

Adaptive discontinuous Galerkin multiscale methods for elliptic problems

Energy norm a posteriori error estimate

Daniel Elfverson daniel.elfverson@it.uu.se

Division of Scientific Computing
Uppsala University
Sweden

Outline

Background

Model problem

Discontinuous Galerkin (DG)

Multiscale method

Framework for Multiscale methods

Discretization

Numerical Experiment: Decay of the fine scale problems and convergence

Implementation

Adaptivity

A posteriori error estimate

Adaptive algorithm

Numerical Experiment: Adaptivity

Conclusions

Future work

Papers

▶ D. Elfverson, E. Georgoulis and A. Målqvist, Adaptive discontinuous Galerkin multiscale method (submitted).

Model problem

Poisson's equation

Given a polygonal domain $\Omega \subset \mathbb{R}^d$. We want to find u such that

$$-\nabla \cdot \alpha \nabla u = f \text{ i } \Omega,$$

$$n \cdot \nabla u = 0 \text{ on } \partial \Omega,$$

where α is bounded $0 < \beta \le \alpha(x) \in L^{\infty}(\Omega)$, $f \in L^{2}(\Omega)$ and $\int_{\Omega} f \, dx = 0$.

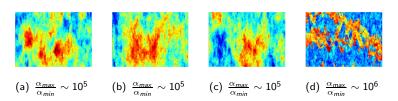


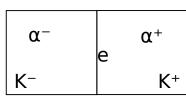
Figure: Permeabilities α projected in log scale and taken from the Society of Petroleum Engineer http://www.spe.org/

Discontinuous Galerkin discretization

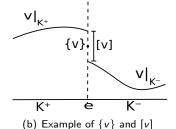
Discretization

- Let Ω be subdivided into the partition $\mathcal{K} = \{\mathcal{K}\}$ and Γ' be the union of all interior edges.
- Let also V_h be the space of all discontinuous piecewise (bi)linear polynomials.
- ▶ Define the weighted average and jump on face e as:

$$\{v\}_{w} = \frac{\alpha^{+}v^{-}}{\alpha^{+} + \alpha^{-}} + \frac{\alpha^{-}v^{+}}{\alpha^{+} + \alpha^{-}} \text{ and } [v] = v^{+} - v^{-}.$$



(a) Here
$$\mathcal{K} = \{K^+, K^-\}$$
 and $\Gamma^I = \{e\}$



Consider a symmetric inconsistent interior penalty discontinuous Galerkin method

- ▶ Expanded DG space: $V = V_h + H^{1+\epsilon}$ with $\epsilon > 0$.
- ▶ Denote $\Pi: (L^2(\Omega))^d \to (\mathcal{V}_h)^d$ the L^2 -projection onto $(\mathcal{V}_h)^d$

The bilinear form $a(\cdot, \cdot): \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ and right hand side $I(\cdot): \mathcal{V} \to \mathbb{R}$ are defined as:

$$\begin{aligned} a(v,z) &= \sum_{K \in \mathcal{K}} (\alpha \nabla v, \nabla z)_{L^2(K)} - \sum_{e \in \Gamma'} \left((\mathbf{n} \cdot \{\alpha \Pi \nabla v\}_w, [z])_{L^2(e)} \right. \\ &+ \left. (\mathbf{n} \cdot \{\alpha \Pi \nabla z\}_w, [v])_{L^2(K)} - \frac{\sigma_e \gamma_e}{h_e} ([v], [z])_{L^2(e)} \right), \\ l(v) &= (f, v)_{L^2(\Omega)}. \end{aligned}$$

Comments

- ▶ Why use weighted averages?
- ▶ Using Π , since we want to assume as little regularity as possible in u for the a posteriori error analysis.
- ▶ For $v \in (V_h)^d$ then $\Pi v = v$ and $a(\cdot, \cdot)$ is reduced to a more familiar fashion.

Multiscale method

Motivation

In many applications, solution exist on several different scales e.g. flow in porous media and in composite materials.

- Secondary oil recovery.
- ► Sequestration of Carbon Dioxide.

Why do we need to resolve the coefficients?

