Performance Analysis, Autumn 2010

Bengt Jonsson

November 23, 2010

Bengt Jonsson Performance Analysis, Autumn 2010

イロン イヨン イヨン イヨン

3

Queueing Networks

Modeling a queue of jobs

• Helpful fact: Burke's theorem:

The departure process from a stable M/M/c queue with arrival and service rates λ and μ , respectively, is a Poisson process with rate λ .

• This allows to analyze acyclic QNs of queues with exponential service times, since each queue will behave like an M/M/1 (M/M/c) queue

< □ > < □ > < □ >

Feed-Forward Queueing Networks

 $\mathsf{QN}\xspace$ of queues with exponential service times, where no cycles.

- Let r_{ij} be routing probabilities, i.e., probability that job leaving *i* will go to *j*.
- Assume external input comes with rate λ_0 .
- r_{0j} is fraction of arrivals that come to j,
- r_{i0} is fraction of departures from *i* that leave network.
- Solve the *traffic equations*:

$$\lambda_i = \lambda_0 r_{0i} + \sum_{j=1}^k \lambda_j r_{ji}$$

- Each queue *i* will behave like M/M/1, with arrival rate $\lambda_0 r_{0i}$ and service rate μ_i ,
- Assume no bottlenecks, i.e., $\frac{\lambda_i}{\mu_i} = \rho_i < 1$,

Jackson Queueing Networks

Jackson QN: a QN of queues with exponential service times, where cycles are allowed: It should be *open*, i.e., accept jobs from environment.

- Now arrival streams may not be Poisson.
- But steady-state probabilities are as if each queue is independent M/M/1 queue
- Assume external input comes to queue 0 with rate λ_0 .
- Solve the *traffic equations*:

$$\lambda_i = \lambda_0 r_{0i} + \sum_{j=1}^k \lambda_j r_{ji}$$

(4月) イヨト イヨト

Jackson Queueing Networks (ctd.)

Product form solution: In a Jackson QN, steady state probability distributions are product of individual queue distributions:

• Let
$$\overline{n} = n_1 n_2 n_3 \dots n_k$$
,
• let $\pi_{\overline{n}} = P(\bigwedge_{i=1}^k \text{queue } i \text{ has } n_i \text{ elements}).$
• Then

$$\pi_{\overline{n}} = \prod_{i=1}^{k} P(\text{queue } i \text{ has } n_i \text{ elements}) = \prod_{i=1}^{k} (1 - \rho_i) \rho_i^{n_i}$$

Sometimes

$$\pi_{\overline{n}} = \frac{1}{G} \prod_{i=1}^{k} \rho_i^{n_i}$$

Closed Queueing Networks

Gurdon Newell QNs: queues with exponential service times, which is *closed*, i.e., no jobs from environment.

- Let K be total number of customers (fixed population)
- Let queues be numbered $1, 2, \ldots, k$,
- Now, traffic equations $\lambda_i = \sum_{j=1}^{n} \lambda_j r_{ji}$ have rank k 1. Typically normalize wrp. to λ_1 . Let $\gamma_i = \lambda_i / \lambda_1$.

• Also, relativize
$$\rho_i$$
 by $\rho_i = \gamma_i/\mu_i$.

Then again

$$\pi_{\overline{n}} = \frac{1}{G(k,K)} \prod_{i=1}^{k} \rho_i^{n_i},$$

but now we cannot break apart G(k, K) due to interdependence on number of jobs in each queue (fixed total population).

Closed Queueing Networks: example

Consider a GNQN with 3 stations (1, 2, and 3).

- $\mu_1 = 1$, $\mu_2 = 1/2$, and $\mu_3 = 1/3$,
- $r_{12} = 0.4$, $r_{13} = 0.6$, $r_{21} = r_{31} = 1$

• Let
$$K = 3$$
 (3 jobs circulating).

- Solve traffic equations, yields: $\gamma_1 = 1$, $\gamma_2 = 0.4$, $\gamma_3 = 0.6$
- Get service demands $ho_1=1$, $ho_2=$ 0.8, $ho_3=$ 1.8
- There are 10 states.

