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Lecture 4: Simple Queues
Kendall Notation

Queueing process described by A/B/X/Y /Z, where
@ A is the arrival distribution
@ B is the service pattern
@ X the number of parallel service channels (servers)
@ Y the restriction on system capacity
@ Z the ququing discipline
Example

@ M/D/2/00/FCFS is a process with exponential interarrival
times, deterministic service times, two parallel servers,
unbounded queueing capacity, FCFS queue discpline.
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Lecture 4: Simple Queues
Little's Formula

Holds for general queueing models.

@ Relates steady-state mean system size to steady-state waiting
times.
o Let
o L be average number of jobs in system (average queue length)
o W be average time that a job spends in system (average
waiting time)
o A is the average arrival rate (arriving jobs per time unit)
Then
L=\W

Also, if we restrict to time in and size of queue (not in server),

then
Lo = AW,
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Lecture 4: Simple Queues
Application of Little's Formula

Average waiting time for M/M/1 queue:

o Expected number of jobs: L = ——
w—A

@ Hence expected total time in system: W = L/\ = 3
//l/ J—

Expected number of jobs in “pure” queue

Hence expected waiting time

A P
W, = Ly/\ = =
7= Lo/ plp =) =\
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Lecture 4: Simple Queues
PASTA Property

PASTA = Poisson Arrivals See Time Averages

o Consider a stochastic system with arrivals according to a
Poisson process with intensity A

@ (service times can be arbitrarily distributed)
@ With a state / we may associate
o long-term probability ;
o 7 Probability that an arrival will find system in state /.

@ In general m; # 7.
@ But for Poisson arrivals, we have 7; = 7.

(* Supply counterexample, e.g., deterministic arrivals *)
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Lecture 4: Simple Queues
Proof of PASTA Property

Sketch:
o Consider system state to be a stochastic process (X¢, t > 0).
o Consider a specific small interval (t — h, t].
@ The events “X;_j = i" and “some job arrives in (t — h, t]" are
independent (by memoryless property):

P(Xe—p =1 N N(h) > 1) = P(Xe—p =i)P(N(h) > 1)
which implies
P[Xe—n = iIN(h) > 1] = P(X¢—p = i)

By letting h — 0, the LHS expresses probability that system is
in state / when job arrives at time t. The equality says that
this is independent of whether a job arrives.
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Lecture 4: Simple Queues
Hitchhiker's paradox

Setting:
@ Cars are passing a point of a road according to a Poisson

process with rate 1/10 (i.e., mean interarrival time is 10
(minutes))

@ A hitchhiker arrives at a random instant.

What sis the mean waiting time W until next car?

@ According to memoryless property of exponential distribution,
it should be 10 minutes?

@ But: the hitchhiker arrives between two cars, such that the
mean time between the two cars is 10 minutes. Therefore, the
mean waiting time should be 5 minutes.

@ Resolve the paradox
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Lecture 4: Simple Queues
Multiserver queues

i.e., M/M/c queues for integer ¢ > 1.
@ Arrival poisson w. rate A
o Each server serves with rate p.

@ From balance equations, we get:

)\n
o (0<n<o),
Th = n!'%',
mﬂ'o (n Z C).

o Let r=\/p, let p=r/c=A/cu. Then

c—1 r r” -1 c—1 rn rC —1
v (S5 ) - (S )

n=0
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Lecture 4: Simple Queues
Average “pure’ queue length

i.e., M/M/c queues for integer ¢ > 1.

Ly = Ziozc-l—l(n —C)my = Ziicﬂ(” - C)Cnfinccgﬁo

c 00
TS e =S
n=c+1 ¢ m=1
_rC7T0 p
oo (1-p)?
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Lecture 4: Simple Queues
Other queue types

M/G/1 queues.
@ Arrival poisson w. rate A
@ Services with arbitrary distributions.
@ In general, this is not a Markov process.

@ Expression for expected waiting time, by PASTA property:

EWgl= E[L] - E[S] +  E[R]

waiting jobs service time remaining service
@ Using Little's law:

E[R] _ EIR]

ElLql = AE[W] e, E[Wql=1— ME[S]  1—0p

@ It remains to compute residual service time.
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Lecture 4: Simple Queues
M /G /1 Residual Service time

e Find E[R]:
@ Over a long period T, we have AT jobs.

1
@ Average remaining time for job is EE[SQ]

o E[R] = %E[SZ]

o E[W,] = ;(lE[i])

o Hence E[Ly] = AE[W,] = ;(21551)

o and E[W] = E[W,] + E[S] = 2A(f[_52’}) +;
o and E[L] = \E[W] = ;(215?3
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Lecture 4: Simple Queues
Observations on PK formula

AE[S?]
2(1-p)

o Now, E[S?] = (E[S])? + Var(S) = (E[S])?(1 + C?).

@ For same mean, Mean values increase linearly by variance.
Consider M/M/1:

o Var(S) = (E[S])? = 1/p?:

Consider E[Wq] =

) NE[S?) g
A= == Ty
Consider M/D/1:
e Var(S)=0
£y = MET LA

21-p) P T2 —p)

Bengt Jonsson Performance Analysis, Autumn 2010



Lecture 4: Simple Queues
Queueing Networks

Modeling a queue of jobs
@ Helpful fact: Burke's theorem:

The departure process from a stable M /M /c queue
with arrival and service rates A and p, respectively,
is a Poisson process with rate \.

@ This allows to analyze acyclic QNs, since each queue will
behave like an M/M/1 queue

@ Let rj be routing probabilities, i.e., probability that job leaving
i will go to j.

e Each queue i will behave like M/M /1, with arrival rate Agro;
and service rate pu;,
Aohoj
@ Assume no bottlenecks, i.e., 00i pi <1,
i
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Lecture 4: Simple Queues
Jackson Queueing Networks

Take the preceding slide, but allow cycles.
@ Now arrival streams may not be Poisson.

@ But steady-state probabilities are as if each queue is
independent M/M/1 queue

@ Solve the traffic equations:

k

Ai = Xoroi = Z Ajlji
=1

e Example (BH206)

Bengt Jonsson Performance Analysis, Autumn 2010



	Lecture 4: Simple Queues

