Performance Analysis, Autumn 2010

Bengt Jonsson

November 16, 2010

Kendall Notation

Queueing process described by $A / B / X / Y / Z$, where

- A is the arrival distribution
- B is the service pattern
- X the number of parallel service channels (servers)
- Y the restriction on system capacity
- Z the ququing discipline

Example

- $M / D / 2 / \infty / F C F S$ is a process with exponential interarrival times, deterministic service times, two parallel servers, unbounded queueing capacity, FCFS queue discpline.

Little's Formula

Holds for general queueing models.

- Relates steady-state mean system size to steady-state waiting times.
- Let
- L be average number of jobs in system (average queue length)
- W be average time that a job spends in system (average waiting time)
- λ is the average arrival rate (arriving jobs per time unit)

Then

$$
L=\lambda W
$$

Also, if we restrict to time in and size of queue (not in server), then

$$
L_{q}=\lambda W_{q}
$$

Application of Little's Formula

Average waiting time for $M / M / 1$ queue:

- Expected number of jobs: $L=\frac{\lambda}{\mu-\lambda}$
- Hence expected total time in system: $W=L / \lambda=\frac{1}{\mu-\lambda}$
- Expected number of jobs in "pure" queue

$$
\begin{aligned}
& L_{q}=\sum_{n=1}^{\infty}(n-1) \pi_{n}=\sum_{n=1}^{\infty} n \pi_{n}-\sum_{n=1}^{\infty} \pi_{n}= \\
& L-\left(1-\pi_{0}\right)=\frac{\rho}{1-\rho}-\rho=\frac{\rho^{2}}{1-\rho}
\end{aligned}
$$

- i.e.,

$$
L_{q}=\frac{\rho^{2}}{1-\rho}=\frac{\lambda^{2}}{\mu(\mu-\lambda)}
$$

- Hence expected waiting time

$$
W_{q}=L_{q} / \lambda=\frac{\lambda}{\mu(\mu-\lambda)}=\frac{\rho}{\mu-\lambda}
$$

PASTA Property

PASTA $=$ Poisson Arrivals See Time Averages

- Consider a stochastic system with arrivals according to a Poisson process with intensity λ
- (service times can be arbitrarily distributed)
- With a state i we may associate
- long-term probability π_{i}
- π_{i}^{*} : Probability that an arrival will find system in state i.
- In general $\pi_{i} \neq \pi_{i}^{*}$.
- But for Poisson arrivals, we have $\pi_{i}=\pi_{i}^{*}$.
(* Supply counterexample, e.g., deterministic arrivals *)

Proof of PASTA Property

Sketch:

- Consider system state to be a stochastic process $\left(X_{t}, t \geq 0\right)$.
- Consider a specific small interval $(t-h, t]$.
- The events " $X_{t-h}=i$ " and "some job arrives in $(t-h, t]$ " are independent (by memoryless property):

$$
P\left(X_{t-h}=i \cap N(h) \geq 1\right)=P\left(X_{t-h}=i\right) P(N(h) \geq 1)
$$

which implies

$$
P\left[X_{t-h}=i \mid N(h) \geq 1\right]=P\left(X_{t-h}=i\right)
$$

By letting $h \rightarrow 0$, the LHS expresses probability that system is in state i when job arrives at time t. The equality says that this is independent of whether a job arrives.

Hitchhiker's paradox

Setting:

- Cars are passing a point of a road according to a Poisson process with rate $1 / 10$ (i.e., mean interarrival time is 10 (minutes))
- A hitchhiker arrives at a random instant.
- What sis the mean waiting time W until next car?
- According to memoryless property of exponential distribution, it should be 10 minutes?
- But: the hitchhiker arrives between two cars, such that the mean time between the two cars is 10 minutes. Therefore, the mean waiting time should be 5 minutes.
- Resolve the paradox

Multiserver queues

i.e., $M / M / c$ queues for integer $c \geq 1$.

- Arrival poisson w. rate λ
- Each server serves with rate μ.
- From balance equations, we get:

$$
\pi_{n}= \begin{cases}\frac{\lambda^{n}}{n!\mu^{n}} \pi_{0} & (0 \leq n<c) \\ \frac{\lambda^{n}}{c^{n-c} c!\mu^{n}} \pi_{0} & (n \geq c)\end{cases}
$$

- Let $r=\lambda / \mu$, let $\rho=r / c=\lambda / c \mu$. Then

$$
\pi_{0}=\left(\sum_{n=0}^{c-1} \frac{r^{n}}{n!}+\sum_{n=c}^{\infty} \frac{r^{n}}{c^{n-c} c!}\right)^{-1}=\left(\sum_{n=0}^{c-1} \frac{r^{n}}{n!}+\frac{r^{c}}{c!(1-\rho)}\right)^{-1}
$$

