
Graph Grammar Modeling and Verification
of Ad Hoc Routing Protocols

(Extended Version)

Mayank Saksena, Oskar Wibling, and Bengt Jonsson

Dept. of Information Technology, P.O. Box 337, S-751 05 Uppsala, Sweden
{mayanks, oskarw, bengt}@it.uu.se

Abstract. We present a technique for modeling and automatic verifica-
tion of network protocols, based on graph transformation. It is suitable
for protocols with a potentially unbounded number of nodes, in which
the structure and topology of the network is a central aspect, such as
routing protocols for ad hoc networks. Safety properties are specified as
a set of undesirable global configurations. We verify that there is no un-
desirable configuration which is reachable from an initial configuration,
by means of symbolic backward reachability analysis.
In general, the reachability problem is undecidable. We implement the
technique in a graph grammar analysis tool, and automatically verify
several interesting nontrivial examples. Notably, we prove loop freedom
for the DYMO ad hoc routing protocol. DYMO is currently on the IETF
standards track, to potentially become an Internet standard.

1 Introduction

The verification of network protocols has been one of the most important driv-
ing forces for the development of model checking technology. Most approaches
(e.g., [17, 13]) analyze finite-state models of protocols, but an increasing number
of techniques are developed for analyzing parameterized or infinite-state mod-
els (see, e.g., [3, 26, 2]). In this paper, we consider verification of protocols for
networks with a potentially unbounded number of nodes, possibly with a dynam-
ically changing topology. This is a large class of protocols, including protocols
for wireless ad hoc networks, many distributed algorithms, security protocols,
telephone system services, etc. Global configurations of such protocols are nat-
urally modeled using graphs, that are transformed by the dynamic behavior of
the protocol, and therefore various forms of graph transformation systems have
been used to model and analyze them [21, 8].

In this paper, we present a technique for modeling and verification of pro-
tocols using a variant of graph transformation systems (GTSs) [21, 8]. We use
a general mechanism for expressing conditions on the applicability of a rule, in
the form of negative application conditions (NACs). Sets of global configurations
are symbolically represented by graph patterns [8], which are graphs extended
with NACs. Intuitively, a graph pattern represents the set of configurations that



contain it as a subgraph, but none of the NACs. A safety property of a proto-
col is represented by a set of graph patterns that represent undesirable global
configurations.

We consider the problem of verifying safety properties. This can be reduced
to the problem whether an undesirable configuration can be reached, by a se-
quence of graph transformation steps, from some initial global configuration.
We present a method for automatically checking such a reachability problem by
backward reachability analysis. Backward reachability analysis is a powerful ver-
ification technique, which has generated decidability results for many classes of
parameterized and infinite-state systems (e.g., [4, 3, 15]) and proven to be highly
useful also for undecidable verification problems (e.g., [1]). By fixed point com-
putation, we compute an over-approximation of the set of configurations from
which a bad configuration can be reached, and check that this set contains no
initial configuration. The central part of the backward reachability procedure
is to compute the predecessors of a set of configurations in this symbolic rep-
resentation. Since the reachability problem is undecidable in general, the fixed
point computation is not guaranteed to terminate. However, we show that the
techniques are powerful enough for verifying several interesting nontrivial ex-
amples, indicating that the approach is useful for network protocols where the
dynamically changing topology of the network is a central aspect.

A main motivation for our work is to analyze protocols for wireless ad hoc net-
works, including the important class of routing protocols. We have implemented
our technique, and successfully verified that the DYMO protocol [11] will never
generate routing loops. Verifying loop freedom for ad hoc routing protocols has
been the subject of much work [9, 14]; several previous protocol proposals have
been incorrect in this respect [10, 5]. Our verification method handles a detailed
ad hoc routing protocol model, with relatively little effort. In our work, we have
also found GTSs to be an intuitive and visually clear form of modeling.

Related work. There have been several efforts to verify loop freedom of routing
protocols for ad hoc networks. Bhargavan et al. [9] verified AODV [23] to be
loop free, using a combination of SPIN for model checking a finite network
model, and HOL theorem proving for generalizing the proof. In contrast, we
prove the same property automatically for an arbitrary number of nodes. Our
experience is that modeling using GTSs is more intuitive than to separately
construct SPIN models and HOL proofs. Das and Dill [14] developed automatic
predicate discovery for use in predicate abstraction, and proved loop freedom
for a simplified version of AODV, excluding timeouts. The construction of an
abstract system and discovery of relevant abstraction predicates require many
calls to a theorem prover; our method does not need to interact with a theorem
prover. We check the graphs directly for inconsistencies.

There have been several other approaches to modeling and analysis using
variants of GTSs. König and Kozioura [21] over-approximate graph transforma-
tion systems using Petri nets, successively constructed using forward counter-
example guided abstraction refinement. Their technique does not support the use
of NACs. We have found NACs to be an advantage during modeling and veri-



fication. For example, our first approach at verifying the DYMO protocol was
without NACs, resulting in a more complex model with features not directly
related to the central protocol function.

Kastenberg and Rensink [20] translate GTSs to finite-state models in the
GROOVE tool by putting an upper bound on the number of nodes in a network.
Becker et al. [8] verified safety properties of mechatronic systems, modeled by
GTSs that are similar to ours. However, they only check that the set of non-
bad configurations is an inductive invariant. That worked for their application,
but for verifying safety properties in general it requires the user to supply an
inductive invariant. Bauer and Wilhelm [7, 6] use partner abstraction to verify
dynamic communication systems; two nodes are not distinguished if they have
the same labels and the sets of labels of their adjacent nodes are equal, respecting
edge directions. That abstraction is not suited for ad hoc protocols, because
nodes do not have dedicated roles.

Backward reachability analysis has also been used to verify safety properties
in many parameterized and infinite-state system models, with less general con-
nection patterns than those possible in GTSs. Examples include totally homoge-
neous topologies in which nodes can not identify different partners, resulting in
Petri nets with variants (e.g., [15]), systems with linear structure and some ex-
tensions (e.g., [1]), and systems with binary connections between nodes, tailored
for modeling telephone services [19].

Organization of paper. We give a brief outline of the DYMO protocol in Sec-
tion 2. The graph transformation system formalism and the backward reacha-
bility procedure are presented in Sections 3 and 4. In Section 5 we describe how
we modeled DYMO, and present our verification results in Section 6. Finally,
Section 7 concludes the paper.

2 DYMO

We are interested in modeling and verification of ad hoc routing protocols. These
protocols are used in networks that vary dynamically in size and topology. Every
network node that participates in an ad hoc routing protocol acts as a router,
using forwarding information stored in a routing table. The purpose of the ad
hoc routing protocol is to dynamically update the routing tables so that they
reflect the current network topology. DYMO [11] is one of two ad hoc routing
protocols currently considered for standardization by the IETF MANET group
[24]. The latest DYMO version at the time of writing is specified in version 10
of the DYMO Internet draft [12]. This is the version we have used as basis for
our modeling. The following is a simplified description of the main properties of
DYMO. The reader is referred to the Internet draft for the details.

In our protocol model, each DYMO network node A has an address, a routing
table and a sequence number. The sequence number of A is included in routing
messages originating from A, as a measure of freshness, and is incremented for
each such message. The routing table of A contains the following fields for each
destination node D.



