An example of a four-node queueing network

- A queueing network consisting of $\mathrm{N}=4$ single FCFS server nodes
- The interarrival time are exponentially distributed with $\lambda=4$ jobs/sec
- The service time at each node are exponentially distributed with $\frac{1}{\mu_{1}}=$ $0.04 \mathrm{sec}, \frac{1}{\mu_{2}}=0.03 \mathrm{sec}, \frac{1}{\mu_{3}}=0.06 \mathrm{sec}$ and $\frac{1}{\mu_{4}}=0.05 \mathrm{sec}$
- The routing probabilities are $p_{12}=p_{13}=0.5, p_{41}=p_{21}=1$, $p_{31}=0.6, p_{30}=0.4$

Solving the queueing network

- Question: What is the steady state probability of state $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)$ $=(3,2,4,1)$?
- Step 1: compute the arrival rates for each node from the traffic equations $\lambda_{i}=\lambda_{0 i}+\sum_{j=1}^{k} \lambda_{j} r_{j i}$
- $\lambda_{1}=\lambda_{2} p_{21}+\lambda_{3} p_{31}+\lambda_{4} p_{41}$
- $\lambda_{2}=\lambda_{1} p_{12}$
- $\lambda_{3}=\lambda_{1} p_{13}$
- $\lambda_{4}=\lambda_{04}$
- We get the solution: $\lambda_{1}=20, \lambda_{2}=10, \lambda_{3}=10, \lambda_{4}=4$

Solving the queueing network (ctd.)

- Step2: compute the state probabilities for each node
- Use utilization $\rho=\frac{\lambda}{\mu}$ to get the service demands for each node $\rho_{1}=0.8, \rho_{2}=0.3, \rho_{3}=0.6$ and $\rho_{4}=0.2$
- Use the equation $\pi_{n}=(1-\rho) \rho^{n}$ to compute the probability of having n jobs in each $M / M / 1$ queue

$$
\begin{aligned}
& \star \pi_{1}(3)=\left(1-\rho_{1}\right) \rho_{1}{ }^{3}=0.1024 \\
& \star \pi_{2}(2)=\left(1-\rho_{2}\right) \rho_{2}{ }^{2}=0.063 \\
& \star \pi_{3}(4)=\left(1-\rho_{3}\right) \rho_{3}{ }^{4}=0.0518 \\
& \star \pi_{4}(1)=\left(1-\rho_{4}\right) \rho_{4}=0.16
\end{aligned}
$$

- Step3: compute the steady state probability $\pi(3,2,4,1)$
- According to Jackson's Theorem, we have $\pi(3,2,4,1)=$ $\pi_{1}(3) \pi_{2}(3) \pi_{3}(4) \pi_{4}(1)=0.0000534$

Other important performance measures for this queueing network

- Compute the mean number of jobs in each queue with $E(L)=\frac{\rho}{1-\rho}$: $E\left(L_{1}\right)_{1}=4, E\left(L_{2}\right)=0.429, E\left(L_{3}\right)=1.5$ and $E\left(L_{4}\right)=0.25$
- Compute the mean response time with $E(W)=\frac{1 / \mu}{1-\rho}$: $E\left(W_{1}\right)=0.2, E\left(W_{2}\right)=0.043, E\left(W_{3}\right)=0.15$ and $E\left(W_{4}\right)=0.0625$
- Compute the mean overall response time with the Little's Formula $E(W)=\frac{E(L)}{\lambda}=\frac{1}{\lambda} \sum_{i=1}^{4} E\left(L_{i}\right)=1.545$

