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Model problem

Poisson’s equation
Given a polygonal domain Ω ⊂ R

d . We want to find u such that

−∇ · α∇u = f i Ω,

n · ∇u = 0 on ∂Ω,

where α is bounded 0 < β ≤ α(x) ∈ L∞(Ω), f ∈ L2(Ω) and
∫

Ω f dx = 0.

(a) αmax
αmin

∼ 105 (b) αmax
αmin

∼ 105 (c) αmax
αmin

∼ 105 (d) αmax
αmin

∼ 106

Figure: Permeabilities α projected in log scale and taken from the Society of

Petroleum Engineer http://www.spe.org/

D. Elfverson, Adaptive discontinuous Galerkin multiscale methods for elliptic problems, Energy norm a posteriori error estimate 3/39



Discontinuous Galerkin discretization
Discretization

◮ Let Ω be subdivided into the partition K = {K} and ΓI be the union
of all interior edges.

◮ Let also Vh be the space of all discontinuous piecewise (bi)linear
polynomials.

◮ Define the weighted average and jump on face e as:

{v}w =
α+v−

α+ + α− +
α−v+

α+ + α− and [v ] = v+ − v−.

K⁻ K⁺

e
α⁻ α⁺

(a) Here K = {K+
,K−} and ΓI = {e}

K⁻K⁺ e

{v} [v]

v|
K⁺

v|
K⁻

(b) Example of {v} and [v ]
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Consider a symmetric inconsistent interior penalty
discontinuous Galerkin method

◮ Expanded DG space: V = Vh + H1+ǫ with ǫ > 0.

◮ Denote Π : (L2(Ω))d → (Vh)
d the L2-projection onto (Vh)

d

The bilinear form a(·, ·) : V × V → R and right hand side l(·) : V → R

are defined as:

a(v , z) =
∑

K∈K
(α∇v ,∇z)L2(K) −

∑

e∈ΓI

(

(n · {αΠ∇v}w , [z])L2(e)

+ (n · {αΠ∇z}w , [v ])L2(K) −
σeγe
he

([v ], [z])L2(e)

)

,

l(v) = (f , v)L2(Ω).
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Comments

◮ Why use weighted averages?

◮ Using Π, since we want to assume as little regularity as possible in u

for the a posteriori error analysis.

◮ For v ∈ (Vh)
d then Πv = v and a(·, ·) is reduced to a more familiar

fashion.
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Multiscale method

Motivation
In many applications, solution exist on several different scales e.g. flow in
porous media and in composite materials.

◮ Secondary oil recovery.

◮ Sequestration of Carbon Dioxide.
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Why do we need to resolve the coefficients?

Example with periodic coefficient
Consider Possion’s equation with period coefficient α = α(x/ǫ). For the
finite element method, we have

||√α∇(u − uh)||L2(Ω) ≤ C
H

ǫ
||f ||L2(Ω)

◮ Need H ≪ ǫ for reliable results.

◮ To computational expensive to solve on a single mesh for many
applications e.g. flow in porous media and in composite materials.

◮ Want eliminate the ǫ dependence by using a multiscale method
(Målqvist-Peterseim).
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Framework for Multiscale methods
The problem is split into one coarse and fine scale contribution
Vh = Vc ⊕ Vf .

◮ Let subdivide Ω into a coarse mesh Kc = {Kc}.
◮ Vc = span{φi} = ΠcVh and Vf = {v ∈ Vh : Πcv = 0}, where

Πc : Vh → Vc is the L2 projection onto the coarse mesh.
◮ Define the map T : Vc → Vf as

a(T vc , vf ) = −a(vc , vf ), ∀vc ∈ Vc , vf ∈ Vf

Split uh = uc + T uc + uf and v = vc + vf where uc ∈ Vc , vf ∈ Vf .

a(uc + T uc + uf , vc + vf ) = l(vc + vf ), ∀vc ∈ Vc , vf ∈ Vf
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Fine scale
Let vc = 0 to get the fine scale equations

a(T uc + uf , vf ) = l(vf )− a(uc , vf ),

split into two equations

a(uf , vf ) = l(vf ) ∀vf ∈ Vf ,

a(T uc , vf ) = −a(uc , vf ) ∀vf ∈ Vf .

Coarse scale
Let vf = 0 on the coarse scale

a(uc + T uc , vc) = l(vc)− a(uf , vc) ∀vc ∈ Vc

Comments

◮ Equally hard to solve as the original problem.

◮ Other chooses then Πc can be coincided.

