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Abstract. We present a technique for automatically verify-
ing safety properties of concurrent programs, in particular
programs which rely on subtle dependencies of local states of
different threads, such as lock-free implementations of stacks
and queues in an environment without garbage collection.
Our technique addresses the joint challenges of infinite-state
specifications, an unbounded number of threads, and an un-
bounded heap managed by explicit memory allocation. Our
technique builds on the automata-theoretic approach to model
checking, in which a specification is given by an automaton
that observes the execution of a program and accepts execu-
tions that violate the intended specification. We extend this
approach by allowing specifications to be given by a class
of infinite-state automata. We show how such automata can
be used to specify queues, stacks, and other data structures,
by extending a data-independence argument. For verification,
we develop a shape analysis, which tracks correlations be-
tween pairs of threads, and a novel abstraction to make the
analysis practical. We have implemented our method and used
it to verify programs, some of which have not been verified
by any other automatic method before.

1 Introduction

In this paper, we consider one of the most difficult current
challenges in software verification, namely to automate its
application to algorithms with an unbounded number of threads
that concurrently access a dynamically allocated shared state.
Such algorithms are of central importance in concurrent pro-
grams. They are widely used in libraries, such as the Intel
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Threading Building Blocks or the java.util.concurrent

package, to provide efficient concurrent realizations of sim-
ple interface abstractions. They are notoriously difficult to get
correct and verify, since they often employ fine-grained syn-
chronization and avoid locking wherever possible. A num-
ber of bugs in published algorithms have been reported [10,
19]. It is therefore important to develop efficient techniques
for verifying conformance to simple abstract specifications of
overall functionality, a concurrent implementation of a com-
mon data type abstraction, such as a queue, should be verified
to conform to a simple abstract specification of a (sequential)
queue.

We present an integrated technique for specifying and au-
tomatically verifying that a concurrent program conforms to
an abstract specification of its functionality. Our starting point
is the automata-theoretic approach to model checking [30], in
which programs are specified by automata that accept pre-
cisely those executions that violate the intended specifica-
tion, and verified by showing that these automata never accept
when they are composed with the program. This approach is
one of the most successful approaches to automated verifica-
tion of finite-state programs, but is still insufficiently devel-
oped for infinite-state programs. In order to use this approach
for our purposes, we must address a number of challenges.
1. The abstract specification is infinite-state, because the im-

plemented data structure may contain an unbounded num-
ber of data values from an infinite domain.

2. The program is infinite-state in several dimensions: it (i)
consists of an unbounded number of concurrent threads,
(ii) uses unbounded dynamically allocated memory, and
(iii) the domain of data values is unbounded.

3. The program does not rely on automatic garbage collec-
tion, but manages memory explicitly. This requires addi-
tional mechanisms to avoid the ABA problem, i.e., that
a thread mistakenly confuses an outdated pointer with a
valid one.

Each of these challenges requires a significant advancement
over current specification and verification techniques.
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We cope with challenge 1 by combining two ideas. First,
we present a novel technique for specifying programs by a
class of automata, called observers. They extend automata, as
used by [30], by being parameterized on a finite set of vari-
ables that assume values from an unbounded domain. This
allows to specify properties that should hold for an infinite
number of data values. In order to use our observers to spec-
ify queues, stacks, etc., where one must “count” the number
of copies of a data value that have been inserted but not re-
moved, we must extend the power of observers by a second
idea. This is a data independence argument, adapted from
Wolper [34], which implies that it is sufficient to consider
executions in which any data value is inserted at most once.
This allows us to succinctly specify data structures such as
queues and stacks, using observers with typically less than 3
variables.

To cope with challenge 2(i), we would like to adapt the
successful thread-modular approach [4], which verifies a con-
current program by generating an invariant that correlates the
global state with the local state of an arbitrary thread. How-
ever, to cope with challenge 3, the generated invariant must be
able to express that at most one thread accesses some cell on
the global heap. Since this cannot be expressed in the thread-
modular approach, we therefore extend it to generate invari-
ants that correlate the global state with the local states of an
arbitrary pair of threads.

To cope with challenge 2(ii) we need to use shape analy-
sis. We adapt a variant of the transitive closure logic by Bing-
ham and Rakamarić [5] for reasoning about heaps with single
selectors, to our framework. This formalism tracks reachabil-
ity properties between pairs of pointer variables, and we adapt
it to our analysis, in which pairs of threads are correlated. On
top of this, we have developed a novel optimization, based
on the observation that it suffices to track the possible rela-
tions between each pair of pointer variables separately, anal-
ogously to the use of DBMs used in reasoning about timed
automata [9]. Finally, we cope with challenge 2(iii) by first
observing that data values are compared only by equalities
or inequalities, and then employing suitable standard abstrac-
tions on the concerned data domains.

We have implemented our technique, and applied it to
specify and automatically verify that a number of concur-
rent programs are linearizable implementation of stacks and
queues [16]. This shows that our new contributions result in
an integrated technique that addresses the challenges 1 – 3,
and can fully automatically verify a range of concurrent im-
plementations of common data structures. In particular, our
approach advances the power of automated verification in the
following ways.
– We present a direct approach for verifying that a concur-

rent program is a linearizable implementation of, e.g., a
queue, which consists in checking a few small properties
of the algorithm, and is thus suitable for automated ver-
ification. Previous approaches typically verified lineariz-
ability separately from conformance to a simple abstrac-
tion, most often using simulation-based arguments, which
are harder to automate than simple property-checking.

– We can automatically verify concurrent programs that use
explicit memory management. This was previously be-
yond the reach of automatic methods.

In addition, on examples that have been verified automati-
cally by previous approaches, our implementation is in many
cases significantly faster.

Overview We give an overview of how our technique can be
used to show that a concurrent program is a linearizable im-
plementation of a data structure. As described in Section 2,
we consider concurrent programs consisting of an arbitrary
number of sequential threads that access shared global vari-
ables and a shared heap using a finite set of methods. Lin-
earizability provides the illusion that each method invoca-
tion takes effect instantaneously at some point (called the lin-
earization point) between method invocation and return [16].
In Section 3, we show how to specify this correctness con-
dition by first instrumenting each method to generate a so-
called abstract event whenever a linearization point is passed.
We also introduce observers, and show how to use them for
specifying properties of sequences of abstract events. In Sec-
tion 4, we introduce the data independence argument that al-
lows observers to specify queues, stacks, and other unbounded
data structures. In Section 6, we describe our analysis for
checking that the cross-product of the program and the ob-
server cannot reach an accepting location of the observer. The
analysis is based on a shape analysis, which generates an in-
variant that correlates the global state with the local states of
an arbitrary pair of threads. We also introduce our optimiza-
tion which tracks the possible relations between each pair of
pointer variables separately. We report on experimental re-
sults in Section 7. Section 8 contains conclusions and direc-
tions for future work.

