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Abstract. Regular model checking is a form of sym-
bolic model checking for parameterized and infinite-state
systems whose states can be represented as words of ar-
bitrary length over a finite alphabet, in which regular
sets of words are used to represent sets of states. We
present LTL(MSO), a combination of the logics MSO
and LTL as a natural logic for expressing temporal prop-
erties to be verified in regular model checking. In other
words, LTL(MSO) is a natural specification language
for both the system and the property under considera-
tion. LTL(MSO) is a two-dimensional modal logic, where
MSO is used for specifying properties of system states
and transitions, and LTL is used for specifying tempo-
ral properties. In addition, the first-order quantification
in MSO can be used to express properties parameter-
ized on a position or process. We give a technique for
model checking LTL(MSO), which is adapted from the
automata-theoretic approach: a formula is translated to
a Büchi regular transition system with a regular set of
accepting states, and regular model checking techniques
are used to search for models. We have implemented the
technique, and show its application to a number of pa-
rameterized algorithms from the literature.
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1 Introduction

Regular model checking is a framework for algorithmic
symbolic verification of parameterized and infinite-state
systems [7,23,40,8]. It considers systems whose states
can be represented as finite words of arbitrary length
over a finite alphabet, including array or ring-formed pa-
rameterized systems with an arbitrary number of finite-
state processes, and systems that operate on queues,
stacks, integers, and other linear unbounded data struc-
tures. In a system description, the set of initial states
is represented as a regular set of strings, and the transi-
tion relation is given as a finite regular length-preserving
transducer. Previous work on regular model checking [22,
8,2] has developed methods for computing the set of
reachable states of a system description, as well as the
set of reachable loops, obtained from the transitive clo-
sure of the transition relation. In general, this problem is
undecidable, but decidability results for certain classes
have been obtained [22].

The techniques for computing reachable states and
reachable loops can in principle be used to verify both
safety and liveness properties of parameterized system
descriptions, but do not provide a convenient approach
for checking arbitrary temporal logic properties of pa-
rameterized and infinite-state systems. Significant inge-
nuity is required in order to manually transform the ver-
ification of a temporal property of a parameterized sys-
tem into a property of reachable states and reachable
loops, in particular if the verification uses fairness prop-
erties that are parameterized on system components [8,
32]. It would be desirable to have a framework, analo-
gous to the automata-theoretic approach in finite-state
model checking [38], where the property of verifying a
temporal property is automatically transformed into a
problem of checking emptiness for a Büchi automaton.

In this paper, we address this problem by present-
ing an extension of the automata-theoretic approach [38]
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to the setting of regular model checking. We present a
logic for expressing system models and temporal prop-
erties, which is a combination of the logics MSO over
finite words and LTL. We use MSO for specifying sets
of states and transition relations and LTL for specifying
temporal constraints. The result is a two-dimensional
modal logic, where MSO is used in the “space” (sys-
tem state) dimension and LTL is used in the “time”
dimension. Models of the logic are infinite sequences of
(constant-length) words, representing computations of
the specified system. We can then specify a verification
problem as the conjunction of a system specification and
a negation of the property to be verified, and reduce ver-
ification to checking whether this conjunction is satisfi-
able.

Following the automata-theoretic approach, we present
an automated translation from a formula ϕ in LTL(MSO)
to a Büchi regular transition system (BRTS), consist-
ing of a regular set I of initial states, a regular length-
preserving transducer T , and a regular length-preserving
transducer F , representing the set of final transitions.
Accepting runs of the BRTS are infinite sequences of
words, where the first word is in I, consecutive words
satisfy T , and infinitely many pairs of consecutive words
satisfy F . We prove that ϕ is satisfiable if and only if the
BRTS has an accepting run. Since T is length-preserving,
the existence of an accepting run can be checked by
searching for a reachable loop which contains a tran-
sition that satisfies F . Note that we allow F to denote
a set of transitions rather than only a set of states, as
in, e.g., [38]: this difference only a slight technical con-
venience and not essential.

A nice feature of our combination of MSO with LTL
is that we get the power to express temporal proper-
ties parameterized over positions for free: MSO offers
variables to represent positions and quantify over them,
which can be interleaved with temporal operators. As a
concrete example, for a parameterized mutual exclusion
algorithm, a typical property one would want to express
is the following.

