GSPN Homework

Q 1. Assume we have the following GSPN representing four processors sharing two resources.

(i) Find the generator matrix of the marking process.
(ii) What's the contention of the system in comparison to when there is only a single resource? Contention is in this case the probability of having at least one token in place p_{2}.

Q 2. In an automated widget factory, widgets are assembled from two parts, an A part and a B part. A parts are processed by machine 1 while B parts are processed by machine 2 ; machine 3 then assembles one A part and one B part to make one widget. A single robot transports parts from a conveyor belt to the appropriate machine; it is also responsible for moving completed A parts from machine 1 to machine 3 , and completed B parts from machine 2 to machine 3. Machine 1 cannot start to load the next A part until the current one has been moved to machine 3 ; similarly for machine 2 and B parts. Machine 3 cannot accept parts of either kind until it has completed the assembly of the previous widget. There are always A and B parts available from the conveyor belt. If both machine 1 and machine 2 need to use the robot at the same time they are equally likely to acquire it. Loading parts from the conveyor belt, or transferring them to machine 3 takes 10 seconds on average. The mean duration of processing A parts at machine 1 is 125 seconds, while the mean duration of processing B
parts at machine 2 is 200 seconds. Assembling a widget from A and B parts takes 100 seconds on average.
(i) Model this manufacturing system as a GSPN.
(ii) Generate the corresponding marking process (hint: it will be finite).
(iii) Calculate the utilization of each of the 3 machines.
(iv) Calculate the throughput of the total system. (i.e., the number of widgets that leave machine 3 per t.u.)