Related work. Much previous work on verification of con-
current programs has concerned the detection of generic con-
currency problems, such as race conditions, atomicity viola-
tions, or deadlocks [14,22,23]. Verification of conformance
to a simple abstract specification has been performed using
refinement techniques, which establish simulation relations
between the implementation and specification, using partly
manual techniques [11,8,12,33].

Amit et al [3] verify linearizability by verifying confor-
mance to an abstract specification, which is the same as the
implementation, but restricted to serialized executions. They
build a specialized abstract domain that correlates the state
(including the heap cells) of a concrete thread and the state of
the serialized version, and a sequential reference data struc-
ture. The approach can handle a bounded number of threads.
Berdine et al [4] generalize the approach to an unbounded
number of threads by making the shape analysis thread-modular.
In our approach, we need not keep track of heaps emanating
from sequential reference executions, and so we can use a
simpler shape analysis. Plain thread-modular analysis is also
not powerful enough to analyze e.g. algorithms with explicit
memory management. [4] thus improves the precision by cor-
relating local states of different threads. This causes however
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struct node {data val, pointer_t next}
struct pointer_t {node* ptr, int age}

pointer_t Head, Tail;

void initialize() {
node* n := new node();
n→next.ptr := NULL;
Head.ptr := n;
Tail.ptr := n;

}

0 void enq(data d){
1 node* n := new node();
2 n→val := d;
3 n→next.ptr := NULL;
4 while(TRUE){
5 pointer_t tail := Tail;
6 pointer_t next := tail.ptr→next;
7 if(tail = Tail)
8 if(next.ptr = NULL)
9 if(CAS(&tail.ptr→next, next,

10 〈n,next.age+1〉))
11 break;
12 else
13 CAS(&Tail,tail,〈next.ptr, tail.age+1〉);
14 }
15 CAS(&Tail, tail, 〈n, tail.age+1〉);
16 }

17 data deq(){
18 while(TRUE){
19 pointer_t head := Head;
20 pointer_t tail := Tail;
21 pointer_t next := head.ptr→next;
22 if(head = Head)
23 if(head.ptr = tail.ptr)
24 if(next.ptr = NULL)
25 return empty;
26 CAS(&Tail, tail, 〈next.ptr, tail.age+1〉);
27 else
28 data result := next.ptr→val;
29 if(CAS(&Head, head,
30 〈next.ptr,head.age+1〉))
31 break;
32 }
33 free(head.ptr);
34 return result;
35 }

INIT

ENQ DEQ

Fig. 1. Michael & Scott’s non-blocking queue [20].

a severe state-space explosion which limits the applicability
of the method.

Vafeiadis [27] formulates the specification using an un-
bounded sequence of data values that represent, e.g., a queue
or a stack. He verifies conformance using a specialized ab-
straction to track values in the queue and correlate them with
values in the implementation. Like [25], our technique for
handling values in queues need only consider a small number
of data values (not an unbounded one), for which it is suffi-
cient to track equalities. The approach is extended in [28] to
automatically infer the position of linearization points: these
have to be supplied in our approach.

Our use of data variables in observers for specifying prop-
erties that hold for all data values in some domain is related
in spirit to the identification of arbitrary but fixed objects or
resources by Emmi et al. [13] and Kidd et al. [18]. In the
framework of regular model checking, universally quantified
temporal logic properties can be compiled into automata with
data variables that are assigned arbitrary initial values [1].

Segalov et al. [24] continue the work of [4] by also con-
sidering an analysis that keeps track of correlations between
threads. They strive to counter the state-space explosion that
[4] suffers from, and propose optimizations that are based on
the assumption that inter-process relationships that need to
be recorded are relatively loose, allowing a rather crude ab-
straction over the state of one of the correlated threads. These
optimizations do not work well when thread correlations are
tight. Our experimental evaluation in Section 7 shows that
our optimizations of the thread correlation approach achieve
significantly better analysis times than [24].

There are several works that apply different verification
techniques to programs with a bounded number of threads,
including the use of TVLA [35]. Several approaches pro-
duce decidability results under limited conditions [7], or tech-
niques based on non-exhaustive testing [6] or state-space ex-
ploration [32] for a bounded number of threads.

2 Programs

We consider systems consisting of an arbitrary number of
concurrently executing threads. Each thread may at any time
invoke one of a finite set of methods. Each method declares
local variables (including the input parameters of the method)
and a method body. In this paper, we assume that variables are
either pointer variables (to heap cells), or data variables (as-
suming values from an unbounded or infinite domain, which
will be denoted by D). The body is built in the standard way
from atomic commands using standard control flow constructs
(sequential composition, selection, and loop constructs). Method
execution is terminated by executing a return command,
which may return a value. The global variables can be ac-
cessed by all threads, whereas local variables can be accessed
only by the thread which is invoking the corresponding method.
We assume that the global variables and the heap are initial-
ized by an initialization method, which is executed once at
the beginning of program execution.

Atomic commands include assignments between data vari-
ables, pointer variables, or fields of cells pointed to by a pointer
variable. The command new node() allocates a new struc-
ture of type node on the heap, and returns a reference to it.
The cell is deallocated by the command free. The compare-
and-swap command CAS(&a,b,c) atomically compares the
values of a and b. If equal, it assigns the value of c to a and
returns TRUE, otherwise, it leaves a unchanged and returns
FALSE.

As an example, Figure 1 shows a version of the concur-
rent queue by Michael and Scott [20]. The program repre-
sents a queue as a linked list from the node pointed to by Head
to a node that is either pointed by Tail or by Tail’s suc-
cessor. The global variable Head always points to a dummy
cell whose successor, if any, stores the head of the queue. In
the absence of garbage collection, the program must handle
the ABA problem where a thread mistakenly assumes that
a globally accessible pointer has not been changed since it
previously accessed that pointer. Each pointer is therefore
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s0 s1

s2

〈insert(p), p 6= z〉
〈delete(p), p 6= z〉
〈isEmpty(), true〉

〈insert(p), p 6= z〉
〈delete(p), p 6= z〉
〈isEmpty(), true〉

〈insert(p), p = z〉

〈delete(p), p = z〉

〈delete(p), p = z〉

Fig. 2. An observer for deleting a non present data value.

equipped with an additional age field, which is incremented
whenever the pointer is assigned a new value.

The queue can be accessed by an arbitrary number of
threads, either by an enqueue method enq(d), which inserts
a cell containing the data value d at the tail, or by a de-
queue method deq(d) which returns empty if the queue is
empty, and otherwise advances Head, deallocates the previ-
ous dummy cell and returns the data value stored in the new
dummy cell. The algorithm uses the atomic compare-and-
swap (CAS) operation. For example, the command CAS(&Head,
head, 〈next.ptr,head.age+1〉) at line 29 of the deqmethod
checks whether the extended pointer Head equals the extended
pointer head (meaning that both fields must agree). If not,
it returns FALSE. Otherwise it returns TRUE after assigning
〈next.ptr,head.age+1〉 to Head.

