
Multilevel Monte Carlo Methods for Rare Event
Probabilities (and Quantiles)

Daniel Elfverson
daniel.elfverson@it.uu.se

Division of Scientific Computing
Uppsala University

Sweden

Joint work with F. Hellman (Uppsala) and A. Målqvist (Gothenburg)

1 / 17



Introduction
Spatial discretization

MLMC method with selective refinement
Numerical verification

Outline

1 Introduction
Rare event/failure probabilities
Problem formulation

2 Spatial discretization

3 MLMC method with selective refinement
Multilevel Monte Carlo (MLMC)
Selective algorithm
Combined method

4 Numerical verification
Demonstrational problem

2 / 17



Introduction
Spatial discretization

MLMC method with selective refinement
Numerical verification

Rare event/failure probabilities
Problem formulation

Introduction: Rare Event Probabilities

• X – a stochastic variable

Definition: Rare event/failure probability

The failure probability p given y is:

p = Pr(X ≤ y) or

p = F (y),

where F (·) is the cdf associated with X .
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Assumption

For the failure probability p to be unique we assume the following
Lipschitz continuity of F (·)

|F (x)− F (y)| ≤ C |x − y |, for x , y ∈ R.

• The failure probability p given y is:

p = F (y) = Pr(X ≤ y)

• Goal – Estimate the probability p ≈ Q̂ to a given root mean
square error (RMSE), e(Q̂) ≤ ε, using minimal computational
cost
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Introduction: Problem formulation

Model problem

• M – model

• V – a function space

• (Ω,Σ,P) – a probability space

We assume that there exists a unique solution u ∈ V given any
ω ∈ Ω P-almost surely: that is

M(ω, u) = 0 a.s.

• X (u) : V → R – A quantity of interest (functional) of the
solution u

• The solution u is uniquely determined by the data ω,
X (ω) := X (u(ω))
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Assumption: Numerical error for samples

• For each sample ωi ∈ Ω the numerical approximation X ε
` (ωi )

of X (ωi ) satisfies

|X (ωi )− X ε
` (ωi )| ≤ ε`,

for any ε` > 0

• Further, the work W for computing X ε
` (ωi ) depends on the

error tolerances and satisfies

Cε−q` ≤W (X ε(ωi )) ≤ ε−q` ,

where C ≤ 1 and q > 0 are independent of ωi
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• Let Q(ω) = 1(X (ω) < y) and Qε
` (ω) = 1(X ε

` (ω) < y) be
binomial distributed random variables

Lemma

Given the previous assumption the following statements

M1 |E [Qε
` (ω)− Q(ω)] | ≤ C1ε`,

M2 V
[
Qε
` (ω)− Qε

`−1(ω)
]
≤ C2ε` for ` ≥ 1,

M3 E [W (Qε
` (ω))] = C3ε

−q
` ,

are satisfied where C1, C2, and C3 do not depend on the sample or
the underlying discretization
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MLMC method

• Given ε0 > ε1 > · · · > ε` and {N`}L`=0

• Let Y ε
0 (ω) = Qε

0(ω) and Y ε
` (ω) = Qε

` (ω)−Qε
`−1(ω) for ` ≥ 1,

the MLMC estimator is

Q̂ML
{N`},ε =

L∑
`=0

N−1
`

N∑̀
i=1

Y ε
` (ωi )

• The computational cost for the MLMC estimator is

Cq
(

Q̂ML
{N`},ε

)
=

L∑
`=0

N`Cq (Y ε
` (ωi )) ∼

L∑
`=0

N`ε
−q
`
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Theorem

Then there exist a constant L and a sequence {N`} such that the
RMSE is less then ε, with the required work in terms of ε,

E
[
Cq
(

Q̂ML
{N`},ε

)]
.


ε−2 q < 1

ε−2(log ε−1)2 q = 1

ε−1−q q > 1

.

Proof.

See Giles 08.
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Selective algorithm

• N = 100

• y = 2

• ε0 = 1

• #I0 = 100
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Selective algorithm

• N = 100

• y = 2

• ε0 = 1

• #I1 = 51
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Selective algorithm

• N = 100

• y = 2

• ε1 = 0.5

• #I1 = 51
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Selective algorithm

• N = 100

• y = 2

• ε1 = 0.5

• #I2 = 21
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Selective algorithm

• N = 100

• y = 2

• ε2 = 0.25

• #I2 = 21
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Selective algorithm

• N = 100

• y = 2

• ε2 = 0.25

• #I3 = 11
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Selective algorithm

• N = 100

• y = 2

• ε3 = 0.0125

• #I3 = 11
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Selective algorithm

• N = 100

• y = 2

• ε3 = 0.0125

• #I4 = 6
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Selective algorithm

• N = 100

• y = 2

• ε4 = 0.00625

• #I4 = 6
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Lemma

The MC estimator is equivalent to the MC estimator using
selective refinement.

Lemma

Given N samples in a MC method, the expected number of
samples, E [#I`], on level ` = 0, . . . , L can be bounded as

E [#I`] . Nε`.
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MLMC method using selective refinement

• Gives exactly the same estimator as the (standard) MLMC
(previous lemma)

• The cost for the MLMC estimator using selective refinement

Cq
(

Q̂MLS
{N`},ε

)
=

L∑
`=0

N`C`q,

where C`q is the “effective” cost for one sample on level `

Cq
(

Q̂MLS
{N`},ε

)
=

L∑
`=0

N`

∑̀
j=0

Cq
(
Y ε
j (ωi )

)
#I(j)/N`

∼
L∑
`=0

N`

∑̀
j=0

ε−q+1
j
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Theorem (Computable complexity for the Multilevel Monte
Carlo method with selective refinement)

There exist a constant L and a sequence {N`} such that the RMSE
is less then ε, with the required work in terms of ε,

E
[
Cq
(

Q̂MLS
{N`},ε

)]
.


ε−2 q < 2

ε−2(log ε−1)2 q = 2

ε−q q > 2

.
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The method is optimal in the sense:

• (q < 2) same as the standard MC method on level = 0

• (q > 2) same complexity as one sample on the finest level L

E
[
Cq
(

Q̂MLS
{N`},ε

)]
.

{
N q < 2

Cq (Qε
L(ω)) q > 2

Recall the work for the standard MLMC (without selective
refinement)

E
[
Cq
(

Q̂ML
{N`},ε

)]
.

{
N q < 1

N1/2Cq (Qε
L(ω)) q > 1
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Numerical verification: Demonstrational problem

• The algorithm proposed in Giles 08 is used to compute the
MLMC estimator

• For each ε the algorithm is computed 1000 times to compute
the expected work
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• Estimate p = F (y) for q = {1, 2, 3}

10-2 10-1

Root mean square error ε
103

104

105

106

107

108

109

1010

1011

W
or
k

MLMC sel. q=1

MLMC q=1

10ε−2

MLMC sel. q=2

MLMC q=1

10log(ε−1 )ε−2

MLMC sel. q=3

MLMC q=3

10ε−3
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Example 1:

Solving a PDE in 2D to accuracy ε, on a uniform mesh, using a
numerical method with convergence rate p = 1, and using
multigrid to solve the linear system. The computational cost is
∼ ε−2.

Example 2:

Solving a PDE in 3D to accuracy ε, on a uniform mesh, using a
numerical method with convergence rate p = 1, and using
multigrid to solve the linear system. The computational cost is
∼ ε−3.
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