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Abstract. Dynamic partial order reduction (DPOR) algorithms are used in state-
less model checking (SMC) to combat the combinatorial explosion in the number
of schedulings that need to be explored to guarantee soundness. The most effective
of them, the Optimal DPOR algorithm, is optimal in the sense that it explores only
one scheduling per Mazurkiewicz trace. In this paper, we enhance DPOR with
the notion of observability, which makes dependencies between operations condi-
tional on the existence of future operations, called observers. Observers naturally
lead to a lazy construction of dependencies. This requires significant changes in
the core of POR algorithms (and Optimal DPOR in particular), but also makes the
resulting algorithm, Optimal DPOR with Observers, super-optimal in the sense
that it explores exponentially less schedulings than Mazurkiewicz traces in some
cases. We argue that observers come naturally in many concurrency models, and
demonstrate the performance benefits that Optimal DPOR with Observers achieves
in both an SMC tool for shared memory concurrency and a tool for concurrency
via message passing, using both synthetic and actual programs as benchmarks.

1 Introduction

Testing and verification of concurrent programs is hard, as it requires reasoning about all
the ways in which operations executed by different processes (or threads) can interfere.
Stateless model checking (SMC) [12] is a technique with low memory requirements that
can be effective in finding concurrency errors or proving that a program cannot reach
an error state by systematically exploring all the ways in which such operations can be
interleaved. The technique requires taking control of the scheduler and subsequently
executing the program multiple times, each time imposing a different scheduling of
the processes. By considering every process at every execution step, however, the
number of possible schedulings grows exponentially w.r.t. the total length of program
execution. Partial order reduction (POR) techniques [9, 11, 20, 22] address this problem
by prescribing the exploration of only a subset of schedulings, albeit a subset that
is sufficient to cover all behaviours. POR techniques take advantage of the fact that
most pairs of operations by different processes in typical concurrent programs are not
interfering. As a result, a scheduling E that can be obtained from another scheduling E ′

by swapping adjacent but non-interfering (independent) execution steps will make
the program behave in exactly the same way as E ′; such schedulings have the same
partial order of interfering operations and belong to the same equivalence class, called
a Mazurkiewicz trace [19]. It is sufficient for SMC algorithms to explore only one
scheduling in each such equivalence class.
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POR algorithms operate by examining pairs of interfering operations. If it is possible
to execute such operations in the reverse order, then their partial order will be different,
and a scheduling from the relevant equivalence class must also be explored. For sound-
ness, POR techniques need to be conservative, treating operations as interfering even in
cases where they are not. Increasing the accuracy of interference detection can therefore
significantly improve the effectiveness of any POR technique. In early POR techniques,
interference was determined statically, leading to over-approximations and limiting
the achievable reduction. The efficiency of POR was later increased using semantic
information to decide which operations interfere [13]. Dynamic Partial Order Reduc-
tion (DPOR) [10] further improved the effectiveness of POR algorithms by allowing
interference to be determined from data obtained during the program’s execution.

In this paper, we introduce the notion of observability of operations, allowing ob-
server operations that appear later in a scheduling to be used when deciding whether
earlier operations are interfering. We start by explaining observers with a series of
examples (Sect. 2), and continue by presenting key notions of DPOR and explaining why
using observers in DPOR algorithms is challenging (Sect. 3). We then present a formal
framework (Sect. 4) and describe an extension to the Optimal DPOR algorithm [2] that
enables use of observers (Sect. 5). The extension is generic in the sense that it can be
applied to several models of concurrency, such as shared memory and message passing.
We demonstrate this claim by two implementations: one in an SMC tool for C/C++
programs with pthreads and one in an SMC tool for Erlang programs (Sect. 6). Finally, in
Sect. 7 we evaluate our implementations and show that Optimal DPOR with Observers
can achieve significantly better reduction in both synthetic and ‘real’ programs.

2 DPOR and Observers by Example

Consider the program shown in Fig. 1 in which a main process spawns two concurrent
processes, p and q, which issue write operations on two different shared variables x and
y. After p and q finish their execution, the main process reads the values of x and y and
checks a correctness property. A DPOR algorithm will begin exploring this program
by executing an arbitrary scheduling; see Fig. 1 (middle). Nodes show the values of
the shared variables and each transition consists of an execution step. By inspecting the
operations in this scheduling, the algorithm sees that if the second step of q is scheduled
before the second step of p, the partial order of the writes to the y variable is different.
It therefore plans to execute a scheduling in which the second step of p happens after

Initially: x = y = 0

spawn processes p and q;

p q
x := 1; x := 2;

y := 1 y := 2

join processes p and q;
assert(abs(x - y) < 2)

0,0

1,0

1,1

2,1

2,2
q: y:=2

q: x:=2

p: y:=1 q: x:=2

p: x:=1 q: x:=2
0,0

1,0

1,1

2,1

2,2

2,0

2,2

2,1
p: y:=1

q: y:=2

q: x:=2

p: x:=1 q: x:=2

Fig. 1: Writers program (its correctness property as assertion) and two of its schedulings.
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the one from q. The start of this scheduling can be denoted as p.q. Similarly, the order
of the writes on x can be reversed, by executing q’s first step before the first step of p.
Therefore, a scheduling starting with q should also be explored. In Optimal DPOR [2],
future explorations are added as partial schedulings, forming wakeup trees (shown in
blue). These trees are quite trivial in this example, each consisting of a single path.

The algorithm continues exploration from the “deepest” point where a new schedul-
ing should be tried; in the example, this is the (1,0) node. A second scheduling is explored
with the intention to execute some operation before the second step of p. Without any
other constraint, a non-optimal DPOR algorithm could execute p’s second step immedi-
ately after the first step of q, ending up in a state identical with the previously explored
(2,1) and then again in (2,2). The sleep sets technique [11] can be used to avoid or stop
such redundant explorations. Sleep sets retain information from already explored earlier
process steps that have not yet been ‘overtaken’ by some step in the current exploration.
In our example, information about p’s second step is retained in the sleep set until some
other interfering operation (here q’s second step) has been executed. Moreover, sleep
sets can be used to infer that swapping (again) the second step of p and the second step
of q (based on their interference in the second scheduling) is redundant. Any DPOR
algorithm using sleep sets will explore four schedulings for this program (instead of the
six ones possible). Each of these four schedulings leads to a different final state. Notice
that two writes on the same variable were always deemed as interfering.

p q r
x := 1 x := 2 assert(x < 3)

Consider now the program shown on the right.
The shared variable x (whose initial value is 0) is
accessed by processes p,q and r. Here, the correct-
ness property is checked by process r. If interference is decided using the same criteria
as a data race (i.e., two operations interfere if they access the same memory location
and at least one of them is a write), then all three operations interfere with each other.
As a result, each of the 3! = 6 possible interleavings has a different partial order and
therefore belongs to a different Mazurkiewicz trace that should be explored by a DPOR
algorithm. In schedulings starting with r, however, the order of the execution of p and q
is irrelevant (if one does not care about the final contents of the memory), as the values
written by these operations will never be read. A DPOR algorithm could detect that the
written values are not observed and consider the write operations as non-interfering.

p1 p2 . . . pN
x := 1 x := 2 . . . x := N

join processes p1, p2, . . . , pN ;
assert(x > 0)

Taking this idea further, consider a next example,
shown on the right. Here, N processes write on the
shared variable x, and as a result there exist N! schedul-
ings. In each such scheduling, however, only the last
written value will be read. A DPOR algorithm could consider write operations that are
not subsequently observed as independent and therefore explore just N instead of N!
schedulings, thereby achieving an exponential reduction.

In the last two examples, better reduction could be obtained if the interference of write
operations, which are conservatively considered as “always interfering”, was character-
ized more accurately by looking at complete executions and taking observability by “fu-
ture” operations into account. This idea is applicable not only in shared memory but also
in other models of concurrency. In the next message passing program, processes p and q
each send a different message to the mailbox of process r using the send operator “!”.
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p q r
r ! M1 r ! M2 receive x

Process r uses a receive operation to retrieve a message
and store it in a (local) variable x. If we assume that
receive operations pick and return the oldest message in the mailbox or return null if no
message exists, send operations can interfere (the order of delivery is significant) and
so can send and receive operations (an empty mailbox can yield a different value). As
a result, six schedulings are possible. However, only three schedulings need to really
be explored: the receive operation interferes only with the earliest send operation and
cannot be affected by a later send; moreover, if the receive operation is executed first,
the order of the send operations is irrelevant.

If we instead assume that receive operations block if no matching message exists,
only two schedulings need to be explored, as r can receive either M1 or M2. Again, if we
generalize the example to N processes instead of just two, the behaviour is similar to the
program with N writes: only N schedulings (instead of N!) are relevant, each determined
by the first message delivered; the remaining message deliveries are not observable. Note
that, in this concurrency model, we are interested in the observability of the first instead
of the last operation in an execution sequence.