Example with periodic coefficient

Consider Possion's equation with period coefficient $\alpha = \alpha(x/\epsilon)$. For the finite element method, we have

$$||\sqrt{\alpha}\nabla(u-u_h)||_{L^2(\Omega)}\leq C\frac{H}{\epsilon}||f||_{L^2(\Omega)}$$

- ▶ Need $H \ll \epsilon$ for reliable results.
- ► To computational expensive to solve on a single mesh for many applications e.g. flow in porous media and in composite materials.
- ▶ Want eliminate the ϵ dependence by using a multiscale method (Målqvist-Peterseim).

Framework for Multiscale methods

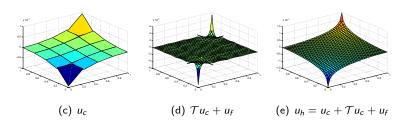
The problem is split into one coarse and fine scale contribution $V_h = V_c \oplus V_f$.

- ▶ Let subdivide Ω into a coarse mesh $K_c = \{K_c\}$.
- ▶ $V_c = span\{\phi_i\} = \Pi_c V_h$ and $V_f = \{v \in V_h : \Pi_c v = 0\}$, where $\Pi_c : V_h \to V_c$ is the L^2 projection onto the coarse mesh.
- ▶ Define the map $\mathcal{T}: \mathcal{V}_c \to \mathcal{V}_f$ as

$$a(\mathcal{T}v_c, v_f) = -a(v_c, v_f), \quad \forall v_c \in \mathcal{V}_c, v_f \in \mathcal{V}_f$$

Split $u_h = u_c + \mathcal{T}u_c + u_f$ and $v = v_c + v_f$ where $u_c \in \mathcal{V}_c$, $v_f \in \mathcal{V}_f$.

$$a(u_c + \mathcal{T}u_c + u_f, v_c + v_f) = I(v_c + v_f), \quad \forall v_c \in \mathcal{V}_c, v_f \in \mathcal{V}_f$$



Fine scale

Let $v_c = 0$ to get the fine scale equations

$$a(\mathcal{T}u_c+u_f,v_f)=I(v_f)-a(u_c,v_f),$$

split into two equations

$$a(u_f, v_f) = I(v_f) \quad \forall v_f \in \mathcal{V}_f,$$

 $a(\mathcal{T}u_c, v_f) = -a(u_c, v_f) \quad \forall v_f \in \mathcal{V}_f.$

Coarse scale

Let $v_f = 0$ on the coarse scale

$$a(u_c + \mathcal{T}u_c, v_c) = I(v_c) - a(u_f, v_c) \quad \forall v_c \in \mathcal{V}_c$$

Comments

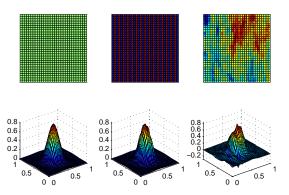
- ▶ Equally hard to solve as the original problem.
- ▶ Other chooses then Π_c can be coincided.
- ► A symmetric split can also be considered for the coarse scale

View solution as span av modified basis functions

- Let $V_c = \text{span}\{\phi_i\}$ and $V^{ms} = \text{span}\{\phi_i + \mathcal{T}\phi_i\}$.
- ▶ View $\phi_i + \mathcal{T}\phi_i$ as a modified basis function.

From the multiscale map we have, $\mathcal{V}_h = \mathcal{V}_{ms} \perp_a \mathcal{V}_f$, for all i

$$a(\phi_i + \mathcal{T}\phi_i, v) = 0, \qquad v \in \mathcal{V}_f$$



Approximation of $\mathcal{T}\phi_i$

▶ The fast decay of $\mathcal{T}\phi_i$ motivates approximations of $\mathcal{T}\phi_i$ to patches $\omega_i^L \subset \Omega$.