If all processes satisfy a weak fairness require-
ment, then each process that is interested in en-
tering its critical section will eventually do so.

If the number of processes is fixed, the terms like “each
process” can be replaced by explicit conjunctions to ob-
tain a standard model checking problem in propositional
temporal logic. However, for parameterized systems the
number of processes is arbitrary. Fortunately, we can ex-
press this property directly in our logic, by a formula like

∀i : 23[blocked(i) ∨ progressing(i)]
−→
∀i : 2 [trying(i)→ 3critical(i)]

where i ranges over positions in the state, and each posi-
tion represents a process. In this formula, we apply LTL
operators (2 and 3) to formulas with the MSO variable

i, and later use MSO quantification over i to express pa-
rameterized properties. In our logic LTL(MSO), tempo-
ral operators can be applied to formulas with at most one
free first-order variable and no free second-order vari-
ables. This restriction allows to express parameterized
temporal properties (e.g., fairness constraints) of indi-
vidual processes in a parameterized system, as well as
temporal properties of pairs of adjacent processes (in
positions i and i + 1 using one free variable i). The re-
striction is necessary for making our translation into au-
tomata possible, explained in Section 7.

A further nice property of adapting the automata-
theoretic approach is that our transformation results in
a uniform problem of checking for accepting runs, for
which we can develop techniques that are more uniform
than those presented in previous work [22,8,2]. We have
extended our tool for regular model checking [3] to check
whether BRTS have accepting runs. This is done in two
steps. First, the set of reachable states are computed as
Inv = I ◦ T ∗. Secondly, loops are found by identifying
identical pairs in (F ∩ T ∩ (Inv × Inv)) ◦ T ∗. This
computation is more uniform and more efficient than
the approach to verification of temporal logic proper-
ties outlined in [8], which builds on computation of the
transitive closure T+ of the transition relation. We have
verified safety properties with the tool for many of the
examples in our previous work, as well as liveness prop-
erties for some of the examples.

As special cases, when the formula contains no tem-
poral operators, our method specializes into a decision
procedure for MSO similar to that of MONA [21], and
when the formula contains no quantifiers our method
specializes to ordinary (i.e. finite-state) LTLmodel check-
ing.

The remainder of the paper is structured as follows.
In the next two sections, we present the logic LTL(MSO).
Section 4 illustrates how it can be used to model and
specify parameterized algorithms. The model checking
technique, including the translation to BRTS is presented
and proven correct in Section 7. Verification is discussed
in Section 8.

Related Work Kesten et al. [23] and Pnueli and Shahar
[32] use the logic fs1s which has the expressive power
of regular expressions, to specify sets of states of pa-
rameterized systems, just as we do with our logic. The
difference is essentially that we have a higher level ap-
proach, considering all of (future) LTL [29], and auto-
matic translation. However, unlike us, Kesten et al. [23]
also consider a logic for trees. Inspired by our work [1],
Fisman et al. [17] use essentially the logic LTL(MSO) to
specify and verify faul-tolerant parameterized protocols,
using techniques similar to those presented in this paper.

Bouajjani, Legay, and Wolper [9] independently (from
us) characterize global and local-oriented properties in
the framework of (ω-) regular model checking, and work
out how to analyze such properties. They also consider
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ω-regular systems, i.e., systems where configurations are
infinite words. However, they do not provide an auto-
matic translation from a system and property descrip-
tion into a verification problem, as we do here.

Esparza et al. [15] present techniques for model check-
ing pushdown systems for specifications in LTL, where
atomic predicates are arbirary regular sets of stack con-
tents. Compared to this logic, LTL(MSO) is a tighter
integration between LTL and MSO/regular sets, since
(possibly quantified) LTL formulas can occur inside MSO
formulas.

Our logic LTL(MSO) applied to words is related to
existential monadic second-order logic (EMSO) on grids
to define regular picture languages accepted by tiling
systems (see e.g. [19]). Indeed, transducers over words
can be considered as tiling systems where each transi-
tion represents a tile. Thus, it is expected that our logic
LTL(MSO) has similar expressive power as EMSO on
grids. However, the two logics come from different moti-
vations. While EMSO on grids is used to reason about
pictures, our logic is used to reason about parameterized
structures over time. When applied to the word struc-
ture, the two logics have similar expressive power.

