What else can Satisfiability Modulo Theories do for us?

Philipp Rümmer March 3, 2021

What happened so far ...

Use of SMT in SymEx and DSE

Satisfiability queries

In this lecture: more tools

- Models
- Unsat cores
- Quantifier elimination
- Craig interpolation

Solutions and Models

• Task:

Produce a satisfying assignment for a given formula.

SMT-LIB commands:

- (set-option :produce-models true)
- (get-model), (get-value (x y)), called after (get-model) returns sat

Unsatisfiable Cores

• Task:

Given an unsatisfiable set *F* of formulas, find a small unsatisfiable subset *F'* of *F*.

SMT-LIB commands:

- (set-option :produce-unsat-cores true)
- (assert (! ... :named A))
- (get-unsat-core), called after (check-sat) returns unsat₅₃

Example

```
; This example illustates extraction
; of unsatisfiable cores (a subset of assertions
; that are mutually unsatisfiable)
(set-option :produce-unsat-cores true)
(declare-fun p () Bool)
(declare-fun q () Bool)
(declare-fun r () Bool)
(declare-fun s () Bool)
; Z3 will only track assertions that are named.
(assert (! (or p q) :named a1))
(assert (! (=> r s) :named a2))
(assert (! (=> s (= q r)) :named a3))
(assert (! (or r p) :named a4))
(assert (! (or r s) :named a5))
(assert (! (not (and r q)) :named a6))
(assert (! (not (and s p)) :named a7))
(check-sat)
(get-unsat-core)
```

Unsatisfiable Cores (2)

- Computed cores are not guaranteed to be minimal ("best-effort")
 - Idea is to make best use of the information a solver already has available
- Finding truly minimal cores is hard:
 - Repeated sat queries needed
 - Active research area: "Minimally unsatisfiable sets" (MUSes)

Cores in Symbolic Execution?

Quantifier Elimination

• Task:

Given a formula *phi*, find an equivalent quantifier-free formula *phi'*.

 Not standardized in SMT-LIB, but supported by several solvers: Z3, CVC4, Princess, ...

Some Examples

Z3 QE Example

Permalink: https://rise4fun.com/Z3/WC8ib

QE in Symbolic Execution?

```
int abs(int x) {
    if (x >= 0) {
        return x;
    } else {
        int t = -x;
        return t;
    }
}
```

Systematic QE

- 1) Pick an innermost quantifier, make it existential
- 2) Push the quantifier down (miniscoping), rewrite the matrix to DNF
- 3) Eliminate the quantified variable from each disjunct, drop the quantifier
- 4) Continue with 1)

1) Pick an innermost quantifier, For existential

Formula underneath the quantifier

- 2) Push the quantifier down (miniscoping), rewrite the matrix to DNF
- 3) Eliminate the quantified variable from each disjunct, drop the quantifier
- 4) Continue with 1)

- 1) Pick an innermost quantifier, make it existential
- 2) Push the quantifier down (miniscoping), rewrite the matrix to DNF
- 3) Eliminate the quantified variable from each disjunct, drop the quantifier
- 4) Continue with 1)

Exponential blow-up 1

- 1) Pick an innermost quantifier, make it existential
- 2) Push the quantifier down (miniscoping), rewrite the matrix to DNF
- 3) Eliminate the quantified variable from each digiunct, drop the quantifier
- 4) Contine with 1)

Exponential blow-up 2 (over integers) Exponential blow-up 1

Different Paradigms

Geometric approach

- Instantiation-based approach: $\exists x.\phi[x] \quad \rightsquigarrow \quad \bigvee_{t \in T} \phi[t]$
- Both can be implemented efficiently using SMT techniques (e.g., expand lazily)

Which Theories admit QE?

- Booleans
- LIA, NIA: integer arithmetic
- LRA, NRA: real arithmetic
- FP: floating-point arithmetic
- BV: bitvectors
- EUF: equality + uninterpr. functions
- Arrays
- ADTs: algebraic data-types
- Strings

Craig Interpolation

• Task:

Given an unsatisfiable conjunction of formulas, extract binary/sequence/tree interpolants.

 Not standardized in SMT-LIB, but supported by several solvers: MathSAT, SMTInterpol, Princess, ...

Binary Interpolants

Definition Suppose a conjunction $A \wedge B$ is given. A *binary interpolant* is a formula *I* such that • $A \rightarrow I$ and $B \rightarrow \neg I$ are valid, and

- every non-logical symbol of I occurs in both A and B.
 - "Non-logical" symbols: variables, uninterpreted functions, etc.
 - Clearly: if I exists, then the conjunction $A \wedge B$ is unsat
 - Interpolation property: the converse

Examples, Intuition

Interpolants from proofs

Model Checking

- Safety for finite-state systems: Transition system: I(\$\overline{s}\$), T(\$\overline{s}\$, \$\overline{s}\$') Property: P(\$\overline{s}\$)
- Bounded model checking:

