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Main contributions

The main contributions of this thesis are the following:

• The development of a multiscale method, the “Discontinuous
Galerkin multiscale method”, using the framework for the variational
multiscale method and the discontinuous Galerkin method for
Poisson’s equation with variable coefficients. See Paper I, II, and III.

• A priori error bounds with respect to the coarse mesh size,
independent of the variation in data and without any assumption on
scale separation or periodicity. See Paper III.

• Development of an adaptive algorithm, using a posteriori error
bounds, to tune the method parameters in order to get efficient and
reliable approximations. See Paper II.

• The development of a multiscale method for convection dominated
problems together with a proof of convergence under mild
assumptions on the magnitude of the convection term. See Paper IV.
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Motivation of discontinuous Galerkin multiscale method

• Computer simulation of problems involving several different scales
(multiscale problems) and is one of the greatest challenges in
scientific computing today.

• Discontinuous Galerkin method has a good conservation properties
of the state variable.

• Non-conforming meshes are admissible.

• The element-wise L2-projection is admissible as the split between the
coarse and fine scale.
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Model problem

Consider the PDE

−∇ · A∇u = f in Ω,

u = 0 on ∂Ω.

which in weak (variational) form reads: find u ∈ V := H1
0 (Ω) such that

a(u, v) :=

∫
Ω

A∇u · ∇v dx =

∫
Ω

fv dx =: F (v) for all v ∈ V,

for 0 < Amin ∈ R ≤ A(x) ∈ L∞(Ω) and f ∈ L2(Ω).

9 / 50



Thesis
Underlying discretization

Multiscale method
Summary of papers

Future work

Model problem
Discontinuous Galerkin method

Discontinuous Galerkin discretization

•• Split Ω into a elements T = {T},
and let E = {e} be the set of all
edges in T .
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Figure: Example of a mesh on a unit
square.

• Let VH be the space of all
discontinuous piecewise (bi)linear
polynomials.
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Figure: Example of {v} and [v ]
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Let

aH(v , z) =
∑
T∈T

(A∇v ,∇z)L2(T ) −
∑
e∈E

(
(n · {A∇v}, [z ])L2(e)

+ (n · {A∇z}, [v ])L2(T ) −
σeγe
He

([v ], [z ])L2(e)

)
,

F (v) = (f , v)L2(Ω).

where
|||v |||2 =

∑
T∈T

‖
√

A∇v‖2
L2(T ) +

∑
e∈E

σeγe
He
‖[v ]‖2

L2(e)

(One scale) DG method
Find uH ∈ VH such that

aH(uH , v) = F (v), for all v ∈ VH .
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(One scale) DG method
Find uH ∈ VH such that

aH(uH , v) = F (v), for all v ∈ VH .
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Figure: The coefficient A in the model
problem.

Figure: Reference solution.
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(One scale) DG method
Find uH ∈ VH such that

aH(uH , v) = F (v), for all v ∈ VH .
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Figure: Energy norm with respect to
the degrees of freedom.
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Figure: Solution obtained using the
discontinuous Galerkin method.

13 / 50



Thesis
Underlying discretization

Multiscale method
Summary of papers

Future work

Model problem
Discontinuous Galerkin method

(One scale) DG method
Find uH ∈ VH such that

aH(uH , v) = F (v), for all v ∈ VH .

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

Figure: Energy norm with respect to
the degrees of freedom.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure: Solution obtained using the
discontinuous Galerkin method.

14 / 50



Thesis
Underlying discretization

Multiscale method
Summary of papers

Future work

Model problem
Discontinuous Galerkin method

(One scale) DG method
Find uH ∈ VH such that

aH(uH , v) = F (v), for all v ∈ VH .

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

Figure: Energy norm with respect to
the degrees of freedom.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure: Solution obtained using the
discontinuous Galerkin method.

15 / 50



Thesis
Underlying discretization

Multiscale method
Summary of papers

Future work

Model problem
Discontinuous Galerkin method

(One scale) DG method
Find uH ∈ VH such that

aH(uH , v) = F (v), for all v ∈ VH .

