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Introduction: Failure Probabilities

• X (u(ω)) : V → R – A quantity of interest (functional) of the
solution u to some model problem with stochastic input ω

Definition: failure probability

The failure probability p given y is:

p = Pr(X ≤ y) or

p = F (y),

where F (·) is the cdf associated with X .

• Goal – Estimate the probability p ≈ Q̂ to a given root mean
square error (RMSE), e(Q̂) ≤ ε, using minimal computational
cost
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Multilevel Monte Carlo for failure probabilities
• Let Q(ω) = 1(X (ω) < y) and Qδ

` (ω) = 1(X δ
` (ω) < y) be

binomial distributed random variables
• Let Qδ

−1(ω) = 0 then the MLMC estimator reads

Q̂ML
{N`},δ =

L∑
`=0

N−1
`

N∑̀
i=1

(
Qδ
` (ωi

`)− Qδ
`−1(ωi

`)
)

Assumption

We have that

M1 |E
[
Qδ
` (ω)− Q(ω)

]
| ≤ C1δ`,

M2 V
[
Qδ
` (ω)− Qδ

`−1(ω)
]
≤ C2δ` for ` ≥ 1,

M3 C(Qδ
` (ω)) = C3δ

α
` ,

are satisfied where C1, C2, and C3 do not depend on the sample or
the underlying discretization, and α is some constant.
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Theorem

Then there exist a constant L and a sequence {N`} such that the
RMSE is less then ε, with the required work in terms of ε,

E
[
Cq
(
Q̂ML
{N`},δ

)]
.


ε−2 α < 1

ε−2(log ε)2 α = 1

ε−1−α α > 1

.
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Selective algorithm
For each sample ωi

` ∈ Ω we have

|X (ωi
`)− X δ

` (ωi
`)| ≤ δi` and C(X δ

` (ωi
`)) = (δi`)

−q.

• N = 100

• y = 2

• δi` = 1

• #I0 = 100
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For each sample ωi

` ∈ Ω we have

|X (ωi
`)− X δ

` (ωi
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• N = 100

• y = 2
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Selective algorithm
For each sample ωi

` ∈ Ω we have

|X (ωi
`)− X δ

` (ωi
`)| ≤ δi` and C(X δ

` (ωi
`)) = (δi`)

−q.

• N = 100

• y = 2

• δi` = 0.5

• #I1 = 51
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Selective algorithm
For each sample ωi

` ∈ Ω we have

|X (ωi
`)− X δ

` (ωi
`)| ≤ δi` and C(X δ

` (ωi
`)) = (δi`)

−q.

• N = 100

• y = 2

• δi` = 0.5

• #I2 = 21
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Selective algorithm
For each sample ωi

` ∈ Ω we have

|X (ωi
`)− X δ

` (ωi
`)| ≤ δi` and C(X δ

` (ωi
`)) = (δi`)

−q.

• N = 100

• y = 2

• δi` = 0.25

• #I2 = 21
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Selective algorithm
For each sample ωi

` ∈ Ω we have

|X (ωi
`)− X δ

` (ωi
`)| ≤ δi` and C(X δ

` (ωi
`)) = (δi`)

−q.

• N = 100

• y = 2

• δi` = 0.25

• #I3 = 11
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Selective algorithm
For each sample ωi

` ∈ Ω we have

|X (ωi
`)− X δ

` (ωi
`)| ≤ δi` and C(X δ

` (ωi
`)) = (δi`)

−q.

• N = 100

• y = 2

• δi` = 0.0125

• #I3 = 11
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Selective algorithm
For each sample ωi

` ∈ Ω we have

|X (ωi
`)− X δ

` (ωi
`)| ≤ δi` and C(X δ

` (ωi
`)) = (δi`)

−q.

• N = 100

• y = 2

• δi` = 0.0125

• #I4 = 6
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Selective algorithm
For each sample ωi

` ∈ Ω we have

|X (ωi
`)− X δ

` (ωi
`)| ≤ δi` and C(X δ

` (ωi
`)) = (δi`)

−q.

• N = 100

• y = 2

• δ4 = 0.00625

• #I4 = 6
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Theorem (Computable complexity for the Multilevel Monte
Carlo method with selective refinement)

There exist a constant L and a sequence {N`} such that the RMSE
is less then ε, with the required work in terms of ε,

E
[
Cq
(
Q̂MLS
{N`},δ

)]
.


ε−2 q < 2

ε−2(log ε)2 q = 2

ε−q q > 2

,

The method is optimal in the sense:

• (q < 2) same as the standard MC method on level = 0

• (q > 2) same complexity as one sample on the finest level L

E
[
Cq
(
Q̂MLS
{N`},δ

)]
.

{
N q < 2

Cq
(
Qδ

L(ω)
)

q > 2
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Example 1:

Solving a PDE in 2D to accuracy ε, on a uniform mesh, using a
numerical method with convergence rate p = 1, and using
multigrid to solve the linear system. The computational cost is
∼ δ−2.

Example 2:

Solving a PDE in 3D to accuracy ε, on a uniform mesh, using a
numerical method with convergence rate p = 1, and using
multigrid to solve the linear system. The computational cost is
∼ δ−3.
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Numerical verification: Demonstrational problem
• Estimate p = F (y) for q = {1, 2, 3}

10-2 10-1

Root mean square error ε
103

104

105

106

107

108

109

1010

1011

W
or
k

MLMC sel. q=1

MLMC q=1

10ε−2

MLMC sel. q=2

MLMC q=1

10log(ε−1 )ε−2

MLMC sel. q=3

MLMC q=3

10ε−3
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