3 Specification by Observers

To specify a correctness property, we instrument each method
to generate abstract events. An abstract event is a term of
the form l(d1, . . . , dn) where l is an event type, taken from
a finite set of event types, and d1, . . . , dn are data values in
D. To specify linearizability, the abstract event l(d1, . . . , dn)
generated by a method should be such that l is the name of
the method, and d1, . . . , dn is the sequence of actual parame-
ters and return values in the current invocation of the method.
This can be established using standard sequential verification
techniques.

We illustrate how to instrument the program of Figure 1
in order to specify that it is a linearizable implementation
of a queue. The linearization points are at line 9, 21 and
29. For instance, line 9 of the enq method called with data
value d is instrumented to generate the abstract event enq(d)
when the CAS command succeeds; no abstract event is gen-
erated when the CAS fails. Generation of abstract events can
be conditional. For instance, line 21 of the deq method is in-
strumented to generate deq(empty) when the value assigned
to next satisfies next.ptr = NULL (i.e., it will cause the
method to return empty at line 25).

Each execution of the instrumented program will gener-
ate a sequence of abstract events called a trace. A correct-
ness property (or simply a property) is a set of traces. We
say that an instrumented program satisfies a property if each
trace of the program is in the property. In contrast to the clas-

s0 s1

s2

〈insert(p), p 6= z〉
〈delete(p), p 6= z〉
〈isEmpty(), true〉

〈insert(p), p 6= z〉
〈delete(p), p 6= z〉
〈isEmpty(), true〉

〈insert(p), p = z〉

〈delete(p), p = z〉

〈insert(p), p = z〉

Fig. 3. An observer for inserting a data value that is already present.

s0 s1

s2

〈insert(p), p 6= z〉
〈delete(p), p 6= z〉
〈isEmpty(), true〉

〈insert(p), p 6= z〉
〈delete(p), p 6= z〉
〈isEmpty(), true〉

〈insert(p), p = z〉

〈delete(p), p = z〉

〈isEmpty(), true〉

Fig. 4. An observer for losing a data value that is already present.

sical (finite-state) automata-theoretic approach [30], we spec-
ify properties by infinite-state automata, called observers. An
observer has a finite set of control locations, and a finite set of
data variables that range over potentially infinite domains. It
observes the trace and can reach an accepting control location
if the trace is not in the property.

Formally, let a parameterized event be a term of the form
l(p1, . . . , pn), where p1, . . . , pn are formal parameters. We
will write p for p1, . . . , pn, and d for d1, . . . , dn. An observer
consists of a finite set of observer locations, one of which is
initial and some of which are accepting, a finite set of ob-
server variables, and a finite set of transitions. Each transi-

tion is of form s
l(p);g−→ s′ where s, s′ are observer locations,

l(p) is a parameterized event, and the guard g is a Boolean
combination of equalities over formal parameters p, and ob-
server variables. Intuitively, it denotes that the observer can
move from location s to location s′ when an abstract event of
form l(d) is generated such that g[d/p] is true. Note that the
values of observer variables are not updated in a transition.
An observer configuration is a pair 〈s, ϑ〉, where s is an ob-
server location, and ϑ maps each observer variable to a value
in the data domain D. The configuration is initial if s is initial;
thus the variables can assume any initial values. An observer

step is a triple 〈s, ϑ〉 l(d)−→ 〈s′, ϑ〉 such that there is a transition

s
l(p);g−→ s′ for which g[d/p] is true. A run of the observer on

a trace σ = l1(d1)l2(d2) · · · ln(dn) is a sequence of observer

steps 〈s0, ϑ〉
l1(d1)
−→ · · ·

ln(dn)
−→ 〈sn, ϑ〉 where s0 is the initial

observer location. The run is accepting if sn is accepting. A
trace σ is accepted by an observer A if A has an accepting
run on σ. The property specified by A is the set of traces that
are not accepted by A.
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s0 s1 s2 s3

〈enqHigh(p), guard〉
〈enqLow(p), guard〉〈

deq(p), guard′〉
〈enqLow(p), p = z1〉

〈enqHigh(p), guard〉
〈enqLow(p), guard〉
〈deq(p), guard〉

〈enqHigh(p), p = z2〉

〈enqHigh(p), guard〉
〈enqLow(p), guard〉
〈deq(p), guard〉

〈deq(p), p = z1〉

guard = (p 6= z1 ∧ p 6= z2 ∧ p 6= empty)

guard′ = (p 6= z1 ∧ p 6= z2)

Fig. 5. A trace observer for checking that a low priority data value cannot be dequeued if there is a high priority data value that was later inserted. The variables
z1, z2 are observer variables, and empty in an observer constant.

Since the data variables can assume arbitrary initial val-
ues, observers can specify properties that are universally quan-
tified over all data values. If a trace violates such a property
for some data values, the observer can non-deterministically
choose these as initial values of its variables, and thereafter
detect the violation when observing the trace. Several data
structures can be specified by a collection of properties, each
of which is represented by an observer.

3.1 Application: Sets Specification

We use three observers to exactly capture all set traces over
∪d∈D {insert(d), deq(d)}∪{isEmpty()} that violate the
expected behavior of a correct set implementation. The three
observers in figures 2, 3 and 4 have three states s0, s1 and
s2. In these observers, the initial state s0 corresponds to posi-
tions in the runs where the non-determnistically tracked value
stored in the observer variable z is not present in the set (i.e.
each time it has been inserted it got deleted afterwards). The
state s1 corresponds to positions in the runs where the tracked
value is present in the set (i.e. it has not been deleted since it
was last inserted). The accepting state s2 corresponds to po-
sitions in the runs where the bad behavior captured by the
respective observers has been observed. For the observer de-
picted in figure 2, the captured bad behaviors are those where
a data value is deleted although it is not present in the set. For
the observer of figure 3, the captured bad behaviors are those
where a data value is inserted although it is already present
in the set. For the observer of figure 4, the captured behaviors
are those where isEmpty() occurs although a data value is
still present in the set.

3.2 Observers Alone Cannot “Count”

In the previous paragraph, we showed how observers can spec-
ify in a straight-forward way data structures such as sets. Reg-
isters and similar data structures (such as caches) where there
is an a priori fixed bound on the number of equal data val-
ues that have been inserted but not yet retrieved can also be
specified using appropriate observers. There are however data
structures where observers alone are not enough to capture
the specification. Queues and stacks are examples of such
data structures. Here, the difference between the number of
times a data value may be inserted and the number of times it

is retrieved can be arbitray. In other words, the number of
copies of the same data value that are present in the data
structures can be arbitrary. As a result, one must be able to
“count” the number of equal data values that have been in-
serted but not yet removed. Such data structures require there-
fore non-regular specifications in general. By restricting the
allowed traces we can again use the observers defined in this
section. For instance, assume a queue where data values are
assigned a low (respectively high) priority each time they are
inserted with enqLow() (respectively enqHigh()). A correct
implementation of such a priority queue will not return a data
value with low priority if one with high priority was later in-
serted. The observer of figure 3 captures all traces that vi-
olate this property and where no data value d is enqueued
twice (whether with enqLow(d), enqHigh(d), or both). In
the following section, we build on the idea of specifying re-
stricted traces using observers and show, by leveraging on a
data independence argument, that this is sufficient to com-
pletely specify data structures such as stacks and queues.

