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Introduction

Rare event/failure probabilities

Problem formulation

Introduction: Rare Event Probabilities

e X — a stochastic variable
Definition: Rare event/failure probability
The failure probability p given y is:
p=Pr(X<y) or
p=F(y),

where F(-) is the cdf associated with X.
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Introduction

Rare event/failure probabilities

Problem formulation

Assumption

For the failure probability p to be unique we assume the following
Lipschitz continuity of F(-)

[F(x) = FY)| < Clx =y, for x,y €R.

e The failure probability p given y is:

p=F(y)=Pr(X<y)

e Goal — Estimate the probability p ~ (AQ to a given root mean

~

square error (RMSE), e(Q) < ¢, using minimal computational
cost



Introduction

vent /failure probabilities

Problem formulation

Introduction: Problem formulation

Model problem
e M — model
e V — a function space
e (©,X,P) — a probability space

We assume that there exists a unique solution u € V given any
w € Q P-almost surely: that is

M(w,u) =0 as.

e X(u):V — R - A quantity of interest (functional) of the
solution u

e The solution u is uniquely determined by the data w,
X(@) = X(u(w))



Spatial discretization

Spatial discretization

Assumption: Numerical error for samples

e For each sample w; € Q the numerical approximation X/ (w;)
of X(wj) satisfies

(X (wi) = X (wi)| < e,

for any ¢ > 0

e Further, the work W for computing X/ (w;) depends on the
error tolerances and satisfies

Cezq < W(X(w))) < ezq,
where C <1 and g > 0 are independent of w;
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Spatial discretization

o Let Q(w) = I(X(w) < y) and Qf(w) = L(Xj(w) < y) be
binomial distributed random variables

Lemma

Given the previous assumption the following statements

M1 [E[Q;(w) — Qw)]| < Gy,

M2 V [Qf(w) — Q5_;(w)] < Gogg for £> 1,

M3 E[W(Q{(w))] = Gse, 7,
are satistied where Cy, C,, and C3 do not depend on the sample or
the underlying discretization



el Monte Carlo (MLMC)
rithm

MLMC method with selective refinement

MLMC method

e Given g > €1 > -+ > ¢ and {Né}é:o

e Let Yj(w) = Q§(w) and Yj(w) = Qj(w) — Qj_1(w) for £ > 1,
the MLMC estimator is

{/Vf}G ZN ZYf wi)

e The computational cost for the MLMC estimator is

L
cq( {Nz}) ZNZC (Yi(wi) ~ > Nee,
/=0



Multllevel Monte Carlo (MLMC)

MLMC method with selective refinement

Theorem

Then there exist a constant L and a sequence { Ny} such that the
RMSE is less then e, with the required work in terms of e,

e? g<1
[ <Q{Ne} )} e 2(loge™)? g=1.
S g>1

Proof.
See Giles 08. O]



Multilevel Monte Carlo (N
Selective algorithm

MLMC method with selective refinement - N e
Combined method

Selective algorithm

e N =100
[ ] y et 061 1
® = 1 0.4} 1
o #Jy =100

L - S A S T e R

10/17



Multilevel Monte Carlo (N
Selective algorithm

MLMC method with selective refinement - N e
Combined method

Selective algorithm

e V=100
[ ] y: 061 1
o 60—1 oal |
° #Il =51

L - S A S T e —
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Multilevel Monte Carlo (N
Selective algorithm

MLMC method with selective refinement - N e
Combined method

Selective algorithm

e N =100 =
.y: 061 = 1
06120.5

0.4} 1
0#/1:51

L - S A S T e R
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Multilevel Monte Carlo (N
Selective algorithm

MLMC method with selective refinement - N e
Combined method

Selective algorithm

e N =100 7
[ ] y et 061 = 1
® €1 = 0.5 oal |
° #IQ =21

L - S A S T e —
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Multilevel Monte Carlo (N
Selective algorithm