 $I(\bar{s}_0) \wedge \neg P(\bar{s}_0) ?$ $I(\bar{s}_0) \wedge T(\bar{s}_0, \bar{s}_1) \wedge \neg P(\bar{s}_1) ?$ $I(\bar{s}_0) \wedge T(\bar{s}_0, \bar{s}_1) \wedge T(\bar{s}_1, \bar{s}_2) \wedge \neg P(\bar{s}_2) ?$ \vdots

If $Init(\bar{s}) \wedge \neg P(\bar{s})$ is satisfiable return Unsafe

 $R = Init(\bar{s}_{-1})$ while (true) { $A = R \wedge T(\bar{s}_{-1}, \bar{s})$

 $B = T(\bar{s}, \bar{s}_1) \land (\neg P(\bar{s}) \lor \neg P(\bar{s}_1))$

if $A \wedge B$ is satisfiable { return Unknown

} else {

$$R' = R \lor \operatorname{ltp}(A, B)[\overline{s}/\overline{s}_{-1}]$$

if $R == R'$
return Safe

R = R'

If $Init(\bar{s}) \wedge \neg P(\bar{s})$ is satisfiable return Unsafe

 $R = Init(\bar{s}_{-1})$ while (true) { $A = R \wedge T(\bar{s}_{-1}, \bar{s})$

$$B = T(\bar{s}, \bar{s}_1) \land (\neg P(\bar{s}) \lor \neg P(\bar{s}_1))$$

if $A \land B$ is satisfiable {

return Unknown

} else {

$$R' = R \lor \operatorname{ltp}(A, B)[\overline{s}/\overline{s}_{-1}]$$

if $R == R'$
return Safe

$$R = R^{2}$$

If $Init(\bar{s}) \wedge \neg P(\bar{s})$ is satisfiable return Unsafe

 $R = Init(\bar{s}_{-1})$ while (true) { $A = R \land T(\bar{s}_{-1}, \bar{s})$ $B = T(\bar{s}, \bar{s}_1) \land (\neg P(\bar{s}) \lor \neg P(\bar{s}_1))$ if $A \land B$ is satisfiable {
return Unknown

} else {

$$R' = R \lor \operatorname{ltp}(A, B)[\overline{s}/\overline{s}_{-1}]$$

if $R == R'$
return Safe
else

R = R'

If $Init(\bar{s}) \wedge \neg P(\bar{s})$ is satisfiable return Unsafe

 $R = Init(\bar{s}_{-1})$ while (true) { $A = R \land T(\bar{s}_{-1}, \bar{s})$ $B = T(\bar{s}, \bar{s}_{1}) \land (\neg P(\bar{s}) \lor \neg P(\bar{s}_{1}))$ if $A \land B$ is satisfiable {
return Unknown
} else {

$$R' = R \lor \operatorname{ltp}(A, B)[\bar{s}/\bar{s}_{-1}]$$

if $R == R'$

return Safe

$$R = R'$$

If $Init(\bar{s}) \wedge \neg P(\bar{s})$ is satisfiable return Unsafe

 $R = Init(\bar{s}_{-1})$
while (true) {

 $A = R \wedge T(\bar{s}_{-1}, \bar{s})$ $B = T(\bar{s}, \bar{s}_1) \wedge (\neg P(\bar{s}) \vee \neg P(\bar{s}_1))$ **if** $A \wedge B$ is satisfiable {

return Unknown

} else {
$$R' = R \lor \operatorname{ltp}(A, B)[\bar{s}/\bar{s}_{-1}]$$
 if $R == R'$

return Safe

$$R = R$$

If $Init(\bar{s}) \wedge \neg P(\bar{s})$ is satisfiable return Unsafe

 $R = Init(\bar{s}_{-1})$
while (true) {

 $A = R \wedge T(\bar{s}_{-1}, \bar{s})$ $B = T(\bar{s}, \bar{s}_1) \wedge (\neg P(\bar{s}) \vee \neg P(\bar{s}_1))$ **if** $A \wedge B$ is satisfiable {

return Unknown

} else {

$$R' = R \lor \operatorname{ltp}(A, B)[\overline{s}/\overline{s}_{-1}]$$

if $R == R'$

return Safe

$$R = R$$

If $Init(\bar{s}) \wedge \neg P(\bar{s})$ is satisfiable return Unsafe

 $R = Init(\bar{s}_{-1})$ while (true) { $A = R \land T(\bar{s}_{-1}, \bar{s})$ $B = T(\bar{s}, \bar{s}_1) \land (\neg P(\bar{s}) \lor \neg P(\bar{s}_1))$

if $A \wedge B$ is satisfiable {

return Unknown

else {

$$R' = R \lor \operatorname{ltp}(A, B)[\bar{s}/\bar{s}_{-1}]$$

if $R == R'$

return Safe

$$R = R^{\prime}$$

If $Init(\bar{s}) \wedge \neg P(\bar{s})$ is satisfiable return Unsafe

 $R = Init(\bar{s}_{-1})$ while (true) { $A = R \land T(\bar{s}_{-1}, \bar{s})$ $B = T(\bar{s}, \bar{s}_1) \land (\neg P(\bar{s}) \lor \neg P(\bar{s}_1))$ if $A \land B$ is satisfiable {
return Unknown