In addition to the work on regular model checking,
cited earlier, there is a large body of research on the
problem of model checking parameterized systems of iden-
tical processes, in which there is no ordering between pro-
cesses, and hence the system state can be represented as
a multiset of process states (e.g., [5,10,13,12,18]). This
problem is substantially simpler, since ordering between
processes need not be considered.

Emerson and Namjoshi [14] give a technique for ver-
ifying a restricted class of parameterized token-passing
algorithms by reducing an arbitrary ring to a small fixed-
size ring under certain conditions. These restrictions are
substantially stronger than in our framework. Sistla [34]
uses Büchi automata over two dimensional languages
(reminding of transducers) to specify network invariants
when verifying systems by induction over their linear
process structure. It is unclear what class of systems can
be handled automatically by this technique.

The problem of checking liveness properties of array-
shaped parameterized systems was considered by Pnueli
and Shahar [32], who presented a technique for comput-
ing the transitive closure of a restricted class of transition
relations. They also first manually employ abstractions
to make the implementation terminate.

Pnueli, Xu, and Zuck [33] present an interesting use
of specialized abstractions in order to prove absence of
starvation properties for Szymanski’s algorithm and the
Bakery algorithm. The abstractions keep track of the
number of processes with certain properties, and gener-
ate a finite-state system, which can be model-checked.
The presented abstraction is specialized to prove non-
starvation, and loses much information so that, e.g., safety
properties can no longer be checked. Fang et al. [16]
present techniques for finding premises in proof rules for

symbolic verification of parameterized protocols by gen-
eralizing information that is obtained when verifying the
protocol for a small number of nodes. In [16] this scheme
is employed to prove progress properties, and in [31] to
prove invariants.

2 Introduction to LTL(MSO)

We introduce the logic LTL(MSO) [1], intended for rea-
soning about infinite sequences of words of arbitrary
length. Such sequences are useful to model executions
of parameterized systems, where there are an arbitrary
number of processes organized in a linear network. Each
word in an execution models a system configuration,
where each position in the word contains the local state
of each process.

We follow the approach of the Temporal Logic of Ac-
tions by Lamport [25], where both the protocol and the
properties are specified by formulas in a single logic. Cor-
rectness of the protocol means that the formula specify-
ing the protocol implies the formula specifying the prop-
erty. We show how to specify protocols and properties
using this logic and how to set up verification problems.
Formulas in this logic can then be translated into BRTS,
introduced in Section 8, which can be used to find mod-
els of the original formula.

As a running example, we use a token passing proto-
col. It consists of an arbitrary number of processes or-
ganized in a linear array and numbered from 0 to n− 1.
The processes are ordered from left to right such that
process 0 is the leftmost process and process n−1 is the
rightmost process. Initially, the leftmost process has the
token. In each step, a process can pass the token to its
right neighbor. We model each configuration as a word w
over the alphabet {t̄, t} where the local configuration of
process i is modeled by the symbol w(i), i.e., the symbol
at position i of the word. The symbol t̄ denotes a process
that does not have the token, while the symbol t denotes
a process that has the token.

In a system where configurations are modeled as words,
an execution is an infinite sequence of words. All words
in an execution have the same arbitrary length. Thus,
we are working with two different dimensions. One di-
mension refers to the positions of the word, called the
space dimension, and the other dimension refers to the
points in time, called the time dimension. An execution
of the token passing protocol is shown below; it can be
seen as a matrix in which each element is indexed by a
timepoint and a position, where the position refers to a
process.



4 Parosh Aziz Abdulla et al.: Regular Model Checking for LTL(MSO)

- Space

Time ?

t t̄ t̄ t̄ t̄ t̄
t̄ t t̄ t̄ t̄ t̄
t̄ t̄ t t̄ t̄ t̄
t̄ t̄ t̄ t t̄ t̄
t̄ t̄ t̄ t̄ t t̄
t̄ t̄ t̄ t̄ t̄ t

...

Formulas in LTL(MSO) will be interpreted over such
matrices. The logic consists of constructs for handling
both the space and the time dimensions. Below, we in-
troduce the constructs of LTL(MSO) and illustrate with
the token passing protocol.

