
KLEE and Memory

1

For each memory allocation, KLEE creates

• A Memory object (w. metadata)

– Including a regular pointer to a memory region (called external memory), used when

invoking external functions

• An objectState object (contains symbolic or concrete values stored)

– Symbolic values and offsets handled by theory of arrays. //example1.c

e.g., read((write(a,42,x),42) = x

with optimizations (of course)

– All bytes in the objectState represented symbolically (as bitvectors)

KLEE has problems with:

2

• Symbolic-size allocated memory object (w. metadata)

– Symbolic sizes are immediately concretized

• When a symbolic pointer is dereferenced, the symbolic state is forked

– One symbolic state for each memory object where the pointer can point

• Different allocations (corresponding to different object states) are

handled separately.

Sudoku in KLEE:

3

• Allocate 81 bytes. (9 by 9 char array)

• Encode that a row of 9 bytes is all-different:

– If the row is i1 i2 i 3i4 i5 i6 i7 i8 i9

– Encode that these are all 9 different digits by

2i1 + 2i2 + 2i3 + 2i4 + 2i5 + 2i6 + 2i7 + 2i8 + 2i9 = 1111111110 (base 2) = 0x3FE

– This can be encoded as

1 << i1 | 1 << i2 | ……. | 1 << i9 = 03XFE

