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Lock-free Contention Adapting Search Trees
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Concurrent key-value stores with range query support are crucial for the scalability and performance of many
applications. Existing lock-free data structures of this kind use a fixed synchronization granularity. Using a
fixed synchronization granularity in a concurrent key-value store with range query support is problematic as
the best performing synchronization granularity depends on a number of factors that are difficult to predict,
such as the level of contention and the number of items that are accessed by range queries. We present the first
linearizable lock-free key-value store with range query support that dynamically adapts its synchronization
granularity. This data structure is called the lock-free contention adapting search tree (LFCA tree). An LFCA
tree automatically performs local adaptations of its synchronization granularity based on heuristics that take
contention and the performance of range queries into account. We show that the operations of LFCA trees
are linearizable, that the lookup operation is wait-free, and that the remaining operations (insert, remove
and range query) are lock-free. Our experimental evaluation shows that LFCA trees achieve more than twice
the throughput of related lock-free data structures in many scenarios. Furthermore, LFCA trees are able to
perform substantially better than data structures with a fixed synchronization granularity over a wide range
of scenarios due to their ability to adapt to the scenario at hand.

Additional Key Words and Phrases: concurrent data structure, range query, lock-freedom, wait-freedom,
linearizability, adaptivity

1 INTRODUCTION
On multicore machines, concurrent key-value stores (maps) with range query support are crucial
for the scalability of applications such as big scale data processing and in-memory databases (e.g.,
Google’s F1 [Shute et al. 2013] and Yahoo’s Flurry [Yahoo! Developer Network 2017]). It is thus of
no surprise that the multicore revolution has motivated researchers (e.g., Avni et al. [2013]; Basin
et al. [2017]; Brown and Avni [2012]; Sagonas and Winblad [2017]) to propose a number of data
structures of this type. A key-value store represents a set of items (keys), each with an associated
value. Sets can be seen as a simplification of key-value stores that do not have any values associated
with the items. From here on, we will discuss sets but we note that what applies to sets also applies
to key-value stores as sets can trivially be modified to become key-value stores.

Concurrent sets that support both single-item operations (insert, remove and lookup1) and multi-
item operations (e.g., range query and clone2) face the following dilemma: Single-item operations
usually benefit from as fine-grained synchronization as possible, as this leads to few conflicts. In
contrast, multi-item operations usually benefit from more coarse-grained synchronization, as this
leads to less time spent on synchronization-related overhead (e.g., fewer locks need to be acquired).
We say that the conflict time for an operation is the amount of the time during which the operation
1An insert operation inserts an item (replacing an existing item if one with an equal key already exists), the remove operation
removes an item with the given key if such an item exists and the lookup operation returns an item with the given key if
such an item exists.
2A range query operation returns all items with keys within the given range (specified by two keys) and clone makes a
clone of the data structure.
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(a) Scenario with small range queries
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(b) Scenario with large range queries

Fig. 1. Throughput of coarse- vs fine-grained synchronization.

can conflict with other concurrent operations. More coarse-grained synchronization can also lead
to short conflict times for operations in concurrent sets that internally use and exploit immutable
data in a way that we will now explain. We will use the lock-free k-ary search tree of Brown and
Avni [2012] to illustrate how immutable data can be used to make the conflict time for range queries
short. Lock-free k-ary search trees store all items inside immutable leaf nodes that can contain k
items each. The insert and remove operations of such trees work by replacing leaf nodes. A range
query Q in a k-ary search tree first collects all the immutable leaf nodes that Q needs. The range
query Q ends its conflict time and linearizes once this collection phase finishes. The items that Q
needs to return are scanned from the collected leaf nodes after Q’s conflict time. This removal of
this scanning from the conflict time is possible due to the immutability of the leaf nodes.
An even more extreme way to exploit immutability in range queries is to store all items in a

single immutable data structure. Such a data structure, that we call Im-Tr, is constructed from a
single mutable reference pointing to an immutable balanced search tree T . A new instance of T
reflecting an update (insert or remove) can be constructed in O(logn) time (where n is the number
of items before the update) as one only needs to “copy” nodes on a path from the root to a leaf
to create the new instance [Okasaki 1999]. The update operations of Im-Tr change the mutable
reference using an atomic compare-and-swap (CAS) operation so the reference points to a new
immutable instance reflecting the update. Using this scheme, which is also described by Herlihy
[1990], it is trivial to perform range queries with constant conflict time as they only need to get a
snapshot by reading the mutable reference and then perform the range query in the snapshot.
Figure 13 illustrates the scalability of a data structure that uses a fixed relatively fine-grained

synchronization (the lock-free k-ary search tree with the k parameter set to 64) and one that uses
coarse-grained synchronization (Im-Tr) in two scenarios that only differ in the sizes of the ranges
involved in the range queries. As shown in the graphs, fine-grained synchronization achieves
superior scalability when the size of ranges in range queries is small (Fig. 1a) as the mutable
reference of Im-Tr gets heavily contended, while Im-Tr with coarse-grained synchronization has
superior scalability when range queries are large (Fig. 1b) as the k-ary search tree’s range queries
have long conflict times in this scenario.
3The benchmark used to produce the graphs in Fig. 1 was executed on an Intel machine with 64 logical cores using the
Oracle JVM. With small and large range queries we refer to range queries that on average include about 2.5 items and 25k
items respectively. Further details about the experiment can be found in Section 7.
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As the above example illustrates, having concurrent sets with a fixed synchronization granularity
is far from ideal. A natural way to deal with this problem is to design sets that can adapt their
synchronization granularity to the workload at hand. In earlier work [Sagonas and Winblad 2017],
we have described the first data structure that dynamically changes its synchronization granularity
based on heuristics that take both the performance of single-item operations and multi-item
operations into account, called the contention adapting search tree (CA tree for short). The CA tree
is lock-based.

The CA tree performs well in a variety of scenarios due to its ability to adapt its synchronization
granularity to the workload at hand. However, lock-based data structures are prone to a number of
problems that are inherent from the use of locks, e.g., waiting, priority inversion, convoying, and
lock overhead (memory usage, acquire and release time). The performance of lock-based algorithms
is also heavily dependent on the lock implementation itself and on OS scheduling. For all these
reasons, lock-free data structures that guarantee system-wide progress even in the presence of
adversary scheduling are preferable to lock-based ones. In particular, because in many applications
lookups are very common, it is important that the lookup operation is wait-free (i.e., finishes in a
finite number of steps [Herlihy 1991]), which is something that the lock-based CA tree is lacking.
This article presents a lock-free variant of the CA tree, called the lock-free contention adapting

search tree (LFCA tree for short). LFCA trees support lock-free insert, remove and range query
operations as well as a wait-free lookup operation. Operations update the data stored in an LFCA
tree by swapping immutable leaf nodes pointing to immutable balanced search trees storing the
actual items. The granularity of the LFCA tree is adjusted by splitting and joining such leaf nodes.
Initiation of split and join operations is based on a statistics value, which is stored in each leaf
node, and which is updated based on CAS successes or failures as well as the number of leaf nodes
accessed by range queries.

The technique that the LFCA tree uses for supporting range queries is interesting in its own right,
as it is applicable to other lock-free data structures such as the lock-free k-ary search tree of Brown
and Avni [2012]. A range query operation is performed by replacing the needed leaf nodes with
nodes of a special node type which contain the information that other threads need when helping
to complete the operation. As noted by both Basin et al. [2017] and Winblad [2018], the previously
proposed method for doing range queries in the k-ary search tree is prone to starvation.
Overall, we claim that LFCA trees are important concurrent data structures as they provide a

unique set of desirable properties:

Efficient non-blocking operations Our experimental comparison shows that LFCA trees achieve
substantially better throughput than the best of the competing lock-free data structures over
a wide range of scenarios. Also, LFCA trees perform better than lock-based CA trees in many
scenarios; especially in scenarios with more threads than hardware threads.

Configuration-less As an LFCA tree automatically adjusts its structure using heuristics, there is
no need for the user to configure the LFCA tree to use a certain synchronization granularity.

Adaptive As the synchronization granularity changes with the workload, the data structure can
perform very well even when the workload changes during the lifetime of the data structure.
As the adaptations of the granularity happen through local changes, LFCA trees can even
adapt to scenarios where the workload is different in different parts of their structure.

Flexible Performance characteristics of an LFCA tree can be changed by providing a different set
implementation. We do not experiment with this property here, but see no reason why the
LFCA tree would be different from the lock-based CA tree [Sagonas and Winblad 2017] in
this regard.
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This article is the journal version of our SPAA 2018 conference paper with the same title [Winblad
et al. 2018]. It has both been extended and differs from it in the following ways:

• The LFCA tree presented in the SPAA 2018 paper does not have a wait-free lookup operation
even though that paper claims so. We explain the problem (Fig. 3 in Section 4), and fix it by
updating the code that implements LFCA tree’s operations. Consequently, all experiments
presented in this article have been conducted with the updated code to properly measure the
LFCA tree’s performance. By comparing the graphs in the two papers, one can indeed notice
that the fix does not cause any significant change to the performance of the LFCA tree.

• The related work (Section 3) has been extended with descriptions and discussions of recently
proposed data structures and methods for concurrent range queries that were either unknown
to us at the time of the SPAA 2018 submission, or appeared after the final version of our
conference paper was submitted for publication.

• The correctness argument (Section 5) has got a major rewrite and that section has been
significantly extended to make it more detailed and easier to follow.

• The performance evaluation (Section 7), besides being done from scratch due to the updated
code, has been significantly extended to consider many more scenarios, and now spans
several pages.

Outline. We start with a brief high-level description of how LFCA trees work (Section 2) followed
by an overview of related work (Section 3). Subsequently, we describe the algorithm in detail (Sec-
tion 4), present an argument for its correctness (Section 5) and describe an optimization for range
queries (Section 6). Finally, we experimentally compare the performance of LFCA trees against
state-of-the-art concurrent data structures with similar functionality (Section 7), and end with
some concluding remarks (Section 8).

2 A BIRD’S EYE VIEW OF LFCA TREES
A lock-free CA tree (LFCA tree) consists of route nodes (round boxes in Fig. 2a) and base nodes
(square shaped boxes in Fig. 2a). The route nodes form a binary search tree with the base nodes
as leaves. The actual items that are stored in the set represented by an LFCA tree are located in
immutable data structures rooted in the base nodes, called leaf containers. All operations use the
binary search tree property of the route nodes to find the base node(s) whose leaf container(s)
should contain the items involved in the operation if they exist. An update operation (insert or
remove) is illustrated by Figs. 2a and 2b. An update operation uses a compare-and-swap (CAS)
to attempt to replace a base node b1 with a new base node b4 reflecting the update, until the
update succeeds. The update can be made efficient even though the data structure in the base node
is immutable, since many immutable self-balancing binary search tree data structures support
creating a new instance with an update in O(logn) time, where n is the number of items in the
data structure [Okasaki 1999]. Before an update operation returns, it checks whether the statistics
value stored in the updated base node indicates that a structural adaptation should happen. The
first kind of adaptation, called split, is illustrated by Figs. 2a and 2c. A split aims at reducing the
contention in the LFCA tree and replaces a base node b1 with a route node linking together two
new base nodes (b4 and b5) so that approximately half of the original items are in each of them.
The second kind of adaptation, called join, is illustrated with Figs. 2a and 2d and aims at optimizing
the structure of the LFCA tree for range queries that span multiple base nodes and for situations
where the contention is low. A join splices out a base node b2 and its parent and replaces the base
node b3 with a new base node b4 containing the items of both b2 and b3. Splits and joins of the base
nodes can also be supported efficiently (i.e., in O(logn) time, where n is the number of items in the
involved instances) in many immutable balanced tree data structures; for example, in treaps that
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(a) Initial (b) Update: insert (c) Adaptation: split (d) Adaptation: join

Fig. 2. LFCA Trees illustrating various operations.

are used by our LFCA tree implementation. Treaps [Seidel and Aragon 1996] are self-balancing
binary search trees that order tree nodes by a priority number as well as the node’s key, thereby
achieving O(logn) height with high probability.

3 RELATEDWORK
There are several data structures with range query support. The SnapTree by Bronson et al. [2010]
has an efficient linearizable clone operation that returns a copy of the data structure from which a
range query operation can easily be derived. SnapTree’s clone operation waits for active update
operations to complete and forces subsequent update operations to copy nodes lazily before node
modifications, so that the clone is not modified.