◮ A symmetric split can also be considered for the coarse scale
problem.D. Elfverson, Adaptive discontinuous Galerkin multiscale methods for elliptic problems, Energy norm a posteriori error estimate 10/39



View solution as span av modified basis functions

◮ Let Vc = span{φi} and Vms = span{φi + T φi}.
◮ View φi + T φi as a modified basis function.

From the multiscale map we have, Vh = Vms ⊥a Vf , for all i

a(φi + T φi , v) = 0, v ∈ Vf
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Approximation of T φi

◮ The fast decay of T φi motivates approximations of T φi to patches
ωL
i ⊂ Ω .

ω
1

i

i

i

ω
2

Figure: Example of a one layer patch ω
1
i and a two layer patch ω

2
i
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Multiscale method discretization
◮ T̃ is he restriction of T to a patch ω ⊂ Ω
◮ Ũf =

∑

i∈N Ũf ,i where N is the number of nodes, be the
approximation of uf .

◮ Let Mi be all j s.t φj = 1 in node i .
◮ Let also Φi =

∑

j∈Mi
φj
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Bilinear form for the fine scale problem

◮ Let K(ωL
i ) = {K : K ∩ ωL

i 6= 0}.
◮ Let also ΓI (ωL

i ) be all interior edges on K(ωL
i ).

Define ai : Vf (ωi)× Vf (ωi) → R, as

ai(v , z) =
∑

K∈K(ωL
i )

(α∇v ,∇z)L2(K) −
∑

e∈ΓI (ωL
i )

(

(n · {αΠ∇v}w , [z])L2(e)

+ (n · {αΠ∇z}w , [v ])L2(K) −
σeγe
he

([v ], [z])L2(e)

)

,

li (v) = (Φi f , v)L2(Ω).
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Fine scale equations
For all i ∈ N : find T̃ φj ∈ Vf (ω

L
i ) and Uf ,i ∈ Vf (ω

L
i ) for j ∈ Mi s.t

ai (T̃ φj , vf ) = −ai(φj , vf ), ∀vf ∈ Vf (ω
L
i ),

ai(Ũf ,i , vf ) = li(Φivf ), ∀vf ∈ Vf (ω
L
i ).

Coarse scale equation
Find Uc ∈ Vc s.t

a(Uc + T̃ Uc , vc) = l(vc)− (Ũf , vc), ∀vc ∈ Vc .
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Decay in Vf

Problem setting

◮ Let the computational domain be ωL
i for L = 1, 2, . . . ,N where

ωL
i ⊆ Ω.

◮ Let also Φi =
∑

j∈Mi
φj

◮ The problem reads: find T̃ Φi ∈ Vh(ω
L
i )

a(T̃ Φi , v) = −a(Φi , v), ∀v ∈ Vh(ω
L
i ).

◮ The reference solution T Φi is the solution computed on ωN
i = Ω.

◮ Coarse mesh is 8× 8 element and reference grid is 64× 64 elements.
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Figure: The error in relative error in broken energy norm with respect to the

path size.
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Convergence

Problem setting

◮ Consider the model problem (Poisson’s equation)

◮ Keeping the refinement level constant and increasing the patch sizes
L = 1, . . . ,N for all local problems.

◮ The coarse grid is 8× 8 coarse elements.

◮ The reference solution Uref is the DG solution computed on 64× 64
elements.

◮ The right hand side is −1 in the lower left corner and 1 in the upper
right.
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Figure: Permeabilities α.
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Figure: The reference solution to the model problem using the permeabilities

One, Period and SPE
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Figure: The relative error in broken energy norm with respect to the patch sizes.
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Implementation

a,f,Ω

Split into local problems, transfer data

K U  =∑bc i

U    iic,i=∑U (φ +Tφ )+U

b

Tφ   

U

1

j

f,1

Solve independent local fine scale equations

Generate and solve coarse scale equation

Generate the solution of the multiscale equation U
                     or interesting parts of U

f

∈Mj∀ 1

b

Tφ   

U

2

j

f,2

∈Mj∀ 2

b

Tφ   

U

3

j

f,3

∈Mj∀ 3

(:,j)K , (:,j)K , (:,j)K ,

Figure: Scheme of the implementation.
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Constraints on the fine scale equations

◮ The condition is realised using Lagrangian multiplier.

◮ Let φ be a coarse basis function and ϕ be a fine basis function.

Want so fined T̃ w ∈ Vf (ω
L
i )

ai(T̃ w , v) = −ai(w , v) ∀v ∈ Vf (ω
L
i ).