– RouteNextHopAddressA(D) is the node to which A currently forwards pack-
ets, destined for node D.

– RouteSeqNoA(D) is the sequence number that node A has recorded for the
route to destination D. It is a measure of the freshness of a route; a higher
number means more recent routing information. Note that this sequence
number concerns the route to D from A, and is not related to the sequence
number of A.

– RouteHopCntA(D) is the recorded distance from A to node D, in terms of
number of hops.

– BrokenA(D) is an indicator of whether or not the route from A to D can
be used. The protocol has a mechanism to detect when a link on a route is
broken [12]. Information regarding broken links is propagated through route
error messages (RERR).

When a network node A wants to send a packet to another network node D,
it first checks its routing table to see if it has an entry with BrokenA(D) = false.
If that is the case, it forwards the packet to node RouteNextHopAddressA(D).
Otherwise, node A needs to find a route to D, which it does by issuing a route
request (RREQ) message. The route request is flooded through the network. It
contains the addresses of nodes A and D, the sequence number of A, and a hop
counter. The hop counter contains the value 1 when the RREQ is issued; each re-
transmitting node then increases it by one. Node A increases its own sequence
number after each issued route request.

When the destination of a route request, D, receives it, it generates a route
reply message (RREP). The route reply contains the same fields as the request.
Route replies are not flooded, but instead routed through the network using
available routing table entries. RREPs and RREQs are collectively referred to as
routing messages (RMs).

Whenever a network node A receives an RM, the routing table of A is com-
pared to the RM. If A does not have an entry pertaining to the originator of
the RM, then the information in the RM is inserted into the routing table of A.
Otherwise, the information in the RM replaces that of the routing table if the
information is more recent, or equally recent but better, in terms of distance to
the originator. The routing table update rules are detailed in Section 5.

3 Modeling Using Graph Transformation Systems

We model systems as transition systems of a particular form, in which config-
urations are hypergraphs, and transitions between configurations are specified
by graph rewriting rules. Constraints on configurations are represented by so-
called patterns, which are hypergraphs extended with a mechanism to describe
the absence of certain hyperedges: negative application conditions (NACs). Our
definitions are similar to the ones used by, e.g., Becker et al. [8], but with a more
general facility for expressing NACs.

Assume a finite set Λ of labels. A hypergraph is a pair 〈N,E〉, where N is a
finite set of nodes, and E ⊆ Λ×N∗ is a finite set of hyperedges. A hyperedge is



a pair (λ,−→n ), where λ ∈ Λ is its label and −→n ∈ N∗. The length of −→n is called
the arity of the hyperedge. A hyperedge is essentially a relation on nodes, and
can be visualized as a box labeled λ, with connections to each node n ∈ −→n .

A pattern is a tuple ϕ = 〈Nϕ, Eϕ,G−ϕ 〉, where 〈Nϕ, Eϕ〉 is a hypergraph, and
G−ϕ is a set of NACs. Each NAC is a hypergraph G− = 〈N−, E−〉, where N− is
a finite set of negative nodes disjoint from Nϕ , and E− ⊆ Λ × (Nϕ ∪ N−)∗ is
a finite set of negative hyperedges. Further, for any two NACs G−1 = 〈N−1 , E

−
1 〉,

G−2 = 〈N−2 , E
−
2 〉, we have the constraint that N−1 ∩N

−
2 = ∅. We refer to Nϕ and

Eϕ as positive nodes and edges of ϕ . We define N (E) = {n ∈ −→n | (λ,−→n ) ∈ E}.

Example. Figure 1 shows a pattern — the left-hand side of one of the DYMO
model routing table update rules. The pattern models a network node receiving
routing information for a node to which it currently has no route. In the pattern,
positive nodes are drawn as circles and negative nodes as double circles. Nodes
have numeric names for identification. Positive and negative edges are drawn as
boxes and double boxes. Edge connections are numbered, to indicate their order.
The pattern contains a single NAC, consisting of the negative edges labeled
RouteEntry and RouteAddress along with their connected nodes. Without the
possibility to express non-existence, we would need to model traversal through
the entries to conclude the absence of an entry. In more detail, the pattern
consists of a network node A (node 3) and a routing message (node 1). A has a
routing table (node 4) that contains no routing table entry pointing to network
node D (node 6). The message has originator D, a hop count (node 7), a sequence
number (node 5) and an IP source (node 2).

1

23

4

5

6

7

Orig

0

1

OrigSeqNo

0

1

NodeHopCnt 01

RouteTable

0

1

RouteEntry

0

1 RouteAddress0 1

IPSource

0

1

Fig. 1. A pattern containing a NAC.

A hypergraph g = 〈Ng, Eg〉 is subsumed by a pattern ϕ = 〈Nϕ, Eϕ,G−ϕ 〉,
written g � ϕ , if there exists an injection h : Nϕ → Ng satisfying:

1. for each (λ,−→n ) ∈ Eϕ we have (λ, h(−→n )) ∈ Eg and

2. there exists no 〈N−, E−〉 ∈ G−ϕ and no injection k : N− → Ng such that
(λ, (h ∪ k)(−→n )) ∈ Eg for each (λ,−→n ) ∈ E−, where (h ∪ k) is defined as h on
Nϕ and as k on N− .



Intuitively, a pattern ϕ = 〈Nϕ, Eϕ,G−ϕ 〉 is a constraint, saying that a hypergraph
must contain 〈Nϕ, Eϕ〉 as a subgraph, which does not have a “match” for any
NAC in G−ϕ .

Above we let f((n1, . . . , nk)) = (f(n1), . . . , f(nk)) for a function on nodes
applied to a vector of nodes. If an injection h satisfying the above conditions
exists, we say that g � ϕ is witnessed by h, written g �h ϕ .

For a pattern ϕ we use [[ϕ]] to denote the set of hypergraphs g such that
g � ϕ . For a set of patterns Φ, we let [[Φ]] = ∪{[[ϕ]] | ϕ ∈ Φ}. We call pattern
ϕ = 〈Nϕ, Eϕ,G−ϕ 〉 consistent if 〈Nϕ, Eϕ〉 � ϕ. Informally, ϕ is consistent if none
of its NACs contradicts its positive nodes and edges. An inconsistent pattern ψ
represents an empty set, as g � ψ is not satisfied by any g .

A pattern ϕ is subsumed by the pattern ψ , denoted ϕ � ψ , if [[ϕ]] ⊆ [[ψ]] . The
relation � on patterns can be checked according to the following Proposition.

Proposition 1. Given patterns ϕ = 〈Nϕ, Eϕ,G−ϕ 〉 and ψ = 〈Nψ, Eψ,G−ψ 〉 which
are consistent, we have that ϕ � ψ iff there exists an injection h : Nψ → Nϕ
such that 〈Nϕ, Eϕ〉 �h 〈Nψ, Eψ, ∅〉 and for each NAC 〈M−, F−〉 ∈ G−ψ there is

a NAC 〈N−, E−〉 ∈ G−ϕ and an injection k : N−→M− such that

– (N (E−) \N−) ⊆ h(Nψ), and
– for each (λ,−→n ) ∈ E−, we have (λ, (h−1 ∪ k)(−→n )) ∈ F− . ut

Intuitively, ϕ � ψ if and only if the positive part of ψ is a subgraph of the
positive part of ϕ , and for each NAC in G−ψ , there is a corresponding NAC in

G−ϕ which is a subgraph of the former NAC.
In our system model, configurations are represented by hypergraphs. Transi-

tions are specified by actions, which are (hypergraph) rewrite rules.