The lock-free k-ary search tree is an external (i.e. the items are stored in leaf nodes) unbalanced
search tree with up to k keys stored in every node [Brown and Helga 2011]. Range queries in k-ary
search trees are performed by doing a read scan followed by a validation scan of the immutable leaf
nodes containing items in the range [Brown and Avni 2012]. The range query operation needs to
retry if the validation scan fails. The k-ary search tree is an example of the fixed synchronization
granularity approach discussed in the introduction. Another example of this approach based on
software transactional memory is the Leaplist of Avni et al. [2013]. Both thek-ary search tree and the
Leaplist make use of immutable data structures to reduce the conflict time of range queries in theway
explained in the introduction. As they both use arrays as their immutable data structures, updates
become very expensive when the parameter that decides both the synchronization granularity and
the maximum size of the immutable data structures is set too high. Even though this problem could
be fixed by using immutable balanced search trees instead of the arrays, these two data structures
would still use a fixed synchronization granularity and would thus only perform well in certain
scenarios.
Chatterjee [2017] has proposed a general method for performing range queries in lock-free

ordered set data structures based on an idea for doing snapshots by Petrank and Timnat [2013].
Chatterjee’s method makes use of a list of so-called range collector objects that all updates and range
queries need to access. Unfortunately, the scalability of Chatterjee’s method suffers from a global
sequential hot spot in the list of range-collector objects that all range queries have to modify in the
worst case.

The KiWi data structure by Basin et al. [2017] supports wait-free range queries and lookup
operations as well as lock-free update operations. Update operations help range queries by storing
additional versions of inserted items when it is needed for the range queries. Similarly to a data
structure by Robertson [2014], KiWi’s range queries atomically increment a global version counter
which is used by update operations to decide whether storing an additional version for an item is
necessary or not. KiWi’s global version number counter is bound to become a scalability bottleneck
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with a high enough level of parallel range queries. LFCA trees do not suffer from such a global
scalability bottleneck as their range query operation only needs to synchronize with update
operations that operate on items in the same range as the range query.
Arbel-Raviv and Brown [2018] recently proposed a general method for extending concurrent

data structures with linearizable range query support. As they report, their implementation of this
new method appears to perform substantially better compared with both the general method for
linearizable iterators proposed by Petrank and Timnat [2013] and the method for range queries
proposed by Chatterjee [2017]. With their method, range queries increment a global timestamp
variable. Update operations write down the timestamps in the relevant nodes when nodes are
inserted and removed. Range queries traverse the data structure to collect nodes with items in
the range. Range queries also traverse nodes that have been removed during such a traversal
(such nodes can be found in the epoch-based memory reclamation system of Brown [2015] that
the method relies upon). Range queries figure out which of the traversed nodes are relevant for
the results based on the timestamps in the nodes. Unfortunately, the global timestamp counter
is bound to become a scalability bottleneck once parallel range queries become frequent enough.
Furthermore, the global timestamp counter induces an overhead for all update operations, especially
when this counter is frequently modified, as all update operations have to read this counter. In
contrast, our CA trees do not have such a global counter, and do not rely on being able to access
the internals of the memory reclamation system.
In an unpublished technical report, Agarwal et al. [2017] describe an extension to the method

by Petrank and Timnat [2013] for creating linearizable iterators that make the method applicable
to more data structures. The results provided by that report [Agarwal et al. 2017] indicate that the
extended method suffers from similar performance overhead as the original method.
While our article was under review, Fatourou et al. [2019] described an extension to a non-

blocking binary search tree [Ellen et al. 2010] that gives it support for linearizable range queries.
This extension is similar to the method by Arbel-Raviv and Brown [2018] in that range queries
need to increment a global counter. On the other hand, their extension differs from the method by
Arbel-Raviv and Brown in that it does not piggyback on the used memory reclamation technique,
but instead lets update operations save links to nodes that have got spliced out from the tree in the
nodes that replace the spliced out nodes.
All the non-adaptive set data structures with support for efficient range queries and scalable

updates proposed in the literature [Agarwal et al. 2017; Arbel-Raviv and Brown 2018; Avni et al.
2013; Basin et al. 2017; Brown and Avni 2012; Chatterjee 2017; Fatourou et al. 2019; Robertson
2014] have range queries with a conflict time that depends at least linearly on the number of items
covered by the range given to the range query. The CA trees (both the lock-based and the lock-free)
can do much better over a wide range of scenarios as the conflict time of their range queries can be
constant (i.e., independent of the number of items covered by the range query) and their heuristics
work towards getting a good trade-off between range queries conflict time and the scalability of
updates.
Even though the fundamental ideas behind the lock-based CA tree of Sagonas and Winblad

[2017] and the lock-free CA tree are the same, lock-freedom gives LFCA trees better progress
guarantees that are of importance for real-time systems. As we will see, the lookup operation of
LFCA trees is wait-free and performs efficiently regardless of how contended the data structure is,
which is crucial for many applications as lookups often dominate the workload. Still, the lock-based
CA tree has a few advantages over the lock-free CA tree. The use of locks makes it possible to
use mutable sequential data structures to store the items. This can be advantageous in systems
where memory management is expensive and when range queries are infrequent, as it reduces the
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number of memory allocations that are needed. The use of locks also makes it easier to extend the
interface of the data structure with more linearizable operations.
The technique for joining base nodes in LFCA trees has some similarities with the replace

operation of the non-blocking Patricia tries of Shafiei [2013]. The replace operation, in a non-
blocking Patricia trie, deletes an item and adds another item in a way that appears atomic.
Several works have previously explored the idea of dynamically switching between a data

structure that uses coarse-grained synchronization to a data structure that uses fine-grained
synchronization in one transformation step [Chen et al. 2017; Newton et al. 2015; Österlund and
Löwe 2014]. The drawback of the global mode switching approach proposed in these papers
compared to LFCA tree’s approach is that the switch between the modes is time-consuming
and coarse-grained, whereas the LFCA tree can smoothly transition between different levels of
synchronization granularity. Work has also been done to adapt to contention in other types of data
structures; for example by Ha et al. [2007].

4 ALGORITHM
Pseudocode for all the non-trivial parts of the lock-free CA tree can be found in Figs. 4 to 6 and 8.
The pseudocode is derived from a model of the LFCA tree implemented in the C programming
language with some minor adjustments for readability. This section contains a detailed description
of the algorithm and its pseudocode. In the next section, a detailed proof sketch will be given,
showing that the operations are linearizable and have the stated progress guarantees.

Node types. An LFCA tree is built from instances of the node types that are defined in Fig. 4,
lines 15–53. Note that the keyword with_fields_from (on lines 27, 33, and 40) is used to add fields
from another structure definition. All route nodes are of type route_node (lines 15–21). The route
nodes contain a key field (line 16) which is used to direct searches for a specific item in the tree.
Together, they form a binary search tree. Leaves are called base nodes (lines 22–43) and have a data
field (line 23) that points to immutable data structure instances, called leaf containers, that contain
the items that are in the represented set. We use an immutable treap for leaf containers in the
pseudocode, but this can of course be replaced by any other immutable data structure that supports
the same operations. That a base node B is of type normal_base (lines 22–26) indicates that B is not
involved in an ongoing operation. A base node of type range is a node that currently is or has been
involved in a range query. Similarly, a base node of type join_main or join_neighbor is a node
that currently is or has been involved in a join operation. The LFCA tree structure itself is called
lfcatree (lines 50–53) and only contains two fields. The root field of the lfcatree structure points
to the root of the LFCA tree. Initially, this is a node of the normal_base type that is containing an
empty leaf container. The lfcatree structure’s field no_join_count is used for a trick that gives
the lookup operation the wait-freedom property. This trick is explained where we describe the
lookup operation later in this section.

Data in nodes that can be modified by more than one thread are marked with the modifier atomic.
These fields can only be accessed by the atomic and sequentially consistent functions aload (that
loads the value at a given address), astore (that stores the given value at the given address),
atomic_add (that increments the value at the given address), atomic_sub (that decrements the
value at the given address), and CAS (a compare-and-swap that stores the value of its third parameter
at the location of a given address in its first parameter iff the value at the given address is equal
to the second parameter and returns true, or returns false otherwise). All these functions have
corresponding hardware instructions on modern multicores.

Lookup. The lookup operation (lines 134–137) calls the function find_base_node (lines 287–308),
which traverses the route nodes using binary search until a base node is found, and then performs
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(a) A lookup operation has
reached the route node with
key 2.

(b) A join has spliced out the
route node with key 2.

(c) A split has added a route
node with key 2.

(d) A join has spliced out the
route node with key 3.

(e) A split has added a route
node with key 3.

(f) The lookup operation has
traversed two more pointers
and reached a route node
with key 2 again!

Fig. 3. A sequence of changes to an LFCA tree showing why the lookup operation would not be wait-free if
the lookup operation did not temporarily disable joins after traversing NO_JOIN_LIMIT route nodes. Notice
that the sequence of events illustrated by Figs. 3a to 3f could repeat forever if joins were never disabled. This
shows that the lookup operation would not be wait-free if the lookup never disabled joins.

the lookup in the corresponding immutable data structure. To ensure that the lookup operation is
wait-free, we let the find_base_node function atomically increment the no_join_count field of
the LFCA tree by one (in line 299) if and when it has traversed exactly NO_JOIN_LIMIT nodes. In
calls where the no_join_count field is incremented, it is also atomically decremented by one once
a base node has been found (line 305). This temporally disables joins of base nodes (see line 268)
in extreme cases when lookups need to traverse a large number of nodes. Without such code for
temporally disabling joins, it could be possible for joins and splits of base nodes in the tree to starve
a lookup operation (such starvation is exemplified in Fig. 3) which would disqualify the lookup
operation from being wait-free.4

The observant reader might wonder what will happen if a lookup thread goes to sleep indefinitely
between lines 299 and 305 so that joins are disabled indefinitely. First of all, none of the theoretical
properties that we claim for the LFCA tree depend on that joins of base nodes can start. (This is
made clear in Section 5.) Secondly, we note that the scenario illustrated by Fig. 3 is unlikely to
4The code presented in the SPAA 2018 version of this article never disables joins. As a consequence, the lookup operation
presented in that paper [Winblad et al. 2018] is not wait-free.
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happen in practice. Thirdly, the likelihood that joins will be disabled (by executing line 299) can be
made extremely low by setting the constant NO_JOIN_LIMIT to an even larger value. Thus, the fact
that joins may be disabled by a lookup that goes to sleep has very little effect in practice (given
that NO_JOIN_LIMIT is set to a high enough value), both for the adaptiveness of the data structure
and the progress of lookup operations. There is however a trade-off between having the code that
temporally disables joins and not having this code. Having this code makes the data structure
less adaptive, but makes the lookup operation wait-free. Without this code, the lookup operation
would only be lock-free, but the data structure would be more adaptive. We have opted for having
the code that temporary disables joins in the presentation of the LFCA tree as it gives the lookup
operation the wait-free property and has very little negative impact to the adaptiveness in practice.
However, we note that implementations may omit the code for temporally disabling joins without
observing much difference in practice5.

Insert and Remove. The functions for inserting and removing a single item (Fig. 5, lines 128–133)
call the do_update function (lines 106–126) with the LFCA tree, the remove or insert function for
the immutable data structure that is used for the leaf containers, and the item to insert or remove
as arguments. The functions treap_insert and treap_remove that are passed to the do_update
function on lines 129 and 132 return a new leaf container reflecting the insert or remove respectively.
Obviously, they do not modify the input leaf container (the first argument) as it is an immutable
data structure. Their third parameter is a write back boolean value reflecting if the update was
successful or not (i.e., in the case of insert that the value is not present in the input and in the case of
remove if the value exists in the input). The second argument of treap_insert and treap_remove
is the value to be inserted or removed (an int in our pseudocode).

The do_update function repeatedly searches for a base node using the given key, and then tries
to replace that base node, if it is replaceable, with a new base node in which the key has been
removed or inserted (lines 108–125). Line 109 finds the base node base using binary search for
the key. A replacement attempt is made only if the found base node is replaceable (line 110 and
lines 64–73). The is_replaceable function (lines 64–73) returns true if its input is a base node that
is guaranteed to not be involved in an ongoing join (see the description of low-contention adaption
below) or in an ongoing range query (see the description of range queries below). Essentially,
is_replaceable returns true only if it is of type normal, if it is of one of the join types and comes
from a completed or failed join, or if it is of the range type and the corresponding range query
has completed. Such nodes cannot be changed and they can only be linked out from the tree by a
CAS operation. If the base node is irreplaceable, then it may be involved in another operation; in
this case the do_update function will first attempt to help this operation in the help_if_needed
call (line 124 and lines 75–87) before retrying. (The help_if_needed function will be described in
more detail later in this section.)

