A discontinuous Galerkin local orthogonal decomposition (LOD) method for elliptic multiscale problems

Daniel Elfverson
daniel.elfverson@it.uu.se

Division of Scientific Computing
Uppsala University
Sweden

Outline

(1) Introduction and model problem

Model problem
Discontinuous Galerkin (DG) method
Different multiscale methods
2 DG Local Ortogonal Decomposition (DG-LOD)
Multiscale split
Corrected basis function
Discontinuous Galerkin LOD
Numerical verifiation
(3) Petrov-Galerkin DG-LOD

Petrov-Galerkin DG-LOD method
Adaptivity
Perspective towards Two-Phase flow
(4) On going work - LOD on complex geometries

Applications of multiscale methods

- Subsurface flow
- Composite materials
- ...

Need numerical solution of partial differential equations with rough data (module of elasticity, conductivity, permeability, etc)

Major challenge

Solution has features on a several non-seperal scales

Model problem

Consider the elliptic model problem

$$
\begin{aligned}
-\nabla \cdot A \nabla u+(\mathbf{b} \cdot \nabla u) & =f \text { in } \Omega, \\
u & =0 \text { on } \partial \Omega,
\end{aligned}
$$

where we assume:

- $0<A_{\text {min }} \in \mathbb{R} \leq A(x) \in L^{\infty}\left(\Omega, \mathbb{R}_{\text {sym }}^{d \times d}\right)$
- $f \in L^{2}(\Omega)$
- $\mathbf{b} \in\left[W_{\infty}^{1}(\Omega)\right]^{d}$ and $\nabla \cdot \mathbf{b}=0$

Discontinuous Galerkin discretization

- Split Ω into a elements $\mathcal{T}=\{T\}$, and let $\mathcal{E}=\{e\}$ be the set of all edges in \mathcal{T}.

Figure : Example of a mesh on a unit square.

- Let \mathcal{V}_{H} be the space of all discontinuous piecewise (bi)linear polynomials.

Figure: Example of $\{v\}$ and $[v]$

The bilinear form is defined by:

$$
a_{h}(u, v):=a_{h}^{d}(u, v)+a_{h}^{c-r}(u, v) .
$$

where

$$
\begin{aligned}
a_{h}^{d}(u, v):= & \left(A \nabla_{h} u, \nabla_{h} v\right)_{L^{2}(\Omega)}+\sum_{e \in \mathcal{E}_{h}}\left(\frac{\sigma_{e}}{h_{e}}([u],[v])_{L^{2}(e)}\right. \\
& \left.-\left(\left\{\nu_{e} \cdot A \nabla u\right\},[v]\right)_{L^{2}(e)}-\left(\left\{\nu_{e} \cdot A \nabla v\right\},[u]_{L^{2}(e)}\right)\right),
\end{aligned}
$$

where σ_{e} is a constant and

$$
\begin{aligned}
& a_{h}^{c-r}(u, v):=\left(\mathbf{b} \cdot \nabla_{h} u+c u, v\right)_{L^{2}(\Omega)}+\sum_{e \in \mathcal{E}_{h}}\left(b_{e}[u],[v]\right)_{L^{2}(e)} \\
& \quad-\sum_{e \in \mathcal{E}_{h}(\Omega)}\left(\nu_{e} \cdot \mathbf{b}\{u\},[v]\right)_{L^{2}(e)}-\sum_{e \in \mathcal{E}_{h}(\Gamma)} \frac{1}{2}\left(\left(\nu_{e} \cdot \mathbf{b}\right) u, v\right)_{L^{2}(e)},
\end{aligned}
$$

where $b_{e}=\left|\nu_{e} \cdot \mathbf{b}\right| / 2$.

- $a_{h}^{\mathrm{d}}(\cdot, \cdot)$ approximates the diffusion a interior penalty method.
- $a_{h}^{c-r}(\cdot, \cdot)$ approximates the convection-reaction using upwind.

