
Demonstrating Learning of Register Automata?

Maik Merten1, Falk Howar1, Bernhard Steffen1, Sofia Cassel2, and Bengt
Jonsson2

1 Technical University Dortmund, Chair for Programming Systems, Dortmund,
D-44227, Germany

{maik.merten|falk.howar|steffen}@cs.tu-dortmund.de
2 Dept. of Information Technology, Uppsala University, Sweden

{sofia.cassel|bengt.jonsson}@it.uu.se

Abstract We will demonstrate the impact of the integration of our most
recently developed learning technology for inferring Register Automata
into the LearnLib, our framework for active automata learning. This will
not only illustrate the unique power of Register Automata, which allows
one to faithfully model data independent systems, but also the ease of
enhancing the LearnLib with new functionality.

1 Introduction

Active automata learning (aka regular extrapolation) has been proposed to semi-
automatically infer formal behavioral models of underspecified systems. The re-
sulting formal behavioral models can be used, e.g., for documentation or regres-
sion testing and thus can be an enabler for continued system evolution. Au-
tomated mediation between networked systems by automatically synthesizing
connectors from behavioral models is a current research interest. This approach
is currently in development in the Connect project [6].

To cater the various use-cases of automata-learning, LearnLib has been cre-
ated to offer a versatile library of learning algorithms and related tools. Result of
an extensive reengineering effort, the Next Generation LearnLib [8] implements a
flexible component-based approach that supports quick iteration and refinement
of learning setups (in the following the Next Generation LearnLib will simply be
referred to as “LearnLib”).

The reengineered LearnLib has seen continued evolution, for which a com-
plete account will not be provided in this paper. We will rather focus on two
main innovations:

– The modeling paradigm in LearnLib Studio underwent significant changes.
For example, in the old modeling paradigm a dedicated setup phase would
precede the actual learning process. This has been replaced by on-the-fly
configuration during the learning phase itself, with only minimal static con-
figuration needed beforehand.

? This work is supported by the European FP 7 project CONNECT (IST 231167).

– LearnLib has been outfitted with support for the Register Automata au-
tomaton model [4], which is a simple extension of finite automata with data
from infinite domains. It can model data-independent systems [7], i.e., sys-
tems that do not compute or manipulate data but manage their adequate
distribution, such as protocols and mediators, in an intuitive way.

The demonstration will not only cover these two points in isolation, but will
also highlight the ease of integration of new functionality into the overall learning
framework.

In the remainder of the paper, we will recall the basics of active automata
learning in Section 2, followed by an introduction to Register Automata in Sec-
tion 3. A learning solution for Register Automata will be presented in Section 4,
demonstrating the innovations outlined above. In Section 5 a conclusion is pro-
vided, with references showcasing the broad application scope of the presented
tool environment.

2 Active automata learning

Angluin’s seminal algorithm L∗ [2] defines two query types to gather information
about the System Under Learning (SUL):

– Membership Queries (MQs) are traces of symbols from a predefined alphabet
of inputs of the SUL. The learning algorithm will construct such input traces,
execute these on the SUL and capture system output. From the gathered
information a hypothesis model is generated.

– Equivalence Queries (EQs) compare the produced hypotheses with the tar-
get system. If the model is not accurate, a counterexample will be provided
revealing a difference between the current hypothesis and the SUL. Evaluat-
ing counterexamples the learning algorithm will produce refined hypothesis
models using additional MQs. Once no counterexample can be produced the
learning procedure has produced an accurate model and can be stopped.

With those two query types, L∗ is guaranteed to produce a minimal and
correct model. In current practice, however, EQs can only be implemented ap-
proximately for a large class of systems, e.g., with additional invocations of the
target system.

The original L∗ algorithm has originally been presented for DFAs, but has
since been adapted to Mealy Machines, which are a better fit for learning actual
reactive systems as they can encode system output in a natural way. A major
and recent increase in expressiveness is achieved with Register Automata [5],
which are described in the following section.

3 Register Automata

Register Automata are an extension of finite automata with data from infinite
domains and are, e.g., well-suited for describing communication protocols. Reg-
ister Automata are defined as follows:

l0
l1

l2
(register,〈p1,p2〉) | true

x1:=p1;x2:=p2

(login,〈p1,p2〉) | x1=p1∧x2=p2
−

(logout,∅) | true
−

(delete,∅) | true
−

(change,〈p1〉) | true
x2:=p1

Figure 1. Partial RA model for a fragment of XMPP

Definition 1. Let a symbolic input be a pair (a, p̄), of a parameterized input
a of arity k and a sequence of symbolic parameters p̄ = 〈p1, . . . , pk〉 Let further
X = 〈x1, . . . ,xm〉 be a finite set of registers. A guard is a conjunction of equalities
and negated equalities, e.g., pi 6= x j, over formal parameters and registers. An
assignment is a partial mapping ρ : X → X ∪P for a set P of formal parameters.