The replacement is done on line 118 using the try_replace function (lines 55–63), which uses
a CAS to attempt to change the pointer of the base node’s parent to a new base node with the
updated leaf container. If successful, the CAS operation is the linearization point of the operation;
if unsuccessful, the found base node has already been linked out from the tree by some other
operation, and the whole operation is retried.
Note that the new base node gets a value for its stat field that is based on the replaced node’s

stat field and type as well as on whether conflicting operations have been detected (i.e., a base
node which was not replaceable has been found or a try_replace call has failed; see line 116
and the new_stat function on lines 88–98). The new_stat function will be described in more
5When we compared experimental results of our LFCA tree with and without the functionality to temporarily disable joins,
we did not observe any performance difference.

ACM Trans. Parallel Comput., Vol. 42, No. 1, Article 42. Publication date: April 2021.



42:10 Kjell Winblad, Konstantinos Sagonas, and Bengt Jonsson

1 // Constants
2 #define CONT_CONTRIB 250 // Added to stat counter when base is contended
3 #define LOW_CONT_CONTRIB 1 // Added to stat counter when base is uncontended
4 #define RANGE_CONTRIB 100 // Added to stat when part of query with > 1 bases
5 #define HIGH_CONT 1000 // Limit for doing high-contention split
6 #define LOW_CONT -1000 // Limit for doing low-contention join
7 #define NOT_FOUND (node*)1 // Value representing that a node was not found
8 #define NOT_SET (treap*)1// Indicates that a result storage is not set
9 #define PREPARING (node*)0 // Represents that a join is ongoing
10 #define DONE (node*)1 // Represents that a join is completed
11 #define ABORTED (node*)2 // Represents that a join is aborted
12 #define NO_JOIN_LIMIT 500 // Threshold to ensure lookups are wait-free
13 enum contention_info { contended, uncontended, noinfo }
14 // Data Structures
15 struct route_node {
16 int key; // Split key
17 atomic node* left; // < key
18 atomic node* right; // >= key
19 atomic bool valid = true; // Used for join
20 atomic node* join_id = NULL; // ...
21 }
22 struct normal_base {
23 treap* data = empty_treap(); // Items in the set
24 int stat = 0; // Statistics variable
25 node* parent = NULL; // Parent node or NULL (root)
26 }
27 struct join_main with_fields_from normal_base {
28 node* neigh1; // First (not joined) neighbor base
29 atomic node* neigh2 = PREPARING; // Field for state of join and joined neighbor
30 node* gparent; // Grand parent
31 node* otherb; // Other branch
32 }
33 struct join_neighbor with_fields_from normal_base {
34 node* main_node // The main node for the join
35 }
36 struct rs { // Result storage for range queries
37 atomic treap* result = NOT_SET; // Set after the linearization of range query
38 atomic bool more_than_one_base = false; // Helps adaptation know if > 1 bases
39 }
40 struct range_base with_fields_from normal_base {
41 int lo; int hi; // Low and high key
42 rs* storage; // The result storage that is set after completion
43 }
44 enum node_type {
45 route, normal, join_main, join_neighbor, range
46 }
47 struct node with_fields_from normal_base, range_base, join_main, join_neighbor {
48 node_type type;
49 }
50 struct lfcatree { // The LFCA tree data structure
51 atomic node* root = new node {type = normal_base};
52 atomic uint no_join_count = 0;
53 }
54 // Help functions
55 bool try_replace(lfcatree* t, node* b, node* new_b) { // Try CAS b with new_b
56 if ( b->parent == NULL )
57 return CAS(&t->root, b, new_b); // Parent is root
58 else if (aload(&b->parent->left) == b)
59 return CAS(&b->parent->left, b, new_b); // b is left child of parent
60 else if (aload(&b->parent->right) == b)
61 return CAS(&b->parent->right, b, new_b); // b is right child of parent
62 else return false;
63 }
64 bool is_replaceable(node* n) { // Check if it is allowed to replace base n
65 return (n->type == normal || // Yes, if n is a normal base node
66 (n->type == join_main && // Yes, if n is aborted join_main node
67 aload(&n->neigh2) == ABORTED) ||
68 (n->type == join_neighbor && // Yes, if aborted or completed join_neighbor
69 (aload(&n->main_node->neigh2) == ABORTED ||
70 aload(&n->main_node->neigh2) == DONE)) ||
71 (n->type == range && // Yes, if range node belonging to a completed query
72 aload(&n->storage->result) != NOT_SET));
73 }

Fig. 4. Data structures and help functions.
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74 // Help functions
75 void help_if_needed(lfcatree* t, node* n) { // Help op make n replaceable if needed
76 if (n->type == join_neighbor) n = n->main_node; // main node describes the join
77 if (n->type == join_main &&
78 aload(&n->neigh2) == PREPARING) {
79 CAS(&n->neigh2, PREPARING, ABORTED); // Join is preparing so try to abort join
80 } else if (n->type == join_main &&
81 aload(&n->neigh2) > ABORTED) {
82 complete_join(t, n); // Join finished preparation so help complete join
83 } else if (n->type == range &&
84 aload(&n->storage->result) == NOT_SET) {
85 all_in_range(t, n->lo, n->hi, n->storage); // Help unfinished range query
86 }
87 }
88 int new_stat(node* n, contention_info info) { // Compute statistics value for n
89 int range_sub = 0; // Subtract to reduce chance of queries that need > 1 base node
90 if (n->type == range &&
91 aload(&n->storage->more_than_one_base))
92 range_sub = RANGE_CONTRIB; // Belonged to a query that needed > 1 base node
93 if (info == contended && n->stat <= HIGH_CONT) {
94 return n->stat + CONT_CONTRIB - range_sub; // Add if contended
95 } else if (info == uncontended && n->stat >= LOW_CONT) {
96 return n->stat - LOW_CONT_CONTRIB - range_sub; // Subtract if uncontended
97 } else return n->stat - range_sub;
98 }
99 void adapt_if_needed(lfcatree* t, node* b) {
100 if (!is_replaceable(b)) return; // b is irreplaceable: abort
101 else if (new_stat(b, noinfo) > HIGH_CONT)
102 high_contention_adaptation(t, b); // Reached high-contention adaptation limit
103 else if (new_stat(b, noinfo) < LOW_CONT)
104 low_contention_adaptation(t, b); // Reached low-contention adaptation limit
105 }
106 bool do_update(lfcatree* t, treap*(*u)(treap*,int,bool*), int i) {
107 contention_info cont_info = uncontended;
108 while (true) { // Loop until the update is completed
109 node* base = find_base_node(t, i); // Find the correct base node for i
110 if (is_replaceable(base)) { // Attempt to replace base, if base is replaceable
111 bool res;
112 node* newb = new node { // Create newb to replace base
113 type = normal,
114 parent = base->parent,
115 data = u(base->data, i, &res), // Apply the update operation u
116 stat = new_stat(base, cont_info) // Use new_stat to get updated stat value
117 }
118 if (try_replace(t, base, newb)) { // Attempt to replace base with newb using CAS
119 adapt_if_needed(t, newb); // Adapt if heuristics suggests this is beneficial
120 return res; // Return value indicating if i existed or not
121 }
122 }
123 cont_info = contended; // Record that contention has been seen
124 help_if_needed(t, base); // Help make base replaceable if needed
125 }
126 }
127 // Public interface
128 bool insert(lfcatree* t, int i) {
129 return do_update(t, &treap_insert, i); // treap_insert = immutable treap insert
130 }
131 bool remove(lfcatree* t, int i) {
132 return do_update(t, &treap_remove, i); // treap_remove = immutable treap remove
133 }
134 bool lookup(lfcatree* t, int i) {
135 node* base = find_base_node(t, i);
136 return treap_lookup(base->data, i);
137 }
138 void query(lfcatree* t, int lo, int hi,
139 void (*trav)(int, void*), void* aux) {
140 treap* result = all_in_range(t, lo, hi, NULL); // Get snapshot of items in range
141 treap_query(result, lo, hi, trav, aux); // Call trav(i, aux) for all i in range
142 }

Fig. 5. Help functions and public interface.
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detail later in this section when we describe adaptations. Once a base node has been successfully
replaced, the update operation calls the function adapt_if_needed to adapt the granularity of the
data structure if the heuristics suggests that this is beneficial (line 119 and lines 99–105), before
returning. Adaptations and the adapt_if_needed function (lines 99–105) will be described in detail
after we have described range queries.

Range query. The range query operation (lines 138–142) first calls all_in_range (line 140) to
create a snapshot of all base nodes in the requested range and then traverses the snapshot to
complete the range query (line 141). We focus on the all_in_range function (lines 161–214) that
does most of the range query operation’s work.
First, note that the all_in_range function is not called only by the range query operation. It

can also be called by operations that need to make base nodes which are made irreplaceable by
an ongoing range query replaceable; see help_if_needed (lines 75–87). The parameter called
help_s (line 161) is NULL when called by a range query operation. Otherwise, it is the result
storage structure to which a helping thread should write the result of the range query, if the helper
completes the range query. There is only one result storage for a particular range query. The result
storage is also used to check if a base node of type range belongs to this range query (line 191), and
to check if another thread has completed the range query (line 189). We will first give a high-level
description of the all_in_range function, and then describe the traversal in more detail.
Function all_in_range (lines 161–214) goes through all base nodes that may contain items in

the range in ascending key order, to replace them, using a CAS, by base nodes of type range (thus
making them temporally irreplaceable). This traversal of all the base nodes in the range is done on
lines 167 to 206. The all_in_range function then collects all the items in the traversed base nodes
into a new data structure (lines 207–208). This resulting data structure is then written to the result
storage, if this has not been done by any helping thread already (line 209).
A range query’s linearization point is the execution step when the result field of its result

storage is set in a successful CAS on line 210. Just before the replacement happens, all concerned
base nodes have been replaced and are thus irreplaceable. Directly after the result storage has been
set, these base nodes become replaceable, as a range node is only irreplaceable if its result field is
not set (line 72).

A special field in the result storage associated with the range query is set to a value indicating if
more than one base node were needed to complete the range query on line 210. This information is
used by the new_stat function (lines 88–98) when calculating a statistics value for a base node.
Finally, before all_in_range returns, the adapt_if_needed function is called on a random base
node in the range to adapt the structure of the tree, if the heuristics suggests that this is beneficial
(line 211).

Let us now discuss the code that finds and replaces the base nodes that may contain keys between
lo and hi in more detail (lines 167–206). The base nodes are found by an in-order traversal of
the concerned portion of the tree. The first base node in the range is found on line 167. The
find_base_stack function that is called on line 167 also populates the search stack. We then check
if this call to all_in_range is to help a range query complete (line 168). If this is the case and the
base node that we found does not belong to this range query, we know that the range query has
already completed, so we can return on line 170. Otherwise, we set the result storage for the call
to the one given as a parameter on line 171. When we are not helping an already started range
query, the first base node in the range needs to be replaced and we need to create a new storage
(lines 172–176). When the base node that we are trying to replace is already removed from the tree,
we have to try again (line 175). An optimization that we have applied can be seen on line 178. It
makes use of the fact that we can piggyback on the first base node’s range query if this base node
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143 node* find_next_base_stack(stack* s) {
144 node* base = pop(s);
145 node* n = top(s);
146 if (n == NULL) return NULL;
147 if (aload(&n->left) == base)
148 return leftmost_and_stack(aload(&n->right), s);
149 int be_greater_than = n->key;
150 while (n != NULL) {
151 if (aload(&n->valid) && n->key > be_greater_than)// Skip invalid route nodes
152 return leftmost_and_stack(aload(&n->right), s);
153 else { pop(s); n = top(s); }
154 }
155 return NULL;
156 }
157 node* new_range_base(node* b, int lo, int hi, rs* s) {
158 return new node {... = b, // Assign fields from b
159 type = range_base, lo = lo, hi = hi, storage = s};
160 }
161 treap* all_in_range(lfcatree* t, int lo, int hi, rs* help_s) {
162 stack* s = new_stack();
163 stack* backup_s = new_stack();
164 stack* done = new_stack();
165 node* b;
166 rs* my_s;
167 find_first:b = find_base_stack(aload(&t->root),lo,s);// First base in range
168 if (help_s != NULL) { // Are we helping?
169 if (b->type != range || help_s != b->storage) {
170 return aload(&help_s->result); // Helping and b does not belong to query
171 } else my_s = help_s; // my_s is the storage for the query we are helping
172 } else if (is_replaceable(b)) { // We can try to replace b
173 my_s = new rs;
174 node* n = new_range_base(b, lo, hi, my_s);
175 if (!try_replace(t, b, n)) goto find_first; // Try again if unsuccessful
176 replace_top(s, n); // Replacement successful (change top of stack)
177 } else if ( b->type == range && b->hi >= hi) {
178 return all_in_range(t, b->lo, b->hi, b->storage); // Piggyback
179 } else {
180 help_if_needed(t, b); // Help the operation that has made b irreplaceable
181 goto find_first; // Try to find first base node in range again
182 }
183 while (true) { // Find remaining base nodes
184 push(done, b); // Add current b to done
185 copy_state_to(s, backup_s); // Backup s in case we have to retry
186 if (!empty(b->data) && max(b->data) >= hi) break; // Done
187 find_next_base_node: b = find_next_base_stack(s); // Find next base node
188 if (b == NULL) break; // Done, end of tree
189 else if (aload(&my_s->result) != NOT_SET) {
190 return aload(&my_s->result); // Done, we have been helped
191 } else if (b->type == range && b->storage == my_s) {
192 continue; // b belongs to this query (another thread helped)
193 } else if (is_replaceable(b)) {
194 node* n = new_range_base(b, lo, hi, my_s);
195 if (try_replace(t, b, n)) { // Try to replace b with irreplaceable node n
196 replace_top(s, n); continue; // Replacement successful
197 } else {
198 copy_state_to(backup_s, s);
199 goto find_next_base_node; // Try again
200 }
201 } else {
202 help_if_needed(t, b); // Help the operation that has made b irreplaceable
203 copy_state_to(backup_s, s);
204 goto find_next_base_node; // Try again
205 }
206 }
207 treap* res = done->array[0]->data;
208 for (int i = 1; i < done->size; i++) res = treap_join(res, done->array[i]->data);
209 if (CAS(&my_s->result, NOT_SET, res)) { // Set result storage
210 if (done->size > 1) astore(&my_s->more_than_one_base, true); // For heuristics
211 adapt_if_needed(t, done->array[thread_local_random_int() % done->size]);
212 }
213 return aload(&my_s->result);
214 }