Discontinuous Galerkin discretization

- $a_{h}(\cdot, \cdot)$: symmetric interior penalty (SIPG) and upwind.
- The energy-norm is defined by

$$
\|\|\cdot\|\|_{h}^{2}=\left\|A^{1 / 2} \nabla_{H} \cdot\right\|_{L^{2}(\Omega)}^{2}+\sum_{e \in \mathcal{E}}\left(\frac{\sigma}{H}+\frac{|\mathbf{b} \cdot \nu|}{2}\right)\|[\cdot]\|_{L^{2}(e)}^{2}
$$

(One scale) DG method

Find $u_{h} \in \mathcal{V}_{h}$ such that

$$
a_{h}\left(u_{h}, v\right)=F(v), \quad \text { for all } v \in \mathcal{V}_{h} .
$$

(One scale) DG method ($\mathbf{b}=0$)

Find $u_{H} \in \mathcal{V}_{H}$ such that

$$
a_{H}\left(u_{H}, v\right)=F(v), \quad \text { for all } v \in \mathcal{V}_{H} .
$$

Figure: The coefficient A in the model problem.

Figure: Reference solution.

(One scale) DG method ($\mathbf{b}=0$)

Find $u_{H} \in \mathcal{V}_{H}$ such that

$$
a_{H}\left(u_{H}, v\right)=F(v), \quad \text { for all } v \in \mathcal{V}_{H} .
$$

Figure: Energy norm with respect to the degrees of freedom.

Figure: Solution obtained using the discontinuous Galerkin method.

(One scale) DG method ($\mathbf{b}=0$)

Find $u_{H} \in \mathcal{V}_{H}$ such that

$$
a_{H}\left(u_{H}, v\right)=F(v), \quad \text { for all } v \in \mathcal{V}_{H} .
$$

Figure: Energy norm with respect to the degrees of freedom.

Figure: Solution obtained using the discontinuous Galerkin method.

(One scale) DG method ($\mathbf{b}=0$)

Find $u_{H} \in \mathcal{V}_{H}$ such that

$$
a_{H}\left(u_{H}, v\right)=F(v), \quad \text { for all } v \in \mathcal{V}_{H} .
$$

Figure: Energy norm with respect to the degrees of freedom.

Figure: Solution obtained using the discontinuous Galerkin method.

(One scale) DG method ($\mathbf{b}=0$)

Find $u_{H} \in \mathcal{V}_{H}$ such that

$$
a_{H}\left(u_{H}, v\right)=F(v), \quad \text { for all } v \in \mathcal{V}_{H} .
$$

Figure: Energy norm with respect to the degrees of freedom.

Figure: Solution obtained using the discontinuous Galerkin method.

(One scale) DG method ($\mathbf{b}=0$)

Find $u_{H} \in \mathcal{V}_{H}$ such that

$$
a_{H}\left(u_{H}, v\right)=F(v), \quad \text { for all } v \in \mathcal{V}_{H} .
$$

Figure: Energy norm with respect to the degrees of freedom.

Figure: Solution obtained using the discontinuous Galerkin method.

(One scale) DG method ($\mathbf{b}=0$)

Find $u_{H} \in \mathcal{V}_{H}$ such that

$$
a_{H}\left(u_{H}, v\right)=F(v), \quad \text { for all } v \in \mathcal{V}_{H} .
$$

Figure: Energy norm with respect to the degrees of freedom.

Figure: Solution obtained using the discontinuous Galerkin method.

(One scale) DG method ($\mathbf{b}=0$)

Find $u_{H} \in \mathcal{V}_{H}$ such that

$$
a_{H}\left(u_{H}, v\right)=F(v), \quad \text { for all } v \in \mathcal{V}_{H} .
$$

Figure: Energy norm with respect to the degrees of freedom.

Figure: Solution obtained using the discontinuous Galerkin method.

