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Lecture 2: Discrete Time Markov Chains
Stochastic Processes

A Stochastic Process is a time-dependent random variable.
Formally a mapping X : Q— T — R

Intuitively: “outcomes are plots of functions of time”

if w € Q then X(w) is a function from T to R

if t € T then X(-)(t), denoted X;(-) is a random variable.

time domain T and state-space C R can both be either
continuous or discrete.
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Lecture 2: Discrete Time Markov Chains
Markov Processes

A stochastic process is a Markov process if

forany t;y < th < ...<t,and xy,x2,...,Xn:

P[Xt, < xn|Xt, < x1 A Xty <xo A A X, < Xp—1]
P[Xt,, < Xn|Xt,,,1 < anl]

i.e., “The future depends only on the present, not on the past”
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Lecture 2: Discrete Time Markov Chains
Markov Chains

A Markov chain is a discrete-time and discrete-state Markov
process.

e Time domain 0,1,2, ...,

o Notation: =" = P(X, = i)

o Vector: n(" = (7T(()n)71'§n) o)

o Initially: 7% = P(X, = /)

@ Assume MC is time-homogeneous, i.e.,
pij = P[Xnt1 = j|Xn = 1]

is independent of n.
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Lecture 2: Discrete Time Markov Chains

Markov Processes: definition

A Markov chain consists of
o A set S of states, usually {0,1,2,3....} or {0,1,2,...,n},
o An initial probability distribution 7(©) with wao) =1
ieS
@ a transition probability matrix

Poo  Po1 P02
p— P10 P11 P12
P20 P21 P22

with Zp,-j =1foreachic€S.
JES
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Lecture 2: Discrete Time Markov Chains

Markov Processes: State probabilities

How to derive ("), probability distribution at nth step?

e By law of total probabilities (partitioning into cases):

n+1 n
" =3 (x" i)

JE€S
@ We can use vector notation:

A1) () p

o In particular 7(" = (0 pn
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Lecture 2: Discrete Time Markov Chains

Markov Processes: Cat and Mouse Example

@ Given 5 boxes: cat in box 1, and a mouse in box 5 at time
zero.

@ At each time step, both cat and mouse jump to random
adjacent box.

o If they end up in same box, the game ends.
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Lecture 2: Discrete Time Markov Chains

Markov Processes: Cat and Mouse Example

State numbering:

0 (cat- mouse--)

1 (cat---mouse)

2 (- cat- mouse-)

3 (- - cat- mouse)

4 end
Initial probability distribution

7(© = (01000)
Transition probability matrix

0 0 1/2 0 1/2
0o 0 1 0 0
P=1| 1/4 1/4 0 1/4 1/4
0 0 1/2 0 1/2
0o 0 0 o0 1
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Lecture 2: Discrete Time Markov Chains

Markov Processes: Cat and Mouse Example

0 0 1/2 0 1/2
0 0 1 0 0
P=| 1/4 1/4 0 1/4 1/4
0 0 1/2 0 1/2
o 0 0 0 1

@ One absorbing state (terminal SCC): state 4

e stationary distribution (00001)
@ Expected length of game:
o Let Y; = E[T4|Xo = i]

e Solve
Yo = 1+1/2Y>+1/2Y,
Y, = 1+Y
Yo = 1+1/4Yy+1/4Y1+1/4Y3+1/4Y,

141/2Y, +1/2Y,
0
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Lecture 2: Discrete Time Markov Chains

Markov Processes: Cat and Mouse Example

0 0 1/2 0 1/2
0o 0 1 0 0
P=1| 1/4 1/4 0 1/4 1/4
0 0 1/2 0 1/2
0o 0 0 o0 1

@ One absorbing state (terminal SCC): state 4
e stationary distribution (00001)

o Expected length of game:
o Let Y; = E[Ta|Xo = i]
o In general, Restrict P and Y to {0,1,2,3}.
o let YT = (Yo Y1 Ys Y3):

Y =1+PY
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Lecture 2: Discrete Time Markov Chains

Markov Processes: Cat and Mouse Example

Solving for expected length of game.

Yo = 141/2Y,+1/2Y,

Y. = 1+Y,

Yo = 14+1/4Y+1/4Y1+1/4Y5+1/4Y,

Y5 = 141/2Y,+1/2Y,

Yo, = 0

gives

Yo = 275
Yi. = 4.5
Yo = 35
Ys = 275
Yo = 0
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Lecture 2: Discrete Time Markov Chains

Classification of MCs:

Consider a MC (S, 7(®) p).
@ Consider the directed graph G on S of non-zero transition
probabilities

@ G can be seen as a DAG of strongly connected components
(SCCs).

@ The MC is irreducible it G is only one SCC.

@ The period of MC is the gcd of the length of all cycles in G

o An MC with period 1 is aperiodic
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Lecture 2: Discrete Time Markov Chains

Classification of states:

States in an MC can be of three types.
e Define T; = min{n >0 : X, =i} (number of steps to reach
.
e state i/ is transient if P[T; < co|Xo = 1] < 1,
e state i is recurrent if P[T; < oco|Xp = i] =1,
o state i is positive recurrent if E[T;|Xo = i] < o0,
o state i is null recurrent if E[T;|Xp = i] = o0,

@ Fact: in an irreducible MC, all states are of the same type
(either transient, null recurrent, or positive recurrent).
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Lecture 2: Discrete Time Markov Chains

Stationary Distributions:

@ If MC is irreducible and aperiodic, then
T = lim P[Xn = i|X0 :_/]

exists, and is independent of ;.
o If all states are transient or null recurrent, then w; = 0.

o If all states are positive recurrent, then 7(") converges to a
stationary distribution 7, which satisfies the balance equations

o m=mP
1
° Zw,- — 1 (can be written 7e” =1 wheree=| 1 |)
i€S :
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Lecture 2: Discrete Time Markov Chains

Example: Gamblers Ruin/Random Walk

Consider a MC (S, 7(9), P), with:
e $5=40,1,2,3,...}
° wfo) =1if i = A, otherwise 0.
@ piiy1=pand p;i_1=1—pand p;; =0 otherwise

MC has period 2, is irreducible.
Problems:

e What is probability of reaching B > A before reaching 07
@ What is the stationary distribution?
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Lecture 2: Discrete Time Markov Chains
Example: Gamblers Ruin/Random Walk

Finding probability of reaching B > A before reaching 07

@ For 0 </ < B, define Z; as probability of reaching B > A
before reaching 07

o Equations:

Z =0
Zi = pZis1+ (]. — p)Z;_lfOI’ O0<i<B
Zg =1

@ Solve the equations: The equation
Zi = pZ;+1 + (]. — p)Z;_lfOI' O0<i<B

is a homogeneous difference equation, which can be solved by
assuming a solution of form

i i
Z; = 1o + oy

Bengt Jonsson Performance Analysis, Autumn 2010



Lecture 2: Discrete Time Markov Chains

Example: Gamblers Ruin/Random Walk

Finding stationary distribution?

@ The balance equations become:
0 = (1 — p)ﬂ'l

T = pmi—1+ (1 — p)mipifor 0 < i
Diesmi = 1
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