4 Data Independence

We adapt a data independence argument from Wolper [34].
The argument assumes that for each trace, there is a fixed
subset of all occurrences of data values in the trace, called
the set of input occurrences. Formally, this subset can be ar-
bitrary, but to make the argument work, input occurrences
should typically be the data values that are provided as actual
parameters of method invocations. Thus, in the program of
figure 1, the input occurrences are the parameters of enq(d)
events, whereas parameters of deq(d) events are not input
occurrences, since they are provided as return values.

Let us introduce some definitions. A trace is differentiated
if all its input occurrences are pairwise different. A renaming
is any function f : D 7→ D on the domain of data values.
A renaming f can be applied to trace σ, resulting in the trace
f(σ), where each data value d in σ has been replaced by f(d).
A set Σ of traces is data independent if for any trace σ ∈ Σ
the following two conditions hold:

– f(σ) ∈ Σ for any renaming f , and
– there exists a differentiated trace σd ∈ Σ with f(σd) = σ

for some renaming f .
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OBSCREAT:

s0 s1

〈in(p), p 6= z ∧ p 6= empty〉
〈out(p), p 6= z〉

〈out(p), p = z〉

Fig. 6. A trace observer for checking that no data-value can be extracted if it
has not been inserted. The variable z is an observer variable, and empty in an
observer constant.

OBSLOSS:

s0 s1 s2

〈in(p), p 6= z ∧ p 6= empty〉
〈out(p), p 6= z〉

〈in(p), p = z〉

〈in(p), p 6= z ∧ p 6= empty〉
〈out(p), p 6= z〉

〈out(p), p = empty〉

Fig. 7. A trace observer for checking that an inserted value has to be extracted
before the data-structure is declared empty. The variable z is an observer
variable, and empty in an observer constant.

We say that a program is data independent if the set of its
traces is data independent. A program, like the one in fig-
ure 1, can typically be shown to be data independent by a
simple syntactic analysis that checks that data values are not
manipulated or tested, but only copied. In a similar manner,
a correctness property is data independent if the set of traces
that it specifies is data independent. The following theorem
states an important observation.

Theorem 1. For any data independent sets of traces Σ and
Σ′, Σ ⊆ Σ′ iff the differentiated traces of Σ are in Σ′.

Proof. If Σ ⊆ Σ′ then the differentiated traces of Σ are
included in Σ′. Let σ be an arbitrary trace in Σ. We show
σ ∈ Σ′. By data independence of Σ, there is a differentiated
trace σd ∈ Σ and a renaming f such that f(σd) = σ. By
assumption, σd is also in Σ′. By data independence of Σ′,
f(σd) is also in Σ′, and hence σ ∈ Σ′. ut

Thus, when checking that a data independent program
satisfies a data independent property, it suffices to check that
all differentiated traces of the program belong to the property.
Hence, an observer for a data independent property need only
accept the differentiated traces that violate the property. This
means that whenever a data value is input twice in a trace,
the observer can stop checking (i.e., move to a non-accepting
sink state), since the trace will anyway be ignored.

Note that the set of traces of a set is not data independent,
e.g., since it contains a trace where two different data values
are inserted, but not its renaming which inserts the same data
value twice. This is not a problem, since the set of all traces
of a set can be specified by observers, without using a data
independence argument.

The key observation is now that the differentiated traces
of queues and stacks can be completely and succinctly speci-
fied by observers with a small number of variables. We devote
the following section to formalize and prove this fact.

OBSDUPL:

s0 s1 s2 s3

guard = (p 6= z ∧ p 6= empty)

〈in(p), guard〉
〈out(p), p 6= z〉

〈in(p), p = z〉

〈in(p), guard〉
〈out(p), p 6= z〉

〈out(p), p = z〉

〈in(p), guard〉
〈out(p), p 6= z〉

〈out(p), p = z〉

Fig. 8. A trace observer for checking that no once-inserted data value can
be extracted twice. The variable z is an observer variable, and empty in an
observer constant.

OBSLIFO:

s0 s1 s2 s3

guard = (p 6= z1 ∧ p 6= z2 ∧ p 6= empty)

guard′ = (p 6= z1 ∧ p 6= z2)

〈in(p), guard〉〈
out(p), guard′〉

〈in(p), p = z1〉

〈in(p), guard〉
〈out(p), guard〉

〈in(p), p = z2〉

〈in(p), guard〉
〈out(p), guard〉

〈out(p), p = z1〉

Fig. 9. An observer for detecting violations of the first inserted first extracted
ordering. The initial state is s0 and {s3} is the set of final states. The vari-
ables z1, z2 are observer variables, and empty in an observer constant.

5 Specifying Stacks and Queues Using Observers

We show in this section how to completely specifiy, using
observers such as those introduced in section 3, and using the
data independence argument introduced in section 4, the se-
quential behaviors of queues and stacks operating over the
arbitrary (and possibly infinite) data domain D. At the end of
this section, we will show that the three observers of figures
6, 7 and 8, in addition to the observer of figure 9 (respectively,
figure 10) are enough to specify a stack (respectively a queue)
of arbitrary size1. We detail the approach for stacks and men-
tion how to adapt it for the case of queues. First, we recall
the natural operational specification of a stack and explain
how we define its behavior using the set of traces it generates.
Then, we propose, using the four simple observers mentioned
above an alternative observational definition of a stack. The
new definition abstracts away from the actual states and only
considers properties of the generated traces. We write in the
following D to mean D \ {empty}.

The functional specification of a sequential stack corre-
sponds to the set of allowed finite sequences (we consider
safety properties) of pushes and pops together with their ar-
guments and return values. We use in the following in(d)
(respectively out(d) and out(empty)) to mean a push(d)
(respectively pop(d) and pop(empty)). The specification of
a sequential stack is a strict subset of (Σi/o)

∗, where Σi/o =
{in(d), out(d) | d ∈ D} ∪ {out(empty)}. We give in the
following an operational and an observational characteriza-
tion of the specification of a sequential stack and show their
equivalence.