(One scale) DG method ($\mathbf{b}=0$)

Find $u_{H} \in \mathcal{V}_{H}$ such that

$$
a_{H}\left(u_{H}, v\right)=F(v), \quad \text { for all } v \in \mathcal{V}_{H} .
$$

Figure: Energy norm with respect to the degrees of freedom.

Figure: Solution obtained using the discontinuous Galerkin method.

Objective with the multiscale method

- Eliminate the dependency of A via a multiscale method i.e.,

$$
\left\|\left\|u-u_{H}^{m s, L}\right\|\right\| \leq C_{f} H,
$$

where H does not resolve the variation in A

- Construct an adaptive algorithm to focus computational effort to critical areas (for the case with pure diffusion)

Incomplete list of other multiscale methods

- Variational multiscale method (VMS): [Hughes et al. 95]
- Multiscale FEM (MsFEM): [Hou-Wu 96]
- Heterogeneous multiscale method (HMM): [Engquist, E 03]
- Multiscale finite volume method: [Jenny et al. 03]
- Residual free bubbles: [Brezzi et al. 98]
- Upscaling techniques: [Durlofsky et al. 98]
- Equation free: [Kevrekidis et al. 05]
- Metric based upscaling: [Owhadi-Zang 06]
- Polyharmonic homogenization [Owhadi-Zang 12]
- Generalised MsFEM [Efendiev et al. 10]
- Mortar Multiscale Methods [Arbogast et al, 07]

Remarks

- Local approximations (in parallel) on a fine scale are used to modify a coarse scale space or equation

Local orthogonal decomposition

- Adaptivity [Larson, Målqvist 07], [Målqvist 11]
- Convergence analysis [Målqvist, Peterseim 14]
- Convergence analysis for DG [Elfverson et al. 13]
- Convection problem [Submitted]
- Semi-linear elliptic problem [Henning et al. 14]
- Egenvalue problem [Målqvist, Peterseim 14]
- Non-linear Schrödinger equation [Henning et al. 14]
- Petrov-Galerkin formulation [Submitted]
- Adpativity for DG [Elfverson et al. 13]

Remarks

- Builds on the idea of VMS
- Error analysis DOESN'T rely on assumptions such as scale separation and periodicity
- Error analysis does depend on the contrast, however numerical test show a very weak dependence

Local orthogonal decomposition

- Adaptivity [Larson, Målqvist 07], [Målqvist 11]
- Convergence analysis [Målqvist, Peterseim 14
- Convergence analysis for DG [Elfverson et al. 13]
- Convection problem [Submitted]
- Semi-linear elliptic problem [Henning et al. 14
- Egenvalue problem (Målqvist, Peterseim 14 |
- Non-linear Schrödinger equation (Henning et al. 141
- Petrov-Galerkin formulation [Submitted]
- Adpativity for DG [Elfverson et al. 13]

Remarks

- Builds on the idea of VMS
- Error analysis DOESN'T rely on assumptions such as scale separation and periodicity
- Error analysis does depend on the contrast, however numerical test show a very weak dependence

Multiscale split

- Consider \mathcal{V}_{H} and \mathcal{V}_{h}, such that $\mathcal{V}_{H} \subset \mathcal{V}_{h}$.
- Let Π_{H} be the L^{2}-projection onto \mathcal{V}_{H}.
- Define $\mathcal{V}^{f}(\omega)=\left\{v \in \mathcal{V}_{h}(\omega): \Pi_{H} v=0\right\}$.
- We have a L^{2}-orthogonal split; $\mathcal{V}_{h}=\mathcal{V}_{H} \oplus \mathcal{V}^{f}$.

