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Convergence of discontinuous Galerkin multiscale methods. In preparation.

2 / 30



Model problem and discretization Discontinuous Galerkin Multiscale method A priori results Adaptivity Conclusions

Model problem
We seek the weak solution of Poisson’s equation:

−∇ · A∇u = f in Ω,

u = 0 on ΓD ,

n · A∇u = 0 on ΓN ,

with 0 < α ≤ A(x) ≤ β and A ∈ L∞(Ω), f ∈ L2(Ω) and
∫

Ω
f dx = 0 if

ΓD = 0.

That is, find u ∈ V = {v ∈ H1(Ω) : v |ΓD
= 0 in the sense of traces} s.t.

a(u, v) := (A∇u,∇v) = (f , v) := F (v), for all v ∈ V.

(a) β/α ∼ 105 (b) β/α ∼ 105 (c) β/α ∼ 105 (d) β/α ∼ 106

Figure: Permeabilities A projected in log scale and taken from the Society of
Petroleum Engineer http://www.spe.org/.
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Discontinuous Galerkin discretization

• Consider the partition K = {K} and let EΩ, EΓD
, and EΓN

be the
union of all, interior edges, edges on the ΓD , resp. edges on ΓN .

• Let also Vh be the space of all discontinuous piecewise (bi)linear
polynomials.

• Define the weighted average and jump on face e as:

{v}w =
A+v−

A+ + A−
+

A−v +

A+ + A−
and [v ] = v + − v−.

K⁻ K⁺

e
α⁻ α⁺A A

(a) Here K = {K+,K−} and EΩ = {e}
K⁻K⁺ e

{v} [v]

v|
K⁺

v|
K⁻

(b) Example of {v} and [v ]
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Let

ah(v , z) =
∑
K∈K

(A∇v ,∇z)L2(K) −
∑

e∈EΩ∪EΓD

(
(νe · {A∇v}w , [z ])L2(e)

+ (νe · {A∇z}w , [v ])L2(K) −
σeγe

he
([v ], [z ])L2(e)

)
,

F (v) = (f , v)L2(Ω).

where

|||v |||2 =
∑
K∈K

‖
√

A∇v‖2
L2(K) +

∑
e∈EΩ∪EΓD

σeγe
h
‖[v ]‖2

L2(e)

(One scale) DG method

Find uh ∈ Vh such that

ah(uh, v) = F (v), for all v ∈ Vh.

Note: uh will never be solved in practice, but it will act as a reference
solution to compare the coarse grid approximation (multiscale solution)
with.
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Example

Let A = A(x/ε). We have the known result for periodic coefficients

|||u − uH ||| ≤ C
H

ε
||f ||L2(Ω).

• Need H < ε for reliable results, computational prohibitive to solve on
a single mesh.

Note: From now on we only consider 0 < α ≤ A(x) ∈ L∞(Ω) without
any assumptions on scale or periodicity.

Objective

• Eliminate the ε-dependence via a multiscale method i.e.,

|||u − ums
H ||| ≤ C (f )H.

• Construct an adaptive algorithm to focus computational effort in
critical areas.
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Some known methods
• Upscaling techniques: Durlofsky et al. 98, Nielsen et al. 98.

• Variational multiscale method: Hughes et al. 95, Arbogast 04,
Larson-Målqvist 05, Nolen et al. 08, Nordbotten 09.

• Multiscale FEM: Hou-Wu 96, Efendiev-Ginting 04, Aarnes-Lie 06.

• Residual free bubbles: Brezzi et al. 98.

• Heterogeneous multiscale method: Engquist-E 03, E-Ming-Zang 04,
Ohlberger 05.

• Equation free: Kevrekidis et al. 05.

• Metric based upscaling: Owhadi-Zang et al. 06.

• GFEM: Babuška et al. 94, Babuška-Lipton 11.

Remarks

• Local approximations (in parallel) on a fine scale are used to modify
a coarse scale space or equation.

