
1/53

What else can
Satisfiability Modulo Theories

do for us?

Philipp Rümmer
March 3, 2021



2/53

What happened so far ...

● Use of SMT in SymEx and DSE

● Satisfiability queries



3/53

In this lecture: more tools

● Models
● Unsat cores
● Quantifier elimination
● Craig interpolation



4/53

Solutions and Models

● Task:
Produce a satisfying assignment for a 
given formula.

● SMT-LIB commands:
● (set-option :produce-models true)
● (get-model), (get-value (x y)),

called after (get-model) returns sat



5/53

Unsatisfiable Cores

● Task:
Given an unsatisfiable set F of formulas, 
find a small unsatisfiable subset F’ of F.

● SMT-LIB commands:
● (set-option :produce-unsat-cores 

true)
● (assert (! … :named A))
● (get-unsat-core),

called after (check-sat) returns unsat



6/53

Example

; This example illustates extraction
; of unsatisfiable cores (a subset of assertions
; that are mutually unsatisfiable)
(set-option :produce-unsat-cores true)
(declare-fun p () Bool)
(declare-fun q () Bool)
(declare-fun r () Bool)
(declare-fun s () Bool)
; Z3 will only track assertions that are named.
(assert (! (or p q) :named a1))
(assert (! (=> r s) :named a2))
(assert (! (=> s (= q r)) :named a3))
(assert (! (or r p) :named a4))
(assert (! (or r s) :named a5))
(assert (! (not (and r q)) :named a6))
(assert (! (not (and s p)) :named a7))
(check-sat)
(get-unsat-core)

Permalink: http://logicrunch.it.uu.se:4096/~wv/princess/?ex=perma%2F1614771123_487382835

http://logicrunch.it.uu.se:4096/~wv/princess/?ex=perma%2F1614771123_487382835


7/53

Unsatisfiable Cores (2)

● Computed cores are not guaranteed to 
be minimal (“best-effort”)

● Idea is to make best use of the 
information a solver already has 
available

● Finding truly minimal cores is hard:
● Repeated sat queries needed
● Active research area:

“Minimally unsatisfiable sets” (MUSes)



8/53

Cores in Symbolic Execution?



9/53

Quantifier Elimination

● Task:
Given a formula phi, find an equivalent 
quantifier-free formula phi’.

● Not standardized in SMT-LIB, but 
supported by several solvers: Z3, 
CVC4, Princess, ...



10/53

Some Examples



11/53

Z3 QE Example

(declare-const x Int)
(assert (exists ((y Int))
           (and (> y 0) (or (> x y) (> x 42)))))
(apply qe)

Permalink: https://rise4fun.com/Z3/WC8ib

https://rise4fun.com/Z3/WC8ib


12/53

QE in Symbolic Execution?

int abs(int x) {
if (x >= 0) {

return x;
} else {

int t = -x;
return t;

}
}



13/53

Systematic QE



14/53

“Geometric” Approach to QE

1) Pick an innermost quantifier, make it 
existential

2) Push the quantifier down (mini-
scoping), rewrite the matrix to DNF

3) Eliminate the quantified variable from 
each disjunct, drop the quantifier

4) Continue with 1)



15/53

“Geometric” Approach to QE

1) Pick an innermost quantifier, make it 
existential

2) Push the quantifier down (mini-
scoping), rewrite the matrix to DNF

3) Eliminate the quantified variable from 
each disjunct, drop the quantifier

4) Continue with 1)

Formula underneath
the quantifier



16/53

“Geometric” Approach to QE

1) Pick an innermost quantifier, make it 
existential

2) Push the quantifier down (mini-
scoping), rewrite the matrix to DNF

3) Eliminate the quantified variable from 
each disjunct, drop the quantifier

4) Continue with 1)

Exponential blow-up 1



17/53

“Geometric” Approach to QE

1) Pick an innermost quantifier, make it 
existential

2) Push the quantifier down (mini-
scoping), rewrite the matrix to DNF

3) Eliminate the quantified variable from 
each disjunct, drop the quantifier

4) Continue with 1)

