requirements Constructions 1.8. Simple RSL Specifications

• ves stand for vehicle entering (link) sensor channels,

• vls stand for vehicle leaving (link) sensor channels,

• rp stand for ‘road pricing’ channel

• enter sensor(hi,li) stand for vehicle entering [sensor] process from hub
hi to link (li).

• leave sensor(li,hi) stand for vehicle leaving [sensor] process from link
li to hub (hi).

• road pricing() stand for the unique ‘road pricing’ process.

• vehicle(vi)(...) stand for the vehicle vi process.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 391

1. 4. An Ontology of Requirements Constructions 1.8. Simple RSL Specifications

type

N, H, HI, LI, VI
RPM == mk Enter L(vi:VI,li:LI) | mk Leave L(vi:VI,li:LI)

value

n:N
channel

{ves[obs HI(h),li]|h:H•h ∈ obs Hs(n)∧li ∈ obs LIs(h)}:VI
{vls[li,obs HI(h)]|h:H•h ∈ obs Hs(n)∧li ∈ obs LIs(h)}:VI
rp:RPM

type

Fee, Bal
LVS = LI →m VI-set, FEE = LI →m Fee, ACC = VI →m Bal

value

link: (li:LI × L) → Unit

enter sensor: (hi:HI × li:LI) → in ves[hi,li],out rp Unit

leave sensor: (li:LI × hi:HI) → in vls[li,hi],out rp Unit

road pricing: (LVS×FEE×ACC) → in rp Unit

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

392 From Domains to Requirements

1. 4. An Ontology of Requirements Constructions 1.8. Simple RSL Specifications

• To understand the sensor behaviours let us review the vehicle be-
haviour.

• In the vehicle behaviour defined in Example 20, in two parts, Slide 381
and Slide 383 we focus on the events

– [7] where the vehicle enters a link, respectively

– [5′] where the vehicle leaves a link.

• These are summarised in the schematic reproduction of the vehicle
behaviour description.

– We redirect the interactions between vehicles and links to become

– interactions between vehicles and enter and leave sensors.

value

δ:Real = move(h,f) axiom 0<δ≪1
move: H × F → F

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 393

1. 4. An Ontology of Requirements Constructions 1.8. Simple RSL Specifications

vehicle: VI → (Pos × Net) → V → Unit

vehicle(vi)(pos,net)(v) ≡
[1] (wait ;
[2] vehicle(vi)(pos,net)(v))
[3] ⌈⌉

case pos of

mk atH(hi) →
[4−6] (let lis=dom net(hi) in let li:LI•li ∈ lis in let hi′=(net(hi))(li) in

[7] ves[hi,li]!vi;
[8] vehicle(vi)(mk onL(hi,li,0,hi′),net)(v)
[9] end end end)

mk onL(hi,li,f,hi′) →
[4′] (case f of

[5′−6′] 1 → (vls[li,hi]!vi; vehicle(vi)(mk atH(hi′),net)(v)),
[7′] → vehicle(vi)(mk onL(hi,li,f+δ,hi′),net)(v)
[8′] end)

end

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

394 From Domains to Requirements

1. 4. An Ontology of Requirements Constructions 1.8. Simple RSL Specifications

• As mentioned on Slide 389 link behaviours are associated with two
pairs of sensors:

– a pair of enter and leave sensors at one end, and

– a pair of enter and leave sensors at the other end;

value

link(li)(l) ≡
let {hi,hi′} = obs HIs(l) in

enter sensor(hi,li) ‖ leave sensor(li,hi) ‖
enter sensor(hi′,li) ‖ leave sensor(li,hi′) end

enter sensor(hi,li) ≡
let vi = ves[hi,li]? in rp!mk Enter LI(vi,li); enter sensor(hi,li) end

leave sensor(li,hi) ≡
let vi = ves[li,hi]? in rp!mk Leave LI(vi,li); enter sensor(li,hi) end

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

Lecture Notes in Software Engineering 395

1. 4. An Ontology of Requirements Constructions 1.8. Simple RSL Specifications

• The LVS component of the road pricing behaviour serves,

– among other purposes that are not mentioned here,

– to record whether the movement of a vehicles “originates” along a
link or not.

• Otherwise we leave it to the student to carefully read the formulas.

value

payment: VI × LI → (ACC × FEE) → ACC
payment(vi,li)(fee,acc) ≡
let bal′ = if vi ∈ dom acc then add(acc(vi),fee(li)) else fee(li) end

in acc † [vi 7→ bal′] end

add: Fee × Bal → Bal [add fee to balance]

November 1, 2010, 17:20, Budapest Lectures, Oct. 11–22, 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

396 From Domains to Requirements

1. 4. An Ontology of Requirements Constructions 1.8. Simple RSL Specifications

road pricing(lvs,fee,acc) ≡ in rp
let m = rp? in

case m of

mk Enter LI(vi,li) →
road pricing(lvs†[li7→lvs(li)∪{vi}],fee,acc),

mk Leave LI(vi,li) →
let lvs′ = if vi ∈ lvs(li) then lvs†[li7→lvs(li)\{vi}] else lvs end,

acc′ = payment(vi,li)(fee,acc) in

road pricing(lvs′,fee,acc′)
end end end

. .End of Example 21

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

396 From Domains to Requirements

End of Lecture 10: RSL: Imperative & Process Specs.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Budapest Lectures, Oct. 11–22, 2010 November 1, 2010, 17:20

