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Lecture 5: Queueing Networks

Queueing Networks

Modeling a queue of jobs

Helpful fact: Burke’s theorem:

The departure process from a stable M/M/c queue
with arrival and service rates λ and µ, respectively,
is a Poisson process with rate λ.

This allows to analyze acyclic QNs of queues with exponential
service times, since each queue will behave like an M/M/1
(M/M/c) queue
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Feed-Forward Queueing Networks

QN of queues with exponential service times, where no cycles.

Let rij be routing probabilities, i.e., probability that job leaving
i will go to j .

Assume external input comes with rate λ0.

r0j is fraction of arrivals that come to j ,

ri0 is fraction of departures from i that leave network.

Solve the traffic equations:

λi = λ0r0i +
k∑

j=1

λj rji

Each queue i will behave like M/M/1, with arrival rate λ0r0i

and service rate µi ,

Assume no bottlenecks, i.e.,
λi

µi
= ρi < 1,
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Jackson Queueing Networks

Jackson QN: a QN of queues with exponential service times, where
cycles are allowed: It should be open, i.e., accept jobs from
environment.

Now arrival streams may not be Poisson.

But steady-state probabilities are as if each queue is
independent M/M/1 queue

Assume external input comes to queue 0 with rate λ0.

Solve the traffic equations:

λi = λ0r0i +
k∑

j=1

λj rji
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Jackson Queueing Networks (ctd.)

Product form solution: In a Jackson QN, steady state probability
distributions are product of individual queue distributions:

Let n = n1n2n3 . . . nk ,

let πn = P(
k
∧

i=1
queue i has ni elements).

Then

πn =
k
Π

i=1
P(queue i has ni elements) =

k
Π

i=1
(1− ρi )ρ

ni
i

Sometimes

πn =
1

G

k
Π

i=1
ρni
i

Bengt Jonsson Performance Analysis, Autumn 2010



Lecture 5: Queueing Networks

Closed Queueing Networks

Gurdon Newell QNs: queues with exponential service times, which
is closed, i.e., no jobs from environment.

Let K be total number of customers (fixed population)

Let queues be numbered 1, 2, . . . , k ,

Now, traffic equations λi =
k∑

j=1

λj rji have rank k − 1.

Typically normalize wrp. to λ1. Let γi = λi/λ1.

Also, relativize ρi by ρi = γi/µi .

Then again

πn =
1

G (k ,K )

k
Π

i=1
ρni
i ,

but now we cannot break apart G (k ,K ) due to
interdependence on number of jobs in each queue (fixed total
population).
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Closed Queueing Networks: example

Consider a GNQN with 3 stations (1, 2, and 3).

µ1 = 1, µ2 = 1/2, and µ3 = 1/3,

r12 = 0.4, r13 = 0.6, r21 = r31 = 1

Let K = 3 (3 jobs circulating).

Solve traffic equations, yields: γ1 = 1, γ2 = 0.4, γ3 = 0.6

Get service demands ρ1 = 1, ρ2 = 0.8, ρ3 = 1.8

There are 10 states.
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Closed Queueing Networks: example (ctd.)

G (3, 3) =
∑

n1+n2+n3=3

ρn1
1 ρ

n2
2 ρ

n3
3 = 19.008

For instance π111 = ρ1ρ2ρ3/G (3, 3) = 1.44/19.008 = 0.0758

P(n1 = 0) =
1

19.008
(ρ3

2 + ρ3
3 + ρ2ρ

2
3 + ρ2

2ρ3) =
10.0880

19.008
=

0.5307

Thus, througput at node 1 is
λ1 = P(n1 6= 0)µ1 = 0.4693× 1 = 0.4693.

Average number of jobs at queue 1:

E [L1] =
ρ1(ρ2

2 + ρ2
3 + ρ2ρ3) + 2ρ2

1(ρ2 + ρ3) + 3ρ3
1

19.008
= 0.7113

Average response time at queue 1 (by Little’s law):

E [W1] =
E [L1]

λ1
=

0.7113

0.4693
= 1.516
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Mean-value Analysis

A faster computation for getting average numbers for a GNQN.

Helpful fact: Arrival theorem:

In a closed QN, steady-state prob. distr. of jobs at
the instant that a job moves from one queue to
another, equals the (usual) steady-state prob. distr.
of jobs in that QN without the moving job.

Let average waiting time, etc. depend on K : e.g., E [Wi ](K ).

By arrival theorem:

E [Wi ](K ) =
1 + E [Li ](K − 1)

µi
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Mean-value Analysis (ctd.)

By Little’s law:

E [Li ](K ) = λi (K )E [Wi ](K ) = λ1(K )γiE [Wi ](K )

Now:
k∑

i=1

E [Li ](K ) = E

[
k∑

i=1

Li

]
(K ) = K

i.e.,:

λ1(K ) =
K∑

j=1

γjE [Wj ](K )

i.e.,:

E [Li ](K ) = K
γiE [Wi ](K )∑

j=1

γjE [Wj ](K )
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Mean-value Analysis: summary

MVA has the following steps:

Solve traffic equations, to obtain γi (let γ1 = 1)

For K = 1, 2, . . ., calculate:

E [Wi ](K ) =
1 + E [Li ](K − 1)

µi

E [Li ](K ) = K
γiE [Wi ](K )∑

j=1

γjE [Wj ](K )

Start by: E [Li ](0) = 0, i.e., E [Wi ](1) = 1
µi

.
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Mean-value Analysis (example)

Back to example:

K λ1(K ) E [W1](K ) E [W2](K ) E [W3](K )
1 0.278 1 2 3
2 0.404 1.278 2.444 4.500
3 0.469 1.516 2.790 6.273

K λ1(K ) E [L1](K ) E [L2](K ) E [L3](K )
1 0.278 0.278 0.222 0.500
2 0.404 0.516 0.395 1.091
3 0.469 0.711 0.523 1.765
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