Fig. 6. Helper function for the range query operation.
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belongs to an uncompleted range query that has a maximum key which is larger or equal to hi. We
help the operation that is working with b and then try to find the first base node in the range again,
if b is irreplaceable (line 180). Lines 183–206 repeat a similar process as we have done for the first
base node in the range until all base nodes in the range are covered. Notice that we are taking a
backup of the current search stack before we try to find the next base node (line 185). This is done
to make it easier to recover the old stack when we need to retry the search for the next base node.

Adaptations. The granularity of the immutable parts of a LFCA tree can be changed with two
different types of adaptations. The first one, called high-contention adaptation (or split), splits the
items in a base node into two new base nodes in order to decrease the contention in a part of the
tree where the contention has been high. The second type, called low-contention adaptation (or join),
joins the contents of two base nodes into a new base node, in order to improve the performance of
range queries. Joins can potentially also improve the performance of the LFCA tree for uncontended
single-item operations as a join can make the search paths to items shorter (because the part of
the tree consisting of route nodes may be unbalanced), but joins may also make updates slightly
more expensive (due to increased amount of memory allocation and copying when creating new
instances of the leaf containers). An adaptation is initiated by the function adapt_if_needed
(lines 99–105) that is executed by the update operations (line 119) and by range queries (line 211).
Whether an adaptation should occur and what kind of adaptation it should be is decided based
on a statistics value calculated by the new_stat function (lines 88–98). High-contention or low-
contention adaptation is initiated if this statistics value is above (line 101) or below (line 103) a
threshold, respectively. The new_stat function calculates the statistics value based on its two
parameters: a base node and a parameter that is encoding information about detected contention.
The core idea behind the heuristics is to make the synchronization more fine-grained in parts of
the data structure where contention has been common and to make it more coarse-grained in parts
where contention has been uncommon or where range queries often need to access more than one
base node.

If no contention information is given to the new_stat function (as is the case when this function
is called by adapt_if_needed), then the statistics value is the value of the stat field in the base
node subtracted by x , where x is a positive constant if it is a base node of type range whose
corresponding range query was completed by reading more than one base node (lines 90–92). When
update operations call new_stat to get the value for the stat field of the new base node they create,
they also pass information whether contention was detected (cf. line 116). This information is used
to increase the statistics value if contention has been detected (line 94), and decrease the statistics
value otherwise (line 96). The constant that is used to increase the statistics value when contention
is detected is larger than the constant that decreases the statistics value when no contention has
been detected, so that adaptations happen quickly when contention is common and also to avoid
frequent adaptations back-and-forth. The constants used in our heuristics can be found in lines 2
to 6.

High-contention adaptation. The function for high-contention adaptation (lines 276–286) splits
the content of a base node b into two new base nodes that are linked together with a route node r.
The function attempts to replace the base node b with r using a CAS operation (line 285). This
replacement is atomic to other operations and does not change the contents of the tree.

Low-contention adaptation. The function for low-contention adaptation (lines 266–275) intuitively
replaces two neighboring base nodes b and n0 by a new node n2, which contains the union of the
items in b and n0. It splices out b and its parent route node from the tree and replaces n0 by n2.
Figure 7 illustrates the main steps of a successful low-contention adaptation.
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(a) Before join (b) Replace b (c) Replace n0 (d) Store join info

(e) Secure join (f) Replace n1 (g) Splice out 40 (h) Let m die

Fig. 7. Illustration of the main steps of the low-contention join operation. A route node with a green tick
mark (✓) has its valid field set to true and a route node with a red mark (✕) has its valid field set to false.

A successful low-contention adaptation (lines 266–275) is done in two phases. The first phase,
illustrated in Figs. 7a to 7e and performed by secure_join_left in lines 215–248 (or the corre-
sponding function for the right case), “marks” the part of the tree that will be involved in the join,
to prevent other threads from changing it while the join is ongoing. Other threads cannot help
complete this phase, but system-wide-progress is guaranteed as other threads can interrupt this
phase by killing the join (line 79). The second phase (Figs. 7f to 7h), which is performed by function
complete_join (lines 249–265), is executed only if the first phase was successful (line 271). Other
threads can help the join to complete this second phase (line 82). The second phase completes the
join by splicing out b and its parent and replaces n1 by n2.

We will describe how the low-contention adaptation works by going through a successful join of
the base node b in Fig. 7a. As b is the left child of its parent, secure_join_left is called (line 269).
Lines 216–221 find the neighbor n0 of b (the leftmost leaf of b’s parent’s right branch) and replace b
with a new base node m of type join_main (Fig. 7b). Note that the join would have aborted if n0
would have been irreplaceable or if the replacement of b would have failed (which would have
meant that b was no longer in the tree). Next, n0 is replaced with a new base node n1 of type
join_neighbor, which is linked to m with the field main_node (line 226 and Fig. 7c). Both m and n1
are now irreplaceable (lines 64–73). The only way for other threads to make them replaceable at
this point is to set the field neigh2 of m to ABORTED. On lines 227–231, the join_id field of both the
parent and the grandparent of m is set to the reference m to make sure that they are not modified by
any other join operation. Using the reference m, which is a unique identifier for the join operation,
to mark the route nodes involved in the join makes it easy for threads to collaboratively change
this field in the second phase. In lines 232–234, more information that function complete_join
needs to finish the operation is stored in m (cf. Fig. 7d). The final step of the first phase is done in
lines 235-241 (cf. Fig. 7e). These lines attempt to set m’s field neigh2 to a base node n2 which can
replace both m and n1 using a CAS operation. If this CAS is successful, we know that the following
are true directly after the change:
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215 node* secure_join_left(lfcatree* t, node* b) { // secure_join_right is symmetric
216 node* n0 = leftmost(aload(&b->parent->right)); // leftmost base of parent->right
217 if (!is_replaceable(n0)) return NULL; // Give up if n0 is irreplaceable
218 node* m = new node { // Create join_main base
219 ... = b, // assign fields from b
220 type = join_main};
221 if (!CAS(&b->parent->left, b, m)) return NULL; // Give up if CAS fails
222 node* n1 = new node { // Create join_neighbor base
223 ... = n0, // assign fields from n0
224 type = join_neighbor,
225 main_node = m};
226 if (!try_replace(t, n0, n1)) goto fail0; // Abort and give up if CAS fails
227 if (!CAS(&m->parent->join_id, NULL, m)) goto fail0; // " " " " " " "
228 node* gparent = parent_of(t, m->parent); // grand parent of m
229 if (gparent == NOT_FOUND ||
230 (gparent != NULL && // Abort and give up if CAS on next line fails
231 !CAS(&gparent->join_id,NULL,m))) goto fail1;
232 m->gparent = gparent; // Store info about join op in m
233 m->otherb = aload(&m->parent->right);
234 m->neigh1 = n1;
235 node* joinedp = m->otherb == n1 ? gparent: n1->parent; // Parent of n2 (Fig. 7)
236 if (CAS(&m->neigh2, PREPARING,
237 new node {... = n1, // assign fields from n1
238 type = join_neighbor,
239 parent = joinedp,
240 main_node = m,
241 data = treap_join(m, n1)}))
242 return m; // Join secured (complete_join will complete join)
243 if (gparent == NULL) goto fail1; // Abort and give up
244 astore(&gparent->join_id, NULL);
245 fail1: astore(&m->parent->join_id, NULL);
246 fail0: astore(&m->neigh2, ABORTED);
247 return NULL;
248 }
249 void complete_join(lfcatree* t, node* m) { // Complete secured join
250 node* n2 = aload(&m->neigh2);
251 if (n2 == DONE) return; // Another thread has helped
252 try_replace(t, m->neigh1, n2);
253 astore(&m->parent->valid, false); // Mark m->parent invalid (will/has spliced out)
254 node* replacement =
255 m->otherb == m->neigh1 ? n2 : m->otherb;
256 if (m->gparent == NULL) { // The following lines splices out m->parent
257 CAS(&t->root, m->parent, replacement);
258 } else if (aload(&m->gparent->left) == m->parent) {
259 CAS(&m->gparent->left, m->parent, replacement);
260 CAS(&m->gparent->join_id, m, NULL);
261 } else if (aload(&m->gparent->right) == m->parent) {
262 ... // Symmetric case
263 }
264 astore(&m->neigh2, DONE); // Mark join as completed
265 }
266 void low_contention_adaptation(lfcatree* t, node* b) {
267 if (b->parent == NULL ||
268 aload(&t->no_join_count) > 0) return; // Trick to make lookup wait-free
269 if (aload(&b->parent->left) == b) {
270 node* m = secure_join_left(t, b); // Try to make sure join will happen
271 if (m != NULL) complete_join(t, m); // Complete join if secured successfully
272 } else if (aload(&b->parent->right) == b) {
273 ... // Symmetric case
274 }
275 }
276 void high_contention_adaptation(lfcatree* t, node* b) {
277 if (less_than_two_items(b->data)) return; // Do not split if b has < 2 items
278 node* r = new node { // Create route node that will replace base node b
279 type = route,
280 key = split_key(b->data),
281 left = new node{type = normal, parent= r, stat= 0,
282 data = split_left(b->data)}),
283 right = ..., // Symmetric case
284 valid = true};
285 try_replace(t, b, r); // Replace b with the new route node
286 }

Fig. 8. Low and high contention adaptation.
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287 node* find_base_node(lfcatree* t, int i) { // Find base node with i in its range
288 uint traversed_nodes = 0;
289 node* n = aload(&t->root);
290 bool no_join_reached = false;
291 while (n->type == route) { // Binary search in t to find base node with i in range
292 if (i < n->key) {
293 n = aload(&n->left);
294 } else {
295 n = aload(&n->right);
296 }
297 traversed_nodes++;
298 if (traversed_nodes == NO_JOIN_LIMIT) { // For trick to make lookup wait-free
299 atomic_add(&t->no_join_count, 1);
300 no_join_reached = true;
301 n = aload(&t->root);
302 }
303 }
304 if (no_join_reached) { // For trick to make lookup wait-free
305 atomic_sub(&t->no_join_count, 1);
306 }
307 return n;
308 }
309 node* find_base_stack(node* n, int i, stack* s) { // For all_in_range
310 stack_reset(s); // Similar to find_base_node but records search path in s
311 while (n->type == route) {
312 push(s, n);
313 if (i < n->key) {
314 n = aload(&n->left);
315 } else {
316 n = aload(&n->right);
317 }
318 }
319 push(s, n);
320 return n;
321 }
322 node* leftmost_and_stack(node* n, stack* s) { // For all_in_range
323 while (n->type == route) { // Find leftmost base in n and record search path in s
324 push(s, n);
325 n = aload(&n->left);
326 }
327 push(s, n);
328 return n;
329 }
330 node* parent_of(lfcatree* t, node* n) { // Parent of route node (secure_join_left)
331 node* prev_node = NULL; // Return NULL if parent is the root
332 node* curr_node = aload(&t->root);
333 while (curr_node != n && curr_node->type == route) {
334 prev_node = curr_node;
335 if (n->key < curr_node->key) {
336 curr_node = aload(&curr_node->left);
337 } else {
338 curr_node = aload(&curr_node->right);
339 }
340 }
341 if (curr_node->type != route) {
342 return NOT_FOUND; // Return NOT_FOUND if n is not in tree
343 }
344 return prev_node;
345 }

Fig. 9. Auxiliary code for the LFCA tree.

