
Inferring Canonical Register Automata?

Falk Howar1, Bernhard Steffen1, Bengt Jonsson2, and Sofia Cassel2

1 Technical University Dortmund, Chair for Programming Systems, Dortmund,
D-44227, Germany

{falk.howar|bernhard.steffen}@cs.tu-dortmund.de
2 Dept. of Information Technology, Uppsala University, Sweden

{bengt.jonsson|sofia.cassel}@it.uu.se

Abstract. In this paper, we present an extension of active automata
learning to register automata, an automaton model which is capable of
expressing the influence of data on control flow. Register automata oper-
ate on an infinite data domain, whose values can be assigned to registers
and compared for equality. Our active learning algorithm is unique in
that it directly infers the effect of data values on control flow as part
of the learning process. This effect is expressed by means of registers
and guarded transitions in the resulting register automata models. The
application of our algorithm to a small example indicates the impact
of learning register automata models: Not only are the inferred models
much more expressive than finite state machines, but the prototype im-
plementation also drastically outperforms the classic L∗ algorithm, even
when exploiting optimal data abstraction and symmetry reduction.

1 Introduction

The model-based approach to development, verification, and testing of software
systems (e.g., [7, 5, 11]) is a key path towards efficient development of reliable
software systems. However, its application is hampered by the current lack of
adequate specifications for most actual systems. The use of component libraries
with very partial specifications, and the problem of maintaining specifications
of evolving systems aggravate the situation. Automata learning techniques [9]
have been proposed to overcome this, by allowing to construct and later update
behavioral models automatically. This has been illustrated in a number of case
studies like, e.g., the concrete setting of Computer Telephony Integrated (CTI)
systems [9], and in protocol specification [18], analysis [22], and testing [24].

Black-box techniques for learning component models broadly fall into two
classes. One class generates finite-state models of control skeletons, modeling the
sequences of interactions of a component [9, 12, 2, 22], or automata learning tech-
niques (e.g., [3, 19]). Another class generates invariants over state variables [8]
or exchanged data values by generalizing from concrete observations. For many
applications in testing and verification, and also in commercial model-based test-
ing tools (e.g., ConformiQ Qtronic [11]), it is, however, important to generate

? This work is supported by the European FP 7 project CONNECT (IST 231167).

models that capture combined behavior of control and data. Parameters such as
sequence numbers, identifiers, etc. have a significant impact on control flow in
typical protocols. For instance, a valid sequence number or session identifier has
a very different influence on continued behavior than an invalid one.

In this paper, we present an extension of active automata learning to regis-
ter automata, an automaton model which is capable of expressing the influence
of data on control flow. Register automata operate on an infinite data domain,
whose values can be assigned to registers and compared for equality by very nat-
ural mechanisms. This suffices to handle parameters like user names, passwords,
identifiers of connections, sessions, etc., in a fashion similar to, and slightly more
expressive than, the class of “data-independent” systems, which was the subject
of some of the first works on model checking of infinite-state systems [25, 13].
Thus RA learning is particularly suited for the validation of protocols, connec-
tors or mediators, as we will discuss based on a small fragment of the XMPP
protocol (cf. Figure 1).

Our active learning algorithm is unique in that it directly infers the effect of
data values on control flow as part of the learning process. Conceptually, our new
learning algorithm is based on a generalized Myhill-Nerode theorem for register
automata, which, like in the classical regular case, identifies the required con-
trol locations [6]. Algorithmically, the L∗-typical partition refinement process [3]
needs to be elaborated to a three-dimensional maximum fixpoint computation
for simultaneously determining locations, register assignments, and guards of
transitions. Technically, working on sequences of interactions with data requires
additional care. It involves a “data-aware” way of composing prefixes and suf-
fixes, as well as an adequate way of analyzing counterexamples with data values.
We will show the impact of our approach by applying it to a small fragment of
the XMPP protocol. The prototype implementation of our new technology dras-
tically outperforms alternative approaches, even when they exploit optimizations
like data abstraction and symmetry reduction.

Related Work We do not know of any other fully automatic learning algorithm
that seamlessly integrates the inference and exploitation of data dependencies.

One approach [16, 17, 15] first generates control skeletons with data-agnostic
control actions, which are then extended with data constraints in a post-process
using a tool like Daikon [8]. This allows one to infer constraints on data pa-
rameters that are exchanged after specific sequences of method invocations, but
not to analyze the influence of data parameter on subsequent control behavior.
The method presented in [1] achieves a deeper integration of control and data at
the price of user-supplied abstraction scheme (mapper), whereas [4] requires a
predefined fixed finite data domain. [21] constructs memory automata [14] from
sequences of learned deterministic finite automata for increasing finite data do-
mains. This approach could probably be generalized to infer register automata.
However, such a generalization would be some exponentials more complex than
our algorithm and yield automata of undetermined quality.

Technically, our involved three-dimensional treatment of counterexamples
can be regarded as an elaboration of an algorithmic pattern which was originally

l0

l1

l2

(reg,〈p1,p2〉) | true
x1:=p1;x2:=p2

(in,〈p1,p2〉) | x1=p1∧x2=p2
−

(out,∅) | true
−

(del,∅) | true
−

(pw,〈p1〉) | true
x2:=p1

Fig. 1. Partial model for a fragment of XMPP

presented in [19] for learning regular languages. We elaborated this pattern ear-
lier to cover Mealy machine learning [23], and to support automated alphabet
abstraction refinement [10].