} else {

$$R' = R \lor \operatorname{ltp}(A, B)[\overline{s}/\overline{s}_{-1}]$$

if $R == R'$
return Safe

$$R = R^{2}$$

If $Init(\bar{s}) \wedge \neg P(\bar{s})$ is satisfiable return Unsafe

 $R = Init(\bar{s}_{-1})$ while (true) { $A = R \land T(\bar{s}_{-1}, \bar{s})$ $B = T(\bar{s}, \bar{s}_1) \land (\neg P(\bar{s}) \lor \neg P(\bar{s}_1))$ if $A \land B$ is satisfiable {

return Unknown

} else {
$$R' = R \lor \operatorname{ltp}(A, B)[\bar{s}/\bar{s}_{-1} \\ \text{if } R == R'$$

return Safe

$$R = R$$

Interpolant sequence

Definition

Given: a conjunction $T_1 \land \cdots \land T_n$. An *interpolant sequence* is a sequence I_0, \ldots, I_n of formulae such that

- $I_0 = \top$
- $I_n = \bot$
- $I_{i-1}, T_i \vdash I_i$ for each $i = 1, \ldots, n$
- for each i = 1, ..., n, the formula I_i only contains symbols common to $T_1 \land \cdots \land T_i$ and $T_{i+1} \land \cdots \land T_n$

Computation of sequence int.

Lemma

If a logic/theory admits binary interpolants, it also admits sequence interpolants.

Proof:

Solve a sequence of binary interpolation problems:

$$I_{0} := \top$$

$$\begin{pmatrix} I_{0} \land T_{1} \end{pmatrix} \land \begin{pmatrix} T_{2} \land \cdots \land T_{n} \end{pmatrix} & \rightsquigarrow & I_{1} \\ (I_{1} \land T_{2}) \land \begin{pmatrix} T_{3} \land \cdots \land T_{n} \end{pmatrix} & \rightsquigarrow & I_{2} \end{pmatrix}$$

$$\vdots$$

$$\begin{pmatrix} I_{i-1} \land T_{i} \end{pmatrix} \land \begin{pmatrix} T_{i+1} \land \cdots \land T_{n} \end{pmatrix} & \rightsquigarrow & I_{i} \end{pmatrix}$$

Computation of sequence int. (2)

- In practice:
 - Compute a single SAT/SMT proof
 - Extract a sequence of interpolants directly from this proof
 - Meta-argument: this yields actual interpolant sequence

```
L = 0;
do {
    assert(L==0);
    L = 1;
    old = new;
    if (*) {
        L = 0;    } lock()
        new++;
    }
} unlock()
```


L = 0; do { assert(L==0); } lock() L = 1; old = new; if (*) { L = 0; } unlock() new++; } } while (new!=old);

40/53

ERR

41/53

In the Example

In the Example

In the Example

Permalink: http://logicrunch.it.uu.se:4096/~wv/princess/?ex=perma%2F1614771057_1126223040

Interpolation in SymEx?

• [McMillan, 2010]

Which Theories/Logics admit Interpolation?

Interpolants and Quantifiers

$A[\bar{x},\bar{z}] \wedge B[\bar{z},\bar{y}]$

• Strongest interpolant: $\exists \bar{x}. A[\bar{x}, \bar{z}]$ Weakest interpolant: $\forall \bar{y}. \neg B[\bar{z}, \bar{y}]$

(where x, y are the local symbols)

Interpolants and Quantifiers

$A[\bar{x},\bar{z}] \wedge B[\bar{z},\bar{y}]$

• Strongest interpolant: $\exists \bar{x}. A[\bar{x}, \bar{z}]$ Weakest interpolant: $\forall \bar{y}. \neg B[\bar{z}, \bar{y}]$

(where x, y are the local symbols)

If we allow quantifiers, there are always interpolants!

Interpolants and Quantifiers

$A[\bar{x},\bar{z}] \wedge B[\bar{z},\bar{y}]$

• Strongest interpolant: $\exists \bar{x}. A[\bar{x}, \bar{z}]$ Weakest interpolant: $\forall \bar{y}. \neg B[\bar{z}, \bar{y}]$

(where x, y are the local symbols)

- If we allow quantifiers, there are always interpolants!
- When can we compute quantifierfree interpolants?

49/53

Interpolation through QE

• Observation:

Theories that admit **quantifier elimination** also admit quantifier-free interpolation. E.g.

- Presburger arithmetic
- Real arithmetic
- Quantified Boolean logic

Which Theories/Logics admit Interpolation?

Further tools (not discussed)

- MaxSAT/MaxSMT
 - Find maximal satisfiable subsets of a set of inconsistent formulas
- Abduction
 - Suppose $T \models O$ does **not** hold
 - Find explanations *E* such that $T \cup E \models O$ $T \cup E \not\models false$
- Syntax-guided synthesis

Thank you for your attention:

Questions?