• Both m and n1 must have been irreplaceable at the time of the change, as this means that the
field neigh2 has not been set to ABORTED by any other thread.

• The node referenced by m’s parent field is the parent of m, the node referenced by m’s gparent
field is the grandparent of m, and m’s field otherb is set to the sibling of m. This follows from
the observations that (i) the only type of change that can happen to a path from the root of
the tree to an irreplaceable base node that is inside the tree is that a route node gets spliced
out (which can only happen if both the spliced out node and its parent have their join_id
fields set to something different from NULL), (ii) the join_id field of the spliced out node is

ACM Trans. Parallel Comput., Vol. 42, No. 1, Article 42. Publication date: April 2021.



42:18 Kjell Winblad, Konstantinos Sagonas, and Bengt Jonsson

never set to NULL again, and (iii) no other threads can change the join_id field of parent
and gparent while the neigh2 field of m is set to PREPARING.

Once the neigh2 field of m has been successfully set to the new base node, the first phase of the
operation is finished, and the second phase can start. Note that the changes done by the operation
would have been rolled back on lines 243–246 if some CAS operations had failed.

As mentioned, the second phase of a low-contention adaptation is done by complete_join
(lines 249–265). Multiple threads can execute this function with the same base node of type
join_main as input parameter. This happens when another thread needs to change a base node
of type join_main or join_neighbor and the join associated with the base node has finished the
first phase but not yet the second (which means that the base node is irreplaceable; see lines 64–73).
That other thread will call the help_if_needed function, that in turn will call complete_join
(line 82). The first modification that is done by the second phase is to replace the base node n1
with the base node n2 that is referenced to by the field neigh2 in m which was set in the first phase
(cf. Fig. 7f). Note that any thread that executes complete_join with the base node m as parameter
can perform this step as it is done with a CAS operation (line 252 and the try_replace function).
The next change is to set the valid flag of the parent to false (line 253). The sole purpose of this is
so that the range query operation can avoid traversing branches that are no longer relevant for
the range query (line 151). On lines 254–255 it is determined what will be the replacement of m’s
parent. If m and n2 share the same parent (in this case b->otherb, which is set on line 233, will
be equal to n1, a.k.a. b->neigh1) the replacement will be n2, otherwise the replacement will be
the branch of the parent that does not lead to m. (This case is illustrated in Fig. 7f.) The parent of m
and m itself are spliced out from the tree on lines 256–263 (cf. Fig. 7g). Note that only one thread
can succeed with the splice out as it is done with a CAS operation. Likewise, only one thread can
succeed in resetting the join_id of the grandparent of m (line 260). The only remaining step after
these lines have been executed is to set the neigh2 field of m to DONE, which is done on line 264
(cf. Fig. 7h). This is done to indicate that the join has completed and to make n2 replaceable.

5 CORRECTNESS
In this section, we present a proof that the algorithm is correct, in the sense of being a linearizable
implementation of a set of itemswhich also supports range queries, and that it has the stated progress
guarantees. Linearizability is considered in Section 5.1, and progress properties in Section 5.2.

5.1 Linearizability
Linearizability [Herlihy and Wing 1990] is a standard correctness criterion for concurrent data
structure implementations. It states that each operation on a concurrent data structure can be
considered as being performed atomically at some point, called the linearization point, between its
invocation and return. Our proof of linearizability follows the following standard pattern.

We first define a function from global states of the data structure to abstract logical states. Each
abstract logical state is a set of items, which is the client threads’ view of the current contents of
the data structure. Having been invoked, each operation performs a sequence of execution steps
before it returns. For each such sequence of execution steps, we prove that

• one of the execution steps, called the linearization point, affects the abstract logical state
according to the sequential semantics of the operation,

• the other execution steps (which are not at the linearization point) leave the abstract logical
state unchanged, and

• the return value of the operation reflects the abstract logical state at its linearization point.
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For instance, an execution of a lookup operation which returns true must contain a linearization
point at which the item is contained in the abstract logical state.
To support the linearizability proof, we formulate a number of inductive invariants of the

algorithm which can be used when establishing that the abstract logical state is affected in the
appropriate way at linearization points, and is unchanged otherwise. These invariants must be
inductive, i.e., we must prove that they are preserved by each execution step.
In this section, we first define the function from states of the data structure to abstract logical

states (Section 5.1.1), thereafter we define supporting inductive invariants (Section 5.1.2), and finally
we prove that each operation is linearizable (Section 5.1.3).

5.1.1 Definition of Abstract Logical States. Let us first define a function from global states of the
algorithm to abstract logical states. This function must of course exploit the binary search tree
structure of the LFCA tree. The route nodes in this binary search tree partitions the set of possible
items (here the set of integers) so that each base node is responsible for an interval. First, define a
route or base node to be reachable from ns (in a given global state) if it can be reached from ns by
following left and right pointers. Next, define a function relrange(ns , nt ) from pairs of nodes ns ,
nt to intervals, in such a way that a search for an item i, starting from ns will visit a node nt in
the search tree precisely when i is in relrange(ns , nt ) (provided that the tree remains unchanged
during the traversal). The function relrange is defined as follows.

• relrange(n, n) = [−∞,∞].
• If nt is a route node, reachable from ns , with relrange(ns , nt ) = [lo, hi], then
– relrange(ns , nt−>left) = [lo, min(nt−>key − 1, hi)], and
– relrange(ns , nt−>right) = [max(nt−>key, lo), hi].

• If nt is not reachable from ns , then relrange(ns , nt ) = ∅.
Here [lo, hi] denotes the closed interval from lo to hi, which we also view as a set of integers.
Themin andmax operations above are used for the case that the key value is outside [lo, hi]. Note
that we slightly abuse terminology by referring to n as a node rather than as a pointer to a node.
Define a route or base node to be reachable if it is reachable from the root of the tree. Define a

base node n, to be replaceable if is_replaceable(n) returns true (lines 64–73). For a base node n,
define contents(n) as the set of items in n’s leaf container. For a node n, define its range, denoted
range(n), as relrange(t−>root, n). For a given global state, we define the abstract state of each
node n in the tree, denoted abstrstate(n), as follows.

• If n is a base node, then abstrstate(n) = contents(n) ∩ range(n).
• If n is a route node, then abstrstate(n) = abstrstate(n−>left) ∪ abstrstate(n−>right).

It follows that abstrstate(n) ⊆ range(n). This can be proven by induction over the tree structure of
nodes, as follows.

• For base nodes n, it follows directly from the definition of abstrstate(n).
• For route nodes, it follows from the definition of abstrstate(n) for route nodes, and observing
that by the second bullet in the definition of relrange we have range(n) = range(n−>left) ∪
range(n−>right).

We define the abstract state of an LFCA tree t as abstrstate(t−>root), i.e., as the union of the
abstract states of the reachable base nodes.

From the preceding definitions, we can now prove a property saying how the responsibility for
storing items in the abstract state is partitioned among the nodes, namely: that for all items i and
nodes n:

i ∈ range(n) ⇒ (i ∈ abstrstate(t−>root) ⇔ i ∈ abstrstate(n)) (PartAbsState)
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To prove this property, we first note that the corresponding property for adjacent nodes, i.e., for all
items i and route nodes n:

i ∈ range(n−>left) ⇒ (i ∈ abstrstate(n) ⇔ i ∈ abstrstate(n−>left))

follows from the definition of abstrstate(n) for route nodes n together with the just established
property abstrstate(n−>left) ⊆ range(n−>left). This property together with the corresponding
property for n−>right is then used to establish Property PartAbsState by induction over the length
of the path from the root node to n.

5.1.2 Definition of Inductive Invariants. We next define a global invariant as the conjunction of
six invariants (I1–I6), which together capture important properties of LFCA trees. The first four
invariants (I1, I2, I3, and I4) state general properties about nodes. Invariant I5 formulates an essential
property of the function find_base_node, while Invariant I6 formulates an essential property of
range queries. The invariants are:

I1. If a route node n is unreachable, then its valid field is set to false, and its join_id field is
set to the identity of a child base node of type join_main, whose field neigh2 points to a
node of type join_neighbor.

I2. A base node n is reachable if it is obtained as either t−>root, as n−>parent−>left, or as
n−>parent−>right, and furthermore is not of type join_mainwith a neigh2 field pointing
to a node of type join_neighbor and with a parent whose valid field is set to false.

I3. contents(n) ⊆ range(n)whenever n is a reachable base node that is not of type join_neighbor,
nor obtained as n−>main−>neigh2.

I4. Whenever n is a reachable route node, then n−>key is in range(n).
I5. During each execution of find_base_node, the value of its argument i and local node

variable n, declared at line 289, satisfy the property that: if n is reachable then (i) i ∈ range(n),
and (ii) for the unique base node nt with i ∈ relrange(n, nt ), we have i ∈ range(nt ).

I6. For each result storage structure my_s whose result field is NOT_SET, the base nodes of type
range whose storage field is my_s are all reachable and have the same parameters lo and
hi; moreover the union of their ranges forms a contiguous interval whose lower end is at
most lo.

We comment that Invariant I2 is central for establishing correctness of many operations that update
the abstract state of the tree. For instance, an insert operation inserts a new element by replacing a
base node n. The operation succeeds only if n is replaceable, and is either obtained as t−>root,
as n−>parent−>left, or as n−>parent−>right. By Invariant I2, n is then reachable, whence by
Invariant I5 we have i ∈ range(n). Hence, Property PartAbsState ensures that the inserted element
will correctly enter the abstract state of the tree.

The proof of the six invariants involves to check that they are preserved by each execution
step of the algorithm. To support this check, we state and prove general properties that constrain
how the global state can be modified by any execution step. These properties, which will be used
both when establishing the above invariants and when proving each operation linearizable, are as
follows.
P1. A replaceable base node cannot become irreplaceable (but can be replaced by an irreplaceable

node).
P2. For a reachable route or base node n, range(n) never decreases as long as n is reachable.
P3. An unreachable node cannot become reachable. Furthermore, no field or data in an unreach-

able node is ever changed.
P4. The pointer from a route node n1 to a route node n2 can change only if the valid field of n2

is false, and if both n1 and n2 have their join_id fields set to the identity of a child of n2
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that is an irreplaceable base node of type join_main, whose field neigh2 points to a node of
type join_neighbor.

Let us provide the arguments why these properties hold.
P1: This property follows by inspecting the definition of function is_replaceable (lines 64–73),

and noticing that no statement in the algorithm changes a field of a base node in such a way
that makes a replaceable base become irreplaceable.

P2: This property follows by checking that the key field of a node never changes, and that the
only statements that changes a left or right pointer to another node are either
– a CAS operation that replaces a replaceable base node (at lines 55–63); this leaves range
unchanged for all nodes except the replaced one (which becomes unreachable), or

– the splicing out of a route node in the join operation (lines 256–263); this can increase
range of some nodes, and will be considered below when analyzing the join operation.

P3: This property follows by checking that the only statements that change a left or right
pointer to another node are either
– a CAS operation that replaces a replaceable base node by a fresh one, thus satisfying P3, or
– the splicing out operation of the join operation (lines 256–263); when analyzing the join
operation below, we will show that this does not make any unreachable node reachable.

P4: The only change to a pointer to a route node is in the join operation, so we establish this
property when analyzing the join operation.

We now establish the above six invariants jointly as follows.
I1: The invariant follows directly from Property P4, using Property P3.
I2: We first consider how a base node can enter the tree. Whenever a base node n is linked to a

route node, this is done by replacing an existing base node using a CAS (at lines 55–63). We
note that the replaced node cannot be of type join_main with a neigh2 pointing to another
node, so it was reachable; hence the replacing node must be reachable. We then consider how
a base node n can be made unreachable. This can happen in two ways:
– It can be replaced by another node using a CAS (at lines 55–63), in which case it is no
longer obtained as t−>root, as n−>parent−>left, or as n−>parent−>right.

