Performance Analysis, Autumn 2010

Bengt Jonsson

November 9, 2010

Exponential Distribution

Properties of the Exponential Distribution, with parameter λ

- Probability density function: $\lambda e^{-\lambda t}$
- cumulative distribution function $P(X \leq t)=1-e^{-\lambda t}$
- mean

$$
\begin{aligned}
& \int_{0}^{\infty} t \lambda e^{-\lambda t} d t=\left[-t e^{-\lambda t}\right]_{t=0}^{t=\infty}+\int_{0}^{\infty} e^{-\lambda t} d t \\
& {\left[-\frac{1}{\lambda} e^{-\lambda t}\right]_{t=0}^{t=\infty}=\frac{1}{\lambda}}
\end{aligned}
$$

- Memoryless property:

$$
\begin{aligned}
& P\left[X \leq t^{\prime} \mid X \geq t\right]=\frac{P\left(t \leq X \leq t^{\prime}\right)}{P(X \geq t)}= \\
& \frac{e^{-\lambda t}-e^{-\lambda t^{\prime}}}{e^{-\lambda t}}=1-e^{-\lambda\left(t^{\prime}-t\right)}=P\left(X \leq\left(t^{\prime}-t\right)\right)
\end{aligned}
$$

Exponential Distribution

More Properties of the Exponential Distribution:

- minimum of two independent exponentially distributed random variables X_{1} and X_{2} with parameters λ_{1} and λ_{2} :

$$
\begin{aligned}
& P\left(X_{1} \leq t \vee X_{2} \leq t\right)=1-P\left(X_{1}>t \wedge X_{2}>t\right)= \\
& 1-\left(P\left(X_{1}>t\right) P\left(X_{2}>t\right)\right)= \\
& 1-e^{-\lambda_{1} t} e^{-\lambda_{2} t}=1-e^{-\left(\lambda_{1}+\lambda_{2}\right) t}
\end{aligned}
$$

Exponential Distribution

More Properties of the Exponential Distribution:

- Probability that X_{1} will "win" over X_{2} :

$$
\begin{aligned}
& P\left(X_{1} \leq X_{2}\right)=\int_{0}^{\infty} \operatorname{Pr}\left(X_{2}>t\right) \lambda_{1} e^{-\lambda_{1} t} d t= \\
& \lambda_{1} \int_{0}^{\infty} e^{-\lambda_{2} t} e^{-\lambda_{1} t} d t= \\
& \lambda_{1} \int_{0}^{\infty} e^{-\left(\lambda_{1}+\lambda_{2}\right) t} d t=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}
\end{aligned}
$$

Continuous-Time Markov Chains

A Continuous-Time Markov chain is a continuous-time and discrete-state Markov process.

- Time domain $\mathcal{R}^{\geq 0}$,
- A set S of states, usually $\{0,1,2,3 \ldots\}$ or $\{0,1,2, \ldots, n\}$,
- Probability mass function at time $t: \pi_{i}(t)=P\left(X_{t}=i\right)$, as Vector: $\pi(t)=\left(\pi_{0}(t) \pi_{1}(t) \ldots\right)$
- Initially: $\pi_{i}(0)=P\left(X_{0}=i\right)$ with $\sum_{i \in S} \pi_{i}(0)=1$

Continuous-Time Markov Chains

Assume MC is time-homogeneous.