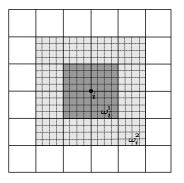
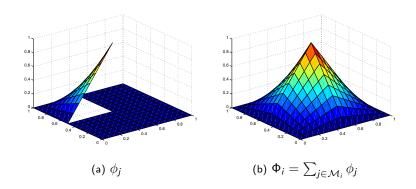


Figure: Example of a one layer patch ω_i^1 and a two layer patch ω_i^2

Multiscale method discretization

- ▶ $\tilde{\mathcal{T}}$ is he restriction of \mathcal{T} to a patch $\omega \subset \Omega$
- ▶ $\tilde{U}_f = \sum_{i \in \mathcal{N}} \tilde{U}_{f,i}$ where \mathcal{N} is the number of nodes, be the approximation of u_f .
- ▶ Let \mathcal{M}_i be all j s.t $\phi_j = 1$ in node i.
- ▶ Let also $\Phi_i = \sum_{j \in \mathcal{M}_i} \phi_j$



Bilinear form for the fine scale problem

- ▶ Let $\mathcal{K}(\omega_i^L) = \{K : K \cap \omega_i^L \neq 0\}.$
- ▶ Let also $\Gamma'(\omega_i^L)$ be all interior edges on $\mathcal{K}(\omega_i^L)$.

Define $a_i: \mathcal{V}_f(\omega_i) \times \mathcal{V}_f(\omega_i) \to \mathbb{R}$, as

$$\begin{split} a_i(v,z) &= \sum_{K \in \mathcal{K}(\omega_i^L)} (\alpha \nabla v, \nabla z)_{L^2(K)} - \sum_{e \in \Gamma^I(\omega_i^L)} \Big((\mathbf{n} \cdot \{\alpha \Pi \nabla v\}_w, [z])_{L^2(e)} \\ &+ (\mathbf{n} \cdot \{\alpha \Pi \nabla z\}_w, [v])_{L^2(K)} - \frac{\sigma_e \gamma_e}{h_e} ([v], [z])_{L^2(e)} \Big), \\ l_i(v) &= (\Phi_i f, v)_{L^2(\Omega)}. \end{split}$$

Fine scale equations

For all $i \in \mathcal{N}$: find $\tilde{\mathcal{T}}\phi_j \in \mathcal{V}_f(\omega_i^L)$ and $U_{f,i} \in \mathcal{V}_f(\omega_i^L)$ for $j \in \mathcal{M}_i$ s.t

$$\begin{aligned} &a_i(\tilde{\mathcal{T}}\phi_j, v_f) = -a_i(\phi_j, v_f), \quad \forall v_f \in \mathcal{V}_f(\omega_i^L), \\ &a_i(\tilde{U}_{f,i}, v_f) = l_i(\Phi_i v_f), \quad \forall v_f \in \mathcal{V}_f(\omega_i^L). \end{aligned}$$

Coarse scale equation

Find $U_c \in \mathcal{V}_c$ s.t

$$a(U_c + \tilde{\mathcal{T}}U_c, v_c) = I(v_c) - (\tilde{U}_f, v_c), \quad \forall v_c \in \mathcal{V}_c.$$

Decay in V_f

Problem setting

- Let the computational domain be ω_i^L for $L=1,2,\ldots,N$ where $\omega_i^L\subseteq\Omega$.
- ▶ Let also $\Phi_i = \sum_{j \in \mathcal{M}_i} \phi_j$
- ▶ The problem reads: find $\tilde{\mathcal{T}}\Phi_i \in \mathcal{V}_h(\omega_i^L)$

$$a(\tilde{\mathcal{T}}\Phi_i, v) = -a(\Phi_i, v), \quad \forall v \in \mathcal{V}_h(\omega_i^L).$$

- ▶ The reference solution $\mathcal{T}\Phi_i$ is the solution computed on $\omega_i^N = \Omega$.
- ▶ Coarse mesh is 8×8 element and reference grid is 64×64 elements.

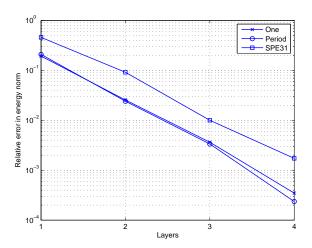


Figure: The error in relative error in broken energy norm with respect to the path size.

Convergence

Problem setting

- Consider the model problem (Poisson's equation)
- ▶ Keeping the refinement level constant and increasing the patch sizes L = 1, ..., N for all local problems.
- ▶ The coarse grid is 8×8 coarse elements.
- The reference solution U_{ref} is the DG solution computed on 64 × 64 elements.
- ▶ The right hand side is −1 in the lower left corner and 1 in the upper right.