Definition 2. A Register Automaton (RA) is a tuple A = (A,L, l0,X ,Γ,λ), where

– A is a finite set of actions.
– L is a finite set of locations.
– l0 ∈ L is the initial location.
– X is a finite set of registers.
– Γ is a finite set of transitions, each of which is of form 〈l,(a, p̄),g,ρ, l′〉, where

l is the source location, l′ is the target location, (a, p̄) is a parameterized
action, g is a guard, and ρ is an assignment.

– λ : L 7→ {+,−} maps each location to either + (accept) or − (reject). ut

Let us define the semantics of an RA A = (A,L, l0,X ,Γ,λ). A X-valuation,
denoted by ν, is a (partial) mapping from X to D. A state of A is a pair 〈l,ν〉
where l ∈ L and ν is a X-valuation. The initial state is 〈l0,ν0〉, i.e., the pair of
initial location and empty valuation.

A step of A , denoted by 〈l,ν〉 (a,d̄)−−−→ 〈l′,ν′〉, transfers A from 〈l,ν〉 to 〈l′,ν′〉 on
input (a, d̄) if there is a transition 〈l,(a, p̄),g,ρ, l′〉 ∈ Γ such that (1) g is modeled
by d̄ and ν, i.e., if it becomes true when replacing all pi by di and all xi by ν(xi),
and such that (2) ν′ is the updated X-valuation, where ν′(xi) = ν(x j) wherever
ρ(xi) = x j, and ν′(xi) = d j wherever ρ(xi) = p j.

An example instance of a Register Automaton is provided in Figure 1, which
models a subset of the XMPP instant messaging protocol focused on aspects of
user authentication. In location l0 no user account exists. With the parameterized
action register a new account can be created, with the parameters p1 and p2
denoting a username and password. When executing the register action, the
parameter values are copied into the registers x1 and x2 respectively. This action
is unconditionally invocable in l0, meaning that its guard is true. In contrast,
the login in action of l1 has a guard that specifies that the parameters p1 and p2
provided with the login action have to match the register contents of x1 and x2,
i.e., the credentials provided during login have to match the ones stored in the
registers. The other system actions represent logging out, changing the account
password, and deleting the user account.

Figure 2. A modeled learning setup created in LearnLib Studio. The model is
currently executed, with bold edges denoting the path of execution. The current
query and its answer are made visible in the panel on the lower left side.

4 The tool demo

We will present the LearnLib framework and highlight recently integrated in-
novations. LearnLib Studio allows the model-based composition and execution
of learning setups, where LearnLib components are made available as reusable
building blocks. In Figure 2 a learning setup tooled for learning register au-
tomata is shown, configured to learn the system shown in Figure 1. The result
of executing this learning setup is presented in Figure 3.

The reworked modeling approach: In the learning setup presented in Figure
2 the distinct pattern specific to active automata learning can be witnessed: a
learning algorithm is invoked, resulting in MQs an “oracle” has to answer. In
this context, oracles are components that execute queries on a target system
and gather the invocation results, meaning they produce an answer for a given
query. Once the learning algorithm has formed a hypothesis it can be displayed
and the data structure gathering the observations can be visualized, e.g., for
debugging purposes. In the displayed setup, EQs are approximated by a random
walk conformance test, which generates additional queries that are answered by
the system oracle. If no counterexample can be found, the learning procedure
will terminate, displaying the final result. Otherwise the counterexample will be
consumed and analyzed, which can result in the production of additional queries.
Once these have been answered and the counterexample is exploited so that a

Figure 3. The resulting model from executing the learning setup. Guards are
in square brackets, the next register contents are explicitly denoted on every
transition as is the acceptance status of the following state. Register values are
denoted as vi.

refined hypothesis can be produced, the learning process will restart the learning
algorithm.

The general workflow is reusable in nature. The only application-specific
parts that have to be provided are the definition of the alphabet and the system
oracle, which has to interface the SUL. These application-specific parts can be
loaded in a standardized way with parameterized building blocks.