– Its parent route node can be made unreachable. By Invariant I1, the unreachable parent
node has its valid field is set to false, and a child of type join_main with a neigh2 field
pointing to a node of type join_neighbor. From this, we infer that the child base node
must be n, thus concluding the proof.

I3: Whenever the insert operation inserts a new item i into the leaf container of n, then i is in
range(n): this is proven when analyzing the insert operation. Invariant I3 then follows from
Property P2. Since range(n) can be changed by the join operation, we will show that join
preserves Invariant I3 when analyzing low-contention adaptation (page 23).

I4: Whenever a new route node r is created in a high-contention adaptation operation, then the
generated key is in range(r): this will be shown when analyzing high-contention adaptation
(page 23). The invariant then follows using Property P2.

I5: We note that property (i) is trivially preserved by execution steps of find_base_node (where
the crucial ones are the traversal steps in lines 293 and 295), and by execution steps of other
operations by Property P2. Property (ii) follows from property (i) by using the definition of
relrange , without any need for inspecting the algorithm.

I6: This will be established when analyzing range queries (page 22).

5.1.3 Establishing Linearizability of Operations. We now continue to prove linearizability of each
operation.
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Lookup. The lookup operation for item i uses find_base_node to locate a base node nb and
thereafter checks whether i is in nb ’s leaf container. In the case that nb is reachable when
find_base_node traverses the link to nb , then we take this traversal step (the execution of line 293
or 295 that reaches nb ) as the linearization point, since the leaf container that will be inspected
by treap_lookup is the one associated with nb . From Invariant I5, we infer i ∈ range(n) at the
linearization point, which by Property PartAbsState ensures that the correct result is returned. (Note
that there can be many update operations that replace nb after the linearization point and before
the lookup operation returns.) In the case that nb is not reachable when find_base_node traverses
the link to nb , we take as linearization point the step in the algorithm that caused the route node n
which was then visited by find_base_node to become unreachable. (The only statements that can
make a route node unreachable are at lines 257, 259 and 262.) By Property P3, any node visited
by find_base_node after the linearization point does not change thereafter and, by Invariant I5
and Property PartAbsState, the lookup operation will find item i if and only if i is in the abstract
state at the linearization point. (Note that, as will be proven when analyzing the join operation
below, lines 257, 259 and 262 do not change the abstract state.) It follows that the return value of
the lookup operation is consistent with the abstract state at the linearization point.

Insert and Remove. By the test at line 110, an update operation can only replace a base node n
that is replaceable, using a CAS operation (in the try_replace function, line 55), which succeeds
only if n is pointed to by t−>root, or is obtained as n−>parent−>left or n−>parent−>right.
By Invariant I2 and Properties P1 and P2, this ensures that the replaced node is reachable when the
replacement is performed. Invariant I5 then implies that i ∈ range(n) when the CAS operation is
applied. We let the linearization point of an update operation coincide with the successful CAS
(lines 55–63). Since the operation replaces n, Property PartAbsState implies that the abstract state is
changed correctly at the linearization point. The property i ∈ range(n), together with Property P2,
also directly implies Invariant I3.

Range query. The query function (lines 138–142) first calls all_in_range (line 140) that first
replaces all base nodes in its range by nodes of type range, and thereafter collects the items in
their leaf containers into a new data structure (lines 207–208) which is then written to the result
storage (line 209). The function all_in_range can also be called by helper threads, which refer to
the range query by its uniquely defined result storage structure (created on line 173). Based on the
created result storage, the query is answered to the calling thread (line 141).

We must first establish Invariant I6. To do so, consider a particular storage structure my_s whose
result field is NOT_SET. We examine the execution steps that create or affect nodes of type range,
and whose storage field is my_s.

• We first consider the replacement of an existing base node by a new one n of type range at
line 175. This replacement is immediately preceded by the creation of a new result storage
my_s, for which n is the first base node of type range. The replacement succeeds if the
replaced base node b is reachable (this follows from Invariant I2) and if lo is in range(b)
(this follows from the fact that b is found using the function find_base_stack, which can
be proven to satisfy an invariant analogous to I5, using an analogous proof). Thus, the first
created base node of type range conforms to Invariant I6.

• We then consider the replacement of an existing base node by a new one n of type range,
whose storage is set to my_s, at line 195. This replacement succeeds if there is a preceding
node r whose storage is also set to my_s. We first conclude that the location for n is found
by the function find_next_base_stack by invoking leftmost_and_stack from the closest
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ancestor of r that reaches r by first following its left field; this follows by inspection of
find_next_base_stack, keeping in mind that
– by Invariant I4, the second conjunct on line 151 implies that we found an ancestor which
reaches r through its left field,

– if the first conjunct on line 151 is false and the second is true, then by Invariant I1 the node
n (defined on line 145) is not reachable, and its parent reaches r through its right pointer,
hence it is correct to continue the search with the parent of n.

We then note that if the replacement at line 195 succeeds, then by Invariant I2 the node r is
reachable. Furthermore, the just established properties of find_next_base_stack, together
with Property P2, imply that the range of the new node is adjacent to range(r). This concludes
the proof of Invariant I6.

We now note that done will contain precisely the replaced base nodes. We next note that line 209
is reached only if either a base node has been found which contains a data item larger than hi
(line 186), or if no more base nodes with larger data items exist in the tree (line 188). In both cases,
Invariant I6 implies that all reachable base nodes with items in the range of the query are of type
range, with the field storage set to my_s. As linearization point we now take the successful CAS
on line 210. Then, by Property PartAbsState, the range query properly reflects the abstract state at
the linearization point, which implies that the range query operation is linearizable.

High-contention adaptation. This operation atomically replaces a base node by a route node n
from which the same set of items can be reached. Thus, the operation does not change the abstract
state. We must prove Invariant I4, i.e., that the new key is in range(n). For this, we rely on the
assumption the the key returned by split_key (line 280) is in the range of items in the replaced
leaf container, and hence in range(n) by Invariant I3. This establishes Invariant I4.

Low-contention adaptation. A successful join operation replaces two reachable base nodes by a
new one whose leaf container contains the elements of the two replaced leaf containers. To prove
linearizability, we must check that no execution step of the operation changes the abstract state
(note that other concurrent operations may change the abstract state independently of the join),
and that it preserves Invariant I1 and satisfies Properties P1–P4. We need only consider a successful
join operation, i.e., one where the CAS in lines 235–241 succeeds, since otherwise the effects of the
operation are undone by resetting join_id of m’s parent and grandparent to NULL, and thereafter
making m replaceable (line 246).

Consider the case where the argument b of low_contention_adaptation is the left child of its
parent, so that secure_join_left is called (line 269). Let m, n1, and n2 be the base nodes created
by secure_join_left. To check that no execution step changes the abstract state, we will consider
each of the statements that could possibly do so; these are the operations that change the tree. We
consider each in turn:

• The replacement of b by m, using the CAS operation at line 221, succeeds only if b is
b−>parent−>left. It follows from Invariant I2 and Property P3 that b has been reachable
during the execution of secure_join_left up until it is replaced by m. By the construction
of m, we have contents(m) = contents(b), so the replacement does not change the abstract
state.

• Next we consider the replacement of n0 by n1 at line 227. Since n0 is found at line 216 and
checked to be replaceable before the replacement of b (at line 217), it follows that when the
replacement at line 227 succeeds, n0 has been replaceable since line 216. By Invariant I2,
the node n0 is still reachable when it is replaced by n1 (line 226 and Fig. 7c). Since by the
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construction we have contents(n1) = contents(n0), the replacement does not change the
abstract state.
We also show that n0 is the leftmost neighboring base node of m. This follows by noting that
n0 was the leftmost neighbor of m when n0 was found at line 216. Since by Property P2 the
range of n0 does not decrease, the interval range(n0) is still adjacent to range(m) when n0 is
replaced, which proves that n0, and hence n1 is also the leftmost neighboring base node of m.

• Next we consider the replacement of n1 by n2 in lines 235–241 (cf. Fig. 7e). This replacement
is preceded by finding the parent and grandparent of m, and setting their join_id fields
to m, after checking that they are NULL. By Invariant I1, m and n1 are still reachable when
the replacement happens. Since the field neigh2 has not been set to ABORTED by any other
thread before the CAS, we infer that both m and n1 must have been irreplaceable from their
creation until the replacement, implying that they have not been replaced by any other base
node. By construction, contents(n2) = contents(m) ∪ contents(n1). When the replacement is
performed, the ranges of the involved base nodes are unchanged. Therefore, the extension of
contents(n2) over contents(n1) by adding contents(n1) does not affect the abstract state, since
by Invariant I3 the added elements from contents(m) are all in range(m) which is disjoint from
range(n2).

The first phase of the operation is now finished, and complete_join can be invoked by any thread.
It consists of a sequence of assignments that can be performed an arbitrary number times before m
is made replaceable at line 264. We should check that they are idempotent, and do not affect the
abstract state. Let us consider these assignments.

• The setting of m−>neigh1 to n2 (line 252) and the setting of m−>parent−>valid to false
(line 253) are idempotent operations that do not change the abstract state.

• The swinging of the left pointer of m−>gparent from m−>parent to the node pointed by
the right pointer of m−>parent is the only operation that modifies a pointer pointing to a
route node. It makes m−>parent unreachable and makes the right pointer of m−>gparent
point to the node previously pointed to by the right pointer of m−>parent. This implies
that range(n2) is changed to become what was previously range(m) ∪ range(n2). Since also
contents(n2) = contents(m) ∪ contents(n1), it follows from Property PartAbsState that the
abstract state is preserved.

We can now check that the join operation preserves Invariant I3 and satisfies Properties P1–P4. We
consider the statements where the join is potentially dangerous.

I3: The only statement that can violate Invariant I3 is the change of the link (at lines 256–
263) followed by the setting of m−>neigh2 to DONE. Above we have established that both
contents(n2) and range(n2) are extended by the contents and range of m, which shows that
the invariant is preserved.

Let us next consider the properties that can potentially be violated by a join operation.
P2: Here we should check the splicing out operation (lines 256–263). As shown above, the only

change of a range for a reachable node extends it, thereby satisfying the property.
P3: This property follows by checking that the only statements that change a left or right

pointer to another node are either
– a CAS operation that replaces a replaceable base node by a fresh node, thus satisfying P3,
or

– the splicing out operation of the join operation (lines 256–263); however, the node which
becomes a new child of m−>gparent was reachable also before the splicing out operation.

This concludes the proof of Property P3.
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P4: The only statements that can change a pointer to a route node is at lines 257, 259 and 262.
We already established that when complete_join unlinks a route node, both the unlinking
and unlinked nodes have their join_id fields set to the identity of the left or right child of
the unlinked node (which must be of type join_main with a neigh2 field pointing to a node
of type join_neighbor), and that the unlinked node has its valid field set to false.

5.2 Progress Properties
Let us now prove that the operations on LFCA trees satisfy the stated progress properties. For
this, we must establish that the insert, remove, and range query operations are lock-free, and that
the lookup operation is wait-free. We make the assumptions that the functions for atomically
incrementing/decrementing (atomic_add and atomic_sub) are wait-free, that the key space for
the LFCA tree is finite, and that the number of concurrent threads that can access the LFCA tree is
also bounded.

Lookup, Insert, Remove, and Range Query are Lock-Free. Let us first establish that the lookup,
insert, remove, and range query operations are lock-free. This means to prove that in any execution
where such operations are in progress, at least one of them will finish in a finite number of steps.
We make a proof by contradiction. That is, we assume that there is an execution in which from
some point on a number of lookup, insert, remove, and range query operations are in progress, but
none of them ever finish. Since the number of threads is bounded, there is a bound on how many
additional lookup, insert, remove, or range query operations can be initiated beyond this point,
since once such an operation has initiated it does not finish (by the assumption that beyond the
chosen point, none of them ever finish). Hence, we can assume that from some point on, no lookup,
insert, remove, or range query operations finish nor start.
We first note that a high- or low-contention adaptation operation can be initiated only upon

completion of an insert, remove, or range query operation (at lines 119 or 211). Since no lookup,
insert, remove, nor range query operation ever finishes beyond some point in the execution, it
follows that no more adaptation operations are initiated beyond this point. This means that only
a bounded number of changes to the tree structure is performed, which allows us to conclude
that the functions find_base_node, find_base_stack, and find_next_base_stack will always
succeed in a bounded number of steps after the last such change.

We then list the statements that are crucial for progress of each operation. Most of these are CAS
operations, which must succeed for the operation to progress. These statements are

• For an insert or remove:
– the CAS performed by try_replace (line 118),
– making the to-be-replaced node replaceable by helping (line 124).