Figure: Permeabilities α .

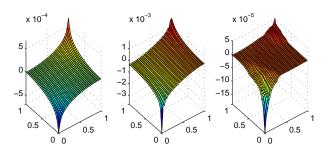


Figure: The reference solution to the model problem using the permeabilities One, Period and SPE

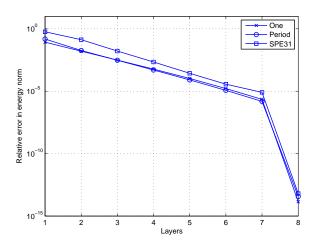


Figure: The relative error in broken energy norm with respect to the patch sizes.

Implementation

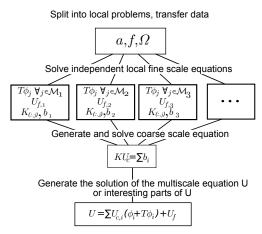


Figure: Scheme of the implementation.

Constraints on the fine scale equations

- The condition is realised using Lagrangian multiplier.
- Let ϕ be a coarse basis function and φ be a fine basis function.

Want so fined $\tilde{\mathcal{T}}w\in\mathcal{V}_f(\omega_i^L)$

$$a_i(\tilde{\mathcal{T}}w,v) = -a_i(w,v) \quad \forall v \in \mathcal{V}_f(\omega_i^L).$$

Algebraic problem reads:

$$\begin{pmatrix} K & P^T \\ P & 0 \end{pmatrix} \xi = \begin{pmatrix} b \\ 0 \end{pmatrix},$$

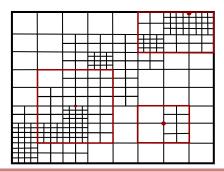
where $K_{k,l} = a_i(\varphi_k, \varphi_l)$, $b_k = -a_i(\phi_l, \varphi_k)$ and

$$P = \begin{pmatrix} (\phi_1, \varphi_1) & (\phi_1, \varphi_2) & \dots & (\phi_1, \varphi_N) \\ (\phi_2, \varphi_1) & (\phi_2, \varphi_2) & \dots & (\phi_2, \varphi_N) \\ \vdots & \vdots & \ddots & \vdots \\ (\phi_M, \varphi_1) & (\phi_M, \varphi_2) & \dots & (\phi_M, \varphi_N) \end{pmatrix}.$$

Adaptivity

Set up

- Need an a posteriori error estimate for the discontinuous Galerkin method.
- ▶ Use this in the framework for Multiscale methods to construct a a posteriori error estimate for the multiscale method.
- ► Construct a adaptive algorithm to automatically tune the critical parameters.



Theorem (A posteriori error estimate for DG method)

- \blacktriangleright Let u, u_h be given by the exact solution respectively the DG solution.
- Let also $\chi \in \mathcal{V}_h \cap H^1(\Omega)$
- ▶ Moreover, let $\mathcal{E} := \mathcal{E}_c + \mathcal{E}_d$ where $\mathcal{E}_c := u \chi$ and $\mathcal{E}_d := \chi u_h$.

Then,

$$\sum_{K \in \mathcal{K}} ||\sqrt{\alpha} \nabla \mathcal{E}_c||_{L^2(K)}^2 \lesssim \sum_{K \in \mathcal{K}} (\varrho_K(u_h) + \zeta_K(u_h, \chi))^2,$$

where

$$\varrho_{K}(u_{h}) = \frac{h_{K}}{\sqrt{\alpha_{0}}} ||f + \nabla \cdot \alpha \nabla u_{h}||_{L^{2}(K)},$$

$$+ \sqrt{\frac{h_{K}}{\alpha_{0}}} \Big(||(1 - w_{K(e)})n \cdot [\alpha \nabla u_{h}]||_{L^{2}(\partial K)} + ||\frac{\sigma_{e} \gamma_{e}}{h_{e}} [u_{h}]||_{L^{2}(\partial K \setminus \Gamma^{B})} \Big),$$

$$\zeta_{K}(u_{h}, \chi) = ||\sqrt{\alpha} \nabla (u_{h} - \chi)||_{L^{2}(K)}.$$

Treatment of $\zeta_K(u_h, \chi)$

- 1. First, χ has to be chosen in a clever way.
- 2. Second, $\zeta_K(u_h, \chi)$ can either be estimated or evaluated.
- ▶ One possible chose is $\chi = \mathcal{I}_{Os} u_h$.
- ▶ Under certain assumption on α , $\zeta_K(u_h, \chi)$ can be evaluated and hidden in $\varrho_K(u_h)$.