In some message-passing concurrency models (e.g., in Erlang programs [4]), it is
further possible to use selective receive operations instead, which also block when no
message can be selected. Using this feature, the previous program can be generalized
and rewritten so that r is explicitly picking messages in order, using pattern matching.

p1 p2 . . . pN r
r ! M1 r ! M2 . . . r ! MN receive M1;

receive M2;
...

receive MN

Such a program is shown on the right.
Here r wants to pick up the N messages
in order: first M1, then M2, etc. Thus, the
order of delivery of messages is irrelevant.
A DPOR algorithm could take advantage
of the additional information provided by
the selective receive operations, notice that the messages from pi+1 . . . pN cannot be
selected before the message from pi, and therefore determine that the N sends are
independent. A single scheduling is enough to explore all behaviours of the program!

Having explained the concept of observability of operations by examples, let us see
how it can be combined with the Optimal DPOR algorithm and achieve such reductions.

3 Using Observers in a DPOR Algorithm

Our objective is to construct a DPOR algorithm that lazily considers interferences based
on the existence of later operations, called observers. In the simplest case, operations
that would be conservatively considered interfering are treated as independent in the
absence of an observer. Examples in Sect. 2 included write operations whose values
were never read, or cases where the order of message deliveries does not affect the order
in which the messages are received.

The intuition behind such an SMC approach comes from the fact that it is only opera-
tions that observe a value (e.g., assertions, receive statements, etc.) that can influence the
control flow and lead to erroneous or generally unexpected behaviour. Other operations
(e.g., writes, sends, etc.) cannot affect program behaviour if no future operation observes
their effects. In such cases, interference between those other operations can be ignored.
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3.1 POR Concepts and Optimal DPOR

The goal of POR techniques is the exploration of only a (small) subset of the possible
schedulings of a concurrent program which is sound; that is, a subset that includes
at least one scheduling from each Mazurkiewicz trace. DPOR algorithms perform a
depth-first exploration of the tree of all possible schedulings. Reduction is achieved by
exploring only a sound subset of all scheduling choices that are possible at each point in
the tree. Such subsets are formed on the basis of two complementary techniques.

– Each point in the tree is associated with a sleep set, which contains a set of processes
whose exploration would be redundant. More precisely, a process p is in the sleep
set after a sequence of form E.v if p has previously been explored after E, and
furthermore p does not interfere with v. Thus, exploring E.v.p is redundant, since it
was previously explored after E.p (as E.p.v).

– From each point in the tree, the set of explored processes must form a source set [2].
(Some DPOR algorithms employ persistent or stubborn sets, which are subsumed
by source sets.) Source sets have the property that for any extension which forms
a complete (aka maximal) scheduling, there is an equivalent extension in which
the next step is taken by a process in the source set. A source set is constructed
incrementally during the exploration by inspecting encountered races: whenever a
scheduling of form E.p.v is explored, in which the step of p is in a race with some
step in v, then the reversal of that race will be explored in some other scheduling,
where some process q in v is scheduled immediately after E: this is achieved by
adding q to the source set after E.

Most existing DPOR algorithms prescribe that from each point in the tree (i) all processes
in a source set should be explored, and (ii) no process in the sleep set should be explored.
However, these principles are not sufficient to avoid redundant exploration [2]. The
reason is that the reversal of a race in E.p.v may happen only by exploring a particular
subsequence of v; since a source set can only contain the first step in such a sequence,
it can not prevent continued exploration beyond that first step from being redundant.
Optimal DPOR improves on earlier techniques by using wakeup trees [2] in addition to
sleep sets. Wakeup trees are composed of partial execution sequences (called wakeup
sequences) that (a) reverse the order of the interfering operations, and (b) are provably
non-redundant. Optimal DPOR, currently the state-of-the-art DPOR algorithm, always
uses wakeup sequences to explore new schedulings. As a result, Optimal DPOR does
not even initiate redundant exploration, and can achieve exponential reduction over e.g.,
the original [10] or the Source DPOR [2] algorithm.

3.2 Observers and Sleep Sets

The use of sleep sets is not trivial when using observers, because interference between
events can often not be determined when they occur, but only later in the scheduling. Let
us illustrate using an example. In the next program, three processes (p, q and s) send
tagged messages (with tags A and B) to a receiver process r, which uses selective receive
to read matching messages from its mailbox. Each message also contains the process
identifier of the sender.
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p q s r
r ! {B,p}; r ! {A,q}; r ! {B,s}; receive {A,x};

r ! {A,p} if (x == p)
receive {B,y}

In standard DPOR, the sends are interfering, since the order of delivery can affect the
values assigned to the x and y variables in r. Using observers, sends are interfering only
if justified by an observing receive operation. Assume that the first explored scheduling
is p.p.q.s.r.r. Here, the second send by p (sending the message tagged with A) interferes
with the send by q, since their order is observed by the first receive of r (if the message
from q had been delivered first, it would have been the one picked instead). Furthermore,
the first send by p (sending the message tagged with B) interferes with the message
send by s, since they have the second receive of r as observer. In order to explore the
reversal of the race between the first send of p and that of s, the algorithm needs to
explore a scheduling in which p’s first send is executed after s. Such a scheduling must
clearly start with s. The rules for sleep sets prescribe that p should be in the sleep set
at the start of this exploration, and that p should be removed from the sleep set after
executing s if p and s interfere. However, this interference is visible only later, making it
unclear what to do. On the one hand, removing p from the sleep set on the grounds that it
“might” interfere with s risks to explore redundant schedulings and defeats the purpose of
observers. On the other hand, keeping p in the sleep set and “see what happens” prevents
exploring the effects of the race reversal, since that requires the second send of p to be
explored before q, which is forbidden if p remains in the sleep set. Thus, sleep sets are
not a sufficiently precise mechanism for avoiding redundant exploration without missing
non-redundant schedulings.

3.3 Introducing Observers to Optimal DPOR

We will now explain how Optimal DPOR can be adapted to work with observers. There
are two main challenges: (1) we need to address the fact that, in the presence of observers,
interference is conditional, and (2) we also need a suitable replacement for sleep sets,
since we can no longer use them to guarantee that there is no redundant exploration.

In Optimal DPOR, it is assumed that operations that are interfering in some execution
sequence remain interfering in any prefix of that sequence. This is no longer true when
we determine interference by the existence of observing operations. If an observer is not
included in a prefix of an execution sequence in which two operations were observably
interfering, the same two operations will be independent. To address challenge 1 in
Optimal DPOR with observers, we need to extend the wakeup sequences constructed
for reversing the order of interfering operations that require an observer, with a suffix
that includes the observer. It is allowed for this suffix to include operations happening
after the interfering operations (even in program order); any such operations will behave
identically in the reversal because in the original scheduling the observer was the first
event that could be affected by the ordering of the interfering operations. To address
challenge 2, we can build on the intuition behind sleep sets and assert that when our
algorithm is done with a particular state, it has explored all schedulings that can start
with the step that led to that state. When the algorithm considers a new scheduling (based
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on a wakeup sequence), information about observers in that scheduling needs to be
recalculated from the operations in the sequence. The algorithm can then perform an
exhaustive test, that ensures that each step previously explored from any point in the
execution is overtaken by some other step in the wakeup sequence under consideration.

4 Framework

We consider a concurrent system composed of a finite set of processes (or threads). Each
process executes a deterministic program, in which statements act on the global state of
the system. Processes can interact via shared variables, messages, etc. We assume that
the state space does not contain cycles, and that executions have bounded length. A step
of a process may not disable another process.

Formally, let Σ be the set of states of a concurrent system and s0 ∈ Σ be the unique
initial state. The partial function executep : Σ 7→ Σ describes execution, representing
an atomic execution step of process p, which may depend on and affect the state. An
execution sequence E of the system is a finite sequence of execution steps of its processes
that is performed from the initial state. We use 〈〉 to denote the empty sequence and . to
denote concatenation of sequences of process steps (e.g., p.p.q denotes the execution
sequence where first p performs two steps, followed by a step of q). The sequence of
process steps in E also uniquely determine the state of the system after E, which is
denoted s[E]. For a state s, let enabled(s) denote the set of processes p that are enabled in s
(i.e., for which executep(s) is defined). If p ∈ enabled(s[E]), then E.p is an execution
sequence. A sequence E is maximal if enabled(s[E]) = /0, i.e., no process is enabled
after E. An event 〈p, i〉 of E is a particular occurrence of a process in E, representing the
i-th occurrence of process p in the execution sequence. We use w,w′, . . . to range over
sequences, e,e′, . . . to range over events, as well as:

– E ` w to denote that E.w is an execution sequence.
– w\ p to denote the sequence w with its first occurrence of p removed.
– dom(E) to denote the set of events 〈p, i〉 which are in E.
– dom[E](w) to denote dom(E.w)\dom(E), i.e., the events in E.w which are in w.
– next[E](p) to denote dom[E](p) as a special case.
– ê to denote the process p of an event e = 〈p, i〉.
– e <E e′ to denote that e occurs before e′ in E, i.e., <E is the total order of events.
– E ′ ≤ E to denote that the sequence E ′ is a prefix of the sequence E.