Average "pure" queue length

i.e., $M / M / c$ queues for integer $c \geq 1$.

$$
\begin{aligned}
& L_{q}=\sum_{n=c+1}^{\infty}(n-c) \pi_{n}=\sum_{n=c+1}^{\infty}(n-c) \frac{r^{n}}{c^{n-c} c!} \pi_{0} \\
& =\frac{r^{c} \pi_{0}}{c!} \sum_{n=c+1}^{\infty}(n-c) \rho^{n-c}=\frac{r^{c} \pi_{0}}{c!} \sum_{m=1}^{\infty} m \rho^{m} \\
& =\frac{r^{c} \pi_{0}}{c!} \frac{\rho}{(1-\rho)^{2}}
\end{aligned}
$$

Other queue types

$M / G / 1$ queues.

- Arrival poisson w. rate λ
- Services with arbitrary distributions.
- In general, this is not a Markov process.
- Expression for expected waiting time, by PASTA property:

$$
\begin{aligned}
& E\left[W_{q}\right]=E\left[L_{q}\right] \cdot E[S]+E[R] \\
& \text { waiting jobs }
\end{aligned}
$$

- Using Little's law:

$$
E\left[L_{q}\right]=\lambda E\left[W_{q}\right] \quad \text { i.e., } \quad E\left[W_{q}\right]=\frac{E[R]}{1-\lambda E[S]}=\frac{E[R]}{1-\rho}
$$

- It remains to compute residual service time.

M/G/1 Residual Service time

- Find $E[R]$:
- Over a long period T, we have λT jobs.
- Average remaining time for job is $\frac{1}{2} E\left[S^{2}\right]$
- $E[R]=\frac{\lambda}{2} E\left[S^{2}\right]$
- $E\left[W_{q}\right]=\frac{\lambda E\left[S^{2}\right]}{2(1-\rho)}$
- Hence $E\left[L_{q}\right]=\lambda E\left[W_{q}\right]=\frac{\lambda^{2} E\left[S^{2}\right]}{2(1-\rho)}$
- and $E[W]=E\left[W_{q}\right]+E[S]=\frac{\lambda E\left[S^{2}\right]}{2(1-\rho)}+\frac{1}{\mu}$
- and $E[L]=\lambda E[W]=\frac{\lambda^{2} E\left[S^{2}\right]}{2(1-\rho)}+\rho$

Observations on PK formula

Consider $E\left[W_{q}\right]=\frac{\lambda E\left[S^{2}\right]}{2(1-\rho)}$

- Now, $E\left[S^{2}\right]=(E[S])^{2}+\operatorname{Var}(S)=(E[S])^{2}\left(1+C_{V}^{2}\right)$.
- For same mean, Mean values increase linearly by variance.

Consider $M / M / 1$:

- $\operatorname{Var}(S)=(E[S])^{2}=1 / \mu^{2}:$
-

$$
E[L]=\frac{\lambda^{2} E\left[S^{2}\right]}{2(1-\rho)}+\rho=\frac{\rho^{2}}{(1-\rho)}+\rho=\frac{\rho}{(1-\rho)}
$$

Consider M/D/1:

- $\operatorname{Var}(S)=0$

$$
E[L]=\frac{\lambda^{2} E\left[S^{2}\right]}{2(1-\rho)}+\rho=\frac{\rho^{2}}{2(1-\rho)}+\rho
$$

Queueing Networks

Modeling a queue of jobs

- Helpful fact: Burke's theorem:

The departure process from a stable $M / M / c$ queue with arrival and service rates λ and μ, respectively, is a Poisson process with rate λ.

- This allows to analyze acyclic QNs, since each queue will behave like an $M / M / 1$ queue
- Let $r_{i j}$ be routing probabilities, i.e., probability that job leaving i will go to j.
- Each queue i will behave like $M / M / 1$, with arrival rate $\lambda_{0} r_{0}$ and service rate μ_{i},
- Assume no bottlenecks, i.e., $\frac{\lambda_{0} r_{0 i}}{\mu_{i}}=\rho_{i}<1$,

Jackson Queueing Networks

Take the preceding slide, but allow cycles.

- Now arrival streams may not be Poisson.
- But steady-state probabilities are as if each queue is independent $M / M / 1$ queue
- Solve the traffic equations:

$$
\lambda_{i}=\lambda_{0} r_{0 i}=\sum_{j=1}^{k} \lambda_{j} r_{j i}
$$

- Example (BH206)