Lemma (Oswald interpolation operator)

▶ Let $\mathcal{I}_{Os}: \mathcal{V}_h \to \mathcal{V}_h \cap H^1$

$$\mathcal{I}_{Os}v = \sum_{i \in \mathcal{N}} (\frac{1}{|\mathcal{M}_j|} \sum_{j \in \mathcal{M}_i} v_j(x_i)\varphi_j).$$

Then,

$$||\sqrt{\alpha}\nabla(v-\mathcal{I}_{Os}v)||^2\lesssim \alpha^0||\frac{1}{\sqrt{h_e}}[v]||^2_{L^2(\partial K\backslash \Gamma^B)}.$$

Sketch of proof

We have

$$\sum_{K \in \mathcal{K}} \| \sqrt{\alpha} \nabla \mathcal{E}_c \|_{L^2(K)}^2 = \mathsf{a}(\mathcal{E}_c, \mathcal{E}_c) = \mathsf{a}(\mathcal{E}, \mathcal{E}_c) - \mathsf{a}(\mathcal{E}_d, \mathcal{E}_c),$$

where

$$\begin{aligned} \mathsf{a}(\mathcal{E},\mathcal{E}_c) &= \mathsf{a}(u,\mathcal{E}_c) - \mathsf{a}(u_h,\mathcal{E}_c) = \mathit{I}(\mathcal{E}_c) - \mathsf{a}(u_h,\mathcal{E}_c), \\ &= \mathit{I}(\eta) - \mathsf{a}(u_h,\eta), \end{aligned}$$

where $\eta = \mathcal{E}_c - \pi_0 \mathcal{E}_c$.

▶ First integration by parts $I(\eta) - a(u_h, \eta)$ element wise and using the identity $[vz] = \{v\}_w[z] + \{v\}_{\bar{w}}[z]$.

We get,

$$\begin{split} & I(\eta) - \mathsf{a}(u_h, \eta) \\ &= \sum_{K \in \mathcal{K}} (f + \nabla \cdot \alpha \nabla u_h, \eta)_{\mathsf{L}^2(K)} + \sum_{e \in \Gamma'} \Big(- (\mathsf{n} \cdot [\alpha \nabla u_h], \{\eta\}_{\bar{w}})_{\mathsf{L}^2(e)} \\ &+ (\mathsf{n} \cdot \{\alpha \Pi \nabla \eta\}_w, [u_h])_{\mathsf{L}^2(e)} - \sigma \gamma_e \, h_e^{-1}([u_h], [\eta])_{\mathsf{L}^2(e)} \Big) + \sum_{e \in \Gamma^B} (\mathsf{n} \cdot \alpha \nabla u_h, \eta)_{\mathsf{L}^2(e)}. \end{split}$$

1. Then, using the inequalities and stability for the piecewise constant L^2 -projection.

$$||v - \pi_0 v||_{L^2(K)} \lesssim \frac{h_K}{\sqrt{\alpha_0}} ||\sqrt{\alpha} \nabla v||_{L^2(K)}, \quad \forall v \in H^1(K),$$
$$||v - \pi_0 v||_{L^2(\partial K)} \lesssim \sqrt{\frac{h_K}{\alpha_0}} ||\sqrt{\alpha} \nabla v||_{L^2(K)} \quad \forall v \in H^1(K).$$

2. For $a(\mathcal{E}_d, \mathcal{E}_c)$ use the Lemma (Oswald interpolation operator).

Theorem (A posteriori error estimate for ADG-MS)

- ▶ Let u, U be the exact solution respectively the multiscale solution.
- ▶ Let $X = \mathcal{I}_{Os}U \in H^1(\Omega)$.
- ▶ Set $\mathscr{E} := \mathscr{E}_c + \mathscr{E}_d$ where $\mathscr{E}_c := u X$ and $\mathscr{E}_d := X U$.
- $lackbreak U_i := \sum_{i \in \mathcal{M}_i} U_{c,j}(\phi_j + \tilde{\mathcal{T}}\phi_j) + U_{f,i}$, where $U_{c,j}$ are the nodal values.