- Let $p_{i j} \Delta t$ be the probability to move from state i to state j in a short interval Δt, i.e.,

$$
P\left[X_{(t+\Delta t)}=j \mid X_{t}=i\right] \approx p_{i j} \Delta t
$$

- Let $p_{i} \Delta t$ be probability to move away from state i in a short interval Δt, i.e.,

$$
P\left[X_{(t+\Delta t)}=i \mid X_{t}=i\right] \approx 1-p_{i} \Delta t
$$

- Define $p_{i i}=-p_{i}$
- Then $\pi_{i}(t+\Delta t) \approx \pi_{i}(t)+\sum_{j \in S} \pi_{j}(t) p_{j i} \Delta t$
- i.e., $\frac{d \pi_{i}}{d t}=\sum_{j \in S} \pi_{j}(t) p_{j i}$

Continuous Time Markov Chain

Definition of Continuous Time Markov chain

- An initial probability distribution $\pi^{(0)}$ with
- an intensity matrix

$$
P=\left(\begin{array}{llll}
-p_{0} & p_{01} & p_{02} & \cdots \\
p_{10} & -p_{1} & p_{12} & \cdots \\
p_{20} & p_{21} & -p_{2} & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

$$
\text { with } \sum_{j \neq i} p_{i j}=p_{i} \text { for each } i \in S
$$

When the Markov chains reaches a state i, it stays there for some exponentially distributed time with mean $\frac{1}{p_{i}}$. When it leaves state i, it jumps to state j (with $j \neq i$) with probability $\frac{p_{i j}}{p_{i}}$, and the behavior continues as before.

Simple CTMC example

Modeling a queue of jobs

- Initially the queue is empty
- Jobs arrive with rate $3 / 2$ (i.e., mean inter-arrival time is $2 / 3$)
- Jobs are served with rate 3 (i.e., mean service time is $1 / 3$)
- maximum size of the queue is 3 .

Intensity matrix:

$$
Q=\left[\begin{array}{cccc}
-3 / 2 & 3 / 2 & 0 & 0 \\
3 & -9 / 2 & 3 / 2 & 0 \\
0 & 3 & -9 / 2 & 3 / 2 \\
0 & 0 & 3 & -3
\end{array}\right]
$$

Embedded Discrete Time Markov Chain

Focus only on the state changes
Example:

$$
\text { from } Q=\left[\begin{array}{cccc}
-3 / 2 & 3 / 2 & 0 & 0 \\
-3 & -9 / 2 & 3 / 2 & 0 \\
0 & 3 & -9 / 2 & 3 / 2 \\
0 & 0 & 3 & -3
\end{array}\right]
$$

derive

$$
\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
2 / 3 & 0 & 1 / 3 & 0 \\
0 & 2 / 3 & 0 & 1 / 3 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

CTMC: Transient probabilities

How to derive $\pi(t)$, probability distribution at time t ?

- Remember: $\frac{d \pi(t)}{d t}=\sum_{j \in S} \pi(t) p_{j i}=\pi Q$
- So: $\pi(t)$ is obtained by solving matrix differential equation.
- The stationary distribution should satisfy

$$
\frac{d \pi(t)}{d t}=\pi Q=0
$$

Steady-state for Example

- Intensity matrix:

$$
Q=\left[\begin{array}{cccc}
-3 / 2 & 3 / 2 & 0 & 0 \\
3 & -9 / 2 & 3 / 2 & 0 \\
0 & 3 & -9 / 2 & 3 / 2 \\
0 & 0 & 3 & -3
\end{array}\right]
$$

- We solve the equations: $\pi Q=0$
- Solution: $\pi=(8 / 15,4 / 15,2 / 15, / 15)$

Classification of states:

States in an CTMC can be of three types.

- Define $T_{i}=\min \left\{t>0: X_{t}=i\right\}$ (time to reach i).
- state i is transient if $P\left[T_{i}<\infty \mid X_{0}=i\right]<1$,
- state i is recurrent if $P\left[T_{i}<\infty \mid X_{0}=i\right]=1$,
- state i is positive recurrent if $E\left[T_{i} \mid X_{0}=i\right]<\infty$,
- state i is null recurrent if $E\left[T_{i} \mid X_{0}=i\right]=\infty$,
- Fact: in an irreducible MC, all states are of the same type (either transient, null recurrent, or positive recurrent).