Definition 1. An action is a pair 〈L,R〉, where L = 〈NL, EL,G−L 〉 is a pattern
and R = 〈NR, ER〉 is a hypergraph with NL ⊆ NR (i.e., actions can create
nodes, but not delete them). The action α = 〈L,R〉 denotes the set [[α]] of pairs
of configurations (g′, g), with g′ = 〈Ng′ , Eg′〉, g = 〈Ng, Eg〉 and Ng′ ⊆ Ng such
that there is an injection h : NR → Ng satisfying:

– g′ � L is witnessed by the restriction of h to NL
– Ng = Ng′ ∪ h(NR)
– Eg = (Eg′ \ h(EL)) ∪ h(ER) . ut

Example. Figure 2(a) shows an action α = 〈L,R〉. The pattern L is to the
left of the arrow (=⇒) and R to the right. The action does not create any
nodes, i.e., NL = NR . Figure 2(b) shows a pair (g′, g) ∈ [[α]], i.e., g′ can be
rewritten via α to g. The subsumption g′ � L is witnessed by the injection
h = {1 7→ a, 2 7→ b}. The injection h satisfies Ng = Ng′ ∪ h(NR) = {a, b} and
Eg = (Eg′ \ h(EL))∪ h(ER) = h(ER). Figure 2(c) shows a configuration g′ such
that there is no g with (g′, g) ∈ [[α]], since g′ 6� L . In other words, g′ cannot be
rewritten via α .



1 2RouteEntry0 1 Broken0 =⇒ 1 2RouteEntry0 1 Broken0

(a) Action α

a bRouteEntry0 1 →α
a bRouteEntry0 1 Broken0

(b) Pair of configurations (g′, g) ∈ [[α]]

a bRouteEntry0 1 Broken0 6→α

(c) Configuration g such that ¬∃g.(g′, g) ∈ [[α]]

Fig. 2. Example of an action and its semantics.

Definition 2. A system model is a pair 〈γ0,A〉 consisting of an initial config-
uration γ0 together with a finite set of actions A. ut

For a set Γ of configurations and an action α , let pre (α, Γ ) = {g′ | ∃g ∈
Γ. (g′, g) ∈ [[α]]}, i.e., the configurations which in one step can be rewritten to
Γ using α . Similarly, for a set of actions A, let pre∗(A, Γ ) denote the set of
configurations which can reach a configuration in Γ by a sequence of rewritings
using actions in A.

4 Symbolic Verification

We formulate a verification scenario as the problem whether a set of configu-
rations, represented by a set of patterns, is reachable. More precisely, given a
system model 〈γ0,A〉, and a set of patterns Φ, the reachability problem asks
whether there is a sequence of transitions from γ0 to some configuration in [[Φ]].

In our approach, we analyze a reachability problem using backward reachabil-
ity analysis, in which we compute an over-approximation of the set pre∗(A, [[Φ]])
of configurations, and check whether it includes γ0 . We clarify why and when
the computation is not exact in the Approximation paragraph below. In gen-
eral, the reachability problem is undecidable, and our analysis is not guaranteed
to terminate. However, the technique is sufficiently powerful to verify several
nontrivial network protocols (see Section 6).

We attempt to compute pre∗(A, [[Φ]]) by standard fixed point iteration, using
predecessor computation, as shown in Procedure 1. In the procedure, V and
W are sets of patterns whose predecessors already have (V ) and have not (W )
been computed. In each iteration of the while loop, we choose a pattern ϕ from
W . If γ0 ∈ [[ϕ]] then we have found a (possibly spurious) path from γ0 to [[Φ]].
Otherwise, we check whether ϕ is redundant, meaning that it is subsumed by
some other pattern which will be or has been explored. If not, we add to W a



Procedure 1 Backward Reachability Analysis

Require: System model 〈γ0,A〉 and a set Φ of (bad) patterns
Ensure: If terminates; answers whether a configuration in [[Φ]] is reachable from γ0

1 V := ∅, W := Φ
2 while W 6= ∅ do
3 choose ϕ ∈W
4 W := W \ {ϕ}
5 if γ0 ∈ [[ϕ]] then
6 return “Reachable”
7 if ∀ψ ∈ (V ∪W ). ¬(ϕ � ψ) then
8 V := V ∪ {ϕ}
9 for each α ∈ A do

10 W := W ∪ Pre(α,ϕ)
11 return “Unreachable”

set of patterns over-approximating pre (A, [[ϕ]]). As a further optimization, not
shown in Procedure 1, at line 7 we also remove patterns from V and W that are
subsumed by ϕ ; keeping V and W small speeds up the procedure.

The central part of Procedure 1 is the (nontrivial) computation of prede-
cessors of a pattern; it is done as in Procedure 2, whose description follows.
Procedure 2 terminates on any input, as all loops are finite.

Procedure 2 Pre(α,ϕ)

Require: Action α = 〈L,R〉, pattern ϕ = 〈Nϕ, Eϕ,G−ϕ 〉
Ensure: Φ is a set of patterns satisfying pre (α, [[ϕ]]) ⊆ [[Φ]]

1 Φ := ∅
2 Rename all nodes in ϕ, so that they are disjoint from the nodes in L and R
3 for each partial injection h : NR → Nϕ do
4 Rename each node h(n) in the range of h to n
5 if ∃n ∈ Domain(h)−NL . E+(n, ϕ) 6⊆ E+(n,R) ∨

Inconsistent(ϕ+R) then
6 skip
7 else
8 ϕ′ := (ϕ	αR) + L
9 for each G− ∈ G−ϕ do

10 if Inconsistent((L 	E R) +G−) then
11 ϕ′ = ϕ′−G−
12 if ¬Inconsistent(ϕ′) then
13 Φ := Φ ∪ ϕ′
14 return Φ

Let a partial injection, or matching, from a set N to a set N ′ be an injection
from a nonempty subset of N to N ′. For two patterns ϕ = 〈Nϕ, Eϕ,G−ϕ 〉 and

ψ = 〈Nψ, Eψ,G−ψ 〉, we use ϕ + ψ to denote 〈Nϕ ∪ Nψ , Eϕ ∪ Eψ , G−ϕ ∪ G−ψ 〉.



When adding patterns, if the node and edge sets are not disjoint, the result is a
“merge”. No automatic renaming is assumed.

We use the following two subtraction operations in Procedure 2. First, for a
pattern ϕ = 〈Nϕ, Eϕ,G−ϕ 〉, and an action α = 〈L,R〉, let ϕ 	α R be the pattern
ψ = 〈Nψ, Eψ,G−ϕ 〉, with Eψ = Eϕ \ ER and Nψ = Nϕ \ (NR \NL) . Second, for
a pattern ϕ = 〈Nϕ, Eϕ,G−ϕ 〉, and a hypergraph g = 〈Ng, Eg〉, let ϕ	E g be the
pattern ψ = 〈Nψ, Eψ,G−ϕ 〉, with Eψ = Eϕ \ Eg and Nψ = N (Eψ).