• For a range query:
– the insertion of the first range base node using a CAS (line 175),
– making the to-be-replaced node replaceable by helping (line 180),
– the insertion of a subsequent range base node using a CAS (line 195),
– making a subsequent to-be-replaced node replaceable by helping (line 202),
– setting the result storage (line 209).
By Invariant I6, for each range query the CAS statements at lines 175 and 195 succeed in
order of ascending ranges, with range base nodes being inserted from left to right.

• For a low-contention adaptation, we note that if the CAS operations in secure_join_left
fail, then the adaptation aborts, after which the adaptation can no longer interfere with
progress of other operations. We also note that an operation that is blocked by a failed but
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still unaborted join operation will make it abort by helping (at line 79). We therefore need
only consider potential progress obstacles in complete_join. These are:
– the insertion of the join_neighbor node (line 252), using a CAS, and
– the splicing out of the route node (lines 256–263).
For each join operation, we can assess its progress by whether it has completed one or both
of the above CAS operations.

From this inventory, we see that each of the above operations progresses through a bounded
number of CAS statements and helping actions. Each helping action performs the same sequence
of steps as the helped thread, and finishes helping only when the helped operation finishes. Thus,
in an execution where no operation finishes, eventually all operations will indefinitely remain at
some stage in their progress. Whenever they perform an execution step, either the next CAS will
fail, or they will resort to helping a blocking operation. Since each helping can be exited only by
finishing, eventually the only blocking operations are CASes. By inspecting these CASes, we infer
that one of them can fail only if another one of them succeeds after the relevant pointer has been
read. This contradicts the assumption that no CASes succeed after some point in the execution. We
have derived a contradiction, and hence the claim that lookup, insert, remove, and range query are
lock-free is proven.

Lookup is Wait-Free. Let us now establish that the lookup operation (lines 134–137) is wait-free.
This requires to prove that it always completes in a finite number of steps, regardless of what
other threads do [Herlihy 1991]. The lookup operation uses find_base_node to locate the relevant
base node, and thereafter searches it to find the element. Since the leaf container is immutable,
the number of steps to locate the node in the leaf container is finite. It therefore remains to prove
that the find_base_node function (lines 287–308) returns in a finite number of steps. We use a
proof by contradiction. Assume that find_base_node does not return in a finite number of steps.
Then, after performing NO_JOIN_LIMIT iterations, find_base_node turns off join operations by
incrementing the no_join_count field of the LFCA tree (line 299). After this point, at most a finite
number of route nodes can get linked out from the tree. (Recall that we assume a finite number of
concurrent threads.) After this, the structure of the tree can change only through split operations in
high-contention adaptations. Split operations do not change range(n) for any existing node n in the
tree. From the property that there can be no duplicate keys in the tree, and since splits of base nodes
are not allowed to produce empty base nodes (this follows by noting that splits are never initiated
in base nodes containing less than two items; see line 277), it follows that successive iterations of
find_base_node visit nodes with strictly decreasing ranges. From the assumption that the space
of keys is finite, it follows that there is a bound on the number of iterations that find_base_node
can perform before reaching a base node. This contradicts the assumption that find_base_node
does not return in a finite number of steps, which concludes the proof that lookup is wait-free.
We note that without the code for turning off joins via the no_join_count field, the lookup

operation would only be lock-free and not wait-free. The scenario illustrated in Fig. 3 shows why
the mechanism for turning off joins is necessary.

6 OPTIMIZATION FOR RANGE QUERIES
If possible, it can be advantageous for range queries to avoid writing to shared memory as this
induces less cache-coherence traffic. Therefore, we have applied an optimization to our LFCA tree
implementation that optimistically tries to perform a range query without writing to shared
memory. If this optimistic attempt fails, the range query is performed using the algorithm described
in Section 4. The optimistic attempt consists of a test scan and then a validation scan of the base
nodes needed for the range query. If nothing has changed between the test and the validation scan,
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one can be certain that all base nodes in the scans were present at some point and the optimistic
attempt can succeed. This scheme is essentially the same as the one described by Brown and Avni
[2012] for doing range queries in their k-ary data structure. We refer to that paper for how to prove
this scheme correct.

7 EVALUATION
We will now experimentally evaluate LFCA trees. Our implementation uses an immutable treap for
the leaf containers and employs the optimization described in Section 6. To facilitate cache friendly
range queries, the treap implementation stores all items in fat leaf nodes containing arrays that can
store up to 64 items. The LFCA tree is compared to recent proposals for performing linearizable
range queries in ordered sets with Java-based implementations: the SnapTree of Bronson et al.
[2010], k-ary of Brown and Avni [2012], the method of Chatterjee [2017] applied to a lock-free
skiplist (ChatterjeeSL), and KiWi of Basin et al. [2017].6 We also include the lock-based CA tree in
the comparison; it uses the same immutable treap as the LFCA tree in its leaf containers, and is
optimized to take advantage of the immutability of the leaf containers so that range queries and
lookups do not read the items in the leaf containers while holding locks [Winblad 2018]. Finally,
we also include the lock-free ConcurrentSkipListMap from the Java library, which only supports
non-linearizable range queries (NonAtomicSL), and the coarse-grained data structure (Im-Tr-Coarse)
that we described in the introduction. All data structures are in Java as implemented by their
respective authors. The maximum number of items in the nodes is set to 64 for k-ary, LFCA Tree,
CA Tree and Im-Tr-Coarse as this value has previously been shown to give good results [Brown and
Avni 2012]. KiWi’s constants are set as described in the KiWi paper of Basin et al. [2017].

Platform. All benchmarks were run on a machine with four Intel(R) Xeon(R) E5-4650 CPUs
(2.70GHz each with eight cores and hyperthreading, giving a total of 32 actual and 64 logical cores),
turbo boost turned off, 128GB of RAM, running Linux 4.9.0-8-amd64 and Oracle JVM 1.8.0_212
(with the JVM flags -Xmx8g -Xms8g -server -d64 -XX:+UseCondCardMark). Each data point comes
from the average of three measurements runs of 10 seconds each that were preceded by three warm
up runs, also of 10 seconds each, whose purpose is to give the JiT compiler enough time to compile
the code. In some cases, error bars showing the minimum and maximum measurements are also
visible in the graphs.

Benchmarks. The keys for the operations lookup, insert and remove as well as the starting keys
for range queries are randomly generated integers from a range of size S . The data structure is
pre-filled before the start of each benchmark run so that it contains S/2 random integers. We use
S = 10n , n ∈ {5, 6, 7} in all experiments, which correspond to sets of size approximately 5 × 10n−1
for each n. Range queries calculate the sum of the items in the range and the number of items in
the range. As a sanity check, the average number of items that are traversed per range query is
calculated and checked against the expected value.
The benchmark scenarios measure throughput of a mix of operations performed by N threads.

In figure captions, the scenarios are described by strings of the form w:A% r:B% q:C%-R, meaning
that the benchmark performs (A/2)% insert, (A/2)% remove, B% lookup operations and C% range
queries of maximum range size R. The range sizes are randomly set to values between 1 and R.

6We do not compare experimentally against the recently proposed data structure by Arbel-Raviv and Brown [2018] because
it does not have a Java implementation and heavily relies on epoch-based memory reclamation. We also do not compare
experimentally against the Leaplist [Avni et al. 2013] whose main implementation is in C. Prototype implementations of
the Leaplist in Java were sent to us by its authors, but they ended up in deadlocks when running our benchmarks which
prevented us from obtaining reliable measurements. Instead, we refer to Section 3 for analytic comparisons to the Leaplist
and the data structure by Arbel-Raviv and Brown [2018].
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(g) S = 107, w:50% r:50%
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Fig. 10. Single-item operations only. Throughput (operations/µs) on the y-axis and thread count on the x-axis.
The set size (S) is increasing row-wise (top-to-bottom), and the percentage of lookup operations is increasing
column-wise (left-to-right). Note that occasionally lines are hidden behind other ones; e.g., the SnapTree line
is hidden behind the CA tree line in Fig. 10d.

7.1 Performance in Scenarios with Single-item Operations Only
We start with scenarios without range queries. Refer to Fig. 10. As the machine supports only 64
hardware threads, thread counts above 64 (marked with a vertical doted gray line in the graphs)
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show how the data structures perform when there are more threads than hardware can execute in
parallel. We notice the following:

• Both the lock-based and the lock-free CA tree perform very well compared to the other data
structures in scenarios with most contention; i.e., in the scenarios that have a relatively large
proportion update operations and small set sizes (Figs. 10a, 10b, 10d and 10e). This shows
that the LFCA tree is able to adapt its structure to cope well in highly contended scenarios.

• The LFCA tree also performs well in read-heavy scenarios with 99% lookups (cf. Figs. 10c
and 10f). This shows that the LFCA tree can be a good choice even without range queries.
In particular, the LFCA tree performs substantially better than the lock-based CA tree at 64
threads and beyond in the read-heavy scenarios (Figs. 10c and 10f), which is likely due to
LFCA tree’s wait-free lookup operation.

• On the other hand, the performance of the LFCA tree comes overall second best, and is
worse than SnapTree’s in the scenarios with a relatively large set size (Figs. 10g to 10i). The
LFCA tree creates more new objects than the SnapTree in these scenarios due to LFCA trees’
use of immutable data structures, which means that several new nodes need to be created in
each update. More new objects means more work for the garbage collector that needs to be
invoked more often in the scenarios where S is large compared to the other scenarios.

Overall, however, the results in Fig. 10 show that the LFCA tree is able to perform well in a wide
range of scenarios with single-item operations. The LFCA tree is the top performing data structure
in most cases, and is not far behind whenever another data structure is performing better.

7.2 Performance in Scenarios with RangeQueries
Let us now consider scenarios that also contain range queries. Refer to Fig. 11. As in the previous
figure, here too the set size S gets larger as rows increase. Also, notice that all the scenarios in the
same column have the same mix of operations, and the maximum range size is increasing from left
to right.

These scenarios with range queries show the key strength of the CA trees. Overall, the LFCA tree
provides substantially better performance than the non-adaptive data structures, likely due to its
ability to adapt its structure to the workload at hand.
The three graphs in the left column of Fig. 11 (Figs. 11a, 11d and 11g) show that the LFCA tree

performs better than all the other data structures in the scenarios with relatively small range queries
of maximum size 10. In the scenarios with moderately-sized range queries of maximum size 1000
(middle column of Fig. 11), the LFCA tree outperforms all the other data structures, sometimes with
an even wider margin (see Figs. 11e and 11h), even though the lock-based CA tree also performs
very well there. Data structures clearly benefit from fine-grained synchronization in the scenarios
with range queries up to a maximum size of 1000 (e.g., Im-Tr-Coarse scales relatively poorly in the
scenarios of Figs. 11d and 11e). In contrast, in the scenario with large range queries (right column
of Fig. 11), it seems that the combination of immutable data and coarse-grained synchronization
is the best, as Im-Tr-Coarse’s performance is on par with LFCA tree’s performance. Therefore, it
seems that the LFCA tree can perform extremely well across a wide variety of workloads (only
single-key operations, small range queries and large ones) due to its ability to adapt its structure
to fit the workload. The slight performance drop that can be observed for the lock-based CA tree
after 64 threads is probably due to lock-related problems that become more apparent when thread
preemption becomes more common (e.g., when threads may need to wait for another thread that
got preempted by the operating system).
It is also interesting to notice that the LFCA tree is substantially better than the lock-based CA

tree in the scenarios with set sizes of about 5 ∗ 104 and 5 ∗ 105 (the two top rows) but very similar

ACM Trans. Parallel Comput., Vol. 42, No. 1, Article 42. Publication date: April 2021.