Exponential blow-up 1Exponential blow-up 2
(over integers)



18/53

Different Paradigms

● Geometric approach

● Instantiation-based approach:

● Both can be implemented efficiently 
using SMT techniques
(e.g., expand lazily)



19/53

Which Theories admit QE?
 Booleans
 LIA, NIA: integer arithmetic
 LRA, NRA: real arithmetic
 FP: floating-point arithmetic
 BV: bitvectors
 EUF: equality + uninterpr. functions
 Arrays
 ADTs: algebraic data-types
 Strings



20/53

Craig Interpolation

● Task:
Given an unsatisfiable conjunction of 
formulas, extract binary/sequence/tree 
interpolants.

● Not standardized in SMT-LIB, but 
supported by several solvers: MathSAT, 
SMTInterpol, Princess, ...



21/53

Binary Interpolants

● “Non-logical” symbols: variables, 
uninterpreted functions, etc.

● Clearly: if    exists, then the
conjunction             is unsat

● Interpolation property: the converse

Definition
Suppose a conjunction             is given.
A binary interpolant is a formula    such that
●             and                are valid, and
● every non-logical symbol of    occurs in both     and    .



22/53

Examples, Intuition



23/53

Interpolant

Interpolants from proofs
SAT/SMT solver
Theorem prover

Proof
(Resolution, X)

Interpolation
system

Annotated
Proof



24/53

Model Checking

● Safety for finite-state systems:
Transition system:
Property:

● Bounded model checking:



25/53

Interpolation-based MC (simp.)
[McMillan, 2003]

If             is satisfiable
   return Unsafe

while (true) {

   if      is satisfiable {
     return Unknown
   } else {

     if         
       return Safe
     else

   }
}



26/53

Interpolation-based MC (simp.)
[McMillan, 2003]

If             is satisfiable
   return Unsafe

while (true) {

   if      is satisfiable {
     return Unknown
   } else {

     if         
       return Safe
     else

   }
}



27/53

Interpolation-based MC (simp.)
[McMillan, 2003]

If             is satisfiable
   return Unsafe

while (true) {

   if      is satisfiable {
     return Unknown
   } else {

     if         
       return Safe
     else

   }
}



28/53

Interpolation-based MC (simp.)
[McMillan, 2003]

If             is satisfiable
   return Unsafe

while (true) {

   if      is satisfiable {
     return Unknown
   } else {

     if         
       return Safe
     else

   }
}



29/53

Interpolation-based MC (simp.)
[McMillan, 2003]

If             is satisfiable
   return Unsafe

while (true) {

   if      is satisfiable {
     return Unknown
   } else {

     if         
       return Safe
     else

   }
}



30/53

Interpolation-based MC (simp.)
[McMillan, 2003]

If             is satisfiable
   return Unsafe

while (true) {

   if      is satisfiable {
     return Unknown
   } else {

     if         
       return Safe
     else

   }
}



31/53

Interpolation-based MC (simp.)
[McMillan, 2003]

If             is satisfiable
   return Unsafe

while (true) {

   if      is satisfiable {
     return Unknown
   } else {

     if         
       return Safe
     else

   }
}



32/53

Interpolation-based MC (simp.)
[McMillan, 2003]

If             is satisfiable
   return Unsafe

while (true) {

   if      is satisfiable {
     return Unknown
   } else {

     if         
       return Safe
     else

   }
}



33/53

Interpolation-based MC (simp.)
[McMillan, 2003]

If             is satisfiable
   return Unsafe

while (true) {

   if      is satisfiable {
     return Unknown
   } else {

     if         
       return Safe
     else

   }
}



34/53

Interpolant sequence

Definition
Given: a conjunction                      .
An interpolant sequence is a sequence
of formulae such that
● 
● 
●                     for each 
● for each                    , the formula     only contains
  symbols common to                      and       



35/53

Computation of sequence int.

Lemma
If a logic/theory admits binary interpolants, it also
admits sequence interpolants.