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

Figure: Energy norm with respect to
the degrees of freedom.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure: Solution obtained using the
discontinuous Galerkin method.

16 / 50



Thesis
Underlying discretization

Multiscale method
Summary of papers

Future work

Model problem
Discontinuous Galerkin method

(One scale) DG method
Find uH ∈ VH such that

aH(uH , v) = F (v), for all v ∈ VH .

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

Figure: Energy norm with respect to
the degrees of freedom.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure: Solution obtained using the
discontinuous Galerkin method.

17 / 50



Thesis
Underlying discretization

Multiscale method
Summary of papers

Future work

Model problem
Discontinuous Galerkin method

(One scale) DG method
Find uH ∈ VH such that

aH(uH , v) = F (v), for all v ∈ VH .

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

Figure: Energy norm with respect to
the degrees of freedom.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure: Solution obtained using the
discontinuous Galerkin method.

18 / 50



Thesis
Underlying discretization

Multiscale method
Summary of papers

Future work

Model problem
Discontinuous Galerkin method

(One scale) DG method
Find uH ∈ VH such that

aH(uH , v) = F (v), for all v ∈ VH .

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

Figure: Energy norm with respect to
the degrees of freedom.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure: Solution obtained using the
discontinuous Galerkin method.

19 / 50



Thesis
Underlying discretization

Multiscale method
Summary of papers

Future work

Model problem
Discontinuous Galerkin method

(One scale) DG method
Find uH ∈ VH such that

aH(uH , v) = F (v), for all v ∈ VH .

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

Figure: Energy norm with respect to
the degrees of freedom.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure: Solution obtained using the
discontinuous Galerkin method.

20 / 50



Thesis
Underlying discretization

Multiscale method
Summary of papers

Future work

Multiscale split
Corrected basisfunction
Discontinuous Galerkin multiscale method
Convergence results
Convection dominated problems

Objective with the multiscale method

• Eliminate the dependency of A via a multiscale method i.e.,

|||u − ums,L
H ||| ≤ Cf H,

where H does not resolve the variation in A

• Construct an adaptive algorithm to focus computational effort to
critical areas.
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Multiscale split
• Consider a coarse VH and a fine space Vh, such that VH ⊂ Vh.

• Let ΠH be the L2-projection onto VH . This will be used as the split
between the coarse and fine scale.

• Define V f (ω) = {v ∈ Vh(ω) : ΠHv = 0}.
• We have a L2-orthogonal split; Vh = VH ⊕ V f .
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Corrected basis functions
• For each basis function λT ,j ∈ VH we calculate a corrector, find
φLT ,j ∈ V f (ωL

T ) such that

ah(φLT ,j , vf ) = ah(λT ,j , vf ), for all vf ∈ V f (ωL
T ).

where supp(λT ,j) = T and L indicates the size of the patch.
• Let the new corrected space be defined by Vms

H = span{λT ,j − φLT ,j}.
• We have an ah-orthogonal split; Vh = Vms

H ⊕ V f

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.002

0.004

0.006

0.008

0.01

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.002

0.004

0.006

0.008

0.01

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−1

−0.5

0

0.5

1

x 10
−3

Figure: uh = ums
H + uf

23 / 50



Thesis
Underlying discretization

Multiscale method
Summary of papers

Future work

Multiscale split
Corrected basisfunction
Discontinuous Galerkin multiscale method
Convergence results
Convection dominated problems

Examples of corrected basis functions
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Discontinuous Galerkin multiscale method

Consider the problem: find ums,L
H ∈ Vms

L = span{λT ,j − φLT ,j} such that

ah(ums,L
H , v) = F (v), for all v ∈ Vms,L

H .
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A priori results

Lemma (Decay of corrected basisfunctions)
For φT ,j ∈ V f (ωL

i ), there exist a, 0 < γ < 1, such that

|||φT ,j − φLT ,j ||| . γL|||λj − φT ,j |||.