42:30 Kjell Winblad, Konstantinos Sagonas, and Bengt Jonsson

1 2 4 8 16 32 64 128
Number of Threads

0

10

20

30

40

50

60

Th
ro

ug
hp

ut
 (o

ps
/μ

s)

KiWi
k-ary
SnapTree
ChatterjeeSL
NonAtomicSL
Im-Tr-Coarse
CA tree (Locks)
LFCA tree

(a) S=105, w:20% r:55% q:25%-10

1 2 4 8 16 32 64 128
Number of Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(b) S=105,w:20% r:55% q:25%-1000

1 2 4 8 16 32 64 128
Number of Threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(c) S=105,w:20% r:55% q:25%-100000

1 2 4 8 16 32 64 128
Number of Threads

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (o

ps
/μ

s)

KiWi
k-ary
SnapTree
ChatterjeeSL
NonAtomicSL
Im-Tr-Coarse
CA tree (Locks)
LFCA tree

(d) S=106, w:20% r:55% q:25%-10
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Fig. 11. Throughput (operations/µs) on the y-axis and thread count on the x-axis. The set size is increasing
with the row number and the range sizes of the range queries is increasing with the column number.

to the lock-based CA tree with a set size of about 5 ∗ 106 (S = 107). The average proportion of
the items in the sets that are covered by range queries gets smaller with increased set size. As a
consequence, the number of range queries with overlapping ranges also gets smaller with increased
set sizes, and thus the LFCA tree gets less advantage from the fact that threads can help each other.
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(a) S = 105, Range queries (with updates in parallel)
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(b) S = 105, Updates (with range queries in parallel)
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(c) S = 106, Range queries with updates in parallel
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(d) S = 106, Updates (with range queries in parallel)
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(e) S = 107, Range queries (with updates in parallel)
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(f) S = 107, Updates (with range queries in parallel)

Fig. 12. On the left, throughput for the 16 threads that are doing range queries, and on the right, throughput
for the 16 threads that are doing inserts and removes. The set size S is increasing with the row number.
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7.3 Separate Threads for RangeQueries and Updates
In the benchmark scenarios of the previous section, the threads spend much more time in range
queries than in single-item operations when the range queries are large. Thus, another benchmark
is needed to measure the data structures’ ability to handle large range queries concurrently with
frequent update operations. To this end, we use similar experiments to the one developed by Basin
et al. [2017] in the paper that described KiWi. In our first experiment, we fix the number of threads
to the number of physical cores of our machine (N = 32). Half of these threads (16) do update
operations (insert and remove with equal probability) while the other half (also 16) do range
queries with a range of fixed size. We present the throughput for updates (right column of Fig. 12)
separately from the range query throughput (left column of Fig. 12), so that one can study the
performance of these operations separately. Once again, the set size S is increasing with the row
number (top-to-bottom). Note that in the graphs that show the range query throughput, the number
of operations per µs is shown multiplied by the range query size on the y-axis to make the graphs
more readable. The range query size used in this experiment is shown on the x-axis. Figure 13
shows results from a second experiment of the same kind. In this second experiment, we keep the
range query size fixed to 32k and instead vary the thread count on the x-axis.
With the small set size (S = 105) and range queries of size 32k , all the range queries span more

than half the items in the data structures; see Figs. 12a, 12b, 13a and 13b. It is thus not surprising
that NonAtomicSL has superior update performance in these scenarios, as its update operation does
not pay any attention to ongoing range queries. Still, the LFCA tree and the lock-based CA tree are
able to provide better throughput for range queries than NonAtomicSL even with the small set size,
which is probably because the treaps in leaf containers have cache-friendly leaf nodes containing
up to 64 items.

The shape of the graph for the LFCA tree in Fig. 12b is interesting as it seems to have a downward
trend until range size 32k and then it goes up again. After looking closely at what our experiment
is doing, we have come up with a plausible explanation for this apparently strange behavior. Range
query threads in this experiment first randomly generate a start key and then calculate the end key
by adding the fixed range size value. If the resulting range is outside the range R of keys that can
be stored in the data structure, the range is adjusted to have as few items as possible outside R. In
the case with S = 105 and range query size 128k (see Figs. 12a and 12b), where the range query
size is larger than the range of possible keys, this results in that the start and the end key for the
range query ranges are always exactly the same7. Thus, in this particular case, it is likely that a
range query in an LFCA tree can piggyback on another ongoing range query. Less contention is
created when range queries can take advantage of each others’ work, which in turn explains why
the throughput is better with the range size 128k than with 32k for the LFCA tree in Fig. 12b. One
may think that this particular scenario might be rare in practice. However, note that an LFCA tree’s
range query does exactly what a clone operation in the LFCA tree would do in this scenario as it
takes a snapshot of all items in the tree.
In the scenarios with S = 105 and a range query size of 32k (Figs. 12b and 13b), the update

throughput of NonAtomicSL, ChatterjeeSL, k-ary, and KiWi are better than that of LFCA tree.
However, LFCA tree makes up for this with a throughput for range queries that often is many
times better than the other data structures’ range query throughput (see Figs. 12a and 13a). Also,
remember that NonAtomicSL is not in the same league as the other data structures, as it does not
provide linearizable range queries. One could potentially modify the LFCA tree with the aim of
increasing the throughput for updates at the expense of the throughput for range queries by letting
a range query help update operations that have collided with the range query. (This could be

7We encourage the reader to take a look at the source code of our benchmark to see how this works in detail.
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(a) S=105, Range queries (size 32k) with parallel updates

1 2 4 8 16 32 64
Number of Update Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

op
er

at
io

ns
/μ

s

KiWi
k-ary
SnapTree
ChatterjeeSL
NonAtomicSL
Im-Tr-Coarse
CA tree (Locks)
LFCA tree

(b) S=105, Updates with parallel range queries
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(c) S=106, Range queries (size 32k) with parallel updates
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(d) S=106, Updates with parallel range queries
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(e) S=107, Range queries (size 32k) with parallel updates
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(f) S=107, Updates with parallel range queries

Fig. 13. On the left, throughput for the range query threads, and on the right, throughput for the threads
that are doing only inserts and removes. The range query size is set to 32k in all scenarios. The set size S is
increasing with the row number.
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Table 1. Statistics for the LFCA tree in the scenarios of Fig. 11d (w:20% r:55% q:25%-10).

Threads 1 2 4 8 16 32 64 128

# route nodes 0 76 200 440 890 1.6k 3.1k 3.2k
# traversed base nodes

# range queries 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
# splits

milliseconds 0.0 0.04 0.081 0.17 0.33 0.62 1.1 1.1
# joins

milliseconds 0.0 0.033 0.06 0.12 0.24 0.46 0.77 0.78

Table 2. Statistics for the LFCA tree in the scenarios of Fig. 11e (w:20% r:55% q:25%-1000).

Threads 1 2 4 8 16 32 64 128

# route nodes 0 51 130 260 460 720 1.0k 1.0k
# traversed base nodes

# range queries 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1
# splits

milliseconds 0.0 0.025 0.058 0.12 0.25 0.56 1.1 1.1
# joins

milliseconds 0.0 0.02 0.045 0.091 0.2 0.49 1.0 0.98

Table 3. Statistics for the LFCA tree in the scenarios of Fig. 11f (w:20% r:55% q:25%-100000).

Threads 1 2 4 8 16 32 64 128

# route nodes 0 0 0 11 16 17 22 24
# traversed base nodes

# range queries 1.0 1.0 1.0 1.1 1.1 1.3 1.4 1.4
# splits

milliseconds 0.0 0.0 0.0 0.0047 0.013 0.051 0.1 0.11
# joins

milliseconds 0.0 0.0 0.0 0.0036 0.012 0.049 0.1 0.11

achieved, for example, by letting updates register themselves in the irreplaceable base nodes of
type range that they encounter, so range queries can apply the updates before making their range
base nodes replaceable.) This could potentially also decrease the likelihood of starved updates.
In Fig. 13, one can see that the throughput for range queries goes up while the throughput for

updates goes down for the lock-based CA tree when one starts to use more threads than hardware
threads. (This is shown on the right side of the vertical gray line in the graphs.) This behavior
is likely related to the lock implementation (java.util.concurrent.locks.StampedLock from
the Java standard library) that is used to protect modifications to the base nodes. This highlights
one of the advantages that the LFCA tree has over the lock-based CA tree. That is, LFCA tree’s
performance is not dependent on any lock implementation.

7.4 Some Statistics
We now take a look at the statistics shown in Tables 1 to 3 and Table 4. They show the route
node count (measured after the experiments), the average number of traversed base nodes per
range query and the number of splits and joins per millisecond for the scenarios that are shown
in Figs. 11d to 11f and the experiment in the middle row of Fig. 12, respectively. These statistics
indicate that the heuristics works as intended. That is, larger range queries result in fewer route
nodes and more threads result in more route nodes. Looking at the number of base nodes traversed
per range query, it is also clear that range queries spend a relatively short time traversing shared
mutable data, compared to the non-adaptive data structures in the comparison, even for large range
queries. This explains how the LFCA tree can perform so much better than the non-adaptive data
structures in this comparison.
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Table 4. Statistics for the LFCA tree in the scenarios of Figs. 12c and 12d. 16 threads doing range queries and
16 threads doing updates.

Range Size 2 4 8 32 128 512 2k 8k 32k 128k

# route nodes 2.9k 2.7k 2.7k 2.6k 2.5k 2.0k 1.3k 720 380 330
# traversed base nodes

# range queries 1.0 1.0 1.0 1.0 1.0 1.3 2.7 5.7 12.0 43.0
# splits

milliseconds 1.1 1.1 1.1 1.2 1.3 1.6 2.5 4.7 11.0 13.0
# joins

milliseconds 0.83 0.8 0.83 0.91 1.1 1.4 2.4 4.6 11.0 13.0

Looking closer, in Table 1, the number of route nodes is increasing with the number of threads
which is unsurprising as more threads will increase the conflicts for update operations. However,
in Table 3 where the range queries span much more items, the measurements for the numbers of
route nodes are quite similar for thread counts 16, 32 and 64. This is likely because the increase
in contention due to more threads creates more failing optimistic attempts for range queries
(cf. Section 6), which in turn increases the pressure from non-optimistic range queries that span
more than one base nodes to not split base nodes. Note that Im-Tr-Coarse, which uses coarse-grained
synchronization, has similar performance to LFCA tree in the scenario of Table 3 at 64 threads
(see Fig. 11f), so more route nodes would likely not cause better performance in this scenario.

7.5 One Last Experiment
The five parts of Fig. 14 show results from a time series experiment that was run in order to
illustrate how an LFCA tree adapts its structure when the workload suddenly changes and how
this adaptation affects its performance. The top part of the figure shows the number of route nodes,
and the bottom part the throughput which is achieved at different time points. At time zero, the
LFCA tree contains only one base node with 500k items. The experiment begins with the workload
w:20% r:55% q:25%-1000, which is executed using 30 threads for 2.4 seconds. Every 2.4 seconds the
maximum range query size changes: besides the initial value (1000) it also takes the values 10, 1000,
10 and 100000 (cf. the values at the top line of Fig. 14). From this time series, we can see that, after
each workload change, the rate of change for the number of route nodes gradually decreases until
the number of route nodes stabilizes around a certain value. In the parts titled “initial to X-1000”
and “X-100000”, one can also see a positive change in throughput when the number of route nodes
increases/decreases quickly. The change in throughput while the number of route nodes changes
quickly is not as big in the three middle parts (“X-10”, “X-1000” and “X-10”), which is not strange
considering that the synchronization granularity changes relatively less in these parts.

The benchmark set up for the time series experiment is a bit involved in order to obtain numbers
that are not disturbed by taking measurements during very short periods of time. It goes as follows.
For every time point shown with a dot in the graphs, average measurements from five experiment
runs in different JVM instances were collected. Each such run consists of 35 warm up runs and 10
measurement runs (that we take the average measurements from). A warm up or a measurement
run does the following after the LFCA tree has been filled with 500k items: It performs a triggering
run (skipped in the first workload of the time series) of 2.2 seconds that applies the workloadW
(whereW is the previous workload in the time series), before the actual warm up/measurement run
is executed for t seconds (t is always 2 seconds for the warm up runs), after which the number of
route nodes and the number of performed operations by the threads are collected. For example, a
run to collect measurements for time point 3.4 seconds performs a triggering run with the workload
w:20% r:55% q:25%-1000 and then a measurement run with the workload w:20% r:55% q:25%-10
(running for 1 second). The throughput for a time point tn is calculated as o(tn )−o(tn−1)

(tn−tn−1)
, where tn−1
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Fig. 14. Time series illustrating sudden changes in the workloads. Number of route nodes in the top and
throughput in the bottom. Only the maximum size of the range queries changes between the figures. X =
w:20% r:55% q:25%.

denotes the previous time point in the time series and o(t) denotes the average number of performed
operations measured for time point t .

8 CONCLUDING REMARKS
We have given a detailed description and correctness arguments for the LFCA tree, the first lineariz-
able lock-free data structure supporting range queries that adapts its structure based on heuristics
that take detected contention and information about range queries into account. LFCA trees make
use of information gathered at runtime to get a good trade-off between the performance of opera-
tions that generally benefit from coarse-grained synchronization and those that generally benefit
from fine-grained synchronization. Our experimental evaluation shows that this has real benefits
in practice, as the LFCA tree can maintain exceptionally good performance across a wide range of
scenarios.

DATA AVAILABILITY STATEMENT
The source code for the LFCA tree as well as the code for the benchmarks are available online [Sag-
onas and Winblad 2018].
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