We assume a function which assigns a happens-before relation [15] to any execution
sequence E, denoted as→E .

We will keep the general approach of Optimal DPOR and require the happens-
before relation to satisfy a set of properties, collected in Definition 1. These properties
are the first point where we diverge from the underlying model for Optimal DPOR [2,
Definition 3.2]. In that definition, Properties (3) and (5) need to be weakened, Property (6)
needs to be replaced, whereas Property (7) was only required for Source DPOR and is
thus dropped.

Definition 1 (Properties of valid happens-before relations). A happens-before assign-
ment, which assigns a unique happens-before relation→E to any execution sequence E,
is valid if it satisfies the following properties for all execution sequences E:
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1. →E is an irreflexive partial order on dom(E), which is included in <E .
2. The execution steps of each process are totally ordered, i.e., 〈p, i〉→E〈p, i+1〉

whenever 〈p, i+1〉 ∈ dom(E).
3. Given an execution sequence E and a process p s.t. E ` p, then for all events

e,e′ ∈ dom(E), if e→Ee′ then e→E.pe′.
4. Any linearization E ′ of→E on dom(E) is an execution sequence which has exactly

the same “happens-before” relation→E ′ as→E . This means that the relation→E
induces a set of equivalent execution sequences, all containing the same set of events,
and with the same “happens-before” relation. We use:

– E ' E ′ to denote that dom(E) = dom(E ′) and that E and E ′ are linearizations
of the same “happens-before” relation, and

– [E]' to denote the equivalence class of E.
5. If E ' E ′, then enabled(s[E]) = enabled(s[E ′]).

For the last property, we need to introduce a few definitions. Given→E , if e,e′ ∈ dom(E)
and e <E e′, define

– elE e′ (read as e is in a race with e′) to denote that e→Ee′ and ê 6= ê′ and there is
no event e′′ ∈ dom(E), different from e′ and e, such that e→Ee′′→Ee′.

– e -E e′ (read as e is in a reversible race with e′) to denote that elE e′ and in any
equivalent execution sequence E ′ ' E where e occurs immediately before e′, ê′ is
not blocked before the occurrence of e.

Now we continue listing properties of valid happens-before relations.

6. Given an execution sequence E, then for all events e,e′ ∈ dom(E) where elE e′,
there exists a set O = observers(e,e′,E)⊆ dom(E) such that:
(a) For all o ∈ O, it holds that e→Eo, o 6= e′, and o 6→Ee′.
(b) For all o,o′ ∈ O it holds that o 6→Eo′.
(c) If E ′ ' E then O′ = observers(e,e′,E ′) = O.
(d) For every prefix E ′ < E of E such that e,e′ ∈ dom(E ′):

– If O is empty, then e→E ′e′.
– If O is nonempty, then e→E ′e′ iff dom(E ′)∩O 6= /0.

(e) If e -E e′, then for all sequences w such that E ` w and all events e′′ ∈ dom(E):
– If e 6→Ee′′, then e 6lE.we′′.
– If e′′ 6→Ee′, then e′′ 6lE.we′.

(f) For all e′′ ∈ dom(E) such that e′→Ee′′ it holds that O∩observers(e′,e′′,E) = /0.
(g) If O = {o} and E = E ′.ô for some o and E ′, then for any E ′′ ' E ′, either

e→E ′′.ôe′ or e′→E ′′.ôe.

We give some intuition for the changed properties. Property 3 requires the happens-
before assignment to maintain edges in extensions, but allows having fewer edges
in prefixes. Property 5 allows execution sequences that reach different states (due to
unobserved races) to be considered equivalent. Property 6 summarizes properties for
races that require observers. Most requirements are intuitive. Property 6.(d) clarifies
property 3: an “observed” race is included in a sequence only if some observers of
the race are also included. Property 6.(e) prevents extensions to an execution sequence
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from adding edges to the events of a reversible race in such a way that the race can not
be reversed. Property 6.(f) prohibits an observer from creating “dependency chains”.
Finally, property 6.(g) requires that an observer observes a fixed set of pairs of events in
each execution sequence; a consequence of this is that whether or not some particular
race is observed never depends on the ordering of some other pair of events observed
by the same observer. All these properties are satisfied by “natural” happens-before
assignments for events in message passing programs and most shared memory programs.
Limitations include e.g., models in which the written memory regions of two write
operations may overlap without being equal; such pairs of operations need to be treated
as unconditionally racing.

5 Optimal DPOR with Observers

We now present a DPOR algorithm with observers that achieves optimal reduction.
In Sect. 3.2 we explained why sleep sets are not suitable when observers are used.

We instead introduce a notion of redundancy based solely on the set of explored steps
from each state. We will base this notion on a concept defined in Optimal DPOR.

Definition 2 (Initials and Weak Initials [2]). For an execution sequence E.w, the set
I[E](w) of processes that are initials and the set WI[E](w) of processes that are weak
initials are defined as follows:

1. p ∈ I[E](w) iff there is a sequence w′ such that E.w' E.p.w′

2. p ∈WI[E](w) iff there are sequences w′ and v such that E.w.v' E.p.w′

Definition 3 (Redundant Sequences). For an execution sequence E and a function
done from prefixes of E to sets of processes, the set of sequences redundant(E,done) is
defined such that v ∈ redundant(E,done) iff E.v is an execution sequence and there is a
partitioning E =w.w′ of E such that some process p∈ done(w) is also in p∈WI[w](w′.v).

The intuition is that if v ∈ redundant(E,done), then the execution sequence E.v is
equivalent to a previously explored execution sequence. In the special case where races
do not need observers (i.e., the set of observers for each race is empty), we can define
sleep sets in the classical sense by letting p ∈ sleep(E) denote that E is of form E ′.v for
some v such that p ∈ done(E ′) and p and v are independent. Then sleep(E) will consists
of all single-process sequences in redundant(E,done), and v ∈ redundant(E,done) is
equivalent to sleep(E)∩WI[E](v) 6= /0.

If E is an execution sequence, and v and w are sequences of processes, let:

– v v[E] w denote that there is a sequence v′ such that E.v.v′ and E.w are execution
sequences with E.v.v′ ' E.w. Intuitively, v v[E] w if, after E, the sequence v is a
possible way to start an execution that is equivalent to w.

– v∼[E]w denote that there are sequences v′ and w′ such that E.v.v′ and E.w.w′ are ex-
ecution sequences with E.v.v′ ' E.w.w′. Intuitively, v∼[E]w if, after E, the sequence
v is a possible way to start an execution that is equivalent to an execution sequence
of form E.w.w′, and vice versa.
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Let us define an ordered tree as a pair 〈B,≺〉, where B (the set of nodes) is a finite
prefix-closed set of sequences of processes, with the empty sequence 〈〉 being the root.
The children of a node w, of form w.p for some set of processes p, are ordered by ≺. In
〈B,≺〉, such an ordering between children has been extended to the total order ≺ on B
by letting ≺ be the induced post-order relation between the nodes in B. This means that
if the children w.p1 and w.p2 are ordered as w.p1 ≺ w.p2, then w.p1 ≺ w.p2 ≺ w in the
induced post-order.
Definition 4 (Wakeup Tree). Let E be an execution sequence, and done be a function
from prefixes of E to sets of processes. A wakeup tree after 〈E,done〉 is an ordered tree
〈B,≺〉, such that the following properties hold

1. No leaf w of B is redundant after E, i.e., w 6∈ redundant(E,done);
2. whenever u.p and u.w are nodes in B with u.p ≺ u.w, and u.w is a leaf, then

p 6∈WI[E.u](w).

Property (2) is the same as Optimal DPOR; Property (1) has been modified.
Regarding inserting sequences in a wakeup tree, let 〈B,≺〉 be a wakeup tree after

〈E,done〉. For any sequence w such that w 6∈ redundant(E,done) we need an operation
insert[E](w,〈B,≺〉) that satisfies the following properties:

1. insert[E](w,〈B,≺〉) is also a wakeup tree after 〈E,done〉,
2. any leaf of 〈B,≺〉 remains a leaf of insert[E](w,〈B,≺〉), and
3. insert[E](w,〈B,≺〉) contains a leaf u with u∼[E]w.

The insert[E](w,〈B,≺〉) operation can be implemented as follows. Let v be the smallest
(w.r.t. to ≺) sequence in B such that v∼[E]w. If v is a leaf, insert[E](w,〈B,≺〉) can leave
the tree unmodified. Otherwise, let w′ be a shortest sequence such that wv[E] v.w′, and
add v.w′ as a new leaf, ordered after all already existing nodes in B of form v.w′′.

