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Lecture 2: Discrete Time Markov Chains

Stochastic Processes

A Stochastic Process is a time-dependent random variable.

Formally a mapping X : Ω 7→ T 7→ R
Intuitively: “outcomes are plots of functions of time”

if ω ∈ Ω then X (ω) is a function from T to R
if t ∈ T then X (·)(t), denoted Xt(·) is a random variable.

time domain T and state-space ⊆ R can both be either
continuous or discrete.
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Markov Processes

A stochastic process is a Markov process if

for any t1 < t2 < . . . < tn and x1, x2, . . . , xn:

P[Xtn ≤ xn|Xt1 ≤ x1 ∧ Xt2 ≤ x2 ∧ · · · ∧ Xtn−1 ≤ xn−1]
=

P[Xtn ≤ xn|Xtn−1 ≤ xn−1]

i.e., “The future depends only on the present, not on the past”
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Markov Chains

A Markov chain is a discrete-time and discrete-state Markov
process.

Time domain 0, 1, 2, . . .,

Notation: π
(n)
i = P(Xn = i)

Vector: π(n) = (π
(n)
0 π

(n)
1 . . . )

Initially: π
(0)
i = P(X0 = i)

Assume MC is time-homogeneous, i.e.,

pij = P[Xn+1 = j |Xn = i ]

is independent of n.
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Markov Processes: definition

A Markov chain consists of

A set S of states, usually {0, 1, 2, 3. . . .} or {0, 1, 2, . . . , n},
An initial probability distribution π(0) with

∑
i∈S

π
(0)
i = 1

a transition probability matrix

P =


p00 p01 p02 · · ·
p10 p11 p12 · · ·
p20 p21 p22 · · ·
· · · · · · · · · · · ·


with

∑
j∈S

pij = 1 for each i ∈ S .
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Markov Processes: State probabilities

How to derive π(n), probability distribution at nth step?

By law of total probabilities (partitioning into cases):

π
(n+1)
i =

∑
j∈S

(π
(n)
j pji )

We can use vector notation:

π(n+1) = π(n)P

In particular π(n) = π(0)Pn
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Markov Processes: Cat and Mouse Example

Given 5 boxes: cat in box 1, and a mouse in box 5 at time
zero.

At each time step, both cat and mouse jump to random
adjacent box.

If they end up in same box, the game ends.
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Markov Processes: Cat and Mouse Example

State numbering:
0 ( cat - mouse - - )
1 ( cat - - - mouse )
2 ( - cat - mouse - )
3 ( - - cat - mouse )
4 end

Initial probability distribution

π(0) = (01000)

Transition probability matrix

P =


0 0 1/2 0 1/2
0 0 1 0 0

1/4 1/4 0 1/4 1/4
0 0 1/2 0 1/2
0 0 0 0 1


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Markov Processes: Cat and Mouse Example

P =


0 0 1/2 0 1/2
0 0 1 0 0

1/4 1/4 0 1/4 1/4
0 0 1/2 0 1/2
0 0 0 0 1


One absorbing state (terminal SCC): state 4

stationary distribution (00001)
Expected length of game:

Let Yi = E [T4|X0 = i ]
Solve 

Y0 = 1 + 1/2Y2 + 1/2Y4

Y1 = 1 + Y2

Y2 = 1 + 1/4Y0 + 1/4Y1 + 1/4Y3 + 1/4Y4

Y3 = 1 + 1/2Y2 + 1/2Y4

Y4 = 0
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Markov Processes: Cat and Mouse Example

P =


0 0 1/2 0 1/2
0 0 1 0 0

1/4 1/4 0 1/4 1/4
0 0 1/2 0 1/2
0 0 0 0 1


One absorbing state (terminal SCC): state 4

stationary distribution (00001)

Expected length of game:

Let Yi = E [T4|X0 = i ]
In general, Restrict P and Y to {0, 1, 2, 3}.
let Y T = (Y0 Y1 Y2 Y3):

Y = 1 + PY
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Markov Processes: Cat and Mouse Example

Solving for expected length of game.
Y0 = 1 + 1/2Y2 + 1/2Y4

Y1 = 1 + Y2

Y2 = 1 + 1/4Y0 + 1/4Y1 + 1/4Y3 + 1/4Y4

Y3 = 1 + 1/2Y2 + 1/2Y4

Y4 = 0

gives
Y0 = 2.75
Y1 = 4.5
Y2 = 3.5
Y3 = 2.75
Y4 = 0
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Classification of MCs:

Consider a MC 〈S , π(0),P〉.
Consider the directed graph G on S of non-zero transition
probabilities

G can be seen as a DAG of strongly connected components
(SCCs).

The MC is irreducible it G is only one SCC.

The period of MC is the gcd of the length of all cycles in G
An MC with period 1 is aperiodic
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Classification of states:

States in an MC can be of three types.

Define Ti = min{n > 0 : Xn = i} (number of steps to reach
i).

state i is transient if P[Ti <∞|X0 = i ] < 1,

state i is recurrent if P[Ti <∞|X0 = i ] = 1,

state i is positive recurrent if E [Ti |X0 = i ] <∞,
state i is null recurrent if E [Ti |X0 = i ] =∞,

Fact: in an irreducible MC, all states are of the same type
(either transient, null recurrent, or positive recurrent).
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Stationary Distributions:

If MC is irreducible and aperiodic, then

πi = lim
n→∞

P[Xn = i |X0 = j ]

exists, and is independent of j .

If all states are transient or null recurrent, then πi = 0.

If all states are positive recurrent, then π(n) converges to a
stationary distribution π, which satisfies the balance equations

π = πP∑
i∈S

πi = 1 (can be written πeT = 1 where e =

 1
1
...

 )
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Example: Gamblers Ruin/Random Walk

Consider a MC 〈S , π(0),P〉, with:

S = {0, 1, 2, 3, . . .}
π

(0)
i = 1 if i = A, otherwise 0.

pi ,i+1 = p and pi ,i−1 = 1− p and pi ,j = 0 otherwise

MC has period 2, is irreducible.
Problems:

What is probability of reaching B > A before reaching 0?

What is the stationary distribution?
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Example: Gamblers Ruin/Random Walk

Finding probability of reaching B > A before reaching 0?

For 0 ≤ i ≤ B, define Zi as probability of reaching B > A
before reaching 0?

Equations:
Z0 = 0
Zi = pZi+1 + (1− p)Zi−1for 0 < i < B
ZB = 1

Solve the equations: The equation

Zi = pZi+1 + (1− p)Zi−1for 0 < i < B

is a homogeneous difference equation, which can be solved by
assuming a solution of form

Zi = c1α
i
1 + c2α

i
2
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Example: Gamblers Ruin/Random Walk

Finding stationary distribution?

The balance equations become:
π0 = (1− p)π1

πi = pπi−1 + (1− p)πi+1for 0 < i∑
i∈S πi = 1
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