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Kendall Notation

Queueing process described by A/B/X/Y /Z , where

A is the arrival distribution

B is the service pattern

X the number of parallel service channels (servers)

Y the restriction on system capacity

Z the ququing discipline

Example

M/D/2/∞/FCFS is a process with exponential interarrival
times, deterministic service times, two parallel servers,
unbounded queueing capacity, FCFS queue discpline.
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Little’s Formula

Holds for general queueing models.

Relates steady-state mean system size to steady-state waiting
times.

Let

L be average number of jobs in system (average queue length)
W be average time that a job spends in system (average
waiting time)
λ is the average arrival rate (arriving jobs per time unit)

Then
L = λW

Also, if we restrict to time in and size of queue (not in server),
then

Lq = λWq

Bengt Jonsson Performance Analysis, Autumn 2010



Lecture 4: Simple Queues

Application of Little’s Formula

Average waiting time for M/M/1 queue:

Expected number of jobs: L =
λ

µ− λ
Hence expected total time in system: W = L/λ =

1

µ− λ
Expected number of jobs in “pure” queue

Lq =
∞∑

n=1

(n − 1)πn =
∞∑

n=1

nπn −
∞∑

n=1

πn =

L− (1− π0) = ρ
1−ρ − ρ = ρ2

1−ρ

i.e.,

Lq =
ρ2

1− ρ
=

λ2

µ(µ− λ)

Hence expected waiting time

Wq = Lq/λ =
λ

µ(µ− λ)
=

ρ

µ− λ
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PASTA Property

PASTA = Poisson Arrivals See Time Averages

Consider a stochastic system with arrivals according to a
Poisson process with intensity λ

(service times can be arbitrarily distributed)

With a state i we may associate

long-term probability πi

π∗i : Probability that an arrival will find system in state i .

In general πi 6= π∗i .

But for Poisson arrivals, we have πi = π∗i .

(* Supply counterexample, e.g., deterministic arrivals *)
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Proof of PASTA Property

Sketch:

Consider system state to be a stochastic process (Xt , t ≥ 0).

Consider a specific small interval (t − h, t].

The events “Xt−h = i” and “some job arrives in (t − h, t]” are
independent (by memoryless property):

P(Xt−h = i ∩ N(h) ≥ 1) = P(Xt−h = i)P(N(h) ≥ 1)

which implies

P[Xt−h = i |N(h) ≥ 1] = P(Xt−h = i)

By letting h→ 0, the LHS expresses probability that system is
in state i when job arrives at time t. The equality says that
this is independent of whether a job arrives.
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Hitchhiker’s paradox

Setting:

Cars are passing a point of a road according to a Poisson
process with rate 1/10 (i.e., mean interarrival time is 10
(minutes))

A hitchhiker arrives at a random instant.

What sis the mean waiting time W until next car?

According to memoryless property of exponential distribution,
it should be 10 minutes?

But: the hitchhiker arrives between two cars, such that the
mean time between the two cars is 10 minutes. Therefore, the
mean waiting time should be 5 minutes.

Resolve the paradox
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Multiserver queues

i.e., M/M/c queues for integer c ≥ 1.

Arrival poisson w. rate λ

Each server serves with rate µ.

From balance equations, we get:

πn =


λn

n!µn
π0 (0 ≤ n < c),

λn

cn−cc!µnπ0 (n ≥ c).

Let r = λ/µ, let ρ = r/c = λ/cµ. Then

π0 =

(
c−1∑
n=0

rn

n!
+
∞∑

n=c

rn

cn−cc!

)−1

=

(
c−1∑
n=0

rn

n!
+

r c

c!(1− ρ)

)−1
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Average “pure” queue length

i.e., M/M/c queues for integer c ≥ 1.

Lq =
∑∞

n=c+1(n − c)πn =
∑∞

n=c+1(n − c) rn

cn−cc!π0

=
r cπ0

c!

∞∑
n=c+1

(n − c)ρn−c =
r cπ0

c!

∞∑
m=1

mρm

=
r cπ0

c!

ρ

(1− ρ)2

Bengt Jonsson Performance Analysis, Autumn 2010



Lecture 4: Simple Queues

Other queue types

M/G/1 queues.

Arrival poisson w. rate λ

Services with arbitrary distributions.

In general, this is not a Markov process.

Expression for expected waiting time, by PASTA property:

E [Wq] = E [Lq] · E [S ] + E [R]
waiting jobs service time remaining service

Using Little’s law:

E [Lq] = λE [Wq] i.e., E [Wq] =
E [R]

1− λE [S ]
=

E [R]

1− ρ

It remains to compute residual service time.
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M/G/1 Residual Service time

Find E [R]:

Over a long period T , we have λT jobs.

Average remaining time for job is
1

2
E [S2]

E [R] =
λ

2
E [S2]

E [Wq] =
λE [S2]

2(1− ρ)

Hence E [Lq] = λE [Wq] =
λ2E [S2]

2(1− ρ)

and E [W ] = E [Wq] + E [S ] =
λE [S2]

2(1− ρ)
+

1

µ

and E [L] = λE [W ] =
λ2E [S2]

2(1− ρ)
+ ρ
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Observations on PK formula

Consider E [Wq] =
λE [S2]

2(1− ρ)

Now, E [S2] = (E [S ])2 + Var(S) = (E [S ])2(1 + C 2
v ).

For same mean, Mean values increase linearly by variance.

Consider M/M/1:

Var(S) = (E [S ])2 = 1/µ2:

E [L] =
λ2E [S2]

2(1− ρ)
+ ρ =

ρ2

(1− ρ)
+ ρ =

ρ

(1− ρ)

Consider M/D/1:

Var(S) = 0

E [L] =
λ2E [S2]

2(1− ρ)
+ ρ =

ρ2

2(1− ρ)
+ ρ
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Queueing Networks

Modeling a queue of jobs

Helpful fact: Burke’s theorem:

The departure process from a stable M/M/c queue
with arrival and service rates λ and µ, respectively,
is a Poisson process with rate λ.

This allows to analyze acyclic QNs, since each queue will
behave like an M/M/1 queue

Let rij be routing probabilities, i.e., probability that job leaving
i will go to j .

Each queue i will behave like M/M/1, with arrival rate λ0r0i

and service rate µi ,

Assume no bottlenecks, i.e.,
λ0r0i

µi
= ρi < 1,
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Jackson Queueing Networks

Take the preceding slide, but allow cycles.

Now arrival streams may not be Poisson.

But steady-state probabilities are as if each queue is
independent M/M/1 queue

Solve the traffic equations:

λi = λ0r0i =
k∑

j=1

λj rji

Example (BH206)
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