5.1 Algorithm
Algorithm 1 is a modified and extended version of the plain Optimal DPOR algorithm [2],
so that it supports observers. Since sleep sets is no longer an applicable mechanism
for avoiding redundant exploration, the algorithm accepts only two arguments, E, the
prefix to explore, and WuT, the initial wakeup tree after E. It keeps two global variables,
wut, a mapping from execution sequences to wakeup trees, and done, a mapping from
execution sequences to sets of processes. For a pair of events e,e′ ∈ dom(E) that are in a
reversible race (e -E e′) in E, the algorithm employs the following notation:

– pre(E,e) denotes the prefix of E up to, but not including, the event e,
– notdep(e,E) denotes the sub-sequence of E consisting of the events that occur after

e but do not “happen after” e (i.e., the events e′ that occur after e such that e 6 →Ee′).
– notobs(e,e′,E) denotes the sub-sequence of E containing the events that “happen af-

ter” e, but are not observers o ∈O = observers(e,e′,E) of the race e→Ee′, nor “hap-
pen after” any such o: notobs(e,e′,E) = 〈q ‖ q ∈ E, e→Eq, q 6∈ O, 6 ∃o ∈ O.o→Eq〉.
The first change compared to Optimal DPOR is in lines 6 to 8 which describe how to

construct a wakeup sequence for an observed race, including an observer operation. Sec-
ond, the test v∈ redundant(E,done) on line 11 replaces the test sleep(E ′)∩WI[E ′](v) 6= /0
at the corresponding place in Optimal DPOR. The rest of the algorithm is essentially the
same, with initialization, update and propagation of sleep sets removed.
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Algorithm 1: Optimal DPOR with Observers.
Initial call: Explore(〈〉,〈{〈〉}, /0〉)

1 Explore(E,WuT)
2 done(E) := /0;
3 if enabled(s[E]) = /0 then // Race detection only at maximal execution sequences
4 foreach e,e′ ∈ dom(E) such that (e -E e′) do // For each racing pair e,e′

5 let E ′ = pre(E,e); // Goto state before e
6 if observers(e,e′,E) 6= /0 then // Is e→E e′ an observed race?
7 choose o ∈ observers(e,e′,E) ; // Select an arbitrary observer as a witness

8 let v = notdep(e,E).ê′.ê.
(

notobs(e,e′,E)\ ê′
)
.ô ; // Find events that don’t observe e→E e′

9 else // If e→E e′ are independently racing
10 let v = notdep(e,E).ê′; // Find events independent with e

11 if v 6∈ redundant(E ′,done) then // Has no equivalent already been explored?
12 wut(E ′) := insert[E′ ](v,wut(E ′)); // If not, insert into the wakeup tree

13 else // If not at a maximal execution sequence, explore...
14 if WuT 6= 〈{〈〉}, /0〉 then
15 wut(E) := WuT; // ... either using an existing wakeup tree

16 else
17 choose p ∈ enabled(s[E]); // ... or by selecting an arbitrary p...
18 wut(E) := 〈{〈〉, p},{(p,〈〉)}〉; // ... and making a wakeup tree from it

19 while ∃p ∈ wut(E) do // While the wakeup tree is not empty...
20 let p = min≺{p ∈ wut(E)}; // ... pick next branch, ...
21 let WuT′ = subtree(wut(E), p); // ... compute next wakeup tree (a subtree of the current),...
22 Explore(E.p,WuT′); // ... and do a recursive call to Explore
23 remove all sequences of form p.w from wut(E); // When done, cleanup...
24 add p to done(E); // ... and mark p as explored

5.2 Correctness and Optimality

The correctness and optimality of Algorithm 1 are stated in the following theorems.

Theorem 1 (Correctness of Optimal DPOR with Observers). Whenever a call to
Explore(E,WuT) returns during Algorithm 1, then for all maximal execution sequences
E.w, the algorithm has explored some execution sequence E ′ which is in [E.w]'.

Since the initial call to the algorithm uses the arguments Explore(〈〉,〈{〈〉}, /0〉),
Theorem 1 implies that for all maximal execution sequences E the algorithm explores
some execution sequence E ′ which is in [E]' (Appendix A contains the full proof).

Theorem 2 (Optimality of Optimal DPOR with Observers). Algorithm 1 never ex-
plores two maximal execution sequences which are equivalent.

If Algorithm 1 is not at the end of a maximal sequence, it will continue exploring the
scheduling either by using information from a wakeup tree (line 15) or by choosing
an arbitrary enabled process (line 18). Theorem 2 ensures that all maximal execution
sequences reached are non redundant (Appendix B contains the proof).

6 Implementations

We have implemented Algorithm 1 in two SMC tools: Nidhugg and Concuerror.
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Observers in Nidhugg. Nidhugg [1] is a stateless model checking tool for shared-
memory pthreads programs written in C or C++ that operates by interpreting LLVM IR.
Nidhugg can test programs also under relaxed memory models (TSO, PSO, and Power),
but in this paper we will limit ourselves to testing programs under Sequential Consistency.

In the context of shared memory, the observers extension was used to make races
between writes to the same memory location conditional on the existence of a read
of that memory location that “observes” those writes. In order to add the observers
extension to Nidhugg, the tool was first extended to support Optimal DPOR, as it
previously only implemented Source DPOR, which is not easily extended with observers,
as discussed in Sect. 3.2. The tool now records symbolic representations of program
events that contain enough information to reconstruct the happens-before relation induced
by a particular execution. For Source DPOR, these symbolic events are unnecessary
if the happens-before relation is stored in vector clocks [18], as it is in Nidhugg. For
Optimal DPOR, symbolic events are the most reasonable way to implement tests that
check whether a given process is a weak initial of some sequence, which is needed for
both the redundancy check and wakeup tree insertion.

To extend this implementation with observers, symbolic events for writes were
extended with an “observed”-flag, which is unset until a read that reads the value
written by that write is executed. At the end of the execution, we compute the vector
clocks of the happens-before relation, only considering two write events to the same
memory location as interfering if at least one of them has the “observed”-flag set. Then,
Optimal DPOR was modified as described in Sect. 5.1. The check whether a wakeup
sequence is redundant on line 11 is implemented using sleep sets extended with processes
conditionally sleeping unless an address is read, and a set of addresses that must be read,
without intervening writes, before the end of the program.

Observers in Concuerror. Concuerror [8] is a stateless model checking tool for Erlang,
a functional programming language based on the actor model of concurrency [4]. In
Erlang, actors are realized by language-level processes implemented by the runtime
system instead of being directly mapped to OS threads. Each Erlang process commu-
nicates with other processes via asynchronous message passing. Messages are placed
in the mailbox of the receiving process in the order they are delivered. A process can
consume messages using selective receive, which is a blocking operation when the
mailbox does not contain any matching message, unless a timeout clause is specified. If
multiple messages can match, the oldest message is picked from the mailbox.

Concuerror already implemented Optimal DPOR, but treated any two message
deliveries to the same mailbox as interfering. With the extension, Concuerror uses
receives as observers of sends. When examining a complete scheduling, an extra pass
is performed, annotating each message delivery event with the patterns that were used in
the receive that picked the message (if present) and the receive order. If the message of
a later delivery matches any of the pattern annotations of an earlier delivery, the deliveries
interfere. The notobs sequence is constructed from all the events that lead up to the
corresponding receive (which is the observer), excluding events in the notdep sequence.
Because the resulting wakeup sequence contains fewer events, observer information
is recomputed, and then all the earlier done sets are checked for weak initials of the
wakeup sequence, exactly as described in Algorithm 1.
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7 Experimental Results

We report experimental results that compare the performance of two algorithms: Optimal
DPOR (denoted in the tables as “optimal”) and Optimal DPOR with Observers (denoted
as “observers”). We ran all benchmarks on a desktop with an i7-3770 CPU (3.40 GHz)
with 16 GB of RAM running Debian 4.12.0-2-amd64 and LLVM 3.8.1. The machine
has four physical cores, but presently both tools use only one of them.

Observers in Nidhugg. Table 1 shows the effect of observers on shared memory
C/pthread programs. We used two kinds of programs: (1) synthetic benchmarks similar
to those of Sect. 2, and (2) programs from SV-COMP and/or from “similar” papers. We
report the number of traces that the two algorithms explore, the time it takes to explore
them, and the memory used (although this number is not interesting for an SMC tool).