Configuration Variables and Positions The atomic for-
mulas are of the form x[i] where x is a configuration vari-
able and i is a position variable. The configuration vari-
ables model the global state of the protocol we are mod-
eling. Each configuration variable contains a boolean
variable for each position in the word, and is therefore
essentially a boolean array (bit vector). The formula x[i]
denotes the boolean value of x at position i, at the time-
point at which the formula is interpreted. In the case of
the token passing example, we use a configuration vari-
able t such that t[i] is true if and only if process i has
the token.

MSO To specify configurations, i.e., the space dimen-
sion, we use Monadic Second-Order Logic (MSO) over
words [37,21], a logic that can express regular sets of
words. It contains first-order position variables i, j, · · ·
denoting positions, and second-order position variables
I, J, · · · denoting sets of positions. The atomic formulas
of MSO are of the form i = j + 1 (successor), i ∈ I,
and I ⊆ J , where i, j are position variables and I, J
are sets of position variables. A configuration variable
x can be seen as a special case of a second-order vari-
able, where x[i] means i ∈ x, except that a configuration
variable may change over time. Configuration variables
are used for the purpose of modeling configurations, and
always occur free in formulas. First-order quantification
over positions and second-order quantification over sets
of positions are allowed. For example, the formula

∀i : x[i]

can be used to specify that the configuration variable x
is true at all positions. Using a combination of successor
and quantification, we can express ordering, e.g., ¬∃j :
i = j + 1 can be used to express that i = 0. We can also
express constant distances between positions of the form
i = j + c for any constant c , as well as the ordering < ,
using second-order quantification. We will use formulas
with position variables like x[i + 1] to mean ∃j : j =
i+ 1 ∧ x[j].

In the token passing protocol, we can specify the ini-
tial condition that the first process has the token by the
formula

∀i : t[i]↔ i = 0

Primed Variables To specify transition relations, we need
a relation between the current and the next timepoint.
We use primed configuration variables for this, where
x′[i] is the value of x at position i at the next timepoint.
In the token passing protocol, the transition relation
where a process passes the token to its right neighbor
is specified by

∃i :

[
t[i] ∧ ¬t′[i] ∧ ¬t[i+ 1] ∧ t′[i+ 1]

∧ ∀j 6∈ {i, i+ 1} : t′[j] = t[j]

]
Temporal Operators WhileMSO is used to reason about
the space dimension, linear temporal logic (LTL) [29,30,
27] is used to reason about the time dimension. The lin-
ear temporal logic adds the connectives 2 (always in the
future), 3 (eventually) and W (weak until). In the to-
ken passing protocol, the following formula can be used
to express that eventually the rightmost process has the
token.

3∃i : t[i] ∧ i = $

where i = $ means that i is the rightmost process (which
can be expressed in MSO). Similarly, we can use the
following formula to denote that there is always at least
one token in the system

2 ∃i : t[i]

Combining the two logics LTL and MSO, we obtain
the logic LTL(MSO) by allowing the position quantifiers
and the temporal connectives to interleave. For example,
we can express that at some point in time there is a
process which from then on always has the token:

3 ∃i : 2 t[i]

Given a formula ϕ representing a transition relation,
we can use the formula 2ϕ to specify that all pairs of
consecutive (in time) configurations will satisfy the con-
straints of the transition relation. The token passing pro-
tocol can thus be specified by conjoining the specifica-
tion of the set of initial configurations and the transition
relation:

∀i : t[i]↔ i = 0

∧ 2 ∃i :

[
t[i] ∧ ¬t′[i] ∧ ¬t[i+ 1] ∧ t′[i+ 1]

∧ ∀j 6∈ {i, i+ 1} : t′[j] = t[j]

]
Interleaving of position quantifiers and temporal op-

erators will be restricted so that there can be at most one
free position quantifier inside temporal operators (oth-
erwise they cannot be translated — see Section 7). For
example,

∀i : 3 ∀j : x[i] = y[j]

is allowed but not

∀i : ∀j : 3x[i] = y[j]



Parosh Aziz Abdulla et al.: Regular Model Checking for LTL(MSO) 5

3 LTL(MSO)

We give the syntax and semantics of LTL(MSO).