Theorem
For ums,L

H ∈ Vms,L
H , there exist a, 0 < γ < 1, such that

|||u − ums,L
H ||| . |||u − uh|||+ ||H(f − ΠH f )||L2 + H−1(L)d/2γL||f ||L2 .

Choosing L = dC log(H−1)e both terms behave in the same manor with
an appropriate C .
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Numerical verification
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Figure: #dofs vs |||uh − ums
H,L|||/|||uh|||

• Choose L = d2 log( 1
H )e.

• Let the right hand side be:
f = 1 + sin(πx) + sin(πy).

• Let H = 2−m for
m = {1, 2, 3, 4, 5, 6}.

• Reference mesh is 2−8.

Figure: Permeabilities are piecewise constant on a mesh with size 2−5, with
ratio Amax/Amin = {10, 7 · 106}
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Adaptivity and a posteriori error bound

Theorem (A posteriori error bound)
Let ums,L

H be the multiscale solution, then

|||u − ums,L
H ||| .

(∑
T∈TH

ρ2
h,T

)1/2

+

(∑
T∈TH

ρ2
L,ωL

T

)1/2

.

• ρ2
L,ωL

i
and ρ2

h,K depends on ums,L
H

• ρ2
L,ωL

i
measures the effect of the truncated patches.

• ρ2
h,T measures the effect of the refinement level.
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Numerical experiment

• We conider the permeabilities

Figure: Permeabilities One left and SPE right.
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Numerical experiments

• Using a refinement level of 30% we have.
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Figure: Convergence plot for One left and SPE right.
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Numerical experiments

Figure: The level of refinement and size of the patches illustrated in the upper
resp. lower plots for the different permeability One (left) and SPE (right).
White is where most refinements resp. larger patch are used and black is where
least refinements resp. smallest patches are used.
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Convection dominated problems

Consider the PDE

−∇ · A∇u + b · ∇u + cu = f in Ω,

u = 0 on ∂Ω.

A discontinuous Galerkin approximation reads: find u ∈ VH such that

aH(u, v) = F (v) for all v ∈ VH ,

where the diffusion term is approximated as earlier and the convective
term by upwind.
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Convergence results

Under the assumation O(‖A‖L∞(Ω)) = O(‖Hb‖L∞(Ω)) the following
holds:

Lemma (Decay of modifed basisfunction)
For φT ,j ∈ V f (ωL

i ), there exist a, 0 < γ < 1, such that

|||φT ,j − φLT ,j ||| . γL|||λj − φT ,j |||.

Theorem
For ums,L

H ∈ Vms,L
H , there exist a, 0 < γ < 1, such that

|||u − ums,L
H ||| . |||u − uh|||+ ||H(f − ΠH f )||L2 + H−1(L)d/2γL||f ||L2 .

Choosing L = dC log(H−1)e both terms behave in the same manor with
an appropriate C .
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Example of corrected basisfunction
• With b = [0, 0]’.
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Figure: The coefficients A in the model problem.
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Example of corrected basisfunction
• With b = −[1, 0]’.
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Figure: The coefficients A in the model problem.
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Example of corrected basisfunction
• With b = −[2, 0]’.
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Figure: The coefficients A in the model problem.
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Example of corrected basisfunction
• With b = −[4, 0]’.
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Figure: The coefficients A in the model problem.
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Example of corrected basisfunction
• With b = [8, 0]’.
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Figure: The coefficients A in the model problem.
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Example of corrected basisfunction
• With b = −[16, 0]’.
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Figure: The coefficients A in the model problem.
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Numerical verification

−∇ · A∇u + b · ∇u + cu = f in Ω,

u = 0 on ∂Ω.
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Figure: #dofs vs |||uh − ums
H,L|||/|||uh|||

• Let A = 1, c = 0, and
b = C [1, 0]’ for
C = 32, 54, 128.

• Choose L = d2 log( 1
H )e.