For a NAC G−, we use ϕ + G− to denote 〈Nϕ, Eϕ, G−ϕ ∪G−〉 and ϕ−G−
to denote 〈Nϕ, Eϕ, G−ϕ \G−〉. If n ∈ Nϕ , let E+(n, 〈Nϕ, Eϕ,G−ϕ 〉) denote the set
of edges in Eϕ connected to n.

Procedure 2 first renames the nodes (line 2) to avoid unintended node col-
lisions between ϕ and α . Thereafter, the loop starting at line 3 performs a
sequence of operations for each possible matching between some nodes of NR
and Nϕ .

On line 4 each node h(n) in the range of h is renamed to n, in order to “merge”
R and ϕ according to h. Since nodes that are created by α must also have all
their edges created by α, we should discard matchings which violate this (line
5). On line 5 we also discard inconsistent matchings. The check Inconsistent(ϕ)
is true iff pattern ϕ is not consistent.

On line 8 the action α is “executed” backwards to obtain a pattern ϕ′ that
is a potential predecessor of ϕ . Using the special subtraction 	α nodes and
edges created by α are removed from ϕ . On lines 9–11, we remove all NACs
from ϕ′ which contradict subgraphs removed by α . The backward execution
(on line 8) and the NAC removal may both introduce approximation (see the
paragraph below). Since by definition α cannot remove nodes, we use the special
subtraction 	E which ignores nodes not connected to edges. On line 12, we
discard the resulting predecessor pattern if it is inconsistent — this can happen
if a NAC in L contradicts a positive subgraph of ϕ′. Finally, if we reach line 13,
we have found a predecessor pattern, which is added to Φ.

Approximation. The predecessor computation in Procedure 2 may introduce an
approximation at line 8 or line 11. If α removes a hyperedge (λ,−→n ) of arity
zero or one, and this edge is included in ϕ , then pre (α, [[ϕ]]) should contain two
copies of (λ,−→n ), representing “two or more” occurrences of (λ,−→n ). However, the
use of sets to contain the hyperedges of patterns results in Pre(α,ϕ) containing
only one copy of (λ,−→n ), after line 8, representing “one or more” occurrences of
(λ,−→n ).

Further, if α removes a subgraph which is forbidden by ϕ , then pre (α, [[ϕ]])
should say that there is exactly one subgraph of this form. However, patterns
cannot always express “exactly one” occurrence of a subgraph. In this situa-
tion, Procedure 2 therefore lets the resulting pattern say that “there is at least
one occurrence” of this subgraph. As an example, consider the simple situation
in Figure 3, where α , shown in Figure 3(a), removes an RM-edge between two
nodes, and ϕ , the rightmost pattern in Figure 3(b), says that there is no RM-
edge. The exact predecessor of ϕ is: “there is exactly one RM-edge between two
nodes”. However, the resulting predecessor (the leftmost pattern in Figure 3(b))



represents that there is at least one RM-edge connected to graph node 1. To il-
lustrate the effect of lines 9–11 of Procedure 2, an intermediate pattern, where
the contradiction has not yet been resolved, is shown in Figure 3(b).

1 2RM0 1 =⇒ 1 2

(a) Idealized action α

1 2RM0 1 ← 1

2RM
0

1

 RM
0

1

← 1 RM0 1

(b) Predecessor computation showing intermediate pattern

Fig. 3. Approximation due to upwards-closure.

Optimizations. To make the analysis more efficient, we have (implemented) two
mechanisms for the user to specify simple type constraints. One is to annotate
nodes with types that are respected in the analysis, with the semantics that
nodes may only “match” nodes of same type. Another is to add patterns that
describe multiplicity constraints on edges. For example, our DYMO models use
“a network node can have at most one routing table”, by specifying a pattern
where a node has two routing tables as “impossible”.

We need to model integer-valued variables, as DYMO uses sequence numbers
and hop counts. This is done by representing integers as nodes, and greater
than (>) and equality (=) relations as edges between these nodes. We do not
represent concrete integer values. Hence, we cannot compare integers which are
not connected by a relational edge. We have extended our tool to handle the
transitive closure of > and = , as part of the predecessor computation. For each
predecessor pattern generated, the closure of all transitive numerical relations
present in the pattern is computed. New relational edges are then added to the
pattern accordingly. The reason is that our syntactic subsumption check cannot
deduce such semantic information about relations. The check for created nodes
on line 5 of Procedure 2 was also extended to take into account the transitivity
of numerical relations.

5 Modeling and Verification of DYMO

In this section we describe how we modeled the DYMO protocol (more precisely,
the latest version at the time of writing, version 10 [12], and version 5). See our
project home page [16] for the complete models. In total, our DYMO v10 model



consists of one initial graph (“an empty network”) and 77 actions. Of these, 38
actions model routing table update rules, similar to the one in Figure 4 below.
We have only used unary and binary hyperedges in our models, although our
implementation supports hyperedges of any arity.

Modeling network topology and message transmission. We represent arbitrary
network topologies by letting the initial system configuration be an empty net-
work (i.e., an empty graph), and including an action for creating an arbitrary
network node; thus any initial topology can be formed. We do not explicitly
model connectivity in the network. Instead all nodes can potentially react on
all messages in the network; this reaction on a message can be postponed in-
definitely, corresponding to a node being out of range or otherwise incapable of
receiving the message. Messages can also be non-deterministically removed, cor-
responding to message loss. In our modeling of message transmission, messages
are left in the network after a node has handled them (until they are potentially
dropped): this accounts for messages being duplicated.

Handling of timeouts and hop limits. DYMO uses timeouts to determine if a
RREQ should be retransmitted, if a link is broken, or if a routing table entry
should be removed. We over-approximate timeouts as “event x can happen at
any time”, which covers all possibilities for a timeout. It is known from previous
work on the AODV protocol [9], that if entries are removed from the routing
table, loops may form. The reason is that obsolete information can then be
accepted. In DYMO, routing table entries are invalidated (set to broken) after
some time, and later removed; temporary loops are thus tolerated. We exclude
removal of routing table entries from our analysis; they can only be invalidated.
In practice, we thus verify loop-freedom under the assumption that routing table
entries are kept “long enough”.

We do not model DYMO hop limits [12], used to limit packet traversal.
However, since we include actions for arbitrary dropping of RMs and RERRs,
we implicitly cover all possible hop limit settings.

