Performance Analysis, Autumn 2010

Bengt Jonsson

November 2, 2010

Stochastic Processes

- A Stochastic Process is a time-dependent random variable.
- Formally a mapping $X: \Omega \mapsto T \mapsto \mathcal{R}$
- Intuitively: "outcomes are plots of functions of time"
- if $\omega \in \Omega$ then $X(\omega)$ is a function from T to \mathcal{R}
- if $t \in T$ then $X(\cdot)(t)$, denoted $X_{t}(\cdot)$ is a random variable.
- time domain T and state-space $\subseteq \mathcal{R}$ can both be either continuous or discrete.

Markov Processes

A stochastic process is a Markov process if

$$
\begin{aligned}
& \text { for any } t_{1}<t_{2}<\ldots<t_{n} \text { and } x_{1}, x_{2}, \ldots, x_{n} \text { : } \\
& \qquad P\left[X_{t_{n}} \leq x_{n} \mid X_{t_{1}} \leq x_{1} \wedge X_{t_{2}} \leq x_{2} \wedge \cdots \wedge X_{t_{n-1}} \leq x_{n-1}\right] \\
& \quad= \\
& \quad P\left[X_{t_{n}} \leq x_{n} \mid X_{t_{n-1}} \leq x_{n-1}\right]
\end{aligned}
$$

i.e., "The future depends only on the present, not on the past"

Markov Chains

A Markov chain is a discrete-time and discrete-state Markov process.

- Time domain $0,1,2, \ldots$,
- Notation: $\pi_{i}^{(n)}=P\left(X_{n}=i\right)$
- Vector: $\pi^{(n)}=\left(\pi_{0}^{(n)} \pi_{1}^{(n)} \ldots\right)$
- Initially: $\pi_{i}^{(0)}=P\left(X_{0}=i\right)$
- Assume MC is time-homogeneous, i.e.,

$$
p_{i j}=P\left[X_{n+1}=j \mid X_{n}=i\right]
$$

is independent of n.

Markov Processes: definition

A Markov chain consists of

- A set S of states, usually $\{0,1,2,3 \ldots\}$ or $\{0,1,2, \ldots, n\}$,
- An initial probability distribution $\pi^{(0)}$ with $\sum_{i \in S} \pi_{i}^{(0)}=1$
- a transition probability matrix

$$
P=\left(\begin{array}{llll}
p_{00} & p_{01} & p_{02} & \cdots \\
p_{10} & p_{11} & p_{12} & \cdots \\
p_{20} & p_{21} & p_{22} & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

with $\sum_{j \in S} p_{i j}=1$ for each $i \in S$.

Markov Processes: State probabilities

How to derive $\pi^{(n)}$, probability distribution at nth step?

- By law of total probabilities (partitioning into cases):

$$
\pi_{i}^{(n+1)}=\sum_{j \in S}\left(\pi_{j}^{(n)} p_{j i}\right)
$$

- We can use vector notation:

$$
\pi^{(n+1)}=\pi^{(n)} P
$$

- In particular $\pi^{(n)}=\pi^{(0)} P^{n}$

Markov Processes: Cat and Mouse Example

- Given 5 boxes: cat in box 1, and a mouse in box 5 at time zero.
- At each time step, both cat and mouse jump to random adjacent box.
- If they end up in same box, the game ends.

Markov Processes: Cat and Mouse Example

State numbering:
0 (cat-mouse--)
1 (cat---mouse)
2 (-cat-mouse -)
3 (- - cat - mouse)
4 end
Initial probability distribution

$$
\pi^{(0)}=(01000)
$$

Transition probability matrix

$$
P=\left(\begin{array}{ccccc}
0 & 0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 1 & 0 & 0 \\
1 / 4 & 1 / 4 & 0 & 1 / 4 & 1 / 4 \\
0 & 0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Markov Processes: Cat and Mouse Example

$$
P=\left(\begin{array}{ccccc}
0 & 0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 1 & 0 & 0 \\
1 / 4 & 1 / 4 & 0 & 1 / 4 & 1 / 4 \\
0 & 0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

- One absorbing state (terminal SCC): state 4
- stationary distribution (00001)
- Expected length of game:
- Let $Y_{i}=E\left[T_{4} \mid X_{0}=i\right]$
- Solve

$$
\left\{\begin{array}{l}
Y_{0}=1+1 / 2 Y_{2}+1 / 2 Y_{4} \\
Y_{1}=1+Y_{2} \\
Y_{2}=1+1 / 4 Y_{0}+1 / 4 Y_{1}+1 / 4 Y_{3}+1 / 4 Y_{4} \\
Y_{3}=1+1 / 2 Y_{2}+1 / 2 Y_{4} \\
Y_{4}=0
\end{array}\right.
$$

Markov Processes: Cat and Mouse Example

$$
P=\left(\begin{array}{ccccc}
0 & 0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 1 & 0 & 0 \\
1 / 4 & 1 / 4 & 0 & 1 / 4 & 1 / 4 \\
0 & 0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