• Error analysis (for most methods) rely on strong assumptions such
as scale separation and periodicity.
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Variational multiscale framework

• Consider a coarse mesh KH ⊂ Kh.

• Let VH = span{φi} = ΠHVh and Vf = {v ∈ Vh : ΠHv = 0}, where
ΠH : L2 → VH is the L2 projection onto the coarse mesh.

• The problem is split into one coarse and fine scale contribution
Vh = VH ⊕ Vf .
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Split uh = uH + T uH + uf and v = vH + vf where uH , vH ∈ VH ,
T uH , uf , vf ∈ Vf .

We obtain, find uH ∈ VH and (T uH + uf , vH + vf ) ∈ Vf s.t.

ah(uH + T uH + uf , vH + vf ) = l(vH + vf ), ∀vH ∈ VH , vf ∈ Vf

Fine scale equation

Let vH = 0 to get the fine scale equations

ah(uH + T uH , vf ) = F (vf )− ah(uf , vf ),

split into two equations

ah(uf , vf ) = F (vf ) ∀vf ∈ Vf ,
ah(T uH , vf ) = −ah(uH , vf ) ∀vf ∈ Vf .

Note: Equally hard to solve as the original problem!
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• Let vf = 0 to get the coarse scale equations. Different chooses of
coarse scale equations can be considered e.g.,

Non-symmetric coarse scale equation

ah(uH + T uH , vH) = l(vH)− ah(uf , vH) ∀vH ∈ VH

Symmetric coarse scale equation

ah(uH + T uH , vH + T uH) = l(vH + T uH)− ah(uf , vH + T uH) ∀vH ∈ VH

Symmetric coarse scale equation without correction term

ah(uH + T uH , vH + T vH) = l(vH + T vH) ∀vH ∈ VH
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View solution as span of corrected basis functions
• Recall the map T : VH → Vf ,

ah(T vH , vf ) = −ah(vH , vf ), ∀vH ∈ VH , vf ∈ Vf .
• We let Vms = VH + T VH = span{φi + T φi}.
• φi + T φi can be viewed as a coarse modified basis function.
• From the multiscale map we have, Vh = Vms ⊕a Vf .
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Localization of T φi

• For each i we have, ah(T L
i φi , v) = −ah(φi , v) for all v ∈ Vf (ωL

i ),
solved on local Dirichlet or Neumann patches.

• Define the localized multiscale space by, Vms
L := span{φi + T L

i φi}.

ω
1

i

i

i

ω
2

Figure: Example of a one layer patch ω1
i and a two layer patch ω2

i
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A priori results
Consider the problem: find ums

H,L ∈ Vms
L = span{φi + T L

i φi} such that

ah(ums
H,L, v) = F (v), for all v ∈ Vms

L ,

where local Dirichlet patches has been used for the corrected basis
functions.

Lemma (Decay of corrected basis function)

For T L
i φi ∈ Vf (ωL

i ), there exist a, 0 < γ < 1, such that

|||T φi − T L
i φi ||| . γL|||φi + T φi |||ωL

i
.

Theorem

For ums
H,L ∈ Vms

L , there exist a, 0 < γ < 1, such that

|||u − ums
H,L||| . |||u − uh|||+ ||H(f − ΠH f )||L2 + H−1(L)d/2γL||f ||L2 .

Note: Theorem holds without any assumptions on scales or regularity!
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Decay of corrected basisfunction
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Figure: #Layers vs
|||T φi − T L
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• Let the computational domain
be ωL

i for L = 1, 2, . . . ,N where
ωL
i ⊆ Ω.

• Coarse mesh is 8× 8 element
and reference grid is 64× 64
elements.
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Numerical verification

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

Ones

Period

SPE

H
3
−convergance

Figure: #dofs vs |||uh − ums
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• Choose L = d2 log( 1
H )e.

• Let the right hand side be:
f = 1 + sin(πx) + sin(πy).

• Let H = 2−m for
m = {1, 2, 3, 4, 5}.

• Reference mesh is 2−7.