Compared to the previous modeling style supported by LearnLib Studio,
the new modeling style is much improved in terms of usability and flexibility:
in the old modeling paradigm, a dedicated setup phase would create a fixed
configuration, connecting, e.g., the learning algorithm to the SUL oracle. This
setup would then be instantiated and started, with limited ways to influence
the behavior of the setup afterwards. In the new modeling paradigm, only an
alphabet has to be specified beforehand, after which the learning algorithm can
directly begin operation. Learning queries are delegated on-the-fly according to
the setup execution flow. This greatly increases flexibility, as, for instance, setups
can decide at runtime what oracle instances are used to answer queries.

Integration of Register Automata learning: Thanks to the flexible
component-based approach of LearnLib, components for learning this new model
type could be integrated into the general framework without changes to the
LearnLib architecture.

In the learning setup presented above, the only components that are specific
for the RA machine model are the building blocks encapsulating the learning al-
gorithm and the equivalence approximation. The overall infrastructure provided
by the LearnLib is reused to a high degree when using RAs despite adapting a
much richer automata model. The overall flavor of how learning setups can be
created is completely unchanged compared to how setups are specified for other
machine models, abstracting from the details of the underlying data structures
and algorithms and thus shielding the user from additional complexity.

Due to being integrated into the component framework, learning setups for
Register Automata can use all facilities LearnLib offers for debugging, visualiza-

tion and statistics. Thus our extension provides a powerful and unique framework
for learning data independent systems [7].

5 Conclusion

The LearnLib framework and accompanying tools provide a rich environment for
experimentation with the new Register Automata formalism. Embedded into a
flexible component model, much functionality is shared between learning setups
for different machine models, which enables a high degree of reuse. Users already
versed in the operation of the LearnLib Studio will not have to learn a new style
of modeling when adapting Register Automata, while users new to LearnLib
Studio are only exposed to a limited set of generic concepts that are easy to
understand.

The LearnLib is mature and used by several independent research groups. It
has, e.g., been used to infer the behavior of a electronic passports [1], in security
research [3], and it is a central enabler within the Connect framework.

LearnLib is available for download at http://www.learnlib.de and free for
all academic purposes.

References

1. Fides Aarts, Julien Schmaltz, and Frits W. Vaandrager. Inference and Abstraction of
the Biometric Passport. In Tiziana Margaria and Bernhard Steffen, editors, ISoLA
(1), volume 6415 of Lecture Notes in Computer Science, pages 673–686. Springer,
2010.

2. Dana Angluin. Learning Regular Sets from Queries and Counterexamples. Infor-
mation and Computation, 75(2):87–106, 1987.

3. G. Bossert, G. Hiet, and T. Henin. Modelling to Simulate Botnet Command and
Control Protocols for the Evaluation of Network Intrusion Detection Systems. In
Network and Information Systems Security (SAR-SSI), 2011 Conference on, pages
1 –8, may 2011.

4. Sofia Cassel, Falk Howar, Bengt Jonsson, Maik Merten, and Bernhard Steffen. A
Succinct Canonical Register Automaton Model. In Tevfik Bultan and Pao-Ann
Hsiung, editors, Automated Technology for Verification and Analysis, volume 6996
of Lecture Notes in Computer Science, pages 366–380. Springer Berlin / Heidelberg,
2011.

5. Falk Howar, Bernhard Steffen, Sofia Cassel, and Bengt Jonsson. Inferring Canonical
Register Automata. In VMCAI 2012, to appear.

6. Valérie Issarny, Bernhard Steffen, Bengt Jonsson, Gordon S. Blair, Paul Grace,
Marta Z. Kwiatkowska, Radu Calinescu, Paola Inverardi, Massimo Tivoli, Anto-
nia Bertolino, and Antonino Sabetta. CONNECT Challenges: Towards Emergent
Connectors for Eternal Networked Systems. In ICECCS, pages 154–161, 2009.

7. R. Lazic and D. Nowak. A unifying approach to data-independence. In
C. Palamidessi, editor, Proc. CONCUR 2000, 11th Int. Conf. on Concurrency The-
ory, volume 1877 of Lecture Notes in Computer Science, pages 581–595, 2000.

8. Maik Merten, Bernhard Steffen, Falk Howar, and Tiziana Margaria. Next generation
learnlib. TACAS’11/ETAPS’11, pages 220–223, Berlin, Heidelberg, 2011. Springer-
Verlag.