Table 1: Performance of Optimal DPOR vs. Optimal DPOR with Observers in Nidhugg.
Traces Explored Time Memory

Benchmark optimal observers optimal observers optimal observers

lastwrite(2) 2 2 <0.1s <0.1s 10MB 10MB
lastwrite(7) 5040 7 0.5s <0.1s 10MB 10MB
lastwrite(8) 40320 8 5.2s <0.1s 10MB 10MB
lastwrite(9) 362880 9 52.0s <0.1s 10MB 10MB

�oating_read(2) 6 5 <0.1s <0.1s 10MB 10MB
�oating_read(6) 5040 193 0.5s <0.1s 11MB 10MB
�oating_read(7) 40320 449 5.0s <0.1s 11MB 11MB
�oating_read(8) 362880 1025 53.3s 0.2s 11MB 11MB

apr_1 1145 1145 4.8s 5.0s 19MB 20MB

�b 218243 218243 18.9s 20.1s 11MB 11MB

lamport(2) 16+16 14+12 <0.1s <0.1s 10MB 10MB
lamport(3) 9216+11525 5466+6132 4.0s 2.7s 11MB 11MB

lastwrite(n). A synthetic program where n threads write to a shared variable x and a single
process first joins (awaits the termination of) the writing threads, and then reads that variable.

�oating_read(n). A synthetic program where n threads write to a shared variable x and a single
process reads that variable without waiting for the writing processes to exit.

apr_1. A benchmark adapted from the sources of the Apache Portable Runtime library version
1.5.1. Also used in [1], there called apr_1.c. (Here, no loop bounding was applied.)

�b. A benchmark from SV-COMP, also used in [1] where it was called �b_true.c.
lamport(n). This standard benchmark has n worker processes acquiring a mutex implemented by

Lamport’s second fast mutual exclusion protocol [16] and immediately releasing it. We show
it for 2 and 3 processes which are the only sizes that are both non-trivial and tractable.

For lastwrite(n), we see a reduction in the number of interleavings explored from
n! to n, as explained in Sect. 2. For �oating_read(n), optimal shows the predicted
(n+1)! interleavings, and for n = 2, observers reduce the interleaving count from 6 to 5
as expected. In general, the benchmark has n×2n−1 +1 interleavings with observers.
Notice that any technique that differentiates equivalence classes by the partial order of
program steps must explore at least as many interleavings or violate Property 4. The next
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two programs (apr_1 and �b) are examples of programs for which observers have no
effect. We see that the extra overhead is very moderate for both programs.

In the last benchmark (lamport), we see that observers improve performance. As
Nidhugg does not implement await statements (which are used by lamport), it emulates
these with assumes. In such cases, Nidhugg might explore some traces in which these
assumptions are violated. We list those traces separately, so for this benchmark the
“Traces Explored” columns show a+b entries, which means that Nidhugg explored a+b
traces but b of those times an assume statement was violated.

Observers in Concuerror. Table 2 shows the effect of observers in message passing
programs; we omit memory used, as both algorithms have similar requirements.

Table 2: Comparison of Optimal DPOR vs. Optimal DPOR with Observers in Concuerror.

Traces Explored Time

Benchmark optimal observers optimal observers

not_selective(2) 2 2 <1.0s <1.0s
not_selective(6) 720 720 1.7s 1.8s
not_selective(7) 5040 5040 6.0s 6.8s
not_selective(8) 40320 40320 48.0s 56.0s

selective(2) 2 1 <1.0s <1.0s
selective(6) 720 1 1.8s <1.0s
selective(7) 5040 1 6.3s <1.0s
selective(8) 40320 1 51.0s <1.0s

Traces Explored Time

Benchmark optimal observers optimal observers

lock(3) 30 6 0.9s 0.9s
lock(4) 336 24 1.4s 0.9s
lock(5) 5040 120 9.0s 1.3s
lock(6) 95040 720 3m27s 2.6s

poolboy 746 265 6.6s 4.0s

gproc 1168 784 12.7s 10.0s

corfu-repair 92750496 3864604 1022h 52h

not_selective(n). n processes send messages to a process that can receive any message sent to it.
selective(n). This is a generalized version of the last example of Sect. 2. A process uses pattern

matching to choose between messages from n different senders. Code is given in Appendix C.
lock(n). This is a program in which n workers acquire and release a lock simulated by an Erlang

process. When using observers, it has n! schedulings. Without observers the number of
schedulings is higher. Its code is also given in Appendix C.

poolboy. A benchmark created from a unit test of a worker pool library [2].
gproc. A benchmark created from a library implementing an extended process dictionary [2].
corfu-repair. A program that verifies the correctness of a repair protocol of CORFU, a distributed

database using a variant of Chain Replication. From a paper [5] that motivated our work.

The two benchmarks on the left sub-table confirm the behaviour we expect. When
receives are not selective, the number of traces explored by both algorithms is n!. With
selective receive (selective benchmark) observers explore only one trace.

The first program on the right sub-table (lock) is originally a shared-memory program
that when translated to Erlang simulate locks using message passing. To acquire the
lock, a process sends a message with its identifier to the “lock process” and then waits
for a reply. Upon receiving the acquire message, the lock process uses the identifier to
reply and then waits for a release message. Other acquire messages become queued
in the mailbox of the lock process. Upon receiving the release message, the lock
process loops back to the start, retrieving the next acquire message and notifying
the next process. Notice that, without observers, the delivery of the release message
of a process interferes (redundantly) with the delivery of acquire messages of other
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processes, unlike acquire operations on true locks which cannot be executed before a
release operation (such messages were treated exceptionally in the evaluation of Optimal
DPOR). Observers remove the need for special handling: the receive statements are
enough to precisely determine which pairs of send operations are interfering.

The next two table rows (poolboy and gproc) show results from “real” Erlang
programs. We see that observers provide a moderate reduction in both the number of
traces that need to be explored as well as in time.

Finally, the last program (corfu-repair) is the one that triggered this work. As can be
seen in the table, observers allow Concuerror to complete SMC in a bit more than two
days, while without observers the tool needs to explore exactly 24 times as many traces,
taking more than 42 days to finish.

8 Related Work

POR techniques have been continuously evolving w.r.t. how they determine interference.
Refining the conditions under which higher-level operations interfere has been shown
to have significant impact, regardless of whether the states in which such operations
are executed is also a parameter or not [13]. In this work, we have extended this idea,
parameterizing the interference between operations using distinct observer operations.

DPOR techniques have also been extended to take advantage of special properties
of the underlying concurrency model. For the actor model, the transitivity of the de-
pendency relation for send operations has been exploited to defer early planning of
interleavings [21]. This improvement is orthogonal with Optimal DPOR (and with our
extension), as it reduces the number of wakeup sequences that are added “early” in an
exploration. For event-driven systems, it has been shown [17] that two post operations to
an event dispatch queue need not be considered dependent: reordering of such operations
can be decided later, upon detection of interference between other operations within
the respective event handlers. However, this treatment applies only under a specific
interpretation of ‘message passing’ that exploits additional semantic structure of an
actor’s mailbox. Our technique is applicable to a wider spectrum of programs.

Context-Sensitive DPOR [3] uses an external procedure to decide whether alternative
schedulings would lead to identical states and, like Optimal DPOR with observers, is
also able to achieve exponential reduction in certain cases. However, since it needs to
compare states, it is an inherently stateful technique, in contrast to our technique that
inspects only one trace at a time to lazily construct reversible races.

Data-Centric DPOR (DC-DPOR) [7] is an SMC technique that explores a related
but different notion of observability. It defines two executions to be equivalent if each
read reads from (“observes”) the same write in both executions. In contrast, our notion
of observability is based on observing interference of operations, not just individual
writes. DC-DPOR’s resulting equivalence relation is coarser than ours, which is based
on Mazurkiewicz traces. However, DC-DPOR is optimal only for programs with acyclic
communication graphs, while being non-optimal otherwise. Also, DC-DPOR models
message passing using locks and shared memory, which at best gives as few traces as
Optimal DPOR gives without the improvements presented in this paper.
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9 Concluding Remarks

In this paper we presented an extension to the Optimal DPOR algorithm for SMC that
uses observability to refine which operations are considered as interfering. We described
the challenges and motivated the necessary modifications, gave a formal description of
the algorithm and the theory behind it and reported on two implementations in SMC
tools, demonstrating that Optimal DPOR with Observers can achieve significantly better
reduction in both shared memory and message passing programs.
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rules, the artifact is designed for use with the TACAS 2018 Artifact Evaluation Virtual
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A Proof of Correctness

In this appendix, we prove the correctness of Theorem 1. We repeat its formulation here.

Theorem 1. Whenever a call to Explore(E,WuT) returns during Algorithm 1, then for all
maximal execution sequences E.w, the algorithm has explored some execution sequence
E ′ which is in [E.w]'.

The proof begins by establishing some lemmas about the definitions in Section ??.

Lemma 1. For an execution sequence E.v and a process p, we have:

1. If v.p ∈ redundant(E,done) then v ∈ redundant(E,done);
2. If 〈〉 6∈ redundant(E,done), then redundant(E,done) = /0.

Proof. The first property follows from an analogous property of weak initials, and the
second property follows from the first. ut

Lemma 2. For a process p, an execution sequence E.p.v, and a function done from
prefixes of E.p to sets of processes, if done(E.p) = /0, then if v ∈ redundant(E.p,done),
also p.v ∈ redundant(E,done).