Organization. After introducing register automata in the next section, we de-
velop our main result in Section 3. This comprises in particular the setup for the
generalized Nerode congruence, the corresponding observation table (algorithmic
data structure), and the enhanced treatment of counterexamples. Subsequently,
we discuss an application example in Section 4 and conclude with Section 5.

2 Register automata and data languages

We assume an unbounded domain D of data values and a set A of actions. Each
action has a certain arity which determines how many parameters it takes from
the domain D. A data action is a term of form (α, d̄), where α is an action with
arity n, and d̄ = 〈d1, . . . , dn〉 are data values in D. A data word is a sequence
of data actions. A data language is a set of data words, which is closed under
permutations on D. We have presented an automaton model that recognizes
data languages in [6].

Let a parameterized action be a term of form (α, p̄), consisting of an action
α and formal parameters p̄ = 〈p1, . . . , pn〉 respecting the arity of α. Let X =
〈x1, . . . , xm〉 be a finite set of registers. A guard is a conjunction of equalities
and negated equalities, e.g., pi 6= xj , over formal parameters and registers. An
assignment is a partial mapping ρ : X → X∪P for a set P of formal parameters.

Definition 1. A Register Automaton (RA) is a tuple A = (A,L, l0, X, Γ, λ),
where

– A is a finite set of actions.
– L is a finite set of locations.
– l0 ∈ L is the initial location.
– X is a finite set of registers.
– Γ is a finite set of transitions, each of which is of form 〈l, (α, p̄), g, ρ, l′〉, where
l is the source location, l′ is the target location, (α, p̄) is a parameterized
action, g is a guard, and ρ is an assignment.

– λ : L 7→ {+,−} maps each location to either + (accept) or − (reject). ut

Let us define the semantics of an RA A = (A,L, l0, X, Γ, λ). A valuation, denoted
by ν, is a (partial) mapping from X to D. A state of A is a pair 〈l, ν〉 where
l ∈ L and ν is a valuation. The initial state is the pair of initial location and
empty valuation 〈l0, ν0〉.

A step of A, denoted by 〈l, ν〉 (α,d̄)−−−→ 〈l′, ν′〉, transfers A from 〈l, ν〉 to 〈l′, ν′〉
on input (α, d̄) if there is a transition 〈l, (α, p̄), g, ρ, l′〉 ∈ Γ such that (1) g is
modeled by d̄ and ν, i.e., if it becomes true when replacing all pi by di and all
xi by ν(xi), and such that (2) ν′ is the updated valuation, where ν′(xi) = ν(xj)
wherever ρ(xi) = xj , and ν′(xi) = dj wherever ρ(xi) = pj .

A run of A over a data word (α1, d̄1) . . . (αk, d̄k) is a sequence of steps

〈l0, ν0〉
(α1,d̄1)−−−−→ 〈l1, ν1〉 . . . 〈lk−1, νk−1〉

(αk,d̄k)−−−−−→ 〈lk, νk〉.

A run is accepting if λ(lk) = +, otherwise it is rejecting. The data language
recognized by A, denoted L(A) is the set of data words that it accepts.

For the remainder of this paper, we will work with RAs that are completely
specified, meaning for any reachable state 〈l, ν〉 and input (α, d̄), there is a tran-
sition with a guard modeled by d̄ and ν, and determinate, i.e., no data word has
both accepting and rejecting runs. We refer to such automata as DRAs. Data
languages that are accepted by a DRA are called regular. We will restrict our
attention to regular data languages.

Example 1. We model the behavior of a fragment of the XMPP protocol [20] as
an example (shown in Figure 1). XMPP is widely used in instant messaging. In
our fragment of XMPP, a user can register an account (providing a username
and a password), log in using this account, change the password, and delete the
account. For example, the user Bob could register his account with the action
reg(Bob, secret) (providing his username and password), and then log in with
the action in(Bob, secret). Once logged in, he could change his password to
boblovesalice with the action pw(boblovesalice). In the figure, accepting
locations are denoted by two concentric circles. Note that several transitions are
omitted for brevity. We will use the XMPP example in Section 4 to demonstrate
our learning algorithm. ut

As shown in [6], data languages can be represented concisely using a symbolic
representation of data words. Here, we provide a summary using different but
isomorphic representations of the concepts in [6] that allow a more amenable
presentation.

LetWD be the set of all data words over some set A of actions. For some data
word w = (α1, d̄1) . . . (αn, d̄n) from WD let Acts(w) be the ordered sequence of
actions in w, and V als(w) = d1 . . . dm the (ordered) sequence of data values in
w. Let V alSet(w) be the set of distinct data values in V als(w).

Let w v w′ denote that w′ can be obtained from w by a not necessarily
injective mapping on D, i.e., for two data words w,w′ with V als(w) = d1 . . . dm,
and V als(w′) = d′1 . . . d

′
m,

w v w′ ⇔ Acts(w) = Acts(w′) ∧ ∀1 ≤ i < j ≤ m . di = dj ⇒ d′i = d′j .

For example, reg(Bob, test) v reg(Alice, Alice). Note that v is a preorder
on WD. The smallest elements wrt. v are data words where all data values are
pairwisely different. The greatest ones are data words where all data values are
equal. For data words w, w′, let w ' w′ denote that w v w′ and w w w′.
The equivalence relation ' induces a partitioning of data words into equivalence
classes.