- One absorbing state (terminal SCC): state 4
- stationary distribution (00001)
- Expected length of game:
- Let $Y_{i}=E\left[T_{4} \mid X_{0}=i\right]$
- In general, Restrict P and Y to $\{0,1,2,3\}$.
- let $Y^{\top}=\left(\begin{array}{lll}Y_{0} & Y_{1} & Y_{2} \\ Y_{3}\end{array}\right)$:

$$
Y=\mathbf{1}+P Y
$$

Markov Processes: Cat and Mouse Example

Solving for expected length of game.

$$
\left\{\begin{array}{l}
Y_{0}=1+1 / 2 Y_{2}+1 / 2 Y_{4} \\
Y_{1}=1+Y_{2} \\
Y_{2}=1+1 / 4 Y_{0}+1 / 4 Y_{1}+1 / 4 Y_{3}+1 / 4 Y_{4} \\
Y_{3}=1+1 / 2 Y_{2}+1 / 2 Y_{4} \\
Y_{4}=0
\end{array}\right.
$$

gives

$$
\begin{aligned}
& Y_{0}=2.75 \\
& Y_{1}=4.5 \\
& Y_{2}=3.5 \\
& Y_{3}=2.75 \\
& Y_{4}=0
\end{aligned}
$$

Classification of MCs:

Consider a MC $\left\langle S, \pi^{(0)}, P\right\rangle$.

- Consider the directed graph \mathcal{G} on S of non-zero transition probabilities
- \mathcal{G} can be seen as a DAG of strongly connected components (SCCs).
- The MC is irreducible it \mathcal{G} is only one SCC.
- The period of MC is the gcd of the length of all cycles in \mathcal{G}
- An MC with period 1 is aperiodic

Classification of states:

States in an MC can be of three types.

- Define $T_{i}=\min \left\{n>0: X_{n}=i\right\}$ (number of steps to reach i).
- state i is transient if $P\left[T_{i}<\infty \mid X_{0}=i\right]<1$,
- state i is recurrent if $P\left[T_{i}<\infty \mid X_{0}=i\right]=1$,
- state i is positive recurrent if $E\left[T_{i} \mid X_{0}=i\right]<\infty$,
- state i is null recurrent if $E\left[T_{i} \mid X_{0}=i\right]=\infty$,
- Fact: in an irreducible MC, all states are of the same type (either transient, null recurrent, or positive recurrent).

Stationary Distributions:

- If MC is irreducible and aperiodic, then

$$
\pi_{i}=\lim _{n \rightarrow \infty} P\left[X_{n}=i \mid X_{0}=j\right]
$$

exists, and is independent of j.

- If all states are transient or null recurrent, then $\pi_{i}=0$.
- If all states are positive recurrent, then $\pi^{(n)}$ converges to a stationary distribution π, which satisfies the balance equations
- $\pi=\pi P$
- $\sum_{i \in S} \pi_{i}=1$ (can be written $\pi e^{T}=\mathbf{1}$ where $e=\left(\begin{array}{c}1 \\ 1 \\ \vdots\end{array}\right)$)

Example: Gamblers Ruin/Random Walk

Consider a MC $\left\langle S, \pi^{(0)}, P\right\rangle$, with:

- $S=\{0,1,2,3, \ldots\}$
- $\pi_{i}^{(0)}=1$ if $i=A$, otherwise 0 .
- $p_{i, i+1}=p$ and $p_{i, i-1}=1-p$ and $p_{i, j}=0$ otherwise

MC has period 2, is irreducible.
Problems:

- What is probability of reaching $B>A$ before reaching 0 ?
- What is the stationary distribution?

Example: Gamblers Ruin/Random Walk

Finding probability of reaching $B>A$ before reaching 0 ?

- For $0 \leq i \leq B$, define Z_{i} as probability of reaching $B>A$ before reaching 0 ?
- Equations:

$$
\left\{\begin{array}{l}
Z_{0}=0 \\
Z_{i}=p Z_{i+1}+(1-p) Z_{i-1} \text { for } 0<i<B \\
Z_{B}=1
\end{array}\right.
$$

- Solve the equations: The equation

$$
Z_{i}=p Z_{i+1}+(1-p) Z_{i-1} \text { for } 0<i<B
$$

is a homogeneous difference equation, which can be solved by assuming a solution of form

$$
Z_{i}=c_{1} \alpha_{1}^{i}+c_{2} \alpha_{2}^{i}
$$

Example: Gamblers Ruin/Random Walk

Finding stationary distribution?

- The balance equations become:

$$
\begin{cases}\pi_{0} & =(1-p) \pi_{1} \\ \pi_{i} & =p \pi_{i-1}+(1-p) \pi_{i+1} \text { for } 0<i \\ \sum_{i \in S} \pi_{i} & =1\end{cases}
$$