Syntax We assume a set V of configuration variables,
denoted by x, y, z, · · · , a set of first-order position vari-
ables, denoted by i, j, k, · · · , and a set of second-order
position variables, denoted by I, J,K, · · · . The set of
LTL(MSO) formulas is inductively defined as follows.

i ∈ I | I ⊆ J | i = j + 1 Atomic MSO formulas
x[i], x′[i] Configuration Variables
true | false Boolean constants
ϕ ∨ ψ | ϕ ∧ ψ | ¬ϕ Propositional connectives
∀i : ϕ | ∀I : ϕ | ∃i : ϕ | ∃I : ϕ MSO Quantification
2ϕ | 3ϕ | ϕW ψ Temporal operators

We impose the restriction that in each subformula of
the form 2ϕ or 3ϕ or ϕW ψ there is at most one free
first-order position variable and no free second-order po-
sition variable. Let us call a formula with this restriction
a restricted formula. The restriction is required for the
translation of a formula into Büchi Normal Form, given
later in Section 7. It is well-known that the temporal op-
erators U (until) and R (release) can be expressed using
the operators above [27]. Hence we include all of (future)
LTL [29]. We will use the following abbreviations.

ϕ→ ψ
4
= ¬ϕ ∨ ψ

ϕ↔ ψ
4
= (ϕ→ ψ) ∧ (ψ → ϕ)

ϕU ψ 4
= (ϕW ψ) ∧3ψ

ϕRψ 4
= ¬(¬ϕU ¬ψ)

ϕ(f(i))
4
= ∃j : j = f(i) ∧ ϕ(j)

where f(i) is an expression over i

i < j
4
= ∀K :

[ i+ 1 ∈ K
∧ ∀k : [k ∈ K → k + 1 ∈ K]

]
→ j ∈ K


i = 0

4
= ¬∃j : i = j + 1

i = $
4
= ¬∃j : j = i+ 1

Semantics LTL(MSO) formulas are interpreted over
matrices M over 2V of dimension∞×n, for some n > 0,
given as a parameter. We call the vertical (first) dimen-
sion time, and the horizontal (second) dimension space.

Let N be the set of natural numbers, and Zn =
{0, . . . , n−1}. A matrix is a functionM : (N×Zn) 7→ 2V .
The element M(t, i) ⊆ V for t ∈ N and i ∈ Zn represents
the system configuration at time t of position (or subsys-
tem) i, which assigns truth values to the configuration
variables V — the variables assigned true are included in
M(t, i), those assigned false are not. We denote by M(t)
the row M(t, 0) M(t, 1) · · ·M(t, n − 1). The row M(t)
represents the system configuration at time t.

In general, a formula ϕ depends on its free first- and
second-order variables and a timepoint, and the configu-
ration variables of M . A valuation Val is a mapping from

false never
true always
i ∈ I if Val(i) ∈ Val(I)
I ⊆ J if Val(I) ⊆ Val(J)
i = j + 1 if Val(i) = Val(j) + 1
x[i] if x ∈M(t,Val(i))
x′[i] if x ∈M(t+ 1,Val(i))
ϕ ∨ ψ if (M,Val , t) |= ϕ or (M,Val , t) |= ψ
ϕ ∧ ψ if (M,Val , t) |= ϕ and (M,Val , t) |= ψ
¬ϕ if (M,Val , t) 6|= ϕ
∀i : ϕ if for all m ∈ Zn we have

(M,Val [i 7→ m], t) |= ϕ
∀I : ϕ if for all S ⊆ Zn we have

(M,Val [I 7→ S], t) |= ϕ
∃i : ϕ if there exists m ∈ Zn such that

(M,Val [i 7→ m], t) |= ϕ
∃I : ϕ if there exists S ⊆ Zn such that

(M,Val [I 7→ S], t) |= ϕ
2ϕ if for all t′ ≥ t we have

(M,Val , t′) |= ϕ
3ϕ if there exists t′ ≥ t such that

(M,Val , t′) |= ϕ
ϕW ψ if (M,Val , t) |= 2ϕ or there exists t′ ≥ t

such that (M,Val , t′) |= ψ and for all t′′

with t ≤ t′′ < t′ we have (M,Val , t′′) |= ϕ

Fig. 1. Semantics of LTL(MSO). For each row, the expression
in the right column defines when (M,Val , t) |= ψ, where ψ is the
formula in the left column. The valuation Val [i 7→ m] acts as Val
except that it maps i to m . The valuation Val [I 7→ S] is defined
analogously.