Figure : $u_{h}=u_{H}+u^{f}$

Corrected basis functions

- For each $\lambda_{T, j} \in \mathcal{V}_{H}$ we compute a corrector, find $\phi_{T, j}^{L} \in \mathcal{V}^{f}\left(\omega_{T}^{L}\right)$ such that

$$
a_{h}\left(\phi_{T, j}^{L}, v_{f}\right)=a_{h}\left(\lambda_{T, j}, v_{f}\right), \quad \text { for all } v_{f} \in \mathcal{V}^{f}\left(\omega_{T}^{L}\right)
$$

where L indicates the size of the patch.

- Corrected space: $\mathcal{V}_{H}^{m s}=\operatorname{span}\left\{\lambda_{T, j}-\phi_{T, j}^{L}\right\}$.
- We have a a($\cdot, \cdot)$-orthogonal split; $\mathcal{V}_{h}=\mathcal{V}_{H}^{m s} \oplus \mathcal{V}^{f}$.

Figure : $u_{h}=u_{H}^{m s}+u^{f}$

Mesh patch

Examples of corrected basis functions

Examples of corrected basis functions

Examples of corrected basis functions

Example of corrected basis function

- With $\mathbf{b}=[0,0]^{\prime}$.

Example of corrected basis function

- With $\mathbf{b}=-[1,0]^{\prime}$.

Example of corrected basis function

- With $\mathbf{b}=-[2,0]^{\prime}$.

Example of corrected basis function

- With $\mathbf{b}=-[4,0]^{\prime}$.

Example of corrected basis function

- With $\mathbf{b}=-[8,0]^{\prime}$.

Example of corrected basis function

- With $\mathbf{b}=-[16,0]$ '.

Discontinuous Galerkin multiscale method

Consider the problem: find $u_{H}^{m s, L} \in \mathcal{V}_{H}^{m s, L}=\operatorname{span}\left\{\lambda_{T, j}-\phi_{T, j}^{L}\right\}$ such that

$$
a_{h}\left(u_{H}^{m s, L}, v\right)=F(v), \quad \text { for all } v \in \mathcal{V}_{H}^{m s, L}
$$

- $\operatorname{dim} \mathcal{V}_{H}^{m s, L}=\operatorname{dim} \mathcal{V}_{H}$
- The basis function are solved independently of each other.
- Method can take advantage of periodicity.

A priori error bound

Under the assumption $\mathcal{O}\left(\|H \mathbf{b}\|_{L^{\infty}(\Omega)} / A_{\text {min }}\right)=1$ it holds:

Lemma (Decay of corrected basisfunctions)

For $\phi_{T, j} \in \mathcal{V}^{f}\left(\omega_{i}^{L}\right)$, there exist $a, 0<\gamma<1$, such that

$$
\left\|\left|\left|\phi_{T, j}-\phi_{T, j}^{L}\right|\left\|\left|\lesssim \gamma^{L}\right|\right\| \lambda_{j}-\phi_{T, j}\right|\right\| .
$$

Theorem

For $u_{H}^{m s, L} \in \mathcal{V}_{H}^{m s, L}$, there exist a, $0<\gamma<1$, such that

$$
\left\|\left\|u-u_{H}^{m s, L}\right\|\right\| \lesssim\left\|u-u_{h}\right\|\|+\| H\left(f-\Pi_{H} f\right)\left\|_{L^{2}}+H^{-1}(L)^{d / 2} \gamma^{L}\right\| f \|_{L^{2}} .
$$

Choosing $L=\left\lceil C \log \left(H^{-1}\right)\right\rceil$ both terms behave in the same manor with an appropriate C.

Pure diffusion on L-shaped domain

- Choose $L=\left\lceil 2 \log \left(\frac{1}{H}\right)\right\rceil$.
- Let the right hand side be: $f=1+\sin (\pi x)+\sin (\pi y)$.
- Let $H=2^{-m}$ for $m=\{1,2,3,4,5,6\}$.
- Reference mesh is 2^{-8}.