1 When the observers in figures 6, 7, 8, 10 and 9 are used to specify a
stack (respectively a queue), each occurence of in(.) should be replaced by
push(.) (respectively enq(.)) and each occurence of out(.) should be
replaced by pop(.) (respectively deq(.))
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5.1 Operational Specification of a Stack

A natural way to define the set of finite stack traces is to
use a transition system T where the set of states is the set of
possible stack contents, and where the transtions are labeled
with Σi/o . More formally, T is a tuple (Σi/o , (D)∗, {ε},→),
where the empty word ε ∈ (D)∗ is the initial state, and the
set of transitions→ ⊆ (D)∗ ×Σi/o × (D)∗ only includes all
transitions of the form: 〈w, in(d), d · w〉, 〈d · w, out(d), w〉,
or 〈ε, out(empty), ε〉, where d ∈ D and w ∈ (D)∗. A run of
T is a finite sequence ρ = w0e1w1 · · · enwn with w0 = ε and
〈wi, ei+1, wi+1〉 ∈ → for each i : 0 ≤ i < n. We say that ρ is
a stack run. A trace of T is any sequence e1 · · · en such that
there is a stack run w0e1w1 · · · enwn of T . The operational
sepcification of a stack, written φopstack, is then the set of all
traces of T .

Observe that the renaming of any stack trace is also a
stack trace (just rename the states in the corresponding run).
Also, given a trace σ resulting from a stack run ρ, one can ob-
tain a differentiated trace whose renaming gives σ as follows.
Repeat the same run but append a systematically incremented
counter to the values that are input to the stack. It is easy to
see that the same run as ρ, except for the appended counter
values to the data, is also a stack run on a differentiated trace
that can be renamed (by forgetting the counter) into σ. The
set of traces ϕop

stack therefore satisfies the definition of data-
independence introduced in section 4.

As a result, Theorem 1 implies that any data independent
set of traces whose set of differentiated traces equals the set of
differentiated stack traces does coincide with the set of stack
traces. We write in the following ϕop

diff ,stack to mean the set
of differentiated traces in ϕop

stack .

5.2 Observational Specification of a Stack

We propose another specification for differentiated stack traces,
written ϕobs

diff ,stack which characterizes the set of differenti-
ated stack traces as exactly those differentiated traces that are
not accepted by any of four simple observers. Intuitively, such
a differentiated trace satisfies the following four properties
for all data values d1 and d2:

NO CREATION (OBSCREAT, figure 6): d1 must not be popped
before it is pushed, i.e., data cannot be created,

NO LOSS (OBSLOSS, figure 7)): empty must not be returned
if d1 was pushed but not popped, i.e., data cannot be lost

NO DUPLICATION (OBSDUPL, figure 8): d1 must not be popped
twice, i.e., data cannot be duplicated.

LIFO (OBSLIFO, figure 9): d2 must not be popped if d1 was
pushed after d2 was pushed.

5.2.1 Differentiated Operational and Observational
Specifications Coincide

Lemma 1 states that the differentiated operational specifica-
tion of a stack equals the differentiated observational one.

Lemma 1. ϕop
diff ,stack = ϕobs

diff ,stack .

Proof. Recall the claim only concerns differentiated traces.
We will make use of two properties that hold for any stack
run ρ = w0e1w1e2 · · · enwn.

– The counting property of a stack. We write (a)#w to mean
the number of occurences of the letter a ∈ A in the word
w ∈ A∗, for a fixed alphabet A. Back to ρ, it is easy to
show by induction that for any d in D and i s.t. 0 ≤ i ≤ n,
(d)#wi

= (in(d))#(e1···ei) − (out(d))#(e1···ei).
– The ordering property of a stack. Using the counting prop-

erty and an induction on the length of ρ, one can show the
following. Assume di and dj are input before position k
in ρ. If di is input before dj , and if neither of them is out-
put, then wk ∈ (D \ {di, dj})∗ · dj · (D \ {di, dj})∗ · di ·
(D \ {di, dj})∗.

We establish in the following inclusions in both directions in
order to show the equality ϕop

diff ,stack = ϕobs
diff ,stack :

• ϕop
diff ,stack ⊆ ϕobs

diff ,stack . This direction is simple. Let
ρ = w0e1 · · · enwn be a stack run giving a trace σ =
e1 . . . en in ϕop

diff ,stack . Suppose σ is accepted by one of
the observers OBSCREA, OBSLOSS, OBSDUPL, or OBSLIFO for
some data values.
1. σ cannot be accepted by OBSCREA. Suppose it was the

case and en is the out(d) that labels the last transition
in the observer. The fact that σ is accepted by the ob-
server implies the data value d appearing in en does
not participate in any in(d) of the self loop on s0. The
counting property implies d 6∈ wn. Yet en = out(d)
requires wn to be of the form d · w.

2. σ cannot be accepted by OBSLOSS because the count-
ing property implieswn−1 contains a d, yetwn−1 = ε
since en = out(empty) appears at the end of the
stack run ρ .

3. σ cannot be accepted by OBSDUPL because the count-
ing property requires wn−1 to contain no occurences
of d. Yet en = out(d) requires wn−1 to be of the
form d · w.

4. σ cannot be accepted by OBSLIFO because that means
ρ contains two events ei, ej with 1 ≤ i < j < n
such that ei = in(di) and ej = in(dj). The order-
ing property of a stack implies that wn−1 ∈ (D \
{di, dj})∗ · dj · (D \ {di, dj})∗ · di · (D \ {di, dj})∗.
Yet for en = out(di) to succeed, wn−1 needs to be
of the form di · w.

• ϕop
diff ,stack ⊇ ϕobs

diff ,stack . Suppose σ = e1 . . . en+1 in
ϕobs

diff ,stack is a shortest trace not in ϕop
diff ,stack . Hence,

there is a stack run ρ = w0e1 · · · enwn, but there is no
wn+1 such that ρ′ = w0e1 · · · en+1wn+1 becomes a stack
run.
1. en+1 cannot be in(d) for some d because then it would

be enough to choose wn+1 = d · wn to get σ in
ϕop

diff ,stack .
2. if en+1 = out(empty), then wn 6= ε as otherwise

choose wn+1 = ε and σ would be in ϕop
diff ,stack . Let

d ∈ wn. Using the counting property of a stack on ρ,
we deduce that there is ei = in(d) for i : 1 ≤ i ≤ n,
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but ∀j : 1 ≤ j ≤ n. ej 6= out(d). Hence σ should
have been accepted by OBSLOSS, and therefore not in
ϕobs

diff ,stack ,
3. if en+1 = out(d) for some data value d:

(a) If in(d) does not appear in ρ, then σ should have
been accepted by OBSCREA and therefore it can-
not belong to ϕobs

diff ,stack

(b) If ei = in(d) and ej = out(d) appear in ρ with
i, j : 1 ≤ i, j ≤ n, then the counting property on
the stack run ρ implies i < j. The trace σ should
have been accepted by OBSDUPL

(c) If ei = in(d) appears in ρ for some i ≤ n but
without a ej = out(d) for i < j ≤ n, then the
following holds. By the counting property, wn =
w · d · w′ with w = dk · w′′. In addition, d 6= dk
as otherwise ρ could be extended into a stack run.
Using the counting property again, there must be
a ek = in(dk) with k : 1 ≤ k ≤ n and without
any out(dk) in the run up to n. If i < k, the trace
should have been accepted by OBSLIFO. If k < i,
we use the ordering property to deduce that wn

should be in the language (D\{d, dk})∗ ·d · (D\
{d, dk})∗ ·dk · (D \ {d1, d2})∗ which contradicts
that wn = dk · w′′ · d · w′.