Birth-Death Processes

Consider a CTMC $\langle S, \pi(0), Q\rangle$, with:

- $S=\{0,1,2,3, \ldots\}$
-

$$
Q=\left[\begin{array}{cccccc}
-\lambda_{0} & \lambda_{0} & 0 & 0 & 0 & \cdots \\
\mu_{1} & -\left(\mu_{1}+\lambda_{1}\right) & \lambda_{1} & 0 & 0 & \cdots \\
0 & \mu_{2} & -\left(\mu_{2}+\lambda_{2}\right) & \lambda_{2} & 0 & \cdots \\
0 & 0 & \mu_{3} & -\left(\mu_{3}+\lambda_{3}\right) & \lambda_{3} & \cdots \\
0 & 0 & 0 & \mu_{4} & -\left(\mu_{4}+\lambda_{4}\right) & \cdots \\
0 & 0 & 0 & 0 & \mu_{5} & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right]
$$

- Finding steady-state distribution π by equations

$$
\left\{\begin{array}{lll}
\left(\lambda_{n}+\mu_{n}\right) \pi_{n} & =\lambda_{n-1} \pi_{n-1}+\mu_{n+1} \pi_{n+1} & (n \geq 1) \\
\lambda_{0} \pi_{0} & =\mu_{1} \pi_{1}
\end{array}\right.
$$

Birth-Death Processes (cont.)

- Solving

$$
\left\{\begin{array}{lll}
\left(\lambda_{n}+\mu_{n}\right) \pi_{n} & =\lambda_{n-1} \pi_{n-1}+\mu_{n+1} \pi_{n+1} & (n \geq 1) \\
\lambda_{0} \pi_{0} & =\mu_{1} \pi_{1}
\end{array}\right.
$$

- Assume π_{0} given
- $\pi_{1}=\frac{\lambda_{0}}{\mu_{1}} \pi_{0}$
- $\pi_{2}=\frac{\lambda_{1} \lambda_{0}}{\mu_{2} \mu_{1}} \pi_{0}$
- In general

$$
\pi_{n}=\frac{\lambda_{n-1} \lambda_{n-2} \cdots \lambda_{0}}{\mu_{n} \mu_{n-1} \cdots \mu_{1}} \pi_{0}
$$

M/M/1 Queue

Queue with possion arrival and service times. Arrivals with rate λ and services with rate μ.

- Solving

$$
Q=\left[\begin{array}{cccc}
-\lambda & \lambda & 0 & \cdots \\
\mu & -(\mu+\lambda) & \lambda & \cdots \\
0 & \mu & -(\mu+\lambda) & \cdots \\
0 & 0 & \mu & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right]
$$

- Finding steady-state distribution π by equations

$$
\begin{cases}(\lambda+\mu) \pi_{n} & =\lambda \pi_{n-1}+\mu \pi_{n+1} \quad(n \geq 1) \\ \lambda \pi_{0} & =\mu \pi_{1}\end{cases}
$$

- Solution: Let $\rho=\lambda / \mu$, then $\pi_{n}=\rho^{n} \pi_{0}$.
- Normalizing: $\pi_{0}=1-\rho$, i.e., $\pi_{n}=\rho^{n}(1-\rho)$.

$\mathrm{M} / \mathrm{M} / 1$: Expected Queue sizes

- Finding average number of elements in the queue:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} n \pi_{n}=\sum_{n=0}^{\infty} n \rho^{n}(1-\rho)= \\
& (1-\rho) \sum_{n=0}^{\infty} n \rho^{n}=\rho(1-\rho) \sum_{n=1}^{\infty} n \rho^{n-1}= \\
& \rho(1-\rho) \frac{d\left[\sum_{n=1}^{\infty} \rho^{n}\right]}{d \rho}=\rho(1-\rho) \frac{d[1 /(1-\rho)]}{d \rho}= \\
& \rho(1-\rho)(1-\rho)^{-2}=\frac{\rho}{1-\rho}=\frac{\lambda}{\mu-\lambda}
\end{aligned}
$$