Figure: \#dofs vs $\left|\left\|u_{h}-u_{H, L}^{m s} \mid\right\| /\| \| u_{h}\| \|\right.$

Figure : Permeabilities are piecewise constant on a mesh with size 2^{-5}, with ratio $A_{\text {max }} / A_{\text {min }}=\left\{10,7 \cdot 10^{6}\right\}$

Numerical verification of the convergence

$$
\begin{aligned}
-\nabla \cdot A \nabla u+\mathbf{b} \cdot \nabla u & =f \text { in } \Omega \\
u & =0 \text { on } \partial \Omega
\end{aligned}
$$

Figure : \#dofs vs $\left\|\left\|u_{h}-u_{H, L}^{m s}\right\|\left|/\left\|| | u_{h}\right\|\right.\right.$

- Let $A=1$ and $\mathbf{b}=C[1,0]$ ' for $C=32,54,128$.
- Choose $L=\left\lceil 2 \log \left(\frac{1}{H}\right)\right\rceil$.
- Let the right hand side be: $f=1+\sin (\pi x)+\sin (\pi y)$.
- Let $H=2^{-m}$ for $m=\{2,3,4,5\}$.
- Reference mesh is 2^{-7}.

$$
\begin{aligned}
-\nabla \cdot A \nabla u+\mathbf{b} \cdot \nabla u & =f \text { in } \Omega \\
u & =0 \text { on } \partial \Omega
\end{aligned}
$$

- Let $\mathbf{b}=[1,0]^{\prime}$.

Figure : Diffusion coefficient A, $A_{\text {max }} / A_{\text {min }}=100$ and $A_{\text {min }}=0.01$.

Figure : \#dofs vs $\left|\left|\left|u_{h}-u_{H, L}^{m s}\right|\right|\right| /\left|\left|\left|u_{h}\right|\right|\right|$

$$
\begin{aligned}
-\nabla \cdot A \nabla u+\mathbf{b} \cdot \nabla u & =f \text { in } \Omega \\
u & =0 \text { on } \partial \Omega
\end{aligned}
$$

- Let $\mathbf{b}=[512,0]^{\prime}$.

Figure: Diffusion coefficient A with $A_{\text {max }} / A_{\text {min }} \sim 10^{5}$ and $A_{\text {min }}=0.05$.

Figure : \#dofs vs $\left\|\left\|u_{h}-u_{H, L}^{m s}\right\|\right\| /\| \| u_{h}\| \|$

Petrov-Galerkin DG-LOD

Consider the problem: find $u_{H}^{m s, L} \in \mathcal{V}_{H}^{m s, L}=\operatorname{span}\left\{\lambda_{T, j}-\phi_{T, j}^{L}\right\}$ such that

$$
a_{h}\left(u_{H}^{m s, L}, v\right)=F(v), \quad \text { for all } v \in \mathcal{V}_{H}=\operatorname{span}\left\{\lambda_{T, j}\right\}
$$

Same as before:

- $\operatorname{dim} \mathcal{V}_{H}^{m s, L}=\operatorname{dim} \mathcal{V}_{H}$
- The basis function are solved independently of each other.
- Method can take advantage of periodicity.

Pros

- Quadrature for the coarse system becomes easier, i.e., $a_{h}\left(\lambda_{T, j}-\phi_{T, j}^{L}, \lambda_{T, j}\right)$
- Sparser coarse system
- Less memory consumption, after being computed the correctors $\phi_{T, j}^{L}$ can be disgarded.

Cons

- Non-symmetric coarse system
- Harder (missing) analysis

Adaptivity and a posteriori error bound $(\mathbf{b}=0)$
Theorem (A posteriori error bound)
Let $u_{H}^{m s, L}$ be the multiscale solution, then

$$
\left\|\left\|u-u_{H}^{m s, L}\right\|\right\|\left(\sum_{T \in \mathcal{T}_{H}} \rho_{h, T}^{2}\left(u_{H}^{m s, L}\right)\right)^{1 / 2}+\left(\sum_{T \in \mathcal{T}_{H}} \rho_{L, \omega_{T}^{L}}^{2}\left(u_{H}^{m s, L}\right)\right)^{1 / 2} .
$$

- $\rho_{L, \omega_{i}^{L}}^{2}$ measures the effect of the truncated patches.
- $\rho_{h, T}^{2}$ measures the effect of the refinement level.