5.3 Operational and observational specification of queues.

For queues, in(d) (respectively out(d) and out(empty)) stands
for enq(d) (respectively deq(d) and deq(empty)). The oper-
ational specification ϕop

queue is obtained by replacing → in
section 5.1 by the smallest subset of

(
(D)∗ ×Σi/o × (D)∗

)
that includes, for every d ∈ D and w ∈ (D)∗, all transi-
tions of the form: 〈w, in(d), w · d〉, 〈d · w, out(d), w〉, and
〈ε, out(empty), ε〉. ϕop

diff ,queue is the restriction of ϕop
queue to

the set of differentiated traces. The observational specifica-
tion ϕobs

diff ,queue contains exactly those differentiated traces
that are not accepted by any of the following four observers:
OBSCREA, OBSLOSS, OBSDUPL, or OBSFIFO (figure 10). Intu-
itively, a differentiated trace that is not accepted by the ob-
server OBSFIFO satisifies the following property for any data
values d1, d2:

FIFO (OBSFIFO, figure 10): d2 must not be dequeued if d1
was not dequeued since it was enqueued before d2 was
enqueued.

Lemma 2. ϕop
diff ,queue = ϕobs

diff ,queue .

Proof. Similar to the proof of lemma 1. We make use of the
same counting property as in the stack case. We modify the
ordering property to reflect the FIFO ordering (instead of the
LIFO one for a stack). The other modifications are straight-
forward.

6 Verification by Shape Analysis

To verify that no trace of the program is accepted by an ob-
server, we form, as in the automata-theoretic approach [30],

OBSFIFO: FIFO

s0 s1 s2 s3

guard = (p 6= z1 ∧ p 6= z2 ∧ p 6= empty)
guard′ = (p 6= z1 ∧ p 6= z2)

〈enq(p), guard〉〈
deq(p), guard′〉

〈enq(p), p = z1〉

〈enq(p), guard〉
〈deq(p), guard〉

〈
enq(p),

p = z2
p 6= z1

〉
〈enq(p), guard〉
〈deq(p), guard〉

〈deq(p), p = z2〉

Fig. 10. An observer to check that FIFO ordering is respected. All unmatched
abstract events, for example 〈deq(p), p = z1〉 at location s1, send the ob-
server to a sink state.

the cross-product of the program and the observer, synchro-
nizing on abstract events, and check that this cross-product
cannot reach a configuration where the observer is in an ac-
cepting state.

The analysis needs to deal with the challenges of an un-
bounded data domain, an unbounded number of concurrently
executing threads, an unbounded heap, and an explicit mem-
ory management. As indicated in Section 1, the explicit mem-
ory management implies that the assertions generated by our
analysis must be able to track correlations between pairs of
threads. We present our shape analysis in two steps. We first
describe a symbolic encoding of the configurations of the pro-
gram and then present the verification procedure.

6.1 Symbolic Encoding

The symbolic encoding is used for characterizing the set of
reachable configurations of the program from the point of
view of two distinct executing threads. Roughly, this is done
by recording the relationships of the local configurations of
the two threads with each other, the relationships of the local
variables of a thread with global variables, the observer con-
figuration, and assertions about the heap. It is a combination
of several layers of conjunctions and disjunctions.

Below, we will use Figure 11 to explain the main concepts
in the symbolic encoding. The left part of the figure shows a
typical configuration of the heap that arises during an exe-
cution of the Michael & Scott algorithm, when run against
the observer of Figure 10. The right part of the figure shows
a symbolic encoding that is satisfied by the shape. Note that
the symbolic encoding can represent more shapes. The heap
consists of six cells operated on by two active threads Thread
1 (depicted in yellow) and Thread 2 (depicted in pink). The
threads are in control states 28 and 7 respectively, and the ob-
server is in control state s1. The topmost cell is pointed to by
the global variable H and the local variable h of Thread 1.
Each cell has a data value field and a next field, the latter be-
ing a pointer to the next cell in the heap. In our example, there
are three possible values that can be stored in a cell, namely
red which means that the value is equal to the value of vari-
able z1 of the observer, blue which means that the value is
equal to the value of variable z2 of the observer, and white
which means that it is an arbitrary value different from the
above two. The topmost cell has a data value which is white.
Finally, the figure shows the counter values (i.e. ages) of all
the pointers (those of the pointer variables and those of the
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T L99 = 99K L99
99K = L99 = 99K 1 ←[ 1

# L99 L99 = L99 L99 L99 L99 L99 ← [ L99 ← [

h = L99
99K 99K = 99K L997→ 99K 99K 1 99K 1

t L99 = 99K L99 = L99 = 99K 1 ←[ 1

x ←[ 99K 99K 99K← [ 99K = 99K 99K 1 7→ 1

t L99 = 99K L99 = L99 = 99K 1 ←[ 1

x L99 L99 = L99 L99 L99 L99 L99 ← [ L99 ← [

n 1 1 7→ 1 1 1 1 7→ = 1 =

L99 7→ 99K L99 7→ ← [ 7→ 99K 1 = 1

1 1 7→ 1 1 1 1 7→ = 1 =

σ : 28 | 7 | Observer: s1 |
H .age > h .age | T .age = t .age |
T .age > t .age | t.next.age > x .age

9

11

10

16

8 15

π[x2, n2]

Fig. 11. A concrete shape and its symbolic encoding.

next fields of the cells). For instance, the next pointer of the
topmost cell has counter value 9, and the global variable H
has counter value 17.

The right part of Figure 11 depicts a symbolic encoding
that is satisfied by the given configurations. More precisely,
our symbolic encoding consists of two parts, the first part,
called a joined shape constraint, given in matrix form, de-
scribes the shape of the heap, while the second part, called
control formula, denoted by σ, gives the control states of the
observer and the active threads, together with the relations
that hold between the pointer counters. We now introduce the
needed concepts one by one, in a bottom-up manner. Let us
fix two thread identifiers i1 and i2.

Cell terms. Let a cell term be one of the following: (i) a
global pointer variable y, which denotes the cell pointed to
by the global variable y, (ii) a term of the form x[ij ] (where
j = 1 or j = 2) for a local pointer variable x of thread ij ,
which denotes the cell pointed to by the thread-ij-local-copy
of x, (iii) a special term NULL, UNDEF, or FREE, or (iv) a cell
variable, which denotes a cell whose data value is equal to the
current value of an observer variable. (Note that the value of
an observer variable is fixed during a run of the observer).
The latter allows us to keep track of the data in the heap
cells, even in the case where a heap cell is not denoted by
any pointer variable (in order to verify, e.g., the FIFO prop-
erty of a queue). We use CT (i1, i2) to denote the set of all
cell terms (of thread i1 and i2).