Proof. Since v∈ redundant(E.p,done), there exists a partitioning E.p = E ′.w and a pro-
cess q ∈ done(E ′) such that q ∈WI[E ′](w.v). Since done(E.p) = /0, E ′ must not be E.p,
and thus p ∈ w. Therefore, we can write w as w′.p and have that q ∈ WI[E ′](w′.p.v).
But then the partitioning E = E ′.w′ and process q satisfy the definition of p.v ∈
redundant(E,done). ut

Lemma 3. If E.p.v.q.w is an execution sequence such that next[E](p)-E.p.v.q.w next[E.p.v](q),
then there exists an execution sequence E.p.v′.q.w' E.p.v.q.w such that for all execu-
tion sequences E.p.v′.q.w.w′, next[E](p)-E.p.v′.q.w.w′ next[E.p.v](q).

Proof. A satisfying v′ can be constructed in the following way: Partition the events that
comprise v into the following disjoint sets; the events that happen-before next[E.p.v](q),
the events that neither happen-before next[E.p.v](q) nor happen-after next[E](p), and
the events that happen-after next[E](p). The sets are disjoint since next[E](p)-E.p.v.q.w
next[E.p.v](q). Then construct v′ by concatenating three subsequences of events from v
that are in the first, second, and third sets respectively. This construction cannot have
violated any edge in→E.p.v.q.w, and so E.p.v′.q.w' E.p.v.q.w.

Now, the only way for an extension w′ to create a nondirect path from next[E](p) to
next[E.p.v](q) in→E.p.v′.q.w.w′ is to add an edge from next[E](p) to an event in the first set
or to next[E.p.v](q) from an event in the last set, but either is forbidden by Property 6.(e).

ut

Let us now prove the correctness of Algorithm 1. The proof will follow the same structure
as the proof for Optimal DPOR in [2]. Throughout, we assume a particular completed
execution of Optimal DPOR for observers. This execution consists of a number of
terminated calls to Explore(E,WuT) for some values of the parameters E and WuT.
Let E denote the set of execution sequences E that have been explored in some call
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Explore(E, ·). Define the ordering ∝ on E by letting E ∝ E ′ if Explore(E, ·) returned
before Explore(E ′, ·). Intuitively, if one were to draw an ordered tree that shows how the
exploration has proceeded, then E would be the set of nodes in the tree, and ∝ would be
the post-order between nodes in that tree.

We begin by establishing some useful invariants.

Lemma 4. Whenever Algorithm 1 is inside a call Explore(E,WuT), then the following
invariants hold:

1. wut(E) is a wakeup tree after 〈E,done〉,
2. if WuT is empty, then redundant(E,done) = /0; no execution sequence starting with

E is redundant.

This invariant is equivalent to Lemma 7.1 in [2], and is proven in the same way.

Proof. We establish these two invariants jointly, by induction over the steps of the
algorithm. The properties hold at the beginning of the initial call, since done(E) and
wut(E) are both empty. We verify that each property is preserved by the steps of the
algorithm.

1. We need to consider the following cases.
– Whenever wut(E) is updated at line 12, it follows by Property 1 of the operation

insert[E](v,wut(E)) that wut(E) remains a wakeup tree after 〈E,done〉.
– Consider a new call to Explore(E.p,WuT′) at line 22, which occurs inside a

call Explore(E,WuT), and where WuT′ are obtained from the current value of
wut(E) by WuT′ = subtree(wut(E), p), at line 21. Since the parameter WuT′ will
be used to initialize wut(E.p) (at line 15), we must check that WuT′ is a wakeup
tree after 〈E.p,done〉. By the inductive hypothesis, wut(E) is a wakeup tree after
〈E,done〉. We establish that WuT′ is a wakeup tree after 〈E.p,done〉 by checking
the two properties of Definition 4. Let WuT′ = 〈B′,≺′〉 and let wut(E) = 〈B,≺〉.
(a) Any leaf w of B′ is also a leaf p.w of B. Since done(E.p) = /0 (as initialised

on line 2) and p.w 6∈ redundant(E,done), the contrapositive of Lemma 2
implies w 6∈ redundant(E.p,done).

(b) Let u.q and u.w be nodes in B′ with u.q ≺′ u.w, and u.w is a leaf. Then
p.u.q and p.u.w are nodes in B with p.u.q ≺ p.u.w, and p.u.w a leaf. By
the inductive hypothesis, it follows that q 6∈WI[E.p.u](w), which is precisely
what we must establish for the inductive step.

If wut(E.p) is initialized at line 18 instead of at line 15, then this initialization
is performed in a call of form Explore(E.p,WuT′) where WuT′ is the empty
wakeup tree. Since 〈{〈〉, p},{(p,〈〉)}〉 is trivially a wakeup tree after 〈E.p,done〉
where done(E.p) = /0, the property follows.

– Consider the update to wut(E) at line 23. Since it is only deleting from the
wakeup tree, the property is trivially preserved.

– Consider the update to done(E) and wut(E) at lines 23 and 24. We must prove
that they preserve the two properties of Definition 4.
(a) Since the update removes nodes from wut(E), and p is added to done(E),

it suffices to check that p 6∈WI[E](w) whenever w is a leaf of wut(E) that
remains after the operation, i.e., w is not of form p.w′. Before the operation,
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it was the case that p and w were nodes of wut(E) with p≺ w and w a leaf.
From the inductive hypothesis, Property (2) of Definition 4 implies that
p 6∈WI[E](w), which completes the proof or this case.

(b) Since wut(E) is modified by removing a branch from the root, this property
is preserved.

2. Consider a new call to Explore(E.p,WuT′) at line 22. If WuT′ is empty, then p
must have been a leaf in wut(E) just before the call. By Property 1 of the inductive
hypothesis, wut(E) was then a wakeup tree after 〈E,done〉, therefore (by Property (1)
of Definition 4), we have p 6∈ redundant(E,done), which by Lemma 1 implies that
redundant(E.p,done) = /0.

ut

Now we will proceed to prove Theorem 1 which was stated in Sect. 5.2.

Proof (of Theorem 1). By induction on the set of execution sequences E that are explored
during the considered execution, using the ordering ∝ (i.e., the order in which the
corresponding calls to Explore returned).

Base Case: This case corresponds to the first sequence E for which the call Explore(E, ·, ·)
returns. By the algorithm, E is already maximal, so the theorem trivially holds.

Inductive Step: Let us assume that there exist values E and WuT, such that when the call
to Explore(E,WuT) returns, there is a maximal sequence E.w such that the algorithm
has not explored any execution sequence E ′ in [E.w]'. We will show that this leads to a
contradiction.

Note that for such w to exist, E cannot be maximal, so done(E) contains at least one
process. For processes p ∈ redundant(E,done), define

– E ′p, such that E ′p ≤ E, E ′p.p ∈ E , and E ′p.p is the last execution sequence of this
form that precedes E (w.r.t. ∝). If p ∈ done(E) then E ′p = E, otherwise E ′p is a strict
prefix of E.

– w′p, as E = E ′p.w
′
p.

Inductive Hypothesis: The theorem holds for all execution sequences E ′ with E ′ ∝ E.

Claim 1. w 6∈ redundant(E,done).

Proof. By contradiction. Assume that there is a partitioning v.v′ = E such that there is a
p∈ (WI[v](v′.w)∩done(v)). Since E.w is maximal, p∈WI[v](v′.w) implies p∈ I[v](v′.w),
therefore from Definition 2.1 there is a w′′ such that v.v′.w' v.p.w′′. By the inductive
hypothesis applied to v.p, the algorithm has explored some execution sequence in
[v.p.w′′]' = [E.w]', which contradicts the main assumption about w. ut

For processes p ∈ redundant(E,done), also choose

– a sequence wp as a longest prefix of any w′ such that E.w'E.w′ and p∈WI[E ′p](w
′
p.wp),

– op as the first event in dom[E](w′) which is not in wp. Such an event op must
exist, otherwise wp = w′, which implies p ∈ WI[E ′p](w

′
p.w
′), which implies p ∈

WI[E ′p](w
′
p.w), which implies w ∈ redundant(E,done), which contradicts Claim 1.
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Now, choose

– t ∈ redundant(E,done) as an arbitrary process with a longest wt .

Claim 2. wt .ot 6∈ redundant(E,done)

Proof. By contradiction. Assume wt .ot ∈ redundant(E,done). Then there exists some
process r such that r ∈WI[E ′r ](w

′
r.wt .ot), which means that some extension of wt .ot was

a valid choice for wr. But that means that wr must be longer than wt , which contradicts
the definition of t. ut

Finally,

– choose w′′t as a longest sequence such that E.wt `w′′t , and wt .w′′t ∈ redundant(E,done),
and such that there exists a process r such that E.wt .w′′t ` r and wt .w′′t .r 6∈ redundant(E,done).
Such a sequence must exist, as w′′t = 〈〉 and r = ôt trivially satisfies.