Proof:
Solve a sequence of binary interpolation problems:



36/53

Computation of sequence int. (2)

● In practice:
● Compute a single SAT/SMT proof
● Extract a sequence of interpolants 

directly from this proof
● Meta-argument: this yields actual 

interpolant sequence



37/53

Software model checking
[McMillan, 2006]

L = 0;
do {

assert(L==0);
L = 1;
old = new;
if (*){

L = 0;
new++;

}
} while (new!=old);

lock()

unlock()



38/53

Software model checking
[McMillan, 2006]

L = 0;
do {

assert(L==0);
L = 1;
old = new;
if (*){

L = 0;
new++;

}
} while (new!=old);

lock()

unlock()

L=0

L!=0

ERR



39/53

Software model checking
[McMillan, 2006]

L = 0;
do {

assert(L==0);
L = 1;
old = new;
if (*){

L = 0;
new++;

}
} while (new!=old);

lock()

unlock()

L=0

L!=0

ERR



40/53

Software model checking
[McMillan, 2006]

L = 0;
do {

assert(L==0);
L = 1;
old = new;
if (*){

L = 0;
new++;

}
} while (new!=old);

lock()

unlock()

L=0

L!=0

ERR

L==0 

L=1

old=new

new!=old

L!=0

ERR



41/53

Software model checking
[McMillan, 2006]

L = 0;
do {

assert(L==0);
L = 1;
old = new;
if (*){

L = 0;
new++;

}
} while (new!=old);

lock()

unlock()

L=0

L!=0

ERR

L==0 

L=1

old=new

new!=old

L!=0

ERR



42/53

In the Example

L=0

L==0 

L=1

old=new

new!=old

L!=0

ERR



43/53

In the Example

L=0

L==0 

L=1

old=new

new!=old

L!=0

ERR



44/53

In the Example

L=0

L==0 

L=1

old=new

new!=old

L!=0

ERR

Permalink: http://logicrunch.it.uu.se:4096/~wv/princess/?ex=perma%2F1614771057_1126223040

http://logicrunch.it.uu.se:4096/~wv/princess/?ex=perma%2F1614771057_1126223040


45/53

Interpolation in SymEx?

● [McMillan, 2010]



46/53

Which Theories/Logics admit 
Interpolation?



47/53

Interpolants and Quantifiers

● Strongest interpolant:
Weakest interpolant:

(where x, y are the local symbols)



48/53

Interpolants and Quantifiers

● Strongest interpolant:
Weakest interpolant:

(where x, y are the local symbols)

● If we allow quantifiers, there are always 
interpolants!



49/53

Interpolants and Quantifiers

● Strongest interpolant:
Weakest interpolant:

(where x, y are the local symbols)

● If we allow quantifiers, there are always 
interpolants!

● When can we compute quantifier-
free interpolants?



50/53

Interpolation through QE

● Observation:
Theories that admit quantifier 
elimination also admit quantifier-free 
interpolation. E.g.

● Presburger arithmetic
● Real arithmetic
● Quantified Boolean logic



51/53

Which Theories/Logics admit 
Interpolation?



52/53

Further tools (not discussed)

● MaxSAT/MaxSMT
● Find maximal satisfiable subsets of a 

set of inconsistent formulas
● Abduction

● Suppose             does not hold
● Find explanations E such that

● Syntax-guided synthesis



53

Thank you
for your

 attention! 

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	page14 (1)
	page14 (2)
	page14 (3)
	page14 (4)
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	page22 (1)
	page22 (2)
	page22 (3)
	page22 (4)
	page22 (5)
	page22 (6)
	page22 (7)
	page22 (8)
	page22 (9)
	Slide 34
	Slide 35
	Slide 36
	page26 (1)
	page26 (2)
	page26 (3)
	page26 (4)
	page26 (5)
	page27 (1)
	page27 (2)
	page27 (3)
	Slide 45
	Slide 46
	page30 (1)
	page30 (2)
	page30 (3)
	Slide 50
	Slide 51
	Slide 52
	Slide 53