• Let the right hand side be:
f = 1 + sin(πx) + sin(πy).

• Let H = 2−m for
m = {2, 3, 4, 5}.

• Reference mesh is 2−7.
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−∇ · A∇u + b · ∇u + cu = f in Ω,

u = 0 on ∂Ω.

• Let c = 0, and b = [1, 0]’.

Figure: Diffusion coefficent A,
Amax/Amin = 0.01.
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Figure: #dofs vs |||uh − ums
H,L|||/|||uh|||
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−∇ · A∇u + b · ∇u + cu = f in Ω,

u = 0 on ∂Ω.

• Let c = 0, and b = [512, 0]’.

Figure: Diffusion coefficent A.

10
1

10
2

10
−3

10
−2

N
dofs

(#Degrees of freedom)

R
e
la

ti
v
e
 e

rr
o
r 

in
 e

n
e
rg

y
−

n
o
rm

Figure: #dofs vs |||uh − ums
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Paper I
D. Elfverson and A. Målqvist. Finite Element Multiscale Methods for Possion’s Equation
with Rapidly Varying Heterogeneous Coefficients. In Proc. 10th World Congress on
Computational Mechanics, p 10, International Association for Computational Mechanics,
Barcelona, Spain, 2012.

An abstract framework for constructing finite element multiscale methods
based on the VMS is presented. Using this framework we propose and
compare two different multiscale methods, one based on the continuous
Galerkin finite element method and one on the discontinuous Galerkin
finite element method. The continuous Galerkin multiscale method uses
local Dirichlet problems and the discontinuous Galerkin multiscale method
uses local Neumann problems, for the localized fine scale problems.
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Paper II
D. Elfverson, G. H. Georgoulis and A. Målqvist. An Adaptive Discontinuous Galerkin
Multiscale Method for Elliptic Problems. To appear in Multiscale Modeling and
Simulation (MMS).

We present an adaptive discontinuous Galerkin multiscale method driven
by an energy norm a posteriori error bound. The a posteriori error bound
is used within an adaptive algorithm to tune the critical parameters, i.e.,
the refinement level and the size of the different patches on which the
fine scale constituent problems are solved. We solve local Dirichlet
problem instead for Neumann problem (Paper I) for the localized fine
scale problems.
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Paper III
D. Elfverson, G. H. Georgoulis, A. Målqvist, and D. Peterseim. Convergence of a
Discontinuous Galerkin Multiscale Method. In review in SIAM Journal on Numerical
Analysis (SINUM), available as preprint arXiv:1211.5524, 2012.

A convergence result for a discontinuous Galerkin multiscale method for a
second order elliptic problem is presented. We prove that the error, due
to truncation of corrected basis, decreases exponentially with the size of
the patches. The same corrected basis as in Paper II is used. Improved
convergence rate can be achieved depending on the piecewise regularity
of the forcing function. Linear convergence in energy norm and quadratic
convergence in L2-norm is obtained independently of the forcing function.
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Paper IV
D. Elfverson and A. Målqvist. Discontinuous Galerkin Multiscale Methods for Convection
Dominated Problems. Technical Report 2013-011, Department of Information
Technology, Uppsala University, 2013.

In this paper we extend the discontinuous Galerkin multiscale method in
Paper III to convection dominated problems. The advantages of the
multiscale method and the discontinuous Galerkin method allows us to
better cope with multiscale features and boundary layers in the solution.
We prove decay of the corrected basis functions as well as an a priori
error bound for the multiscale method.
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Future work

There are many aspects in multiscale methods which still are relatively
new and open for research. A few examples which would be interesting to
investigate further are:

• Construction of an adaptive algorithm which balances the error
caused by the uncertainty in the data and the discretization error,
which are two important error sources for multiscale problems.

• Implement the methods on parallel machines to allow 3D
simulations.

• Consider non-linear convection dominated problems with applications
in two-phase flow, where systems of a coupled convection dominated
transport equations and elliptic pressure equations arise.
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The End
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