イロト イポト イヨト イヨト

Lecture 5: Queueing Networks

Closed Queueing Networks: example (ctd.)

•
$$G(3,3) = \sum_{n_1+n_2+n_3=3} \rho_1^{n_1} \rho_2^{n_2} \rho_3^{n_3} = 19.008$$

• For instance $\pi_{111} = \rho_1 \rho_2 \rho_3 / G(3,3) = 1.44/19.008 = 0.0758$

•
$$P(n_1 = 0) = \frac{1}{19.008} (\rho_2^3 + \rho_3^3 + \rho_2 \rho_3^2 + \rho_2^2 \rho_3) = \frac{10.0880}{19.008} = 0.5307$$

• Thus, througput at node 1 is
$$\lambda_1 = P(n_1 \neq 0)\mu_1 = 0.4693 \times 1 = 0.4693.$$

• Average number of jobs at queue 1:

$$E[L_1] = \frac{\rho_1(\rho_2^2 + \rho_3^2 + \rho_2\rho_3) + 2\rho_1^2(\rho_2 + \rho_3) + 3\rho_1^3}{19.008} = 0.7113$$

• Average response time at queue 1 (by Little's law):

$$E[W_1] = \frac{E[L_1]}{\lambda_1} = \frac{0.7113}{0.4693} = 1.516$$

Mean-value Analysis

A faster computation for getting average numbers for a GNQN.

• Helpful fact: Arrival theorem:

In a closed QN, steady-state prob. distr. of jobs at the instant that a job moves from one queue to another, equals the (usual) steady-state prob. distr. of jobs in that QN without the moving job.

- Let average waiting time, etc. depend on K: e.g., $E[W_i](K)$.
- By arrival theorem:

$$E[W_i](K) = \frac{1 + E[L_i](K-1)}{\mu_i}$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Lecture 5: Queueing Networks

Mean-value Analysis (ctd.)

• By Little's law:

$$E[L_i](K) = \lambda_i(K)E[W_i](K) = \lambda_1(K)\gamma_iE[W_i](K)$$

• Now:

$$\sum_{i=1}^{k} E[L_i](K) = E\left[\sum_{i=1}^{k} L_i\right](K) = K$$

• i.e.,:

$$\lambda_1(K) = \frac{K}{\sum_{j=1} \gamma_j E[W_j](K)}$$

• i.e.,:

$$E[L_i](K) = K \frac{\gamma_i E[W_i](K)}{\sum_{j=1}^{j} \gamma_j E[W_j](K)}$$

ヘロン 人間 とくほと 人間 とう

Э

Mean-value Analysis: summary

MVA has the following steps:

- Solve traffic equations, to obtain γ_i (let $\gamma_1 = 1$)
- For $K = 1, 2, \ldots$, calculate:

$$E[W_i](K) = \frac{1 + E[L_i](K-1)}{\mu_i}$$
$$E[L_i](K) = K \frac{\gamma_i E[W_i](K)}{\sum_{j=1}^{j} \gamma_j E[W_j](K)}$$

• Start by: $E[L_i](0) = 0$, i.e., $E[W_i](1) = \frac{1}{\mu_i}$.

・ロト ・回ト ・ヨト ・ヨト

Mean-value Analysis (example)

Back to example:

Κ	$\lambda_1(K)$	$E[W_1](K)$	$E[W_2](K)$	$E[W_3](K)$
1	0.278	1	2	3
2	0.404	1.278	2.444	4.500
3	0.469	1.516	2.790	6.273
K	$\lambda_1(K)$	$E[L_1](K)$	$E[L_2](K)$	$E[L_3](K)$
K 1	$\lambda_1(K)$ 0.278	E[L ₁](K) 0.278	E[L ₂](K) 0.222	E[L ₃](K) 0.500
	• • •	/	/	

・ロン ・回と ・ヨン ・ヨン

3