Routing table update rules. The DYMO specification [12] prescribes when a node
should update its own routing table upon receiving routing data, i.e., when re-
ceived routing data should replace existing data. Existing data is represented by a
routing table entry, with fields RouteSeqNo, RouteHopCnt, and Broken. Received
data is represented by a routing message with fields OrigSeqNo, NodeHopCnt and
message type RM – either a route request (RREQ) or a route reply (RREP). The
table entry should be updated in the following cases:

1. OrigSeqNo > RouteSeqNo

2. OrigSeqNo = RouteSeqNo ∧ NodeHopCnt < RouteHopCnt

3. OrigSeqNo = RouteSeqNo ∧ NodeHopCnt = RouteHopCnt ∧ RM = RREP

4. OrigSeqNo = RouteSeqNo ∧ NodeHopCnt = RouteHopCnt ∧ Broken

The rules say that an update is allowed if (1) the message has a higher sequence
number for the destination, or (2) the message has the same sequence number,



but a shorter route, or (3) the message has the same routing metric value, and
the message is a route reply, or (4) the table entry is broken. See Figure 4 for an
illustration of how we model the update rules. The figure corresponds to rule (2).
In our framework, we have to model each combination of network nodes used in
the rules, such as when IPSource equals Orig, or RouteNextHopAddress equals
RouteAddress, etc., as separate actions; however, we have tool support for doing
this.

1

2

3

4

5

6

7

8

9

1011

Orig

0

1

OrigSeqNo

0

1

=

0

1

NodeHopCnt
0

1

RouteTable

0

1

RouteEntry

0

1

RouteAddress
0

1

RouteNextHopAddress

0

1

RouteHopCnt

0

1

RouteSeqNo

0 1

IPSource0

1

>

0

1

Broken

0

=⇒

1

2

3

4

5

6

7

8

9

1011

Orig

0

1

OrigSeqNo

0

1

=

0

1

NodeHopCnt
0

1

RouteTable

0

1

RouteEntry

0

1
RouteAddress

0

1

RouteNextHopAddress

0

1

RouteHopCnt

0

1

=

0

1

RouteSeqNo

0 1

IPSource0

1

>

0

1

>

0

1

Fig. 4. Action modeling a routing table update.

Formalizing the non-looping property. A central property of ad hoc routing pro-
tocols is that they never cause routing loops, as a routing loop prevents a packet
from reaching its intended destination. A routing loop is a nonempty finite se-
quence of nodes n1, . . . , nk such that for some destination D it holds that for all
i : 1 ≤ i ≤ k node n(i+1)(mod k) is the next hop towards D from node ni , and
ni 6= D.

We define the ordering <D on nodes in a configuration as: n <D n′ iff
RouteSeqNon(D) > RouteSeqNon′(D)∨(RouteSeqNon(D) = RouteSeqNon′(D)∧
RouteHopCntn(D) < RouteHopCntn′(D)). There can be no routing loops towards
a destination D, if each hop from a node n towards D goes to a node n′ with
n′ <D n . Since <D is a partial order, any routing path towards D can contain a
node at most once. The same ordering was used in the proof of loop freedom for
AODV in [9]. The following property, LP , implies the pairwise ordering along
routing paths; if LP is invariant for DYMO, there are no routing loops.

∀A,B,D
A 6= B,B 6= D,

A 6= D

∣∣∣∣∣∣ RouteNextHopAddressA(D) = B =⇒ B <D A (LP )



By negating the loop property (LP), we obtain a characterization of the bad
system configurations. Loops may thus form if the sequence number strictly
decreases, or the sequence number stays the same but the hop count does not
decrease, between a node A and its next hop B on a route towards a destination
node D. In our verification of DYMO, we verify unreachability for a set of six
bad patterns. Three represent a disjunct of (¬LP ) under quantification; two
represent a network node with a routing table entry pointing to the node itself;
and one pattern represents that a node has a next hop (which is not D) towards
some destination D, but the next hop has no entry for D. As an example, a
pattern representing one of the disjuncts of (¬LP ) is shown in Figure 5.

RouteTable0 1
RouteEntry

0

1
RouteEntry

0

1

RouteAddress0 1 RouteAddress

0

1

RouteNextHopAddress

0

1

RouteSeqNo
0

1 RouteSeqNo 01>0 1

Fig. 5. Graph pattern representing a set of bad system configurations in DYMO.

6 Experimental Results

We have modeled and verified the DYMO protocol as described in Sections 5
and 4. Recall that the analysis is under an assumption of routing table entries
not being removed. The analysis has been performed using our tool GBT (Graph
Backwards Tool). GBT and the models are available at our project home page
[16]. The tool uses the .dot format for describing hypergraphs and patterns
(input and output). If the initial configuration can be reached, an error trace,
showing a sequence of actions leading to one of the bad patterns, is provided.
Note that this trace may be spurious, due to over-approximation.

We have verified the latest DYMO version at the time of writing, namely ver-
sion 10 of the Internet draft [12], as well as an older draft (version 5). Our results
are presented in Table 1. In the “dest. reply” models, only the destination node
replies to an RREQ, whereas in “interm. reply”, intermediate nodes may also
reply (in case they have a fresh enough route, see [12]). Column Actions con-
tains the number of actions in the model. Checked contains the total number
of non-impossible patterns generated by the predecessor computation, plus the
ones given as input. Covered contains the patterns which were subsumed (see
Section 4). Left contains the patterns left after the analysis has finished; none of
them contain the initial graph. Time contains the total verification time (GBT
start to end) on a machine with an AMD Opteron 2220 2.8 GHz processor.



Table 1. Measurement results from using GBT.

Protocol Actions Checked Covered Left Verified Time

DYMO draft 10
- dest. reply 56 160681 160671 10 Yes 52 min 42 s
- interm. reply 77 254620 254610 10 Yes 1h 59 min

DYMO draft 05 50 119506 119496 10 Yes 39 min 20 s

Pub/priv srv I 12 367 360 7 Yes 0.18 s
Pub/priv srv II 13 493 484 9 Yes 0.25 s

Firewall I 6 128 125 3 Yes 0.09 s
Firewall II 6 128 125 3 Yes 0.09 s

In Table 1 we have also included GBT verification results for the “Pub-
lic/private servers” and “Firewall” examples, used by König and Kozioura [21].
These examples required modifications to work with our tool. The abstraction
introduced from using sets to contain the hyperedges of patterns required us to
add a zero arity edge to the right hand side of two actions in “Public/private
servers II”. The transitivity handling in our tool was also extended to include
communication channels.

7 Conclusions and Future Work

We have described and implemented a general framework for modeling and veri-
fication of protocols using a variant of graph transformation systems, and applied
it to automatically prove loop freedom of the DYMO v10 ad hoc routing proto-
col. We expect that several of the actions used in our DYMO model need only
small modifications to work for other ad hoc routing protocols categorized as
reactive (i.e., on-demand). The reason is that reactive ad hoc routing protocols
generally use the same kind of flooding route discovery mechanism; examples
include AODV[23], DSR[18], and LUNAR[25] (see [22] for an extensive list).

As GTSs with NACs make up quite a generic modeling framework, there
should be possibilities for interesting case studies, and further development. Di-
rections for future work include further optimizations of the predecessor compu-
tation, e.g., by early detection of unfruitful matchings. We are currently working
on a new DYMO model, to investigate the effect on run-time performance when
using hyperedges of arity greater than two. Termination of the reachability anal-
ysis can be obtained by bounding and truncating the generated patterns, at the
cost of over-approximation, e.g., by enforcing a maximum size. The possibility
of spurious counter-examples, due to approximations in the predecessor compu-
tation, motivates looking at counter-example guided abstraction refinement.

Acknowledgments. We would like to thank Barbara König for valuable help
on the Augur tool and related issues. We also thank Parosh Abdulla, Joachim
Parrow, and the anonymous referees for their many helpful comments.



