## Performance Analysis 2010, Homework 4

Problem 1 Consider two queues, both with Poisson arrivals with rate 1. Both have service times with mean $1 / 2$. One is exponentially distributed, the other is deterministic. Compare the average waiting times, and queue lengths for the two queues.

Problem 2 The Won Hung Thee Chinese carry-out restaurant serves two dishse,s chow mein and spareribs. There are two separate windows, one for chow mein and one for spareribs. Customers arrive according to a Poisson process with a mean rate of $20 / h .60 \%$ to go to the chow mein, and the rest to the rib window. Twenty percent of those who come from the chow mein window with their order go next to the rib window; the other $80 \%$ leave the restaurant. Ten percent of those who purchase ribs then go to the chow mein window, and the other $90 \%$ leave. It takes on average 4 min to fill a chow-mein order and 5 min to fill a sparerib order, the service times being exponential. How many on average are in the restaurant? What is the average wait at each window? If a person wants both chow mein and ribs, how long, on average, does the person spend in the restaurant?

Problem 3 A call center that sells tickets for a local soccer team is modeled using 4 stations, $A, B, C$, and $D$, and routing probabilities as in this matrix.

$$
\left[\begin{array}{llll}
.1 & .6 & .2 & \\
& & .1 & .8 \\
& .1 & & .8 \\
& & &
\end{array}\right]
$$

(Not summing up to one indicates possibility for abandonment). There is 1 representative at each of nodes $B, C$, and $D$. Node $A$ is an automatic answering service and can handle an arbitrary number of simultaneous calls. The service rates are $\mu_{A}=120 / h, \mu_{B}=30 / h, \mu_{C}=10 / h$, and $\mu_{D}=30 / h$. The arrival rate to the center is $\lambda=30 / h$. Suppose all the assumptions of an open Jackson network apply.
(a) Calculate the average number of customers in the system.
(b) Calculate the average time a customers spends in the system.