Adaptivity

- We consider the permeabilities

Figure : Permeabilities One left and SPE right.

- Using a refinement level of 30% we have.

Figure : Convergence plot for One left and SPE right.

Figure: One (left) and SPE (right). The level of refinement (upper) and size of the patches (lower).

Perspective towards Two-Phase flow

Buckley-Leverett system

$$
-\nabla \cdot(K \lambda(S) \nabla p)=q \text { and } \partial_{t} S+\nabla \cdot(f(s) \mathbf{v})=q_{w}
$$

is solved using IM (plicit) P (ressure) E (plicit) S (aturation)

- K is the hydraulic conductivity
- $\lambda(S)$ is the total mobility (essentially macroscopic)
- and $\mathbf{v}=-K \lambda(S) \nabla p$ is obtained from the pressure equation
- Coarse mesh $H=2^{-5}$ and fine mesh $h=2^{-8}$.
- Boundary condition $p=1$, on left boundary $p=0$ on right boundary, and $K \lambda(S) \nabla p=0$ otherwise.
- Prepossessing step: compute the basis corrected basis using $\lambda(S)=1$

Figure : $K_{1}\left(A_{\text {max }} / A_{\text {min }} \approx 5 \cdot 10^{5}\right)$ left and $K_{2}\left(A_{\max } / A_{\text {min }} \approx 4 \cdot 10^{5}\right)$ right on a mesh with size 2^{-6}.

Figure: Saturation profile K_{1} for T_{1}, T_{2}, and T_{3}.

Figure: Saturation profile K_{2} for T_{1}, T_{2}, and T_{3}.

Data	$\left\\|e\left(T_{1}\right)\right\\|_{L^{2}(\Omega)}$	$\left\\|e\left(T_{2}\right)\right\\|_{L^{2}(\Omega)}$	$\left\\|e\left(T_{3}\right)\right\\|_{L^{2}(\Omega)}$
1	0.088	0.073	0.070
2	0.058	0.087	0.079

Table: Error in relative L^{2}-norm, $e(T)=S(T)-S^{\text {ref }}(T)$.

On going work - LOD on complex geometries

- Construt a method which with textbook convergance which do not resolve the boundary.
- Add correctors locally to handel e.g. singularites and/or interfaces.

Preliminary numerical results

- Homogeneous Dirichlet boundary condition
- Choose $L=\left\lceil\log \left(\frac{1}{H}\right)\right\rceil$.
- Let $H=\sqrt{2} \cdot 2^{-m}$ for $m=\{2,3,4,5\}$
- Reference mesh is $h=\sqrt{2} \cdot 2^{-8}$
- Holes has radius $r=\{0.01,0.03\}\left(\left\{2^{-6.6439}, 2^{-5.0589}\right\}\right)$
- $f=\cos (8 \pi x) \cos (8 \pi y)+0.5$

Figure : Computational domain.

Figure : Error estimate.

- D. Elfverson, G. H. Georgoulis, and A. Målqvist An adaptive discontinuous Galerkin multiscale method for elliptic problems. Multiscale Model. Simul..
- D. Elfverson, G. H. Georgoulis, A. Målqvist and D. Peterseim Convergence of discontinuous Galerkin multiscale methods. SIAM J. Numer. Anal..
- D. Elfverson A discontinuous Galerkin multiscale method for convection-diffusion problems. Submitted.
- D. Elfverson, V. Ginting, P. Henning On Multiscale Methods in Petrov-Galerkin formulation. arXiv:1405.5758, submitted.