References

1. P. Abdulla, G. Delzanno, N. Ben Henda, and A. Rezine. Regular model checking
without transducers. In Proc. TACAS ’07, 13th Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems, 2007.

2. P. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena. A survey of regular model
checking. In Proc. CONCUR 2004, 15th Int. Conf. on Concurrency Theory.
Springer Verlag, 2004.

3. P. A. Abdulla, K. Čerāns, B. Jonsson, and T. Yih-Kuen. Algorithmic analy-
sis of programs with well quasi-ordered domains. Information and Computation,
160:109–127, 2000.

4. P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. In-
formation and Computation, 127(2):91–101, 1996.

5. M. Abolhasan, T. Wysocki, and E. Dutkiewicz. A review of routing protocols for
mobile ad hoc networks. Ad Hoc Networks, 2(1):1–22, January 2004.

6. J. Bauer. Analysis of Communication Topologies by Partner Abstraction. PhD
thesis, Universität des Saarlandes, 2006.

7. J. Bauer and R. Wilhelm. Static Analysis of Dynamic Communication Systems.
In 14th International Static Analysis Symposium. Springer, 2007.

8. B. Becker, D. Beyer, H. Giese, F. Klein, and D. Schilling. Symbolic invariant
verification for systems with dynamic structural adaptation. In Proc. ICSE ’06,
28th Int. Conf. on Software Engineering, pages 72–81. ACM Press, 2006.

9. K. Bhargavan, D. Obradovic, and C. A. Gunter. Formal verification of standards
for distance vector routing protocols. Journal of the ACM, 49(4):538–576, 2002.

10. J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva. A performance
comparison of multi-hop wireless ad hoc network routing protocols. In Proceedings
of MobiCom’98, October 1998.

11. I. D. Chakeres and C. E. Perkins. DYMO - Dynamic MANET On-demand Routing
Protocol home page. http://www.ianchak.com/dymo/, May 2007.

12. I. D. Chakeres and C. E. Perkins. Dynamic MANET On-demand (DYMO) Rout-
ing. Internet draft, July 2007. draft-ietf-manet-dymo-10.txt.

13. E. M. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. In
Proc. 19th ACM Symp. on Principles of Programming Languages, 1992.

14. S. Das and D. L. Dill. Counter-example based predicate discovery in predicate
abstraction. In Proc. FMCAD ’02, 4th Int. Conf. on Formal Methods in Computer-
Aided Design, pages 19–32. Springer, 2002.

15. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In
Proc. LICS’ 99 14th IEEE Int. Symp. on Logic in Computer Science, 1999.

16. GBT - Graph Backwards Tool project home page. http://www.it.uu.se/

research/group/mobility/adhoc/gbt.
17. G. Holzmann. The model checker SPIN. IEEE Trans. on Software Engineering,

SE-23(5):279–295, May 1997.
18. D. B. Johnson, D. A. Maltz, and J. Broch. DSR: The dynamic source routing

protocol for multi-hop wireless ad hoc networks. In Ad Hoc Networking, chapter 5,
pages 139–172. Addison-Wesley, 2001.

19. B. Jonsson and L. Kempe. Verifying safety properties of a class of infinite-state
distributed algorithms. In Proc. 7th Int. Conf. on Computer Aided Verification,
pages 42–53. Springer Verlag, 1995.

20. H. Kastenberg and A. Rensink. Model checking dynamic states in GROOVE. In
SPIN Workshop, pages 299–305. Springer, 2006.



21. B. König and V. Kozioura. Counterexample-guided abstraction refinement for the
analysis of graph transformation systems. In Proc. TACAS ’06, 12th Int. Conf. on
Tools and Algorithms for the Construction and Analysis of Systems, pages 197–211.
Springer, 2006.

22. List of ad-hoc routing protocols - Wikipedia, the free encyclopedia. http://en.

wikipedia.org/wiki/Ad_hoc_routing_protocol_list.
23. C. E. Perkins and E. M. Belding-Royer. Ad-hoc on-demand distance vector routing.

In Proc. 2nd Workshop on Mobile Computing Systems and Applications (WMCSA
’99), pages 90–100. IEEE Computer Society, 1999.

24. The official IETF MANET working group web page. http://www.ietf.org/html.
charters/manet-charter.html.

25. C. Tschudin, R. Gold, O. Rensfelt, and O. Wibling. LUNAR: a lightweight underlay
network ad-hoc routing protocol and implementation. In Proc. Next Generation
Teletraffic and Wired/Wireless Advanced Networking (NEW2AN), February 2004.

26. L. D. Zuck and A. Pnueli. Model checking and abstraction to the aid of param-
eterized systems (a survey). Computer Languages, Systems & Structures, 30(3–
4):139–169, 2004.



A Proofs

We prove that our backward reachability analysis (Procedure 1) is correct.
In practice, the analysis has to use the syntactic characterization of � to

check subsumption of patterns, as stated in Proposition 1. Thus, we will have to
prove Proposition 1 .

The underlying assumption in Procedure 1 is that we can throw away pat-
terns ϕ which are subsumed by some previously seen pattern ψ (see line 7).
The motivation is that, since any hypergraph in [[ϕ]] is contained in [[ψ]], it
should suffice to take predecessors of ψ . We prove that, indeed, our predecessor
computation on patterns (Procedure 2) is adequate — meaning that Pre(α,ϕ)
subsumes pre (α, [[ϕ]]).

Notations and Conventions We will use the following notations and conventions
in the proofs.

If an injection h satisfying the conditions of Proposition 1 exists for patterns
ϕ and ψ , we say that ϕ � ψ is witnessed by h, written ϕ �h ψ .

An injection h : N → N ′ can be applied on any pattern, hypergraph, edge
or NAC in a distributed fashion, with the convention that h(n) = n for nodes
n 6∈ N . For example, h(G−ϕ ) is the set {h(G−ϕ ) | G−ϕ ∈ G−ϕ } etc.

For a set of NACs G−ϕ we let N (G−ϕ ) = {N (E−) | 〈N−, E−〉 ∈ G−} .

Two sets of NACs G−ϕ and G−ψ are isomorphic, written G−ϕ ' G−ψ , if there

exists a bijection h : N (G−ψ ) → N (G−ϕ ) such that h(G−ψ ) = G−ϕ and h−1(G−ϕ ) =

G−ψ .
Let N be the set of all nodes (negative and positive).
The identity between sets of nodes is the bijection Id : N → N ; h(n) = n .

A.1 Pattern Subsumption

Proposition 1. Given patterns ϕ = 〈Nϕ, Eϕ,G−ϕ 〉 and ψ = 〈Nψ, Eψ,G−ψ 〉 which
are consistent, we have that ϕ � ψ iff there exists an injection h : Nψ → Nϕ,
such that (1) 〈Nϕ, Eϕ〉 �h 〈Nψ, Eψ, ∅〉 and (2) for each NAC 〈M−, F−〉 ∈ G−ψ
there is a NAC 〈N−, E−〉 ∈ G−ϕ and an injection k : N−→M− such that

– (N (E−) \N−) ⊆ h(Nψ), and
– for each (λ,−→n ) ∈ E−, we have (λ, (h−1 ∪ k)(−→n )) ∈ F− .