Each row or column of the matrix in Figure 11 is labeled
by a cell term. e.g., T , n, #, etc. In particular, we use the
red and blue circles, to denote the variables z1 resp. z2 of the
observer.

Atomic heap constraint. In order to obtain an efficient and
practical analysis, which does not lead to a severe explo-
sion of formulas, we have developed a novel representation,
adapted from the transitive closure logic of [5]. The repre-
sentation is motivated by the observation that relationships
between pairs of pointer variables are typically independent.
The key aspect of the representation is that it is sufficient
to consider only pairs of variables rather than correlating all
variables. An atomic heap constraint is of one of the follow-
ing forms (where t1 and t2 are two cell terms):

– t1 = t2: the cell terms t1 and t2 denote the same cell,
– t1 7→ t2: the next field of the cell denoted by t1 denotes

the cell denoted by t2,
– t1 99K t2: the cell denoted by t2 can be reached by fol-

lowing a chain of two or more next fields from the cell
denoted by t1,

– t1 1 t2: none of t1 = t2, t1 7→ t2, t2 7→ t1, t1 99K t2, or
t2 99K t1 is true.

We use Pred to denote the set {=, 7→,← [, 99K, L99,1} of all
shape relational symbols. We let t = NULL denote that t is
null, t 7→ UNDEF denote that t is undefined, and t 7→ FREE

denote that t is unallocated.
Each cell in the matrix of Figure 11 contains a cell term.

For instance, the cell pointed to by variable x of Thread 1
reaches in two or more steps the cell pointed to by variable
variable t of Thread 2.

Joined shape constraint. A joined shape constraint, for thread
i1 and i2, denoted as M (i1, i2), is a (typically large) conjunc-
tion

∧
t1,t2∈CT(i1,i2)

π[t1, t2] where π[t1, t2] is a non-empty
disjunction of atomic heap constraints. Intuitively, it is a ma-
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trix representing the heap parts accessible by the two threads
(along with the cell data). Such a representation can be (ex-
ponentially) more concise than using a large disjunction of
conjunctions of atomic heap constraints, at the cost of some
loss of precision. In Figure 11, the cell defined by the global
variable T and the local variable h of Thread 1, indicates
that either the cell pointed to by T is reachable from the
cell pointed to by variable h of Thread 1, or the other way
round. We say that a joined shape constraint M (i1, i2) is sat-
urated if for all terms x, y, and z in CT (i1, i2), every atomic
heap constraint from the disjunction π[x, z] implies the heap
constraints that one can derive from those found in π[x, x],
π[x, y], π[y, y], π[y, z], and π[z, z]. Any joined shape con-
straint can be saturated by a straightforward fixpoint proce-
dure, analogous to [5] or the one for DBMs [9]. For instance,
let π[x, z] be x 7→ z and π[y, z] be y 7→ z ∨ y 99K z and let
π[x, x] and π[y, y] admit only equality (there is no loop in-
volving x or y). Then π[x, y] can contain the disjuncts x = y,
x 1 y, which are consistent with x 7→ z and y 7→ z. It can
also contain x ← [ y, x L99 y, and x 1 y, that are consis-
tent with x 7→ z and y 99K z. In short, x cannot reach y, thus
when saturating, we remove x 7→ y and x 99K y from π[x, y].

Symbolic Encoding. We can now define formally a symbolic
encoding over two threads. A symbolic encoding is a disjunc-
tion Θ[i1, i2] of formulas of the form (σ[i1, i2] ∧ φ[i1, i2])
where σ[i1, i2] is a control formula and φ[i1, i2] is a shape
formula.

A control formula σ[i1, i2] contains (i) the current con-
trol location of threads i1 and i2, and the observer, and (ii)
a conjunction encompassing the relations between the age

fields of any pair of terms. For instance, when analyzing the
program in Figure 1, this conjunction includes among oth-
ers, for a thread i, both relations head[i].age'Head.age and
tail[i].ptr→next.age'next[i].age, for ' ∈ {<,=, >}.

A shape formula φ[i1, i2] is a joined shape constraint con-
joined with a formula ψ[v1, . . . , vm, z1, . . . , zn] which links
cell variables v1, . . . , vm with observer variables z1, . . . , zn
that are used to keep track of heap cells with values equal to
the observer variables. Formally, φ[i1, i2] is a formula of the
form

∃v1, . . . , vm. [ψ[v1, . . . , vm, z1, . . . , zn] ∧ M (i1, i2)]

6.2 Verification Procedure

We compute a program invariant of the form ∀i1, i2. (i1 6=
i2 ⇒ Θ[i1, i2]) which characterizes the configurations of
the program from the point of view of two distinct execut-
ing threads i1 and i2. We obtain the invariant by a standard
fixpoint procedure, starting from a formula that characterizes
the set of initial configurations of the program. For two dis-
tinct threads i1 and i2, and for each control formula σ[i1, i2],
our analysis will generate one shape formula φ[i1, i2].

The fixpoint analysis performs a postcondition compu-
tation that results in a set of possible successor combina-
tions of control and shape formulas. The new shape formulas

of which the control formula already appears in the original
Θ[i1, i2] will be used to weaken the corresponding old shape
formula. Otherwise, if the control state is new, a new disjunct
is added to Θ[i1, i2].

For two threads i1 and i2, we must consider two scenar-
ios: either i1 or i2 performs a step, or some other (interfering)
thread i3, (distinct from i1 and i2), performs a step.

Postcondition computation. In the first scenario, where one
of the threads i1 or i2 performs a step, we can compute the
postcondition of (σ[i1, i2] ∧ φ[i1, i2]) as follows. σ[i1, i2] is
first updated to a new control state σ′[i1, i2] in the standard
way (by updating the possible values of control locations and
observer state). φ[i1, i2] is then updated to φ′[i1, i2] by up-
dating each conjunct π[t1, t2] according to the particular pro-
gram statement that the thread is performing. In general, we
(i) remove all disjuncts that must be falsified by the step (this
may require splitting the formula into several stronger formu-
las whenever the falsification might be ambiguous), (ii) add
all disjuncts that may become true by the step, (iii) saturate
the result.

Consider for instance the program statement x:=y.next.
Since only the value of x is changing, the transformer updates
only conjuncts π[t, x] and π[x, t] where t ∈ CT (i1, i2). All
assertions about x are reset by setting every conjunct π[x, t]
and π[t, x] to Pred , for all t ∈ CT (i1, i2). (The disjunction
over all elements of Pred is the assertion true). We then set
π[x, y] to x ← [ y, π[y, x] to y 7→ x and derive all predi-
cates that may follow by transitivity. Finally, we saturate the
formula. It prunes the (newly added) predicates that are in-
consistent with the rest of the shape formula.

