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Lecture 3: Continuous Time Markov Chains

Exponential Distribution

Properties of the Exponential Distribution, with parameter λ

Probability density function: λe−λt

cumulative distribution function P(X ≤ t) = 1− e−λt

mean ∫ ∞
0

tλe−λtdt = [−te−λt ]t=∞
t=0 +

∫ ∞
0

e−λtdt

[− 1
λe−λt ]t=∞

t=0 = 1
λ

Memoryless property:

P[X ≤ t ′|X ≥ t] = P(t≤X≤t′)
P(X≥t) =

e−λt−e−λt′

e−λt = 1− e−λ(t′−t) = P(X ≤ (t ′ − t))
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Exponential Distribution

More Properties of the Exponential Distribution:

minimum of two independent exponentially distributed
random variables X1 and X2 with parameters λ1 and λ2:

P(X1 ≤ t ∨ X2 ≤ t) = 1− P(X1 > t ∧ X2 > t) =

1− (P(X1 > t)P(X2 > t)) =

1− e−λ1te−λ2t = 1− e−(λ1+λ2)t
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Exponential Distribution

More Properties of the Exponential Distribution:

Probability that X1 will “win” over X2:

P(X1 ≤ X2) =

∫ ∞
0

Pr(X2 > t)λ1e
−λ1tdt =

λ1

∫ ∞
0

e−λ2te−λ1tdt =

λ1

∫ ∞
0

e−(λ1+λ2)tdt =
λ1

λ1 + λ2
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Continuous-Time Markov Chains

A Continuous-Time Markov chain is a continuous-time and
discrete-state Markov process.

Time domain R≥0,

A set S of states, usually {0, 1, 2, 3. . . .} or {0, 1, 2, . . . , n},
Probability mass function at time t: πi (t) = P(Xt = i),
as Vector: π(t) = (π0(t)π1(t) . . . )

Initially: πi (0) = P(X0 = i) with
∑
i∈S

πi (0) = 1
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Continuous-Time Markov Chains

Assume MC is time-homogeneous.

Let pij∆t be the probability to move from state i to state j in
a short interval ∆t, i.e.,

P[X(t+∆t) = j |Xt = i ] ≈ pij∆t

Let pi∆t be probability to move away from state i in a short
interval ∆t, i.e.,

P[X(t+∆t) = i |Xt = i ] ≈ 1− pi∆t

Define pii = −pi

Then πi (t + ∆t) ≈ πi (t) +
∑
j∈S

πj(t)pji∆t

i.e.,
dπi

dt
=
∑
j∈S

πj(t)pji

Bengt Jonsson Performance Analysis, Autumn 2010



Lecture 3: Continuous Time Markov Chains

Continuous Time Markov Chain

Definition of Continuous Time Markov chain

An initial probability distribution π(0) with

an intensity matrix

P =


−p0 p01 p02 · · ·
p10 −p1 p12 · · ·
p20 p21 −p2 · · ·
· · · · · · · · · · · ·


with

∑
j 6=i

pij = pi for each i ∈ S .

When the Markov chains reaches a state i , it stays there for some
exponentially distributed time with mean 1

pi
. When it leaves state

i , it jumps to state j (with j 6= i) with probability
pij

pi
, and the

behavior continues as before.
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Simple CTMC example

Modeling a queue of jobs

Initially the queue is empty

Jobs arrive with rate 3/2 (i.e., mean inter-arrival time is 2/3)

Jobs are served with rate 3 (i.e., mean service time is 1/3)

maximum size of the queue is 3.

Intensity matrix:

Q =


−3/2 3/2 0 0

3 −9/2 3/2 0
0 3 −9/2 3/2
0 0 3 −3
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Embedded Discrete Time Markov Chain

Focus only on the state changes
Example:

from Q =


−3/2 3/2 0 0
−3 −9/2 3/2 0
0 3 −9/2 3/2
0 0 3 −3


derive 

0 1 0 0
2/3 0 1/3 0

0 2/3 0 1/3
0 0 1 0
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CTMC: Transient probabilities

How to derive π(t), probability distribution at time t?

Remember: dπ(t)
dt =

∑
j∈S π(t)pji = πQ

So: π(t) is obtained by solving matrix differential equation.

The stationary distribution should satisfy

dπ(t)

dt
= πQ = 0
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Steady-state for Example

Intensity matrix:

Q =


−3/2 3/2 0 0

3 −9/2 3/2 0
0 3 −9/2 3/2
0 0 3 −3


We solve the equations: πQ = 0

Solution: π = (8/15, 4/15, 2/15, /15)
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Classification of states:

States in an CTMC can be of three types.

Define Ti = min{t > 0 : Xt = i} (time to reach i).

state i is transient if P[Ti <∞|X0 = i ] < 1,

state i is recurrent if P[Ti <∞|X0 = i ] = 1,

state i is positive recurrent if E [Ti |X0 = i ] <∞,
state i is null recurrent if E [Ti |X0 = i ] =∞,

Fact: in an irreducible MC, all states are of the same type
(either transient, null recurrent, or positive recurrent).
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Birth-Death Processes

Consider a CTMC 〈S , π(0),Q〉, with:

S = {0, 1, 2, 3, . . .}

Q =



−λ0 λ0 0 0 0 · · ·
µ1 −(µ1 + λ1) λ1 0 0 · · ·
0 µ2 −(µ2 + λ2) λ2 0 · · ·
0 0 µ3 −(µ3 + λ3) λ3 · · ·
0 0 0 µ4 −(µ4 + λ4) · · ·
0 0 0 0 µ5 · · ·
. . . . . . . . . . . . . . . . . .


Finding steady-state distribution π by equations{

(λn + µn)πn = λn−1πn−1 + µn+1πn+1 (n ≥ 1)
λ0π0 = µ1π1
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Birth-Death Processes (cont.)

Solving{
(λn + µn)πn = λn−1πn−1 + µn+1πn+1 (n ≥ 1)
λ0π0 = µ1π1

Assume π0 given

π1 =
λ0

µ1
π0

π2 =
λ1λ0

µ2µ1
π0

In general

πn =
λn−1λn−2 · · ·λ0

µnµn−1 · · ·µ1
π0
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M/M/1 Queue

Queue with possion arrival and service times. Arrivals with rate λ
and services with rate µ.

Solving

Q =


−λ λ 0 · · ·
µ −(µ+ λ) λ · · ·
0 µ −(µ+ λ) · · ·
0 0 µ · · ·
. . . . . . . . . . . .


Finding steady-state distribution π by equations{

(λ+ µ)πn = λπn−1 + µπn+1 (n ≥ 1)
λπ0 = µπ1

Solution: Let ρ = λ/µ, then πn = ρnπ0.

Normalizing: π0 = 1− ρ, i.e., πn = ρn(1− ρ).
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M/M/1: Expected Queue sizes

Finding average number of elements in the queue:

∞∑
n=0

nπn =
∞∑

n=0

nρn(1− ρ) =

(1− ρ)
∞∑

n=0

nρn = ρ(1− ρ)
∞∑

n=1

nρn−1 =

ρ(1− ρ)
d [

P∞
n=1 ρ

n]
dρ = ρ(1− ρ)d [1/(1−ρ)]

dρ =

ρ(1− ρ)(1− ρ)−2 = ρ
1−ρ = λ

µ−λ
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