Then,

$$\sum_{K \in \mathcal{K}} ||\sqrt{\alpha} \nabla \mathscr{E}_c||^2_{L^2(K)} \lesssim \sum_{K_c \in \mathcal{K}_c} \rho_{h,K_c}^2 + \sum_{i \in \mathcal{N}} \rho_{L,\omega_i^t}^2,$$

where

$$\begin{split} \rho_{L,\omega_i^L}^2 &= \sum_{\mathbf{e} \in \Gamma^B(\omega_i^L) \setminus \Gamma^B} \rho_{L,\omega_i^L,\mathbf{e}}^2, \\ \rho_{L,\omega_i^L,\mathbf{e}} &= \frac{H_{\omega_i^L}}{\sqrt{h_K \alpha_0}} \Big(||\mathbf{n} \cdot \{\alpha \nabla U_i\}_w||_{L^2(\mathbf{e})} + \frac{\sigma_e \gamma_e}{h_e} ||[U_i]||_{L^2(\mathbf{e})} \Big), \end{split}$$

measures the effect of the truncated patches.

Also

$$\rho_{h,K_c}^2 = \sum_{K \in K_c} (\varrho_K(U) + \zeta_K(U,X))^2,$$

with ϱ_K and ζ_K as in previous theorem.

Comments

- $ightharpoonup
 ho_{L,\omega_{i}^{L}}^{2}$ measure the effect of the truncated patches.
- $ightharpoonup
 ho_{hK}^2$ measure the effect of the refinement level.
- $ightharpoonup rac{1}{\sqrt{h_K}h_e}||[U_i]||_{L^2(e)}$ behave as $h^{-3/2}e^{-L}\sim 1\Rightarrow L\sim rac{3}{2}\log h^{-1}$
- ▶ Another possible choice is a weighted Oswald-type interpolation operator with the weights depending on the diffusion tensor.

Sketch of proof

We have

$$a(\mathscr{E}_c,\mathscr{E}_c) = a(\mathscr{E},\mathscr{E}_c) - a(\mathscr{E}_d,\mathscr{E}_c),$$

where

$$\begin{aligned} a(\mathscr{E}, \mathscr{E}_c) &= a(u, \mathscr{E}_c) - a(U, \mathscr{E}_c), \\ &= I(\mathscr{E}_c) - a(U, \mathscr{E}_c), \\ &= I(\mathscr{E}_c - v_c) - a(U, \mathscr{E}_c - v_c), \\ &= \sum_{i \in \mathcal{N}} \Big(I_i(\mathscr{E}_c - v_c - v_f) - a(U_i, \mathscr{E}_c - v_c) + a_i(U_i, v_f) \Big). \end{aligned}$$

here $v_c \in \mathcal{V}_c$ and $v_f \in \mathcal{V}_f$.

Notice that

$$\begin{aligned} a_i(\mathscr{E}, \mathscr{E}_c) &= a(\mathscr{E}, \mathscr{E}_c) + \sum_{e \in \Gamma^B(\omega_i^L)\Gamma^B} \left((n \cdot \{\alpha \nabla U_i\}_w, [v_f])_{L^2(e)} \right. \\ &+ (n \cdot \{\alpha \nabla U_i\}_w, [v_f])_{L^2(e)} - \frac{\sigma_e \gamma_e}{h_e} ([U_i], [v_f])_{L^2(e)} \right) \end{aligned}$$

Then,

$$a(\mathcal{E}, \mathcal{E}_c) = \left(I(\mathcal{E}_c - v_c - v_f) - a(\mathcal{E}, \mathcal{E}_c - v_c - v_f)\right)$$

$$+ \sum_{i \in \mathcal{N}} \sum_{e \in \Gamma^B(\omega_i^L)\Gamma^B} \left(\left(n \cdot \{\alpha \nabla U_i\}_w, [v_f]\right)_{L^2(e)} + \left(n \cdot \{\alpha \nabla U_i\}_w, [v_f]\right)_{L^2(e)}\right)$$

$$- \frac{\sigma_e \gamma_e}{h_e} ([U_i], [v_f])_{L^2(e)}\right)$$

$$=: I + II.$$

- 1. The first term (*I*), is bounded by the a apoteriori error estimate for DG.
- 2. To bound the second term (II),
 - ▶ Select v_c and v_f as the piecewise constant L^2 -projection onto V_c and V_f , respectively.
 - Then using a trace inequality, a interpolation estimate and L²-stability of π_f, II is bounded.