For x.next:=y, it is important to know the reachabilities
that depend on the pointer x.next. The representation might
potentially contain imprecision (it might for instance state
that, for a term t, π[t, x] contains t L99 x and t 99K x, even
if we know, via a simpler analysis, that no cycles are gener-
ated). Hence, we first split the formula into stronger formulas
in such a way that we disambiguate the part of the reach-
ability relation involving x. On each resulting formula, we
then remove reachability predicates between cell terms that
depend on x.next (e.g., we remove u 99K v if u 99K x and
x 99K v). We then set π[x, y] to x 7→ y and derive all pred-
icates that may follow by transitivity (e.g., if u 99K x and
y 99K v, we add u 99K v), and we saturate the result.

Interference. In the case where we need to account for pos-
sible interference on the formula (σ[i1, i2] ∧ φ[i1, i2]) by an-
other thread, (distinct from i1 or i2), we proceed as follows.
We (i) extend the formula with the interfering thread, (ii) com-
pute a postcondition as described in the first scenario and (iii)
project away the interfering thread.

Step (i) combines a given formula (σ[i1, i2] ∧ φ[i1, i2])
with the information of an extra thread i3. Like in [2], the
resulting formula is of the form (σ[i1, i2, i3] ∧ φ[i1, i2, i3])
such that any projection to two threads is a formula compati-
ble with some disjunct of Θ[i1, i2]. To generate all such for-
mulas involving three threads, we must, besides (σ[i1, i2] ∧
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φ[i1, i2]) itself, consider all pairs of disjuncts (σ•[i2, i3] ∧
φ•[i2, i3]) and (σ◦[i1, i3] ∧ φ◦[i1, i3]), such that σ[i1, i2] ∧
σ•[i2, i3] ∧ σ◦[i1, i3] is consistent. In this case, we generate
the formula σ[i1, i2, i3] ∧ φ[i1, i2, i3] where σ[i1, i2, i3] ≡
σ[i1, i2] ∧ σ•[i2, i3] ∧ σ◦[i1, i3] and φ[i1, i2, i3] ≡ φ[i1, i2] ∧
φ•[i2, i3] ∧ φ◦[i1, i3]. We then saturate φ[i1, i2, i3] (in the
same way as for joined shape formulas over two threads).
For each statement S of thread i3 that can be executed when
σ[i1, i2, i3] holds, we compute its postcondition σ′[i1, i2, i3]∧
φ′[i1, i2, i3] in step ii. Finally, σ′[i1, i2, i3] ∧ φ′[i1, i2, i3] is
projected back onto σ′[i1, i2]∧φ′[i1, i2] in step iii by remov-
ing all information about the variables of thread i3.

Since the domain of control formulas and the domain
of shape formulas over a fixed number of cell terms are fi-
nite, the abstract domain of formulas ∀i1, i2. (i1 6= i2 ⇒
Θ[i1, i2]) is finite as well. The iteration of postcondition com-
putation is thus guaranteed to terminate.

7 Experimental results

We have implemented a prototype in OCaml and used it to
automatically establish the conformance of concurrent data-
structures (including lock-free and lock-based stacks, queues
and priority queues) to their operational specification (imply-
ing their linearizability). Our analysis also implicitly checks
for standard shape-related errors such as null/undefined pointer
dereferencing (taking into account the known dangling point-
ers’ dereferences [21]), double-free, or presence of cycles.

Some of the examples are verified in the absence of garbage
collection, in particular, the lock-free versions of Treiber’s
[26] stack and Michael&Scott’s queue (see Figure 1). We
hereafter refer to them as Treiber’s stack and M&S’s queue,
and garbage collection as GC. The verification of these ex-
amples is extensively demanding as it requires to correlate
the possible states of the threads with high precision. We are
not aware of any other method capable of verifying high level
functionality of these benchmarks.

In addition to establishing correctness of the original ver-
sions of the benchmark programs, we also stressed our tool
with few examples in which we intentionally inserted bugs
(cf. Table ??). As expected, the tool did not establish cor-
rectness of these erroneous programs since the approach is
sound. For example, we tested whether stacks (resp. queues)
implementations can exhibit fifo (resp. lifo) traces, we tested
whether values can be lost (loss observer), or memory er-
rors can be triggered (memo observer accepts on memory er-
rors made visible), we moved linearization points to wrong
positions, and we tested a program which stores wrong val-
ues of inserted data. In all these cases, the analysis correctly
reported traces that violated the concerned safety property.
Finally, we ran the data structure implementations without
garbage collection discarding the age counters and our (pre-
cise) analysis produced as expected a trace involving the ABA
problem [17].

We ran the experiments on a 3.5 GHz processor with 8GB
memory. We report, in Table ??, the running times (in sec-

onds) and the final number of joined shape constraints gener-
ated (|C|, reduced by symmetry).

We also include a succinct comparison with related work.
Although it is often unfair to compare approaches solely based
on running times of different tools, we believe that such a
comparison can give an idea of the efficiency of the involved
approaches. Our running times on the versions of Treiber’s
stack and M&S’s queue that assume GC are comparable with
the results of [29]. However, the verification of versions that
do not assume GC is, to the best of our knowledge, beyond
the reach of [29] (since it does not correlate states of dif-
ferent threads). [24] verifies linearizability of concurrent im-
plementations of sets, e.g., a lock-free CAS-based set [31]
(verified in 2975s) of a comparable complexity to M&S’s
queue without GC (550s with our prototype). Basic memory
safety of M&S’s queue and two-locks queue [20] without GC
was also verified in [35], but only for a scenario where all
threads are either dequeuing or enqueuing. The verification
took 727s and 309s for M&S’s queue and 6162s and 304s
for the two-locks queue. Our verification analysis produced
the same result significantly faster, even allowing any thread
to non deterministically decide to either enqueue or dequeue.
In [4], linearizability of the Treibers’s stack (resp. two-locks
queue [20]) is verified in 53s (resp. 47s). We achieve the same
result in less than 3 seconds. Finally, a variant of M&S’s
queue without GC could not be successfully verified in [4]
due to lack of memory.

8 Conclusions and Future Work

We have presented a technique for automated verification of
temporal properties of concurrent programs, which can han-
dle the challenges of infinite-state specifications, an unbounded
number of threads, and an unbounded heap managed by ex-
plicit memory allocation. We showed how such a technique
can be based naturally on the automata-theoretic approach to
verification, by nontrivial combinations and extensions that
handle unbounded data domains, unbounded number of threads,
and heaps of arbitrary size. The result is a simple and direct
method for verifying correctness of concurrent programs. The
power of our specification formalism is enhanced by showing
how the data-independence argument by Wolper [34] can be
introduced into standard program analysis. Our method can
be parameterized by different shape analyses. Although we
concentrate on heaps with single selectors in the current pa-
per, we expect that our method can be adapted to deal with
multiple selectors, by integrating recent approaches such as [15].
Morever, our experminatation deals with the specification of
stacks and queues. Other data structures, such as deques, can
be handled in an analogous way.
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