Proof. (“=⇒”) Assume that ϕ � ψ, i.e., [[ϕ]] ⊆ [[ψ]] .
Since ϕ is consistent, we know that 〈Nϕ, Eϕ〉 ∈ [[ϕ]], and by assumption,

〈Nϕ, Eϕ〉 ∈ [[ψ]], so 〈Nϕ, Eϕ〉 � ψ . There thus exists h witnessing 〈Nϕ, Eϕ〉 �
〈Nψ, Eψ, ∅〉.

Now suppose that every h witnessing 〈Nϕ, Eϕ〉 � 〈Nψ, Eψ, ∅〉 fails to satisfy
the condition (2). Thus, for every h there exists G−h ∈ G

−
ψ such that for each

G−ϕ ∈ G−ϕ there is no k with (h−1 ∪ k)(G−ϕ ) ⊆ G−h .
Let H = {h | 〈Nϕ, Eϕ〉 �h 〈Nψ, Eψ, ∅〉} , which contains at least one element,

as shown above. For each h ∈ H, we define a hypergraph G+
h , where G+

h =



〈N+
h , E

+
h 〉 . Intuitively, G+

h is a positive interpretation of G−h = 〈N−h , E
−
h 〉 where

the negative edges are interpreted as positive edges with the same labels. More
precisely, N+

h = h+(N−h ) ∪ (h∪ h+)(N (E−h )) and E+
h = (h∪ h+)(E−h ) with the

injection h+ : N−h → N+
h and (N+

h ∩Nϕ) = ∅ .

Now consider the hypergraph go = 〈Nϕ, Eϕ〉 ∪
⋃
{G+

h | h ∈ H} . Intuitively,
go consists of the positive part of ϕ and for each h ∈ H a part which contradicts
a NAC in ψ but not a NAC in ϕ .

Now note that go � ϕ . In fact, go �h ϕ for any h ∈ H since we do not
contradict G−ϕ by our assumption. Moreover, no matter which h ∈ H we choose,

we get ¬(go �h ψ), since we map to a part which contradicts G−h ∈ G
−
ψ . But H

contains all possible witnesses of 〈Nϕ, Eϕ〉 �h 〈Nψ, Eψ, ∅〉. Hence, go ∈ [[ϕ]]\ [[ψ]],
contradicting [[ϕ]] ⊆ [[ψ]] . Therefore, there must exist an h satisfying (1) which
also satisfies (2).

(“⇐=”) Given an injection h : Nψ → Nϕ and a set of injections kG− : N−→
M− — one for each NAC 〈M−, F−〉 ∈ G−ψ as defined above — satisfying (1) and
(2). We show that [[ϕ]] ⊆ [[ψ]] .

Consider any g = 〈Ng, Eg〉 ∈ [[ϕ]] . There exists an injection hg : Nϕ → Ng
witnessing g � ϕ . Consider also the composed injection h′ = hg ◦ h : Nψ → Ng;
n 7→ hg(h(n)) . It witnesses g � ψ as we will see.

We have h′(Eψ) ⊆ Eg since for each (λ,−→n ) ∈ Eψ there is a corresponding
edge h((λ,−→n )) ∈ Eϕ and again hg(h((λ,−→n ))) ∈ Eg .

Now suppose that g 6� ψ because the second condition (on page 5) fails.
Then there exists some NAC G− = 〈M−, F−〉 ∈ G−ψ which contradicts g . More

precisely, there exists an injection k′ : M− → Ng such that for each (λ,−→n ) ∈ F−
we have (λ, (h′ ∪ k′)(−→n )) ∈ Eg .

But then there is a corresponding NAC 〈N−, E−〉 ∈ G−ϕ which also contra-
dicts g . To see this, we use the injection kG− : N−→ M− with the properties
defined above, and the injection k′′ = k′ ◦ kG− : N−→ Ng ; n 7→ k′(kG−(n)) .
Now for each (λ,−→n ) ∈ E− we have (λ, ((h′ ◦ h−1) ∪ k′′)(−→n )) ∈ Eg . But this
contradicts g � ϕ . Hence, g � ψ and ϕ � ψ .

ut

A.2 Correctness of the Predecessor Calculation

We prove the correctness of Procedure 2. First we establish a property of the
symbolic predecessor computation, which will be used in the proof.

Symbolic Predecessor Computation We prove a useful property of the
symbolic predecessor computation.

Proposition 2. Given patterns ϕ = 〈Nϕ, Eϕ,G−ϕ 〉, ψ = 〈Nψ, Eψ,G−ψ 〉 and an

action α = 〈L,R〉. If ϕ �h ψ and h(G−ψ ) ' G−ϕ , then for each ϕ′ ∈ Pre(α,ϕ)
there exists some ψ′ ∈ Pre(α,ψ) such that ϕ′ � ψ′ .



Proof. Assume that ϕ �h ψ and h(G−ψ ) ' G−ϕ . We show that for each predecessor
ϕ′ of ϕ there exists a predecessor ψ′ of ψ such that ϕ′ � ψ′ as illustrated below.

ϕ′
Pre(α)←−−−− ϕ

� �
h

∃ψ′ Pre(α)←−−−− ψ

After renaming the nodes so that the sets of nodes are disjoint, we compute
Pre(α,ϕ) and Pre(α,ψ) according to Procedure 2.

We consider all predecessors of ϕ . Let thus hRϕ : NR → Nϕ be the chosen
partial injection on line 3 which causes the predecessor ϕ′ of ϕ to be output.
We show that a corresponding injection gives us the desired predecessor ψ′ —
namely the following:

hRψ = h−1 ◦ hRϕ : NR → Nψ ; n 7→ h−1(hRϕ(n)) .

We now argue line by line, of Procedure 2, that subsumption is preserved dur-
ing the predecessor computation for our choices of injections. Initially, we have
ϕ �h ψ . Clearly, after the renaming done on line 4 we still have subsumption.
The following gives us a simpler correspondence between ϕ and ψ .

Lemma 1. If ϕ �h ψ then ϕ̂ �Id ψ̂ , where ϕ̂ = h−1Rϕ(ϕ) and ψ̂ = h−1Rψ(ψ) are
the patterns obtained after the renaming.

Proof. Since ϕ �h ψ we have h−1(ϕ) �Id ψ . Since the sets Nψ and NR are

disjoint, we can apply h−1Rψ to both sides, obtaining h−1Rψ ◦ h−1(ϕ) �Id ψ̂ . By

definition h−1Rψ = (h−1 ◦ hRϕ)−1 = (h−1Rϕ ◦ h) so the left hand side becomes ϕ̂ .
ut

For readability, we abuse notation slightly, and continue to call the renamed
patterns ϕ and ψ . Let thus ϕ := h−1Rϕ(ϕ) and ψ := h−1Rψ(ψ). By Lemma 1 we
thus have ϕ �Id ψ .

We continue with the test on line 5 . It suffices to show that if ϕ is not
skipped, i.e. both clauses are false, then ψ is not skipped either.

Lemma 2. If the first clause of the test on line 5 is false for ϕ then it is also
false for ψ .