Let V als(w)|k the prefix of length k of V als(w). For data words w, w′ with
Acts(w) = Acts(w′) let w < w′ denote that for some k > 0, (1) V als(w)|k−1 =
V als(w′)|k−1 and (2) the kth data value of V als(w) is different from any of the
k − 1 first data values, but (3) the kth data value of V als(w′) is equal to some
of the k−1 first data values. For example, reg(Bob, test)in(Bob, oth) is smaller
(wrt. <) than reg(Alice, test)in(Alice, test).

We assume an infinite ordered set DV = {1,2,3, . . .}, which is disjoint from
D. Let a suffix be a data word whose data values are in D ∪ DV . To allow
for comparing suffixes by equality, we require that data values from DV appear
in canonical order in a suffix v, i.e., such that for every prefix p of V als(v)
the set V alSet(p) \ D is of form {1,2, . . . ,k} for some k. For a data word
u, let an u-suffix be a suffix v where all data values from D in v are also in
V alSet(u). We concatenate u and an u-suffix v, denoted by u; v to the word
uπ(v), where π : DV → (D \ V alSet(u)) is an injective mapping, and π(v)
denotes the application of π to all data values from DV in v. For example,
in(Bob,1) is a reg(Bob, secret)-suffix. Concatenation will result in the unique
(up to equivalence wrt. ') word reg(Bob, secret)in(Bob, new).

3 Active learning of canonical RAs

We present a novel active learning algorithm, which infers a canonical DRA for
an unknown data language L, of which it initially knows only the set of actions.
Active learning proceeds by asking two kinds of queries.

– A membership query consists in asking if a data word w is in L.
– An equivalence query consists in asking whether a hypothesized DRA H is

correct, i.e., whether L(H) = L. The query is answered by yes if H is correct,
otherwise by a counterexample, which is a data word from the symmetric
difference of L and L(H).

Key to (classic) L∗-like learning [3] is the well known Nerode congruence, which
allows to identify words that lead to the same location in a canonical acceptor
for some language L. The Nerode congruence is formulated in terms of residual
languages, i.e., languages after some prefix. Words with identical residuals will
lead to the same location in a canonical acceptor. Active learning algorithms ex-
ploit this by means of two sets of words: (1) a finite prefix-closed set of prefixes,
which is successively extended until it covers every transition of the canonical
acceptor for L, and (2) a finite set of suffixes, i.e., selected words from resid-
uals, that allows to approximate the Nerode congruence on the set of prefixes.
The necessary information is usually stored in an observation table. The rows

and columns of this table are labeled with prefixes and suffixes, respectively.
The table cell for a row labeled by u, and a column labeled by v, contains the
information whether uv ∈ L, i.e., whether v is in the L-residual of u.

Active learning iterates two phases: hypothesis construction and hypothesis
validation. During hypothesis construction the two sets of prefixes and suffixes
are successively extended, using a sequence of membership queries, until the
table satisfies satisfies certain “closure conditions”, under which a hypothesis
automaton can be constructed in a consistent way. Hypothesis validation is per-
formed using equivalence queries, to check if the current hypothesis is correct.
From the returned counterexamples, new suffixes can be generated, that will
drive a new round of hypothesis construction [19, 23]. During learning, hypoth-
esis automata will grow monotonically in size, until they have the size of the
canonical acceptor for L. Then, by definition an equivalence query will confirm
that the hypothesis is correct.

Our learning algorithm for regular data languages will strictly follow this
pattern, and construct the canonical DRA for some data language L. Theoretical
backbone will be the new succinct Nerode congruence for data languages that
we have presented in [6]. We will use sets of so-called L-essential data words
(cf. Section 3.1) and abstract suffixes (cf. Section 3.2) as prefixes and suffixes,
from which membership queries for data words can be immediately derived. Due
to the potentially complex patterns of relationship between data values in data
languages, however, residuals will be more complicated in our algorithm than in
the classic regular case, reflected in the more complex cells of our observation
table. In the remainder of this section we will show

1. how abstract suffixes can be used to approximate the Nerode congruence
(Section 3.1 and Section 3.2),

2. how an observation table can be realized and how at certain points well-
defined hypothesis automata can be constructed from the observation table
(Section 3.2), and

3. how counterexamples can be exploited to guarantee strictly monotone progress
as in the classic regular case [23] (Section 3.3).

Strictly monotone progress together with an invariant on the size of hypothesis
automata will deliver a correctness argument resembling the one from the classic
case (Section 3.4). The invariant, however, is more complicated than in the classic
case: We will show that for all hypothesis automata, the number of transitions,
the number of locations, and the sum of the number of register assignments
at some location will never exceed the corresponding numbers of the canonical
DRA for L. In essence, the overall pattern of learning DRA is a three-dimensional
maximum fix-point computation, determining (a) the locations, (b) the required
register assignments, and (c) the guarded transitions in a partition-refinement
fashion.

3.1 Residual data languages

In this section we will define residual data languages and present our Nerode
congruence for data languages from [6] in terms of these. The development of

this section is relative to canonical DRAs for regular data languages, whose
existence has been proved in [6]. This allows us to avoid reciting the technically
involved constructions presented in [6] without sacrificing the precision required
to establish the correctness of our learning algorithm. The learning algorithm
itself, however, does not depend on any a priori knowledge about the canonical
DRA for an inferred data language.

