An example of a four-node queueing network

- A queueing network consisting of N = 4 single FCFS server nodes
- The interarrival time are exponentially distributed with $\lambda = 4$ jobs/sec
- The service time at each node are exponentially distributed with $\frac{1}{\mu_1} = 0.04$ sec, $\frac{1}{\mu_2} = 0.03$ sec, $\frac{1}{\mu_3} = 0.06$ sec and $\frac{1}{\mu_4} = 0.05$ sec
- The routing probabilities are $p_{12} = p_{13} = 0.5$, $p_{41} = p_{21} = 1$, $p_{31} = 0.6$, $p_{30} = 0.4$

Solving the queueing network

- Question: What is the steady state probability of state $(k_1, k_2, k_3, k_4) = (3, 2, 4, 1)$?
- Step 1: compute the arrival rates for each node from the traffic equations λ_i = λ_{0i} + Σ^k_{i=1} λ_jr_{ji}
 - $\lambda_1 = \lambda_2 p_{21} + \lambda_3 p_{31} + \lambda_4 p_{41}$
 - $\flat \ \lambda_2 = \lambda_1 p_{12}$
 - $\blacktriangleright \lambda_3 = \lambda_1 p_{13}$
 - $\blacktriangleright \ \lambda_4 = \lambda_{04}$
 - We get the solution: $\lambda_1=20, \ \lambda_2=10, \ \lambda_3=10, \ \lambda_4=4$

Solving the queueing network (ctd.)

Step2: compute the state probabilities for each node

- Use utilization $\rho = \frac{\lambda}{\mu}$ to get the service demands for each node $\rho_1 = 0.8$, $\rho_2 = 0.3$, $\rho_3 = 0.6$ and $\rho_4 = 0.2$
- Use the equation $\pi_n = (1 \rho)\rho^n$ to compute the probability of having n jobs in each M/M/1 queue

*
$$\pi_1(3) = (1 - \rho_1)\rho_1^3 = 0.1024$$

* $\pi_2(2) = (1 - \rho_2)\rho_2^2 = 0.063$
* $\pi_3(4) = (1 - \rho_3)\rho_3^4 = 0.0518$
* $\pi_4(1) = (1 - \rho_4)\rho_4 = 0.16$

- Step3: compute the steady state probability $\pi(3, 2, 4, 1)$
 - According to Jackson's Theorem, we have $\pi(3, 2, 4, 1) = \pi_1(3)\pi_2(3)\pi_3(4)\pi_4(1) = 0.0000534$

Other important performance measures for this queueing network

- Compute the mean number of jobs in each queue with $E(L) = \frac{\rho}{1-\rho}$: $E(L_1)_1 = 4$, $E(L_2) = 0.429$, $E(L_3) = 1.5$ and $E(L_4) = 0.25$
- Compute the mean response time with $E(W) = \frac{1/\mu}{1-\rho}$: $E(W_1) = 0.2, E(W_2) = 0.043, E(W_3) = 0.15$ and $E(W_4) = 0.0625$
- Compute the mean overall response time with the Little's Formula $E(W) = \frac{E(L)}{\lambda} = \frac{1}{\lambda} \sum_{i=1}^{4} E(L_i) = 1.545$