Proof. That the first clause is false, means that for the quantified n , E+(n, ϕ) ⊆
E+(n,R) . Since ϕ �Id ψ we get Nψ ⊆ Nϕ and Eψ ⊆ Eϕ , and the statement
follows.

ut

Lemma 3. If the second clause of the test on line 5 is false for ϕ then it is also
false for ψ .



Proof. That the second clause is false for ϕ means that ¬Inconsistent(ϕ+R) .
This means that there is no NAC in G−ϕ which contradicts R . The statement
follows since ϕ �Id ψ as for Lemma 2. ut

Next we show that the computation on line 8 preserves subsumption.
Let ϕ′ = (ϕ	αR) + L and ψ′ = (ψ 	αR) + L .

Lemma 4. If ϕ �Id ψ then ϕ′ �Id ψ′ .

Proof. Suppose that ϕ �Id ψ .

(ϕ	αR) + L = 〈Nϕ \ (NR \NL) ∪NL, Eϕ \ ER ∪ EL,G−ϕ ∪ G−L 〉

(ψ 	αR) + L = 〈Nψ \ (NR \NL) ∪NL, Eψ \ ER ∪ EL,G−ψ ∪ G
−
L 〉

We check the conditions of Proposition 1 after line 8.

1. This condition is true, because the same edges are removed from and added
to ϕ and ψ .

2. This condition holds, because the same NACs are added to ϕ and ψ .
ut

We show that the NAC handling done on lines 9–11 also preserves subsump-
tion. We will use ϕ′′ and ψ′′ to denote the results from executing lines 9–11.

Lemma 5. If ϕ′ �Id ψ′ then ϕ′′ �Id ψ′′ .

Proof. Because the sets of NACs are isomorphic, whenever a NAC is removed
from ϕ′ it is also removed from ψ′ . Hence subsumption is preserved. ut

For the inconsistency check on line 12 of Procedure 2 we conclude that since
we have ϕ′′ �Id ψ′′ , if ψ′′ is inconsistent, then so is ϕ′′ . Hence, if ϕ′′ passes the
test, it is not inconsistent and neither is ψ′′ .

Let us return to the original notations, used in the statement. We simply
rename our patterns: ϕ′ := ϕ′′ and ψ′ := ψ′′ . Since ϕ′ is a predecessor of ϕ , it
will pass this last inconsistency check. It follows that so will ψ′ . Hence, we have
found our ψ′ with ψ′ ∈ Pre(α,ψ) such that ϕ′ � ψ′, concluding the proof. ut

Main Proof Now we continue with the main proof. We will use the following
correspondence between graph and pattern subsumption.

Lemma 6. Given a hypergraph g = 〈Ng, Eg〉 and a consistent pattern ϕ =
〈Nϕ, Eϕ,G−ϕ 〉.

g �h ϕ ⇐⇒ ϕg = 〈Ng, Eg, h(G−ϕ )〉 �h ϕ and ϕg is consistent .

Proof. (=⇒). Suppose g �h ϕ . Then g does not contradict any NAC of ϕ .
Hence, 〈Ng, Eg, h(G−ϕ )〉 is consistent and subsumed by ϕ (witnessed by h and the
identity mapping between the NACs).

(⇐=). Suppose ϕg = 〈Ng, Eg, h(G−ϕ )〉 �h ϕ and ϕg is consistent. Since ϕg
is consistent, we get g = 〈Ng, Eg〉 �Id ϕg . Furthermore, since ϕg � ϕ we have
g �Id ϕg � ϕ . Hence, g � ϕ . ut



Finally, we are ready to prove correctness.

Proposition 3. Given an action α = 〈L,R〉, and a consistent pattern ϕ =
〈Nϕ, Eϕ,G−ϕ 〉.

Φ = Pre(α,ϕ) satisfies pre (α, [[ϕ]]) ⊆ [[Φ]] .

Proof. Our proof strategy is depicted in Figure 1. We consider any pair of graphs
(g′, g) ∈ [[α]] where g � ϕ . We first show that there exist patterns ϕg and ϕ′

as shown in the figure — i.e., such that g � ϕg , ϕg � ϕ , ϕ′ ∈ Pre(α,ϕg)
and g′ � ϕ′ . Once this has been established, we get by Proposition 2 that there
exists a pattern ψ ∈ Pre(α,ϕ) such that ϕ′ � ψ . Finally, we get g′ � ψ by
transitivity.

g′
pre (α)←−−−−− g

� �

∃ϕ′ Pre(α)←−−−−− ∃ϕg
� �

∃ψ Pre(α)←−−−−− ϕ

Fig. 1. Proof strategy. We show that the patterns preceded by “∃” exist. The propo-
sition statement then follows by transitivity of � .

By Lemma 6 we get that ϕg = 〈Ng, Eg,G−ϕ 〉 � ϕ and, by consistency, that
g � ϕg . Now, by Proposition 2, we get that for any ϕ′ ∈ Pre(α,ϕg) there
exists ψ ∈ Pre(α,ϕ) with ϕ′ � ψ . It now suffices to show that there exists a
predecessor ϕ′ of ϕg such that g′ � ϕ′ .

Suppose that the injection h : NR → Ng relates g′ and g according to Def-
inition 1. Hence we have g = 〈Ng, Eg〉 with Ng = Ng′ ∪ h(NR) and Eg =
Eg′ \h(EL) ∪ h(ER) . We show that, if we choose this same injection on line 3
in the computation of Pre(α,ϕ), we obtain an adequate ϕ′ . Let us, then, go
through lines 4–13 of Procedure 2 using the injection h : NR → Ng from above.

– Line 4. After the renaming we obtain ϕ̂g = 〈h−1(Ng′)∪NR , h−1(Eg′)\EL∪
ER , h

−1(G−ϕ )〉 .
– Line 5, first clause. This clause is false, since the edges of ϕ̂g are h−1(Eg′)\
EL ∪ER . Thus E+(n, ϕ̂g) is clearly a subset of E+(n,ER) for n ∈ (NR \NL)
(in fact, the sets are equal).

– Line 5, second clause.

ϕ̂g +R = 〈h−1(Ng′) ∪NR ∪NR, h−1(Eg′)\EL ∪ ER ∪ ER, h−1(G−ϕ )〉 = ϕ̂g

Since ϕ̂g is consistent, so is ϕ̂g +R .



– Line 8. We here obtain the pattern

ϕ′ = (ϕ̂g 	α R) + L = 〈h−1(Ng′) , h
−1(Eg′) , h

−1(G−ϕ ) ∪ G−L 〉 .

– Lines 9–11. Suppose that g′ 6� ϕ′ . Since condition 1 of subsumption is
satisfied (as defined on page 5), the reason must be that condition 2 is not.
But since by definition g′ �h L , the violated NAC must be in G−ϕ . Moreover,
since ϕ+ R is consistent, the part of ϕ′ which contradicts the NAC cannot
be in R . The only remaining alternative is that something (positive) in
L	E R contradicts the NAC. Hence, condition 2 is met, and g′ � ϕ′ , if all
contradictions of this form are resolved. This is precisely what is done on
lines 9–11.

– Line 12. Finally, ϕ′ is consistent, since g′ � ϕ′, and the test on this line is
passed. ut