Let A be the canonical DRA of some data language L. For a run of A on
some data word w of length n, i.e., with |Acts(w)| = n, let the trace of this
run be the sequence of transitions τ = t1, . . . , tn of the run in the order they
are traversed, and TracesA(w) the set of all traces of runs of A on w (due to
determinacy there may be more than one). For a trace τ , let [τ] be the set of
smallest data words triggering this trace. These smallest words are important
for the construction of canonical DRAs. Let TracesA be the set of traces of A.

Definition 2 (L-essential words). Given a data language L and its canonical
DRA A, we define EL =

⋃
τ∈TracesA [τ] to be the set of L-essential words. ut

Intuitively, the set of L-essential words is an infinite prefix-closed set of smallest
data words that trigger runs in the canonical DRA for L, i.e., which have just
enough equal data values to satisfy the guards of all traversed transitions.

When learning an unknown data language L, the canonical DRA for L is, of
course, unknown and cannot be used for the construction of EL. Our algorithm
will find a representation system of L-essential words by means of member-
ship queries (cf. Section 3.3). In the XMPP example in Figure 1, ε (the empty
word), reg(Bob, secret), and reg(Bob, secret)in(Alice, other) are examples
of L-essential words. They are smallest words triggering corresponding traces.
Also, reg(Bob, oth)in(Bob, oth) is L-essential, triggering the reg-transition from
l0 and the “correct login” from l1 to l2 The word reg(Bob, Bob)in(Bob, Bob), on
the other hand, is not L-essential. It, too, triggers the reg-transition and the
“correct login” but it is not the unique (up to ') smallest word for its trace.

In [6] we showed how from EL the canonical DRA for L can be constructed.
To determine the locations of this canonical automaton, we compare L-essential
words by their residual languages. Let therefore λL : WD → {+,−} such that
λL(w) = + if w ∈ L and λL(v) = − otherwise. For an L-essential data word u
and a set S of u-suffixes, we want to characterize the set of words {u; v | v ∈ S}
wrt. L in a concise and canonical way. For a subset bSc of S, let repbSc : S → 2bSc

be a mapping that maps every suffix in S to a set of suffixes in bSc. We fix the
definition of repbSc independent of u and S. Let

repbSc(v) = max<{v′ ∈ bSc | v′ v v}.

We say that bSc characterizes S faithfully after u if λL(u; v) = λL(u; v′) for
v′ ∈ repbSc(v) and v ∈ S.

Definition 3 (Closures). For an L-essential word u and a set S of u-suffixes,
the u-closure CSu : bSc → {+,−} is a mapping with unique minimal domain
bSc ⊆ S faithfully characterizing S after u, and CSu (v) = λL(u; v). ut

We denote the u-closure for the set of all u-suffixes by Cu. In [6], we have shown
that the unique minimal domain of Cu is the set of suffixes that extend u to
L-essential words.

For the L-essential word reg(Bob, oth), e.g., the reg(Bob, oth)-suffixes in(1,2)
and in(Bob, oth) are in the domain of Cu, extending reg(Bob, oth) to a word
equivalent to reg(Bob, oth)in(Alice, secret) and to reg(Bob, oth)in(Bob, oth).
These two words suffice to characterize faithfully the behavior of reg(Bob, oth)
for all suffixes v with only in as action: Cu(in(1,2)) maps to −, corresponding
to an unsuccessful login from l1 in the DRA in Figure 1. Cu(in(Bob, oth)) maps
to +, characterizing correct logins.

Since the suffixes in Dom(Cu) extend u to L-essential words, the data values
from D occurring in these suffixes are exactly the ones that are needed to satisfy
the guards in the canonical DRA for L. We refer to these data values as the
memorable data values of u, and denote them by memL(u). In the above exam-
ple, Bob and oth are in memL(reg(Bob, oth)). Note, however, that in general
memL(u) will only be a subset of V alSet(u).

Let π be a permutation on D. We apply π to closures, denoted by πCSu , by
applying π to all data values from D in suffixes of Dom(CSu) simultaneously,
thereby exchanging values from D in the suffixes.

Definition 4 (Nerode congruence for essential words). Two L-essential
words u and u′ are equivalent w.r.t. L, denoted by u ≡L u′ if there exists a
permutation π on D such that πCu = Cu′ . ut

Note that ≡L is an equivalence relation. The bijection π used in Definition 4 need
only relate memorable data values, i.e., it is enough to define it as a bijection
π : memL(u)→ memL(u′). We say that two closures are incompatible, denoted
by Cu 6' Cu′ if there is no permutation on D under which the closures become
equal.

In our example, reg(Alice, secret) and reg(Bob, oth)in(Bob, oth)out() are
equivalent wrt. ≡L since their closures become equal under a permutation π on
D, mapping Alice to Bob and secret to oth. In the canonical DRA in Figure 1
both words lead to l1. Intuitively, π exchanges the data values stored in registers
after processing the one word by data values stored in registers after processing
the other word.

3.2 Hypothesis construction

Our learning algorithm will use an observation table as underlying data struc-
ture. In this section we will define this data structure and explain how hypothesis
automata can be generated from observation tables.

So far, we have defined suffixes only relative to fixed prefixes. We assume an
infinite set Z of placeholders, ranged over by z1, z2, . . ., which is disjoint from
D and DV . An abstract suffix is a data word with parameters in Z ∪DV . One
abstract suffix yields a number of (concrete) u-suffixes for a particular prefix u.
For a set of abstract suffixes V , let V (u) be the set of u-suffixes that can be

generated from V via injective partial mappings σ : Z → V alSet(u). The ab-
stract suffix in(z1, z2) for example will yield the reg(bob, oth)-suffixes in(1,2),
in(bob,1), in(oth,1), in(1, bob), in(1, oth), in(oth, bob), and in(bob, oth). The
abstract suffix in(z1,1), on the other hand, will result in in(1,2), in(bob,1), and
in(oth,1), only.