MLMC method with selective refinement - N e
Combined method

Selective algorithm

e V=100
[ ] y et 061 1
® € = 0.25 oal |
° #IQ =21

L - S A S T e —
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Multilevel Monte Carlo (N
Selective algorithm

MLMC method with selective refinement - N e
Combined method

Selective algorithm

e V=100
[ ] y et 061 1
® € = 0.25 oal |
° #13 =11

L - S A S T e —
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Multilevel Monte Carlo (M
Selective algorith

MLMC method with selective refinement - N e
Combined method

Selective algorithm

e N =100
[ y = 2 oer
e 3 =0.0125
0.4}
° #13 =11
0'0—3 -2 -1 (o] 1 2 3 4 5 6
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Multilevel Monte Carlo (M
Selective algorith

MLMC method with selective refinement - N e
Combined method

Selective algorithm

e N =100
[ y = 2 oer
e 3 =0.0125
0.4
o #ly=6
0'0—3 -2 -1 o] 1 2 3 4 5 6
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Multilevel Monte Carlo (M
Selective algorith

MLMC method with selective refinement - N e
Combined method

Selective algorithm

e N =100
[ y = 2 oer
e ¢4 = 0.00625
0.4}
o #ly=6
0'0—3 -2 -1 o] 1 2 3 4 5 6
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Multi Carlo (MLMC)
Selective algorithm

MLMC method with selective refinement S ;
Combined method

Lemma

The MC estimator is equivalent to the MC estimator using
selective refinement.

Lemma

Given N samples in a MC method, the expected number of
samples, E [#1y], on level ¢ =0,...,L can be bounded as

E [#1y] < Neg.
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MLMC method with selective refinement

Combined method

MLMC method using selective refinement

¢ Gives exactly the same estimator as the (standard) MLMC
(previous lemma)

e The cost for the MLMC estimator using selective refinement
MLS
Cq < {Ne}, > Z NgC

where Cfl is the “effective” cost for one sample on level ¢

Ca (QfN3.) = Z’VZZC ) #1)/ Ne
j=
Y
(=0  j=0
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MLMC method with selective refinement

m
Combined method

Theorem (Computable complexity for the Multilevel Monte
Carlo method with selective refinement)

There exist a constant L and a sequence { Ny} such that the RMSE
is less then e, with the required work in terms of €,

-2

MLS 6_2 1w g i 2
[ (Q{Ne} )} e *(loge™) g=2.
e 1 q>?2
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MLMC method with selective refinement

Combined

The method is optimal in the sense:
¢ (g < 2) same as the standard MC method on level =0

e (g > 2) same complexity as one sample on the finest level L

RICHRIE {gq(oz(w)) it

Recall the work for the standard MLMC (without selective
refinement)

{ (Q{Ne} )] {xlpc (Q(w)) Zii
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Demonstrational problem
Numerical verification

Numerical verification: Demonstrational problem

e The algorithm proposed in Giles 08 is used to compute the
MLMC estimator

e For each ¢ the algorithm is computed 1000 times to compute
the expected work
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Demonstrational problem

Numerical verification

e Estimate p = F(y) for ¢ = {1,2,3}

10" : :
#—+ MLMC sel. ¢g=1
101 b =—a MLMC ¢=1 4
-- 1072
100} #—+ MLMC sel. ¢=2 |4
m—a MLMC ¢=1
108 F 10log(s 1)e?
" MLMC sel. =3
- 7 l =
5 107} MLMC g=3 |
=
10°F 1
10° 1
104 L 4
10° ‘ -
107 10*

Root mean square error &
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Demonstrational problem
Numerical verification

Example 1:

Solving a PDE in 2D to accuracy ¢, on a uniform mesh, using a
numerical method with convergence rate p = 1, and using
multigrid to solve the linear system. The computational cost is
-2

~ €

Example 2:

Solving a PDE in 3D to accuracy ¢, on a uniform mesh, using a
numerical method with convergence rate p = 1, and using
multigrid to solve the linear system. The computational cost is
—3

~ €
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