– Define Q as the set of processes r such that E.wt .w′′t ` r and wt .w′′t .r 6∈ redundant(E,done).
– Choose an arbitrary process q∈ redundant(E,done), such that q∈WI[E ′q](w

′
q.wt .w′′t ).

Such a process must exist because wt .w′′t ∈ redundant(E,done) by construction.

For the rest of the proof, we will distinguish two cases, distinguished by the type of race
we will consider. In the first case, we will consider a race with an empty observer set,
and in the second case a race with observers. Mathematically, the cases are distinguished
by whether q ∈ w′q.wt .w′′t . Both cases will conclude in a contradiction, and will together
prove Theorem 1.

Case 1 (Independent race). Assume that q 6∈ w′q.wt .w′′t .
We will now define the sequence wR, which will serve later in the proof as a wakeup

sequence found while exploring the E ′q.q subtree.

– Pick an arbitrary process s ∈ Q. It must be the case that E.wt .w′′t 6`q♦s; otherwise
w′′t .q would have been a longer choice of w′′t , with s having the satisfying property
of r from the definition of w′′t .

– Define wR as wt .w′′t .s.q.
Note that s is the last event in wR such that s→E.wR next[E ′q](q).

Claim 3. wR 6∈ redundant(E,done)

Proof. By contradiction. Assume wR ∈ redundant(E,done). Then there exists some
process r such that r ∈WI[E ′r ](w

′
r.wR), but then also r ∈WI[E ′r ](w

′
r.wt .w′′t .s). Since s ∈ Q,

and by definition wt .w′′t .s 6∈ redundant(E,done), then r 6∈WI[E ′r ](w
′
r.wt .w′′t .s). We have

a contradiction. ut

Note that E ′q.wt .w′′t .q.s is an execution sequence with the same domain as E.wR where s
and next[E ′q](q) are reversed but all other edges of→E.wR are preserved.

Note that since q∈ I[E ′q](wt .w′′t .q), by the construction of wR, we have E ′q.q.wt .w′′t .s'
E ′q.wt .w′′t .q.s. Since next[E ′q](q)-E ′q.wt .w′′t .q.s s by construction, then also next[E ′q](q)-E ′q.q.wt .w′′t .s
s.
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By Lemma 3 we receive an execution sequence E ′q.q.E
′′′.s' E ′q.wt .w′′t .q.s such that

for any E ′q.q.E
′′′.s ` w′′, we still have next[E ′q](q)-E ′q.q.E ′′′.s.w′′ s.

By the inductive hypothesis for E ′q.q applied to E ′q.q.E
′′′.s.w′′ for some arbitrary

E ′q.q.E
′′′.s ` w′′, the algorithm has explored some sequence E ′q.q.z in [E ′q.q.E

′′′.s.w′′]'.
While exploring E ′q.q.z, the algorithm will encounter the race next[E ′q](q)-E ′q.q.z s. When
handling it,

– E in the algorithm will correspond to E ′q.q.z in this proof,
– e in the algorithm will correspond to next[E ′q](q) in this proof, and
– e′ in the algorithm will correspond to s in this proof.
– Let x = notdep(next[E ′q](q),E

′
q.q.z).

Since next[E ′q](q) and s are independently racing then the algorithm will go to line 10
and v = x.ŝ will be the sequence v in Algorithm 1.

Now, let x′ = notdep(next[E ′q](q),E
′
q.q.E

′′′.s.w′′) and v′ = x′.ŝ.
We will define a sequence v′′ which has the same domain as v, and the same happens-

before order→E ′q.v′′ , except that the edge between s and next[E ′q](q) is reversed. Define
v′′ = x.q.

We will show that E ′q.v
′′ is equivalent to E ′q.q.wt .w′′t .s and from that derive that E ′q.v

is equivalent to E.wR.

Claim 4. dom[E ′q](v) = dom[E ′q](w
′
q.wR).

Proof. We have that dom[E ′q](w
′
q.wR) = dom[E ′q](q.E

′′′.s)
By the construction of wt , everything in dom[E ′q.q.E ′′′.s](w

′′) conflict with s, and
can therefore not be included in x′. Conversely, since only s happens after next[E ′q](q)
in E ′q.q.E

′′′.s (by construction), by property 6.(f) nothing outside of w′′ happen after
next[E ′q](q) in E ′q.q.E

′′′.s.w′′, and thus x′ = E ′′′ and dom[E ′q](q.E
′′′.s) = dom[E ′q](v

′).
Finally, since E ′q.v' E ′q.v

′, we have dom[E ′q](v) = dom[E ′q](w
′
q.wR). ut

Claim 5. E ′q.v
′′ ' E ′q.q.wt .w′′t .s.

Proof. Since next[E ′q](q) -E ′q.q.E ′′′.s.w′′ s, it is obvious that v′′ v[E ′q] q.z, therefore, since
E ′q.q.E

′′′.s.w′′ ' E ′q.q.z, we also have v′′ v[E ′q] q.E ′′′.s.w′′, and then using claim 4, we
have v′′ v[E ′q] q.E ′′′.s and moreover E ′q.v

′′ ' E ′q.q.E
′′′.s. Since E ′q.q.E

′′′.s' E ′q.q.wt .w′′t .s,
we have E ′q.v

′′ ' E ′q.q.wt .w′′t .s. ut

Lemma 5. E ′q.v' E.wR.

Proof. Since v is the same as v′′ but with next[E ′q](q) and s reversed, and E ′q.wR is the
same as E ′q.q.wt .w′′t .s but with next[E ′q](q) and s reversed, claim 5 implies E ′q.v' E.wR.

ut

From Lemma 5 and wR 6∈ redundant(E,done), we conclude that the test on line 11
must have succeeded and that the algorithm will have inserted v into the wakeup tree.
Since E is the first branch compatible with E ′q.v ' E.wR, wakeup tree insertion will
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have ensured that we will explore some sequence startable with E.wR after E. However,
wR 6∈ redundant(E,done) means that none of the continuations of E that the algorithm
explored was compatible with wR.

We have a contradiction, which concludes the first case.

Case 2 (Observed race). Assume that q ∈ w′q.wt .w′′t .

– Choose Q′′ ⊆ Q as a largest subset of Q such that for all r 6= r′, r,r′ ∈ Q′′, they are
independent; E.wt .w′′t `r♦r′.

– Choose wQ as an arbitrary sequence containing all processes in Q′′ exactly once.

We are now ready to define the sequence wR, which will serve later in the proof as a
wakeup sequence found while exploring the E ′q.q subtree. Now,

– Let w′′R be wt .w′′t .wQ.
– Let eq be the last event in w′′R such that eq→E.w′′R

next[E ′q](q). Since q∈WI[E ′q](w
′
q.wt .w′′t ),

it must be the case that eq and next[E ′q](q) are in an observed race. Then O =

observers(eq,next[E ′q](q),w
′′
R)⊆ Q′′.

– Let w′Q be the subsequence of wQ that is in O. Note that w′Q is never empty.
– Define wR as wt .w′′t .w

′
Q. Note how it is defined like w′′R was defined above, but using

w′Q. Note also that eq is the last event in wR such that eq→E.wR next[E ′q](q), and that
O = observers(eq,next[E ′q](q),wR).

Claim 6. wR 6∈ redundant(E,done)

Proof. By contradiction. Assume wR ∈ redundant(E,done). Then there exists some
process r such that r ∈ WI[E ′r ](w

′
r.wR), but then also r ∈ WI[E ′r ](w

′
r.wt .w′′t .w

′
Q). Let r′

be the first process in w′Q. We have that r ∈ WI[E ′r ](w
′
r.wt .w′′t .r

′). But r′ ∈ Q, and by
definition wt .w′′t .r

′ 6∈ redundant(E,done), and thus r 6∈WI[E ′r ](w
′
r.wt .w′′t .r

′). We have a
contradiction. ut

By construction eq -E.wR next[E ′q](q). This means that we can construct an execution
sequence E ′q.E

′.w′Q with the same domain as E.wR where eq and next[E ′q](q) are reversed
but all other edges of→E.wR are preserved. We claim that

Claim 7. q ∈ I[E ′q](E
′)

Proof. Assume q 6∈ I[E ′q](E
′). Then there is a last event e′′ in E ′q.E

′ such that e′′→E ′q.E ′next[E ′q](q).
Since q ∈WI[E ′q](w

′
q.wt .w′′t ), that means that the race between e′′ and next[E ′q](q) is also

an observed race and that some o′ ∈ observers(e′′,next[E ′q](q),E
′
q.E
′) is in o′ ∈ O. But

since o′ ∈ observers(next[E ′q](q),eq,E ′q.E
′), that contradicts property 6.(f). ut

Then there is some sequence E ′q.q.E
′′.w′Q ' E ′q.E

′.w′Q. Since next[E ′q](q)-E ′q.E ′.w′Q
eq by

construction, then also next[E ′q](q)-E ′q.q.E ′′.w′Q
eq.