Figure: Permeabilities are piecewise constant on a mesh with size 2−5, with
ratio β/α = {1, 10, 7 · 106}
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Adaptivity
• Construct an adaptive algorithm to automatically tune the fine mesh

size and the patch sizes.

• We now consider a non-symmetric coarse scale problem, using local
Neumann problems for the corrected basis functions, and using a
right hand side correction.

Figure: Example of an adapted mesh with varying patch sizes.
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For the bilinear form to be well defined for low regular solutions, let
ah : (V + Vh)× (V + Vh)→ R be defined as

ah(v , z) =
∑
K∈K

(A∇v ,∇z)L2(K) −
∑

e∈EΩ∪EΓD

(
(νe · {AP∇v}w , [z ])L2(e)

+ (νe · {AP∇z}w , [v ])L2(K) −
σeγe

he
([v ], [z ])L2(e)

)
.

where P : (L2)d → (Vh)d is the L2-projection onto Vh.

Note: ah is no longer consistent, but the consistency error will decrease
as h→ 0.
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• Let N be the set of all coarse nodes and Mi be the set of all j such
that φj(xi ) = 1.

• Let Ṽms = span{φj + T L(i)
i φj}, with varying patch sizes.

• Let U f
h =

∑
i∈N U f

h,i be a right hand side correction obtained by

solving: find U f
h,i ∈ Vf (ω

L(i)
i ) such that

ah(U f
h,i , v) = F (Φiv), for all v ∈ Vf (ω

L(i)
i ).

Coarse equation (with right hand side correction)

We consider: find Ums ∈ Ṽms such that

ah(Ums , v) = F (v)− ah(U f
h , v), for all v ∈ VH .

where the multiscale solution is U = Ums + U f
h .
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Convergence
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Figure: #Layers vs
|||Uref − U|||/|||Uref |||

• The coarse grid is 8× 8 coarse
elements.

• The reference solution Uref is
the DG solution computed on
64× 64 elements.

• The right hand side is −1 in
the lower left corner and 1 in
the upper right.
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Theorem (A posteriori error estimate for DG method)

• Let u, uh be given by the exact solution respectively the DG solution.

• Let χ = Icuh where Ic : Vh → Vh ∩ H1 is a averaging interpolation
operator.

• Moreover, let E := Ec + Ed where Ec := u − χ and Ed := χ− uh.

Then, ∑
K∈K

||
√

A∇E||2L2(K .
∑
K∈K

(%K (uh) + ζK (uh, χ))2,

where

%K (uh) =
hK√
α
||f +∇ · A∇uh||L2(K),

+

√
hK

α

(
||(1− wK(e))n · [A∇uh]||L2(∂K) + ||σeγe

he
[uh]||L2(∂K\ΓB )

)
,

ζK (uh, χ) = ||
√

A∇(uh − χ)||L2(K).
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Lemma (Averaging interpolation operator)

• Let Ic : Vh → Vh ∩ H1

Icv =
∑
i∈N

(
1

|Mj |
∑
j∈Mi

vj(xi )Φj).

Then,

||
√

A∇(v − Icv)||2 . β|| 1√
he

[v ]||2L2(∂K\E
ΓB )
.

• Under certain assumption on A, ζK (uh, χ) can be estimated and
hidden in %K (uh).
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Theorem (A posteriori error estimate for ADG-MS)

• Let u, U be the exact solution respectively the multiscale solution.

• Let X = IcU ∈ H1(Ω).

• Set E := Ec + Ed where Ec := u − X and Ed := X − U.

• Ui :=
∑

j∈Mi
Uc,j(φj + T̃ φj) + Uf ,i , where Uc,j are the nodal values.

Then,
|||
√

A∇E |||2 .
∑

Kc∈Kc

ρ2
h,Kc

+
∑
i∈N

ρ2
L,ωL

i
,

where

ρ2
L,ωL

i
=

∑
e∈E

ΓB
(ωL

i )\E
ΓB

ρ2
L,ωL

i ,e
,

ρL,ωL
i ,e

=
HωL

i√
hKα

(
||n · {A∇Ui}w ||L2(e) +

σeγe
he
||[Ui ]||L2(e)

)
,

measures the effect of the truncated patches.
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Also

ρ2
h,Kc

=
∑
K∈Kc

(%K (U) + ζK (U,X ))2,

with %K and ζK as in previous theorem.