first-order variables to Zn and second-order variables to
2Zn . We define satisfaction of formulas, (M,Val , t) |= ϕ ,
with respect to a matrix M , a valuation Val , and a time-
point t as shown in Figure 1. For a closed formula ϕ we
denote by M |= ϕ that (M, ∅, 0) |= ϕ .

4 Modeling in LTL(MSO)

In this section, we discuss how to model systems and set
up verifications problem in LTL(MSO).

4.1 Specifying Systems

A state formula is a formula without temporal operators
and primed variables, used for specifying constraints on
only one configuration. An action formula is a formula
over unprimed and primed configuration variables with-
out temporal operators, used for specifying constraints
on two consecutive configurations. For an action formula
ϕT , we can use 2ϕT to specify that a any two successive
configurations satisfy ϕT . Conjoining this with a state
formula ϕI specifying the set of initial configurations,
we get the formula ϕI ∧ 2ϕT whose models correspond
to executions of the transition system where ϕI speci-
fies the set of initial configurations and ϕT specifies the
transition relation.
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Extended Syntax for Modeling Apart from the abbrevi-
ations already introduced, we will also use the following
abbreviations to make our models more readable.

∃x′ : ϕ
4
= ∃K : ϕ′

where ϕ′ equals ϕ except that all
occurrences of the form x′[i] are re-
placed by i ∈ K, where K is a fresh
second-order position variable

Enabled ϕ
4
= ∃x′1, x′2, . . . , x′n : ϕ

where ϕ is an action formula, and
x1, x2, . . . , xn are all configuration
variables occurring in ϕ

x[i](v, v′)
4
= x[i] = v ∧ x′[i] = v′

The formula Enabled ϕ is used to test if the transition
represented by ϕ can be taken, and the formula x[i](v, v′)
is used to say that the value of x changes from v to
v′ . Furthermore, we extend the range of configuration
variables to any finite domain (rather than just boolean
values) by using a standard encoding of a finite domain
into a set of boolean variables. For example, when pc is
a configuration variable representing a program counter
at each position, we can use pc[i](5, 6) to express that
the value of pc at position i changes from 5 to 6.

To model the token passing protocol introduced in
Section 2, we use a configuration variable variable t where
t[i] is true iff process i has the token. The protocol is
modeled by the formulas below. Note that if i = $ , the
token cannot be passed since there is no position i+ 1.

initial = ∀i : t[i]↔ i = 0

passtoken(i) =

[
t[i] ∧ ¬t′[i] ∧ ¬t[i+ 1] ∧ t′[i+ 1]

∧ ∀j 6∈ {i, i+ 1} : t′[j] = t[j]

]
transition = ∃i : passtoken(i)
idle = ∀i : t′[i] = t[i]
sys = initial ∧ 2 (transition ∨ idle)

The set of initial configurations, where the first process
has the token, is specified by the state formula initial.
The formula passtoken(i) specifies that the token is
passed by process i to its neighbor, and the formula idle
specifies that nothing happens. The formula idle is used
to model that the system may do things between passing
the token, and will be necessary for adequately modeling
liveness properties. The transition relation is obtained
by conjoining the action formulas transition and idle,
which is combined with initial to form the system for-
mula sys, representing executions of the system.

A model of the formula sys from the token passing
example is given below:

t t̄ t̄ t̄ t̄
t̄ t t̄ t̄ t̄
t̄ t̄ t t̄ t̄
t̄ t̄ t t̄ t̄
t̄ t̄ t t̄ t̄
t̄ t̄ t̄ t t̄
t̄ t̄ t̄ t̄ t
t̄ t̄ t̄ t̄ t
t̄ t̄ t̄ t̄ t

...