By Lemma 3 we receive an execution sequence E ′q.q.E
′′′.w′Q ' E ′q.E

′.w′Q such that
for any E ′q.q.E

′′′.w′Q ` w′′, we still have next[E ′q](q)-E ′q.q.E ′′′.w′Q.w
′′ eq.
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By the inductive hypothesis for E ′q.q applied to E ′q.q.E
′′′.w′Q.w

′′ for some arbitrary
E ′q.q.E

′′′.w′Q `w′′, the algorithm has explored some sequence E ′q.q.z in [E ′q.q.E
′′′.w′Q.w

′′]'.
While exploring E ′q.q.z, the algorithm will encounter the race next[E ′q](q)-E ′q.q.z eq. When
handling it,

– E in the algorithm will correspond to E ′q.q.z in this proof,
– e in the algorithm will correspond to next[E ′q](q) in this proof, and
– e′ in the algorithm will correspond to eq in this proof.
– Let x = notdep(next[E ′q](q),E

′
q.q.z).

Since next[E ′q](q) and eq are in an observed race, the algorithm will go in the first
branch of the if-statement on line 6.
Then let o ∈ observers(next[E ′q](q),eq,E ′q.q.z) be the o that the algorithm chooses
on line 7 and y = notobs(next[E ′q](q),eq,E ′q.q.z)\ êq. Then v = x.êq.q.y.ô will be the
sequence v in Algorithm 1.

Now,

– let x′ = notdep(next[E ′q](q),E
′
q.q.E

′′′.w′Q.w
′′),

– let y′ = notobs(next[E ′q](q),eq,E ′q.q.E
′′′.w′Q.w

′′)\ êq, and
– let v′ = x′.êq.q.y′.ô.

We will now define a sequence v′′ which has the same domain as v, and the same
happens-before order→E ′q.v′′ , except that the edge between eq and next[E ′q](q) is reversed.
Define v′′ = x.q.êq.y.ô. Finally, define w′R as wR but with w′Q replaced by o. It trivially
follows that also w′R 6∈ redundant(E,done).

We will show that E ′q.v
′′ is equivalent to E ′q.q.E

′′.o and from that derive that E ′q.v is
equivalent to E.w′R.

Claim 8. dom[E ′q](v) = dom[E ′q](w
′
q.w
′
R).

Proof. We have that dom[E ′q](w
′
q.w
′
R) = dom[E ′q](q.E

′′′.o)
By the construction of w′′t , everything in dom[E ′q.q.E ′′′.w′Q]

(w′′) conflict with o ∈ w′Q,
and can therefore not be included in x′ or y′. Conversely, since E ′q.q.E

′′′.o ends with
o, nothing outside of w′′ happen after o in E ′q.q.E

′′′.w′Q.w
′′, and thus E ′q.q.x

′.êq.y′.o '
E ′q.q.E

′′′.o and dom[E ′q](q.E
′′′.o) = dom[E ′q](v

′).
Finally, since E ′q.v' E ′q.v

′, we have dom[E ′q](v) = dom[E ′q](w
′
q.w
′
R). ut

Claim 9. E ′q.v
′′ ' E ′q.q.E

′′.o.

Proof. Since next[E ′q](q)-E ′q.q.E ′′′.w′Q.w
′′ eq, it is obvious that v′′ v[E ′q] q.z, therefore, since

E ′q.q.E
′′′.w′Q.w

′′'E ′q.q.z, we also have v′′v[E ′q] q.E ′′′.w′Q.w
′′, and then using claim 8, we

have v′′v[E ′q] q.E ′′′.o and moreover E ′q.v
′′'E ′q.q.E

′′′.o. Since E ′q.q.E
′′′.w′Q'E ′q.q.E

′′.w′Q,
we have E ′q.v

′′ ' E ′q.q.E
′′.o. ut

Lemma 6. E ′q.v' E.w′R.
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Proof. Since v is the same as v′′ but with next[E ′q](q) and eq reversed, and E ′q.w
′
R is the

same as E ′q.q.E
′′.o but with next[E ′q](q) and eq reversed, claim 9 together with prop-

erty 6.(g) implies E ′q.v' E.w′R. ut

From Lemma 6 and w′R 6∈ redundant(E,done), we conclude that the test on line 11
must have succeeded and that the algorithm will have inserted v into the wakeup tree.
Since E is the first branch compatible with E ′q.v ' E.w′R, wakeup tree insertion will
have ensured that we will explore some sequence startable with E.w′R after E. However,
w′R 6∈ redundant(E,done) means that none of the continuations of E that the algorithm
explored was compatible with w′R.

We have a contradiction, which concludes the second case.

Since both cases ended in contradiction, the assumption that there was a sequence w that
the algorithm missed after E must be false and the theorem true. ut

B Proof of Optimality

First we state a lemma, similar to lemma 7.2 from [2].

Lemma 7. If E.p ∝ E.w and E.w is maximal then p 6∈ I[E](w).

Proof. Assume E.p ∝ E.w. This implies that the sequence E.w is explored after a
call to Explore(E.p, ·) on line 22 has returned. For the algorithm to explore E.w, the
wakeup tree wut(E) contains nodes corresponding to prefixes of w and such a node is
eventually picked by lines 19 and 20. Moreover, when the algorithm is inside any call to
Explore(E.w′, ·), where w′ is a prefix of w, it holds (due to line 24) that p ∈ done(E) (1).

Eventually the algorithm will make a call to Explore(E.w,WuT′). Right before this
call, on line 21, WuT′ is picked as a subtree of a wakeup tree, which is valid by invariant 1
of Lemma 4. Because E.w is maximal, the only possible such choice is for WuT′ to
be empty. Then, by invariant 2 of Lemma 4, we then have redundant(E.w,done) = /0.
This together with Definition 3 and (1) implies that p 6∈WI[E](w) from which we can
conclude that p 6∈ I[E](w). ut

Using this lemma, we can prove Theorem 2.

Proof (Theorem 2). Assume that E1 and E2 are two maximal execution sequences that
are explored by the algorithm. Then they are both in E . Assume w.l.o.g. that E1 ∝ E2. Let
E be their longest common prefix, and let E1 = E.p.v1 and E2 = E.v2. Since E1 ' E2,
by Definition 2.1 we have p ∈ I[E](v2). This contradicts Lemma 7 which states that
p 6∈ I[E](w) for any maximal sequence E.w explored by the algorithm. ut

C Code for some Erlang Benchmarks

Figure 2 shows the example of selectively receiving N messages in a fixed order
from Sect. 2 written in Erlang. The main process R spawns the senders (using a list
comprehension), and stores a list of their PIDs in the Senders variable (line 6). Each
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1 -module(selective).

2 -export([test/1]).

3

4 test(N) ->

5 R = self(),

6 Senders = [spawn(fun() -> S = self(), R ! {S, I} end) || I <- lists:seq(1, N)],

7 [receive {S, X} -> X end || S <- Senders].

Fig. 2: An example from Sect. 2 in Erlang.

sender sends a message to R, which is a tuple containing its own PID (obtained by a
call to the self operation) and an integer. After spawning the senders, the main process
executes N selective receive statements, each one using a pattern that can match the PIDs
of only one of the senders (line 7). Since all messages can be delivered independently,
there exist N! interleavings of the deliveries. Using observers, however, we can see that
only one scheduling needs to be explored, as each message can be picked by only one
receive statement.

1 -module(lock).

2 -export([test/1]).

3

4 test(N) ->

5 L = spawn(fun lock/0),

6 [spawn(fun() -> worker(L) end) || _ <- lists:seq(1, N)].

7

8 lock() ->

9 receive

10 {acquire, P} ->

11 P ! acquired,

12 receive release -> lock() end

13 end.

14

15 worker(L) ->

16 acquire(L),

17 release(L).

18

19 acquire(L) ->

20 L ! {acquire, self()},

21 receive acquired -> ok end.

22

23 release(L) ->

24 L ! release.

Fig. 3: Workers using a lock that is simulated by an Erlang process.

Figure 3 shows the code for the ‘locks’ example described in Section 7. The main
process spawns a lock process and N workers. The lock process first expects an acquire

message, that also identifies a worker that is requesting the lock. This worker will be
signaled to proceed with a acquired message. Then the lock process expects a release

message. In the given program, the signaled worker is the only one that can send this
message.
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While acquire messages interfere with other acquire messages, they cannot be
received by the receive statement expecting a release message, and as a result we
can treat them as independent with release messages. By taking advantage of this
information, only N! schedulings need to be explored.


