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Lecture 3: Continuous Time Markov Chains

Exponential Distribution

Properties of the Exponential Distribution, with parameter A

@ Probability density function: Ae™*t

e cumulative distribution function P(X < t) =1— e

@ mean
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o Memoryless property:
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Lecture 3: Continuous Time Markov Chains

Exponential Distribution

More Properties of the Exponential Distribution:

@ minimum of two independent exponentially distributed
random variables X; and X, with parameters A1 and A;:

PX1 <tVXo<t)=1-P(X1>tAXp>1t)=
1—(P(X1>t)P(X2 >1t)) =

1 _ e—)\lte—)\gt — 1 _ e—()\]_—‘r)\Q)t
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Lecture 3: Continuous Time Markov Chains

Exponential Distribution

More Properties of the Exponential Distribution:

@ Probability that Xj will “win” over Xo:

o]
P(X1 < X2) = / Pr(X; > t)A\je Mtdt =
0
o
)\1/ e Mtem Mty —
0

A Matda)tgy — 21
! /0 ¢ A1+ A2
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Lecture 3: Continuous Time Markov Chains

Continuous-Time Markov Chains

A Continuous-Time Markov chain is a continuous-time and
discrete-state Markov process.

e Time domain R=9,
o A set S of states, usually {0,1,2,3....} or {0,1,2,...,n},
@ Probability mass function at time t: m;(t) = P(X: = i),
as Vector: 7(t) = (mo(t)m1(t)...)
o Initially: 7;(0) = P(Xo = i) with Y _m;(0) =1
ieS
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Lecture 3: Continuous Time Markov Chains

Continuous-Time Markov Chains

Assume MC is time-homogeneous.

@ Let p;jAt be the probability to move from state i to state j in
a short interval At, i.e.,

PX(t+ae) = ilXe = i] = pjAt

o Let p;At be probability to move away from state / in a short
interval At, i.e.,

P[X(t+At) = I’Xt = I] ~1— pAt

o Define p;jj = —p;
o Then m;(t + At) ~ mi(t) + > mi(t)pist
jes
. dm;
°ie., d—t' = Zﬂj(t)Pﬁ
JES

Bengt Jonsson Performance Analysis, Autumn 2010



Lecture 3: Continuous Time Markov Chains

Continuous Time Markov Chain

Definition of Continuous Time Markov chain
o An initial probability distribution 7(®) with

@ an intensity matrix

—Po Po1 P02
p— Pio  —P1 P12
P20 P21 —p2

with Zp,-j = p; foreach i € S.
J#i
When the Markov chains reaches a state /, it stays there for some
exponentially distributed time with mean %. When it leaves state
i, it jumps to state j (with j # i) with probability %, and the
behavior continues as before. I
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Lecture 3: Continuous Time Markov Chains

Simple CTMC example

Modeling a queue of jobs
@ Initially the queue is empty
@ Jobs arrive with rate 3/2 (i.e., mean inter-arrival time is 2/3)
@ Jobs are served with rate 3 (i.e., mean service time is 1/3)
@ maximum size of the queue is 3.
Intensity matrix:
-3/2  3/2 0 0
3 -9/2 3/2 0

0 3 —9/2 3/2
0 0 3 -3
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Lecture 3: Continuous Time Markov Chains

Embedded Discrete Time Markov Chain

Focus only on the state changes

Example:
-3/2 32 0 0
from Q= _03 _93/2 —39//22 332
0 0 3 -3
derive

0 1 0 0
2/3 0 1/3 0
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Lecture 3: Continuous Time Markov Chains

CTMC: Transient probabilities

How to derive 7(t), probability distribution at time t?

@ Remember: d:;(tt) = jesm(t)pi =7Q
e So: 7(t) is obtained by solving matrix differential equation.
@ The stationary distribution should satisfy

dn(t)
dt

=7Q =0
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Lecture 3: Continuous Time Markov Chains
Steady-state for Example

@ Intensity matrix:

—3/2 3/2 0 0
3 —9/2 3/2 0
0 3 —9/2 3/2
0 0 3 -3

Q=

@ We solve the equations: 7Q =0
@ Solution: 7 = (8/15,4/15,2/15, /15)
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Lecture 3: Continuous Time Markov Chains

Classification of states:

States in an CTMC can be of three types.
o Define T; = min{t >0 : X; =i} (time to reach /).
e state / is transient if P[T; < oo|Xp =i] < 1,
e state i is recurrent if P[T; < oco|Xp = i] =1,

o state 7 is positive recurrent if E[T;|Xo = i] < o0,
o state i is null recurrent if E[T;| Xy = i] = o0,

@ Fact: in an irreducible MC, all states are of the same type
(either transient, null recurrent, or positive recurrent).
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Lecture 3: Continuous Time Markov Chains

Birth-Death Processes

Consider a CTMC (S, 7(0), Q), with:
e $§5=40,1,2,3,...}

°
[ —Xo Ao 0 0 0
pr —(p1+ A1) AL 0 0
0 2 —(p2 + A2) A2 0
Q=] 0 0 13 —(p3 + A3) A3
0 0 0 1 —(1a + M)
0 0 0 0 s

o Finding steady-state distribution 7 by equations

{ (>\n + Mn)ﬂ'n = >\n—17rn—1 + Un+1Tne1
0T = pu1m
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Lecture 3: Continuous Time Markov Chains

Birth-Death Processes (cont.)

@ Solving
{ ()\n + Nn)'frn = Ap—1Tn—1 + fnt1Tns1 (n > 1)
AoTo = um
@ Assume mg given
Ao
@ T = —T
M1
A1\
@ M = ——m
21
@ In general
)\n—l)\n—Z to )\O
Tp = 0
Hntn—1- - H1
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Lecture 3: Continuous Time Markov Chains

M/M/1 Queue

Queue with possion arrival and service times. Arrivals with rate A
and services with rate p.

@ Solving
- A 0
o —(p+A) A
Q=10 [t —(n+A)
0 0 I

o Finding steady-state distribution 7 by equations

()\—FM)’JT,, = Mp_1+ UTnt1 (nZl)
Ao = um

@ Solution: Let p = \/pu, then m, = p"mp.

e Normalizing: mo =1 —p, i.e., m, = p"(1 — p).

Bengt Jonsson Performance Analysis, Autumn 2010



Lecture 3: Continuous Time Markov Chains

M/M/1: Expected Queue sizes

e Finding average number of elements in the queue:

Zmr,,:an"(l—p):
1—p)2np =p(l-0p an 1=

= p(1— p) d[l/‘(jt)—ﬂ)] _

p(L=p)(1—p)° =15 =225

Il
o
3
Il
o

p(1— )d[Zn 1"
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