During learning, we will use membership queries for all words u; v with v ∈
V (u) to find the optimal, i.e., minimal, domain of C

V (u)
u (along the lines of

finding L-essential words [6]). For the u-closure C
V (u)
u let memV (u) denote the

set of data values from V alSet(u) that occur in suffixes in the domain of C
V (u)
u .

Even though the u-closure of an L-essential word u for a set of abstract suffixes
V will in general not contain suffixes that extend u to L-essential words, the
following propositions hold.

1. For all sets V of abstract suffixes memV (u) ⊆ memL(u), i.e., we will never
wrongly identify data values as memorable. Intuitively, a data value that is
not memorable in u cannot influence behavior in any suffix.

2. If u ≡L u′ then C
V (u)
u ' C

V (u′)
u′ for all sets of abstract suffixes V . This can

be shown by proving mutual inclusion of the domains.
3. If u 6≡L u′ then there exists a finite set V of abstract suffixes such that

C
V (u)
u 6' C

V (u′)
u′ . Since ≡L has finite index k, in the worst case V has to

generate all suffixes up to length k (We will do better, actually).

We can thus use closures as basis for our observation table.

Definition 5 (Observation table). An observation table is a tuple (U, V, T),
of a prefix-closed set of L-essential words U , a set of abstract suffixes V , and a

function T , mapping each prefix u ∈ U to the u-closure C
V (u)
u . ut

The set U consists of a prefixed-closed subset Sp(U) of short prefixes, and con-
tains for every prefix u ∈ Sp(U) at least the one-action extension ua where data
values in a do not equal one another or data values in u. The u-closure T (u) is
constructed by asking membership queries for all suffixes in V (u), following the
approach from [6]. Our algorithm will initialize Sp(U) = V = {ε}, and maintain
the invariants that u 6' u′ for u, u′ ∈ U and T (u) 6' T (u′) for u, u′ ∈ Sp(U).

In order to construct hypothesis automata from an observation table, we need
two conditions to hold on the table.

Definition 6 (Closedness). An observation table (U, V, T) is closed if for every
prefix u ∈ U \ Sp(U) there is a prefix u′ ∈ Sp(U) and a permutation π on D
such that πT (u) = T (u′). ut
Please note that in general there can be multiple effective permutations. This
can be due to true symmetry of parameters, but also to the approximative nature
of intermediate results in learning. Since the existence of effective permutations
is transitive, there can never be two permutations proving the same word from
U \ Sp(U) equivalent to different words from Sp(U). The prefixes in Sp(U) will
become the locations of a hypothesis automaton. Closedness ensures that all
transitions of the hypothesis, defined by prefixes in U , have a defined destination.

Definition 7 (Register-consistency). An observation table (U, V, T) is register-
consistent if for every prefix ua ∈ U , where a is of length one,

memV (ua) ∩ V alSet(u) ⊆ memV (u). ut

When constructing a hypothesis from the table, we will store the parameters from
memV (u) in registers at the location corresponding to u. Register-consistency
ensures that memV (u) contains all parameters of u that are assumed to be stored
in registers in continuations of u. This will guarantee that the assignments along
transitions in the hypothesis are well-defined.

From a closed and register-consistent observation table we can construct a hy-
pothesis automaton H along the lines of the approach presented in [6]. We will
omit a detailed account of the automaton construction here, but simply give the
key idea. The automaton is obtained from the observation table, using the set
of prefixes and the permutations on D to determine locations and transitions.
Registers are determined using the sets memV (u) of closures T (u). Guards and
assignments can then be generated from the L-essential words in U directly, and
λ will be defined using values from the closures. We thus have:

Proposition 1. From a closed and register-consistent observation table (U, V, T)
a well-defined hypothesis automaton H can be constructed, for which λH(u) =
T (u)(ε) for u ∈ U . ut

3.3 Hypothesis validation

Once we have generated a hypothesis automaton H, an equivalence query will
either signal success or return a counterexample, i.e., a data word wc from the
symmetric difference of L and L(H). We will process wc from left to right in
order to localize where precisely hypothesis and target system behave differently.

Starting with wc, we will iteratively generate derived counterexamples, to-
wards the word from Sp(U) that leads to the same location in H as wc. We refer
to this word as the access sequence of wc and denote it by bwccH. Key idea is
that, since wc ∈ L ⇔ bwccH /∈ L, words generated in the process will at some
point stop being counterexamples (cf. [19, 23]).

Technically, we will construct “triplet constrained words” uav, where u ∈
Sp(U). We start with the triplet where u is the empty word ε, and av is wc. We
define the following three refinement steps, which will be iterated until we find
a concrete discrepancy between H and the (unknown) canonical acceptor for L.
An example illustrating all steps will be given in Section 4.

A: Finding new transitions For ua of our triplet, let uā be a maximal (wrt.
<) word from U .3 Intuitively, uā corresponds to the trace of ua in H. As
shown (schematically) in Figure 2 a), we will try to transform the word
ua; v into a word uā; v′ still being a counterexample. The problem here is
deriving a suitable v′ from v. If we cannot find such a word, we will find an

3 Due to determinacy, there may be multiple such words of which we will pick one.

a)

ce.

ce?
u

a
ā

v

v′

di dj dk= =

di dj dk6= ?

b)
ce.

ce?

u ā v′

v̄

dj dk=

dj dk6=

c)
u ā v̄

buācH πv̄

ce.
ce?