Comments

• ρ2
L,ωL

i
measure the effect of the truncated patches.

• ρ2
h,K measure the effect of the refinement level.

• 1√
hKhe
||[Ui ]||L2(e) behave as h−3/2e−L ∼ 1⇒ L ∼ 3

2 log h−1
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Sketch of proof

We have
a(Ec ,Ec) = a(E ,Ec)− a(Ed ,Ec),

where

a(E ,Ec) = a(u,Ec)− a(U,Ec),

= F (Ec)− a(U,Ec),

= F (Ec − vc)− a(U,Ec − vc),

=
∑
i∈N

(
F (Φi (Ec − vc − vf ))− a(Ui ,Ec − vc) + ai (Ui , vf )

)
.

here vc ∈ Vc and vf ∈ Vf .
Notice that

ai (E ,Ec) = a(E ,Ec) +
∑

e∈E
ΓB

(ωL
i )\E

ΓB

(
(n · {A∇Ui}w , [vf ])L2(e)

+(n · {A∇Ui}w , [vf ])L2(e) −
σeγe

he
([Ui ], [vf ])L2(e)

)
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Sketch of proof

Then,

a(E ,Ec) =
(

F (Ec − vc − vf )− a(E ,Ec − vc − vf )
)

+
∑
i∈N

∑
e∈E

ΓB
(ωL

i )\E
ΓB

(
(n · {A∇Ui}w , [vf ])L2(e) + (n · {A∇Ui}w , [vf ])L2(e)

− σeγe
he

([Ui ], [vf ])L2(e)

)
=: I + II .

1 The first term (I ), is bounded by the a a posteriori error estimate for
DG.

2 To bound the second term (II ),
• Select vc and vf as the piecewise constant L2-projection onto Vc and

Vf , respectively.
• Then using a trace inequality, a interpolation estimate and

L2-stability of πf , II is bounded.

25 / 30



Model problem and discretization Discontinuous Galerkin Multiscale method A priori results Adaptivity Conclusions

Algorithm 1 Adaptive Discontinuous Galerkin Multiscale Method

1: Initialize the coarse mesh with mesh size H.
2: Let the fine mesh size be hK = H/4 for all K ∈ KH and L(ωi ) = 2 for

all i ∈ N
3: while

∑
i∈N (ρ2

h,ωi
+ ρ2

L,ωi
) > TOL do

4: for i ∈ N do
5: if ρ2

L,ωi
> TOL/(2N ) then

6: L(ωi ) := L(ωi ) + 1
7: end if
8: end for
9: for KH ∈ KH do

10: if ρ2
h,K > TOL/(2|KH |) then

11: hK := hK/2
12: end if
13: end for
14: end while
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Numerical experiment

• Refine 30% of the coarse elements and increase 30% of the patch
sizes in each iteration.

• Coarse mesh is 32× 32 elements and reference grid is 256× 256
elements.

• The right hand side is −1 in the lower left corner and 1 in the upper
right.

(a) β/α ∼ 105 (b) β/α ∼ 105 (c) β/α ∼ 105 (d) β/α ∼ 106

Figure: Permeabilities A projection in log scale.
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Conclusions:

• The fine scale problems are perfectly parallelizable.

• The exponential decay in the corrected basis function allows small
patches.

• The error estimate and the adaptivity algorithm focus computational
effort in critical areas.

• Get optimal convergence for the (crude) SPE Benchmark problem.

• DG: Flexibility in fine scale approximation spaces, boundary
conditions and good conservation properties of the state variable

Future work

• Using DG on the coarse scale but CG on the fine scale to save
computational work.

• Extend analysis to convection-diffusion problems.

• Construct an adaptive algorithm that increases the patch sizes only
in the direction where the error is large.
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Questions
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