Algebraic problem reads:

(

K PT

P 0

)

ξ =

(

b

0

)

,

where Kk,l = ai (ϕk , ϕl ), bk = −ai(φl , ϕk) and

P =











(φ1, ϕ1) (φ1, ϕ2) . . . (φ1, ϕN)
(φ2, ϕ1) (φ2, ϕ2) . . . (φ2, ϕN)

...
...

. . .
...

(φM , ϕ1) (φM , ϕ2) . . . (φM , ϕN)











.
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Adaptivity
Set up

◮ Need an a posteriori error estimate for the discontinuous Galerkin
method.

◮ Use this in the framework for Multiscale methods to construct a a
posteriori error estimate for the multiscale method.

◮ Construct a adaptive algorithm to automatically tune the critical
parameters.
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Theorem (A posteriori error estimate for DG method)

◮ Let u, uh be given by the exact solution respectively the DG solution.

◮ Let also χ ∈ Vh ∩ H1(Ω)

◮ Moreover, let E := Ec + Ed where Ec := u − χ and Ed := χ− uh.

Then,
∑

K∈K
||√α∇Ec ||2L2(K .

∑

K∈K
(̺K (uh) + ζK (uh, χ))

2,

where

̺K (uh) =
hK√
α0

||f +∇ · α∇uh||L2(K),

+

√

hK

α0

(

||(1 − wK(e))n · [α∇uh]||L2(∂K) + ||σeγe
he

[uh]||L2(∂K\ΓB)

)

,

ζK (uh, χ) = ||√α∇(uh − χ)||L2(K).
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Treatment of ζK (uh, χ)

1. First, χ has to be chosen in a clever way.

2. Second, ζK (uh, χ) can either be estimated or evaluated.

◮ One possible chose is χ = IOsuh.

◮ Under certain assumption on α, ζK (uh, χ) can be evaluated and
hidden in ̺K (uh).

Lemma (Oswald interpolation operator)

◮ Let IOs : Vh → Vh ∩ H1

IOsv =
∑

i∈N
(

1

|Mj |
∑

j∈Mi

vj (xi )ϕj).

Then,

||√α∇(v − IOsv)||2 . α0|| 1√
he

[v ]||2L2(∂K\ΓB).
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Sketch of proof
We have

∑

K∈K
‖√α∇Ec‖2L2(K) = a(Ec , Ec) = a(E , Ec)− a(Ed , Ec),

where

a(E , Ec) = a(u, Ec)− a(uh, Ec) = l(Ec)− a(uh, Ec),
= l(η)− a(uh, η),

where η = Ec − π0Ec .
◮ First integration by parts l(η)− a(uh, η) element wise and using the

identity [vz] = {v}w [z] + {v}w̄ [z].
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We get,

l(η)− a(uh, η)

=
∑

K∈K
(f +∇ · α∇uh, η)L2(K) +

∑

e∈ΓI

(

− (n · [α∇uh], {η}w̄ )L2(e)

+ (n · {αΠ∇η}w , [uh])L2(e) − σγeh
−1
e ([uh], [η])L2(e)

)

+
∑

e∈ΓB

(n · α∇uh, η)L2(e).

1. Then, using the inequalities and stability for the piecewise constant
L2-projection.

||v − π0v ||L2(K) .
hK√
α0

||√α∇v ||L2(K), ∀v ∈ H1(K ),

||v − π0v ||L2(∂K) .

√

hK

α0
||√α∇v ||L2(K) ∀v ∈ H1(K ).

2. For a(Ed , Ec) use the Lemma (Oswald interpolation operator).
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Theorem (A posteriori error estimate for ADG-MS)

◮ Let u, U be the exact solution respectively the multiscale solution.

◮ Let X = IOsU ∈ H1(Ω).

◮ Set E := Ec + Ed where Ec := u − X and Ed := X − U.

◮ Ui :=
∑

j∈Mi
Uc,j(φj + T̃ φj ) +Uf ,i , where Uc,j are the nodal values.

Then,
∑

K∈K
||√α∇Ec ||2L2(K) .

∑

Kc∈Kc

ρ2h,Kc
+

∑

i∈N
ρ2
L,ωL

i

,

where

ρ2
L,ωL

i

=
∑

e∈ΓB(ωL
i
)\ΓB

ρ2
L,ωL

i
,e ,

ρL,ωL
i
,e =

HωL
i√

hKα0

(

||n · {α∇Ui}w ||L2(e) +
σeγe
he

||[Ui ]||L2(e)

)

,

measures the effect of the truncated patches.
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Also

ρ2h,Kc
=

∑

K∈Kc

(̺K (U) + ζK (U ,X ))2,

with ̺K and ζK as in previous theorem.

Comments

◮ ρ2
L,ωL

i

measure the effect of the truncated patches.