Fig. 2. Counterexamples: a) new transition, b) new register, c) new permutation

L-essential word uā v ua′ v ua that we can use as a new prefix in U . In this
case we can continue with hypothesis construction. Otherwise, we continue
with uā; v′ and step B.

Technically, we will generate a sequence of counterexamples ua; v = ua1; v1 >
ua2; v2 > . . . > uak; vk, by removing equalities between data values from uai
that are not present in uā. Removing equalities in uai may require refining
the suffix vi, too. For di, dj , and dk as shown in the Figure 2, we can try
to make dk equal to di, equal to dj , or un-equal to both. For the at most
d = |V als(a; v)| equal data values in the suffix there are O(3d) resulting
candidate words uai+1; vi+1 in each of the k < |V als(a)| steps. We continue
until uai ' uā or no word uai+1; vi+1 is a counterexample.

B: Finding new registers As shown in Figure 2 b), it may be that v′ in uā; v′

uses data values of uā not in memV (uā), and thus are not stored in registers
in H after processing uā. Either the word uā; v̄ that is supported by the
assignments in the hypothesis still is a counterexample and we continue with
step C, or we will find a suffix v′′ indicating a new register and continue with
hypothesis construction.

The smallest sensible v′′ results from a sequence of suffixes v′ = v′1 >
v′2 > . . . > v′k = v′′ still yielding counterexamples, where (V alSet(v′i+1) ∩
V alSet(a)) ⊂ (V alSet(v′i) ∩ V alSet(a)). In each of the k < |V als(a)| steps
we have to consider at most |V als(a)| candidate suffixes. A register will then
be introduced by adding the abstract suffix 〈v′′〉 to V , which we generate
from v′′ by replacing all data values from D by placeholders.

C: Finding new locations Finally, let buācH be the access sequence of uā,
i.e., the word from Sp(U) for which πT (uā) ' T (buācH) for some permu-
tation π on D (used during hypothesis construction). In this step we will
replace uā by its access sequence using π to replace data values in v̄.

If buācH;π(v̄) is not a counterexample, as shown in Figure 2 c), either π is
the wrong permutation from a set of potential ones, or both words are not
equivalent wrt. ≡L. In both cases, adding the abstract suffix 〈v̄〉 to the table
will make this explicit, and lead to a new permutation or, in case no effective
permutation is left, to unclosedness, i.e., a new location. If buācH;π(v̄) still

is a counterexample, we will start over with step A, using buācH as u and
(misusing notation) π(v̄) as a; v.

Since wc is a counterexample, at some point one of the three steps will deliver
a new prefix or suffix. Denoting the maximal length (i.e., |Acts(wc)|) of a coun-
terexample by m and the arity of the action with most parameters by p, we can
estimate the number of membership queries we need to process a counterexample
by O(pm3pm). We thus have:

Proposition 2. Every counterexample delivers either a new transition, or an
abstract suffix leading to an increased number of locations or an increased sum of
the number of register assignments, or it leads to a reduced number of symmetries
between assigned registers at a particular location. ut

3.4 Correctness and Complexity

Inferring an unknown data language over the set of actions A, the learning
algorithm proceeds in rounds. In each round a well-defined hypothesis automaton
can be constructed from the closed and consistent observations (Proposition 1).
For initialization Sp(U) = {ε}, i.e., it contains the access sequence of the initial
location, while U \ Sp(U) contains a word with no equal data values for every
α ∈ A. The set of abstract suffixes is initialized as V = {ε}, distinguishing
accepting and rejecting locations.

As usual, we will estimate the number of necessary membership and equiva-
lence queries in terms of the size of the canonical DRA for the considered regular
data language. Let the number of registers be denoted by r, the number of lo-
cations by n, the number of transitions by t, the arity of the action with most
parameters by p, and the length of the longest counterexample by m.

Then, by construction, the number of prefixes in the final observation table
is t + 1, i.e., in O(t), and the number of suffixes lies in O(nr): less than n to
distinguish locations, less than nr to realize register-consistency, and less than
nr to reduce the number of possible permutations.4

Each processing of a counterexample, which may require O(pm3pm) mem-
bership queries, will lead to a refined observation table from which a new hy-
pothesis automaton can be constructed. This automaton will either have more
transitions, more locations, or more registers than the previous one, or it uses
a different permutation between prefixes reaching a location, where the number
of possible permutations decreases strictly monotonically (Proposition 2). Due
to the monotonicity of the refinement steps, chaotic fixpoint iteration is guar-
anteed to terminate after finitely many rounds with the greatest fixpoint, which
resembles the canonical DRA for L.

The number of membership queries needed to fill the observation table de-
pends on the number of membership queries needed to produce all closures. An

4 Reducing the number of permutations follows the same partition-refinement-pattern
as automata learning does in general: With every new suffix a group of symmetric
data values / registers is split (at a particular location).

