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What happened so far ...

● Use of SMT in SymEx and DSE

● Satisfiability queries
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In this lecture: more tools

● Models
● Unsat cores
● Quantifier elimination
● Craig interpolation
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Solutions and Models

● Task:
Produce a satisfying assignment for a 
given formula.

● SMT-LIB commands:
● (set-option :produce-models true)
● (get-model), (get-value (x y)),

called after (get-model) returns sat



5/53

Unsatisfiable Cores

● Task:
Given an unsatisfiable set F of formulas, 
find a small unsatisfiable subset F’ of F.

● SMT-LIB commands:
● (set-option :produce-unsat-cores 

true)
● (assert (! … :named A))
● (get-unsat-core),

called after (check-sat) returns unsat
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Example

; This example illustates extraction
; of unsatisfiable cores (a subset of assertions
; that are mutually unsatisfiable)
(set-option :produce-unsat-cores true)
(declare-fun p () Bool)
(declare-fun q () Bool)
(declare-fun r () Bool)
(declare-fun s () Bool)
; Z3 will only track assertions that are named.
(assert (! (or p q) :named a1))
(assert (! (=> r s) :named a2))
(assert (! (=> s (= q r)) :named a3))
(assert (! (or r p) :named a4))
(assert (! (or r s) :named a5))
(assert (! (not (and r q)) :named a6))
(assert (! (not (and s p)) :named a7))
(check-sat)
(get-unsat-core)

Permalink: http://logicrunch.it.uu.se:4096/~wv/princess/?ex=perma%2F1614771123_487382835

http://logicrunch.it.uu.se:4096/~wv/princess/?ex=perma%2F1614771123_487382835
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Unsatisfiable Cores (2)

● Computed cores are not guaranteed to 
be minimal (“best-effort”)

● Idea is to make best use of the 
information a solver already has 
available

● Finding truly minimal cores is hard:
● Repeated sat queries needed
● Active research area:

“Minimally unsatisfiable sets” (MUSes)
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Cores in Symbolic Execution?
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Quantifier Elimination

● Task:
Given a formula phi, find an equivalent 
quantifier-free formula phi’.

● Not standardized in SMT-LIB, but 
supported by several solvers: Z3, 
CVC4, Princess, ...
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Some Examples
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Z3 QE Example

(declare-const x Int)
(assert (exists ((y Int))
           (and (> y 0) (or (> x y) (> x 42)))))
(apply qe)

Permalink: https://rise4fun.com/Z3/WC8ib

https://rise4fun.com/Z3/WC8ib
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QE in Symbolic Execution?

int abs(int x) {
if (x >= 0) {

return x;
} else {

int t = -x;
return t;

}
}



13/53

Systematic QE
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“Geometric” Approach to QE

1) Pick an innermost quantifier, make it 
existential

2) Push the quantifier down (mini-
scoping), rewrite the matrix to DNF

3) Eliminate the quantified variable from 
each disjunct, drop the quantifier

4) Continue with 1)
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“Geometric” Approach to QE

1) Pick an innermost quantifier, make it 
existential

2) Push the quantifier down (mini-
scoping), rewrite the matrix to DNF

3) Eliminate the quantified variable from 
each disjunct, drop the quantifier

4) Continue with 1)

Exponential blow-up 1Exponential blow-up 2
(over integers)
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Different Paradigms

● Geometric approach

● Instantiation-based approach:

● Both can be implemented efficiently 
using SMT techniques
(e.g., expand lazily)
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Which Theories admit QE?
 Booleans
 LIA, NIA: integer arithmetic
 LRA, NRA: real arithmetic
 FP: floating-point arithmetic
 BV: bitvectors
 EUF: equality + uninterpr. functions
 Arrays
 ADTs: algebraic data-types
 Strings
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Craig Interpolation

● Task:
Given an unsatisfiable conjunction of 
formulas, extract binary/sequence/tree 
interpolants.

● Not standardized in SMT-LIB, but 
supported by several solvers: MathSAT, 
SMTInterpol, Princess, ...
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Binary Interpolants

● “Non-logical” symbols: variables, 
uninterpreted functions, etc.

● Clearly: if    exists, then the
conjunction             is unsat

● Interpolation property: the converse

Definition
Suppose a conjunction             is given.
A binary interpolant is a formula    such that
●             and                are valid, and
● every non-logical symbol of    occurs in both     and    .
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Examples, Intuition
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Interpolant

Interpolants from proofs
SAT/SMT solver
Theorem prover

Proof
(Resolution, X)

Interpolation
system

Annotated
Proof
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Model Checking

● Safety for finite-state systems:
Transition system:
Property:

● Bounded model checking:
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Interpolation-based MC (simp.)
[McMillan, 2003]

If             is satisfiable
   return Unsafe

while (true) {

   if      is satisfiable {
     return Unknown
   } else {

     if         
       return Safe
     else

   }
}
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Interpolant sequence

Definition
Given: a conjunction                      .
An interpolant sequence is a sequence
of formulae such that
● 
● 
●                     for each 
● for each                    , the formula     only contains
  symbols common to                      and       
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Computation of sequence int.

Lemma
If a logic/theory admits binary interpolants, it also
admits sequence interpolants.

Proof:
Solve a sequence of binary interpolation problems:
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Computation of sequence int. (2)

● In practice:
● Compute a single SAT/SMT proof
● Extract a sequence of interpolants 

directly from this proof
● Meta-argument: this yields actual 

interpolant sequence
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Software model checking
[McMillan, 2006]

L = 0;
do {

assert(L==0);
L = 1;
old = new;
if (*){

L = 0;
new++;

}
} while (new!=old);

lock()

unlock()
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In the Example
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Permalink: http://logicrunch.it.uu.se:4096/~wv/princess/?ex=perma%2F1614771057_1126223040

http://logicrunch.it.uu.se:4096/~wv/princess/?ex=perma%2F1614771057_1126223040
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Interpolation in SymEx?

● [McMillan, 2010]
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Which Theories/Logics admit 
Interpolation?
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Interpolants and Quantifiers

● Strongest interpolant:
Weakest interpolant:

(where x, y are the local symbols)
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Interpolants and Quantifiers

● Strongest interpolant:
Weakest interpolant:

(where x, y are the local symbols)

● If we allow quantifiers, there are always 
interpolants!

● When can we compute quantifier-
free interpolants?
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Interpolation through QE

● Observation:
Theories that admit quantifier 
elimination also admit quantifier-free 
interpolation. E.g.

● Presburger arithmetic
● Real arithmetic
● Quantified Boolean logic
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Which Theories/Logics admit 
Interpolation?
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Further tools (not discussed)

● MaxSAT/MaxSMT
● Find maximal satisfiable subsets of a 

set of inconsistent formulas
● Abduction

● Suppose             does not hold
● Find explanations E such that

● Syntax-guided synthesis
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Thank you
for your

 attention! 

Questions?
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