◮ ρ2h,K measure the effect of the refinement level.

◮
1√
hKhe

||[Ui ]||L2(e) behave as h−3/2e−L ∼ 1 ⇒ L ∼ 3
2 log h

−1

◮ Another possible choice is a weighted Oswald-type interpolation
operator with the weights depending on the diffusion tensor.
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Sketch of proof
We have

a(Ec , Ec) = a(E , Ec)− a(Ed , Ec),

where

a(E , Ec) = a(u, Ec)− a(U , Ec),

= l(Ec)− a(U , Ec),

= l(Ec − vc)− a(U , Ec − vc),

=
∑

i∈N

(

li (Ec − vc − vf )− a(Ui , Ec − vc) + ai (Ui , vf )
)

.

here vc ∈ Vc and vf ∈ Vf .
Notice that

ai (E , Ec) = a(E , Ec) +
∑

e∈ΓB (ωL
i )Γ

B

(

(n · {α∇Ui}w , [vf ])L2(e)

+(n · {α∇Ui}w , [vf ])L2(e) −
σeγe
he

([Ui ], [vf ])L2(e)

)
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Then,

a(E , Ec) =
(

l(Ec − vc − vf )− a(E , Ec − vc − vf )
)

+
∑

i∈N

∑

e∈ΓB (ωL
i
)ΓB

(

(n · {α∇Ui}w , [vf ])L2(e) + (n · {α∇Ui}w , [vf ])L2(e)

− σeγe
he

([Ui ], [vf ])L2(e)

)

=: I + II .

1. The first term (I ), is bounded by the a apoteriori error estimate for
DG.

2. To bound the second term (II ),
◮ Select vc and vf as the piecewise constant L2-projection onto Vc and

Vf , respectively.
◮ Then using a trace inequality, a interpolation estimate and

L
2-stability of πf , II is bounded.

D. Elfverson, Adaptive discontinuous Galerkin multiscale methods for elliptic problems, Energy norm a posteriori error estimate 31/39



Adaptive algorithm

Algorithm 1 Adaptive Discontinuous Galerkin Multiscale Method

1: Initialize the coarse mesh with mesh size H .
2: Let the fine mesh size be hK = H/2 for all Kc ∈ Kc and L(ωi ) = 2 for

all i ∈ N
3: while

∑

i∈N (ρ2h,ωi
+ ρ2L,ωi

) > TOL do

4: for i ∈ N do

5: if ρ2L,ωi
> TOL/(2N ) then

6: L(ωi ) := L(ωi) + 1
7: end if

8: end for

9: for Kc ∈ Kc do

10: if ρ2h,K > TOL/(2|Kc |) then
11: hK := hK/2
12: end if

13: end for

14: end while
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Adaptivity
◮ Consider the model problem
◮ Using the a posteriori error estimate to construct an adaptive

algorithm.
◮ Start with one refinement and 2 layers patches everywhere.
◮ Refine 30% of the coarse elements and increase 30% of the patch

sizes in each iteration.
◮ Coarse mesh is 32× 32 element and reference grid is 256× 256

elements.
◮ The right hand side is −1 in the lower left corner and 1 in the upper

right.

(a) αmax
αmin

∼ 105 (b) αmax
αmin

∼ 105 (c) αmax
αmin

∼ 105 (d) αmax
αmin

∼ 106

Figure: Permeabilities α projection in log scale.
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the start values in the adaptive algorithm.
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Figure (a) and (b) illustrates where the adaptive algorithm puts most
effort

◮ Figure (a) corresponds to the refinements

◮ Figure (b) corresponds to the patch sizes.

◮ Figure (c) is the permeability α.

(a) Refine hK (b) Layers, L (c) Layers, L
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Figure: The relative error in broken energy norm with respect to the mean

value of the degrees of freedom for the fine scale problems.
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Conclusions

Advantage

◮ The fine scale problems are perfectly parallelizable.

◮ The exponential decay in the fine scale solution allows small patches.

◮ The error estimate and the adaptivity algorithm focus computational
effort in critical areas.

◮ Very high aspect ratio in α can be solved.

◮ Possible to construct a conservative flux on the coarse scale.
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Future work

◮ A priori analysis of the discontinuous Galerkin multiscale method.

◮ Hybrid method using DG on coarse scale and CG on fine scale.

◮ Extend the method and analysis to diffusion-convection problems.

◮ Investigate to sensibility in input data (uncertainty in the
permeability α)

◮ Extend the implementation to triangular meshed to allow for
complicated geometries.

◮ 3D implementation.
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Questions
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