Table 1. Observation Table (only showing a subset of all prefixes)

ε in(z1, z2) out()in(z1, z2)

ε (l0) − in(1, 2) − out()in(1, 2) −

reg(a, b) (l1) − in(1, 2) − out()in(1, 2) −
in(a, b) + out()in(a, b) +

reg(a, b)in(a, b) (l2) + in(1, 2) +
out()in(1, 2) −
out()in(a, b) +

reg(a, b)in(c, d) − in(1, 2) − out()in(1, 2) −
in(a, b) + out()in(a, b) +

reg(a, b)in(a, b)pw(c) + in(1, 2) +
out()in(1, 2) −
out()in(a, c) +

reg(a, b)in(a, b)out() − in(1, 2) − out()in(1, 2) −
in(a, b) + out()in(a, b) +

abstract suffix can have at most r abstract parameters, which can be instantiated
by less than np parameters in the potential of a word in less than (np)

r
combi-

nations. The number of membership queries needed to construct all closures lies
therefore in O(tnr · (np)r).

Theorem 1. Regular data languages can be learned with O(t+nr) equivalence
queries and O(tnr · (np)r + (t+ nr) · pm3pm)) membership queries. ut

Two factors for the number of membership queries look critical. (1) the “concate-
nation” of prefixes and abstract suffixes, which is responsible for the exponential
term of the first summand, and (2) the transformation of arbitrary prefixes of
counterexamples into corresponding L-essential words, leading to the exponential
term of the second summand. It should be noted, however, that both exponents
are typically quite small in practice. In fact, p may well be considered a constant
in many contexts, and pm estimates the worst case in which all data values of
a counterexample are equal, which usually can be avoided when searching for
counterexamples. Finally, the number of required registers r will typically grow
much slower than the model size. This observation was also supported by our
experiments.

4 Example application

In this section we give an example of a complete run of our algorithm, using
the XMPP example from Figure 1, and present some performance data for our
implementation of the algorithm.

The resulting (final) observation table for the example is shown (partly) in
Table 1. The left column contains prefixes. Prefixes from Sp(U) are shown in
the upper part of the table. The three other columns are labeled with abstract
suffixes. Table cells of a row labeled u contain suffixes from the domain of the u-
closure C

V (u)
u grouped per abstract suffix. The table was initialized as described

in Section 3.4. The algorithm starts by constructing closures for all prefixes in
U and the empty suffix. Since all prefixes are not in L, the table is immediately

l0

(reg,〈p1,p2〉) | true
− , . . .

l0 l1
(reg,〈p1,p2〉) | true

x1:=p1;x2:=p2

. . . (in,〈p1,p2〉) | true
− , . . .

Fig. 3. First and second hypothesis

closed and consistent. In the constructed hypothesis, shown in the left of Figure 3,
all prefixes lead to one non-accepting state.

An equivalence query returns the counterexample reg(a, a)in(a, a) which is in
L but rejected by the hypothesis. Performing step A of handling counterexamples
results in a word reg(a, b)in(a, b), which still is a counterexample. When refining
the word to be supported by the (empty) assignment along the reg-transition
in the hypothesis (step B), the words reg(a, b)in(a, d) and reg(a, b)in(c, b) are
no longer counterexamples. In order to subsequently correct the yet empty as-
signment, we add the abstract suffix in(z1, z2) to the table.

When completing the table, the closure for the prefix reg(a, b) will be in-
compatible with the other closures, which can be seen in Table 1. In order to
get a closed observation table, reg(a, b) will be added to Sp(U), and U \ Sp(U)
will be extended accordingly. From the closed table we construct the hypothesis
that is shown in the right of Figure 3.

We will get the same counterexample as in the first round. Analyzing it,
we perform the refinement steps described in Section 3.3. We first perform the
refinement steps for the empty prefix. First we transform reg(a, a)in(a, a) to
reg(a, b)in(a, b) (step A). Steps B and C will not modify this counterexample
since the equalities are supported already by the hypothesis and since reg(a, b) is
its own access sequence. The second round starts with reg(a, b) as u, in(a, b) as a,
and an empty suffix v. When refining in(a, b) to be supported by the correspond-
ing guard of the in-transition from l1 (step A), we discover that reg(a, b)in(a, d)
and reg(a, b)in(c, b) are no counterexamples. Hence, reg(a, b)in(a, b) must be L-
essential. We add it to U \Sp(U) in order to represent the guarded in-transition
in the table.

To close the table, we have to move the new prefix to Sp(U) as its closure is
incompatible with the other closures. We extend U \Sp(U) accordingly. Now the
resulting table is not register-consistent: It does not support any (re-)assignment
along the new prefix as its closure does not have memorable data values. The
closure of its continuation reg(a, b)in(a, b)out(), however, has two memorable
data values, namely a and b. We add out()in(z1, z2) to the set of suffixes. From
the closed and consistent observation table, shown in Table 1, we construct the
final model: the canonical DRA from Figure 1.

We have implemented the outlined algorithm on top of LearnLib [18], and ap-
plied it to the discussed example. Counterexamples were found automatically
by comparing DFAs, generated from hypothesis and target model for a small,
concrete data domain. We compared our new learning algorithm for RAs with al-

Table 2. Experimental Results

Setup # Loc. # Trans. MQs EQs

RA learning algorithm 3 16 403 3
L∗, symmetry reduction, |D| = 6) 73 5,913 2,776 2
L∗, no optimization, |D| = 6) 73 5,913 415,333 72

gorithms for learning DFAs utilizing abstraction, which to our knowledge would
be the state-of-the-art approach to learning a system like the XMPP protocol.
We have generated a DFA from the DRA in Figure 1 for the smallest sensible
data domain of size 6 (the longest membership query has 6 distinct data values).
This can be considered an optimal data abstraction. We have learned the model
twice: once with no optimization, and once with a symmetry filter. The key fig-
ures of all experiments are shown in Table 2. The experiments show that learning
register automata not only delivers much more expressive models, but (in this
particular case) also is much more efficient than classic L∗-based learning.