Adaptive algorithm

Algorithm 1 Adaptive Discontinuous Galerkin Multiscale Method

```
1: Initialize the coarse mesh with mesh size H.
 2: Let the fine mesh size be h_K = H/2 for all K_c \in \mathcal{K}_c and L(\omega_i) = 2 for
     all i \in \mathcal{N}
 3: while \sum_{i \in \mathcal{N}} (\rho_{h_{i},i}^2 + \rho_{L_{i},i}^2) > TOL do
          for i \in \mathcal{N} do
 4.
               if \rho_{L(\alpha)}^2 > TOL/(2\mathcal{N}) then
 5.
                    L(\omega_i) := L(\omega_i) + 1
 6.
               end if
 7.
          end for
 8.
          for K_c \in \mathcal{K}_c do
 g.
               if \rho_b^2 > TOL/(2|\mathcal{K}_c|) then
10.
                    h_{K} := h_{K}/2
11.
               end if
12.
          end for
13:
14: end while
```

Adaptivity

- Consider the model problem
- Using the a posteriori error estimate to construct an adaptive algorithm.
- ▶ Start with one refinement and 2 layers patches everywhere.
- ▶ Refine 30% of the coarse elements and increase 30% of the patch sizes in each iteration.
- ▶ Coarse mesh is 32×32 element and reference grid is 256×256 elements.
- ► The right hand side is −1 in the lower left corner and 1 in the upper right.

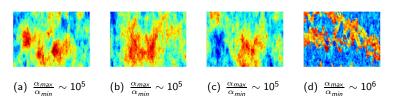


Figure: Permeabilities α projection in log scale.

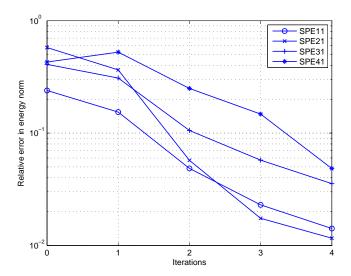
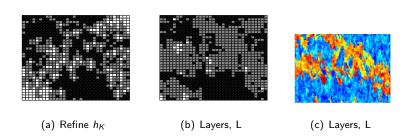


Figure: The relative error in broken energy norm with respect to number of iterations. Iteration 0 corresponds to the standard DG solution and iteration 1 the start values in the adaptive algorithm.

Figure (a) and (b) illustrates where the adaptive algorithm puts most effort

- ▶ Figure (a) corresponds to the refinements
- ▶ Figure (b) corresponds to the patch sizes.
- ▶ Figure (c) is the permeability α .



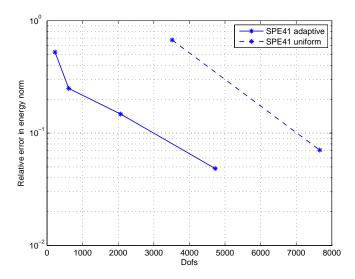


Figure: The relative error in broken energy norm with respect to the mean value of the degrees of freedom for the fine scale problems.

Conclusions

Advantage

- ▶ The fine scale problems are perfectly parallelizable.
- ▶ The exponential decay in the fine scale solution allows small patches.
- ► The error estimate and the adaptivity algorithm focus computational effort in critical areas.
- ▶ Very high aspect ratio in α can be solved.
- ▶ Possible to construct a conservative flux on the coarse scale.

37/39

Future work

- ▶ A priori analysis of the discontinuous Galerkin multiscale method.
- ▶ Hybrid method using DG on coarse scale and CG on fine scale.
- Extend the method and analysis to diffusion-convection problems.
- ▶ Investigate to sensibility in input data (uncertainty in the permeability α)
- Extend the implementation to triangular meshed to allow for complicated geometries.
- ▶ 3D implementation.

