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Model problem

Consider the convection-diffusion problem

−∇ · A∇u + b · ∇u = f in Ω,

u = 0 on ∂Ω.

where
• 0 < Amin ∈ R ≤ A(x) ∈ L∞(Ω,Rd×d

sym ),

• f ∈ L2(Ω),

• b ∈ [W 1
∞(Ω)]d , and ∇ · b = 0.
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Discontinuous Galerkin discretization

• ah(·, ·): symmetric interior penalty (SIPG) and upwind.

• The energy-norm is defined by

||| · |||2H = ||A1/2∇H · ||2L2(Ω) +
∑
e∈E

(
σ

H
+
|b · ν|

2
)‖[·]‖2

L2(e)

• Let VH be the space of discontinuous piecewise (bi)linear
polynomials.

(One scale) DG method

Find uH ∈ VH such that

aH(uH , v) = F (v), for all v ∈ VH .
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(One scale) DG method (b = 0)

Find uH ∈ VH such that

aH(uH , v) = F (v), for all v ∈ VH .
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Figure : The coefficient A in the
model problem.

Figure : Reference solution.
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(One scale) DG method (b = 0)

Find uH ∈ VH such that

aH(uH , v) = F (v), for all v ∈ VH .
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Figure : Energy norm with respect
to the degrees of freedom.
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Figure : Solution obtained using the
discontinuous Galerkin method.
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Multiscale split

• Consider VH and Vh, such that VH ⊂ Vh.

• Let ΠH be the L2-projection onto VH .

• Define V f (ω) = {v ∈ Vh(ω) : ΠHv = 0}.
• We have a L2-orthogonal split; Vh = VH ⊕ V f .
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Figure : uh = uH + uf
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Corrected basis functions
• For each λT ,j ∈ VH we compute a corrector, find
φLT ,j ∈ V f (ωL

T ) such that

ah(φLT ,j , vf ) = ah(λT ,j , vf ), for all vf ∈ V f (ωL
T ).

where L indicates the size of the patch.
• Corrected space: Vms

H = span{λT ,j − φLT ,j}.
• We have a a(·, ·)-orthogonal split; Vh = Vms

H ⊕ V f .
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Figure : uh = ums
H + uf
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Examples of corrected basis functions
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Example of corrected basis function
• With b = [0, 0]’.
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Figure : The coefficients A in the model problem.
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Example of corrected basis function
• With b = −[1, 0]’.
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Example of corrected basis function
• With b = −[2, 0]’.
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Example of corrected basis function
• With b = −[4, 0]’.
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Example of corrected basis function
• With b = −[8, 0]’.
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Example of corrected basis function
• With b = −[16, 0]’.
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Discontinuous Galerkin multiscale method

Consider the problem: find ums,L
H ∈ Vms

L = span{λT ,j − φLT ,j} such
that

ah(ums,L
H , v) = F (v), for all v ∈ Vms,L

H .

• dimVms,L
H = dimVH

• The basis function are solved independently of each other.

• Method can take advantage of periodicity.
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A priori error bound

Under the assumption O(‖Hb‖L∞(Ω)/Amin) = 1 it holds:

Lemma (Decay of corrected basisfunctions)

For φT ,j ∈ V f (ωL
i ), there exist a, 0 < γ < 1, such that

|||φT ,j − φLT ,j ||| . γL|||λj − φT ,j |||.

Theorem

For ums,L
H ∈ Vms,L

H , there exist a, 0 < γ < 1, such that

|||u − ums,L
H ||| . |||u − uh|||+ ||H(f − ΠH f )||L2 + H−1(L)d/2γL||f ||L2 .

Choosing L = dC log(H−1)e both terms behave in the same manor
with an appropriate C.
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Numerical verification of the convergence

−∇ · A∇u + b · ∇u = f in Ω,

u = 0 on ∂Ω.
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Figure : #dofs vs
|||uh − ums

H,L|||/|||uh|||

• Let A = 1 and b = C [1, 0]’
for C = 32, 54, 128.

• Choose L = d2 log( 1
H )e.

• Let the right hand side be:
f = 1 + sin(πx) + sin(πy).

• Let H = 2−m for
m = {2, 3, 4, 5}.

• Reference mesh is 2−7.
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−∇ · A∇u + b · ∇u = f in Ω,

u = 0 on ∂Ω.

• Let b = [1, 0]’.

Figure : Diffusion coefficient A,
Amax/Amin = 100 and Amin = 0.01.
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−∇ · A∇u + b · ∇u = f in Ω,

u = 0 on ∂Ω.

• Let b = [512, 0]’.

Figure : Diffusion coefficient A with
Amax/Amin ∼ 105 and Amin = 0.05.
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Adaptivity and a posteriori error bound (b = 0)

Theorem (A posteriori error bound)

Let ums,L
H be the multiscale solution, then

|||u−ums,L
H ||| .

 ∑
T∈TH

ρ2
h,T (ums,L

H )

1/2

+

 ∑
T∈TH

ρ2
L,ωL

T
(ums,L

H )

1/2

.

• ρ2
L,ωL

i
measures the effect of the truncated patches.

• ρ2
h,T measures the effect of the refinement level.
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• We consider the permeabilities

Figure : Permeabilities One left and SPE right.
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• Using a refinement level of 30% we have.
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Figure : One (left) and SPE (right). The level of refinement (upper) and
size of the patches (lower).
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Perspective towards Two-Phase flow

Buckley-Leverett system

−∇ · (Kλ(S)∇p) = q and ∂tS +∇ · (f (s)v) = qw

is solved using IMPES. Here

• K is the hydraulic conductivity,

• λ(S) is the total mobility (essentially macroscopic),

• and v = −Kλ(S)∇p is obtained from the pressure equation.

18 / 21



Model problem and underlying discretization
Multiscale method

Numerical experiments

Convergence results
Adaptivity
Perspective towards Two-Phase flow

• Coarse mesh H = 2−5 and fine mesh h = 2−8.

• Boundary condition p = 1, on left boundary p = 0 on right
boundary, and Kλ(S)∇p = 0 otherwise.

• Prepossessing step: compute the basis corrected basis using
λ(S) = 1

Figure : K1 (Amax/Amin ≈ 5 · 105) left and K2 (Amax/Amin ≈ 4 · 105)
right on a mesh with size 2−6.
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Figure : Saturation profile K1 for
T1, T2, and T3.

Figure : Saturation profile K2 for
T1, T2, and T3.

Data ‖e(T1)‖L2(Ω) ‖e(T2)‖L2(Ω) ‖e(T3)‖L2(Ω)

1 0.088 0.073 0.070

2 0.058 0.087 0.079

Table : Error in relative L2-norm, e(T ) = S(T )− Sref(T ).
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