5 Conclusions

In this paper, we have presented an active learning algorithm for register au-
tomata, which allows capturing the flow of parameter values taken from arbi-
trary domains. The application of our algorithm to a small example indicates the
impact of learning register automata models: Not only are the inferred models
much more expressive than finite state machines, but the prototype implementa-
tion also drastically outperforms the classic L∗ algorithm, even when exploiting
optimal data abstraction and symmetry reduction. Currently, we are investi-
gating the limits of our technology by considering generalizations, in particular
concerning the transition structure, and by exploring scalability and potential
optimizations.

References

1. F. Aarts, B. Jonsson, and J. Uijen. Generating models of infinite-state communi-
cation protocols using regular inference with abstraction. In Proc. ICTSS 2010,
volume 6435 of LNCS, pages 188–204. Springer, 2010.

2. G. Ammons, R. Bodik, and J. Larus. Mining specifications. In Proc. 29th ACM
Symp. on Principles of Programming Languages, pages 4–16, 2002.

3. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87–106, 1987.

4. Therese Berg, Bengt Jonsson, and Harald Raffelt. Regular inference for state
machines using domains with equality tests. In FASE, volume 4961 of Lecture
Notes in Computer Science, pages 317–331. Springer, 2008.

5. M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner, editors. Model-
Based Testing of Reactive Systems, volume 3472 of LNCS. Springer Verlag, 2004.

6. S. Cassel, F. Howar, B. Jonsson, M. Merten, and B. Steffen. A succinct canoni-
cal register automaton model. In ATVA, volume 6996 of LNCS, pages 366–380.
Springer Verlag, 2011.

7. E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
8. M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz,

and C. Xiao. The Daikon system for dynamic detection of likely invariants. Science
of Computer Programming, 69(1-3):35–45, 2007.

9. A. Hagerer, H. Hungar, O. Niese, and B. Steffen. Model generation by moderated
regular extrapolation. In R.-D. Kutsche and H. Weber, editors, Proc. FASE ’02,
volume 2306 of LNCS, pages 80–95. Springer Verlag, 2002.

10. F. Howar, B. Steffen, and M. Merten. Automata Learning with Automated Alpha-
bet Abstraction Refinement. In VMCAI, volume 6538 of LNCS, pages 263–277.
Springer, 2011.

11. A. Huima. Implementing Conformiq Qtronic. In A. Petrenko, M. Veanes, J. Tret-
mans, and W. Grieskamp, editors, Proc. TestCom/FATES, Tallinn, Estonia, June,
2007, volume 4581 of Lecture Notes in Computer Science, pages 1–12, 2007.

12. H. Hungar, O. Niese, and B. Steffen. Domain-specific optimization in automata
learning. In Proc. 15th Int. Conf. on Computer Aided Verification, 2003.

13. B. Jonsson and J. Parrow. Deciding bisimulation equivalences for a class of non-
finite-state programs. Information and Computation, 107(2):272–302, Dec. 1993.

14. M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329–363, 1994.

15. D. Lo and S. Maoz. Scenario-based and value-based specification mining: bet-
ter together. In ASE 2010, 25th IEEE/ACM Int. Conf. on Automated Software
Engineering, Antwerp, Belgium, pages 387–396. ACM, 2010.

16. D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic generation of software behav-
ioral models. In Proc. ICSE’08: 30th Int. Conf. on Software Enginering, pages
501–510, 2008.

17. L. Mariani and M. Pezzé. Dynamic detection of COTS components incompatibility.
IEEE Software, 24(5):76–85, 2007.

18. M. Merten, B. Steffen, F. Howar, and T. Margaria. Next Generation LearnLib. In
TACAS 2011, volume 6605 of LNCS, pages 220–223. Springer Verlag, 2011.

19. R.L. Rivest and R.E. Schapire. Inference of finite automata using homing se-
quences. Information and Computation, 103(2):299–347, 1993.

20. P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Instant
Messaging and Presence. RFC 6121 (Proposed Standard), March 2011.

21. H. Sakamoto. Learning simple deterministic finite-memory automata. In ALT
’97: Proc. 8th International Conference on Algorithmic Learning Theory, Sendai,
Japan., volume 1316 of LNCS, pages 416–431. Springer Verlag, Oct. 1997.

22. G. Shu and D. Lee. Testing security properties of protocol implementations - a
machine learning based approach. In Proc. ICDCS’07, 27th IEEE Int. Conf. on
Distributed Computing Systems, Toronto, Ontario. IEEE Computer Society, 2007.

23. B. Steffen, F. Howar, and M. Merten. Introduction to active automata learning
from a practical perspective. In SFM, volume 6659 of LNCS, pages 256–296.
Springer, 2011.

24. J. Tretmans. Model-based testing and some steps towards test-based modelling.
In SFM, volume 6659 of LNCS, pages 297–326. Springer Verlag, 2011.

25. Pierre Wolper. Expressing interesting properties of programs in propositional tem-
poral logic (extended abstract). In Proc. 13th ACM Symp. on Principles of Pro-
gramming Languages, pages 184–193, Jan. 1986.