4.2 Fairness

To verify liveness properties, we need to add fairness as-
sumptions. In this paper, we use weak fairness, although
the logic can be used to express other kinds of fairness
assumptions as well, e.g., strong fairness. Weak fairness
is specified on an action formula, and can be defined as

WF (ϕT ) = 23 (ϕT ∨ ¬Enabled ϕT )

which states that the action specified by the formula ϕT
is either taken infinitely often or disabled infinitely often.
When specifying fairness for concurrent systems, it is
natural to specify weak fairness for each process, stating
that each process that may execute will eventually do
so. This is an assumtion on the scheduler of the system,
assuring that the all processes in a system are scheduled
infinitely often. We call this process fairness, and express
it as:

∀i : WF (ϕT (i))

where ϕT (i) specifies all transitions in which process i
is active. In the token passing example, we add process
fairness to the transitions specified by passtoken(i) us-
ing the formula:

ϕfair = ∀i : WF (passtoken(i))

Let us expand the definitions to demonstrate the mean-
ing of ϕfair . Substituting the definition of Enabled, and
expanding the definition of t[i+1], we obtain the formula

∀i : 23


passtoken(i)

∨ ¬∃K : ∃j : j = i+ 1
∧ t[i] ∧ i 6∈ K ∧ ¬t[j] ∧ j ∈ K
∧ ∀k 6∈ {i, j} : k ∈ K ↔ t[k]




which after removal of the existential quantifier on K
(an interpretation of K will always exist provided the
other conditions hold) becomes:

∀i : 23

[
passtoken(i)

∨ ¬∃j : j = i+ 1 ∧ t[i] ∧ ¬t[j]

]
meaning that for all processes i, it is infinitely often the
case that the token is passed or the token cannot be
passed either because it is the rightmost process (no j
exists such that j = i+1), the process does not have the
token (t[i] is false), or the neighboring process already
has a token (t[j] is true).
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4.3 Specifying and Checking Properties

Let
ϕI ∧ 2ϕT ∧ ϕfair

be a system specified with fairness assumptions. A prop-
erty is given as a formula ϕ; for instance, an invariant
property is of the form 2ϕInv for a state formula ϕInv .
To check whether the system model satisfies the prop-
erty ϕ, we check whether the formula

ϕI ∧ 2ϕT ∧ ϕfair ∧ ¬ϕ

is satisfiable. If ϕ is a safety property, the fairness as-
sumptions ϕfair are not necessary, and can be omitted.

Continuing the token passing example, we can check
that there is never more than one token in the system
by searching for models of the formula

initial∧2 (transition∨ idle)∧¬2¬∃i, j i 6= j ∧ t[i]∧ t[j]

and whether the rightmost process must eventually get
the token searching for models of the formula

initial
∧ 2 (transition ∨ idle)
∧ ∀i : 23 (transition(i) ∨ ¬Enabled transition(i))
∧ ¬3∃i : i = $ ∧ t[i] .

In the following sections, we discuss how to model
parameterized algorithms and algorithms with different
kinds of datatypes in our logic.

5 Parameterized Systems

Consider a system parameterized by the number of pro-
cesses. Typical examples are algorithms designed to work
for an arbitrary number of processes. In this case, we
want to verify the system regardless of the number of
processes.

We assume that the processes are homogeneous, i.e.,
that all processes have the same set of local states. We
use a configuration variable x so that the value of x[i]
represents the local state of process i.

Local transitions, where a process can change local
state from q to q′ independently of other processes, can
be expressed as

∃i : x[i](q, q′) ∧ ∀j 6= i : x[j] = x′[j] .

Other transitions need global conditions, for example
that all processes at a position with a lower index should
be in a particular state, say qg. We can express this as

∃i : x[i](q, q′)∧ (∀j < i : x[j] = qg)∧∀j 6= i : x[j] = x′[j] .

We can also model transitions representing commu-
nication between two processes, e.g.,

∃i : x[i](q, q′)∧x[i+1](r, r′)∧∀j 6∈ {i, i+1} : x[j] = x′[j] .

We illustrate this type of representation using a num-
ber of examples.

Idle: ticketi := 1 + max
j

ticketj

Waiting: await ∀j 6= i :
(ticketi < ticketj ∨ ticketj = 0)

Critical: ticketi := 0

Fig. 2. Bakery algorithm

maxplusone(i) = (i 6= 0 −→ q[i− 1] 6=⊥)
∧∀j > i : q[j] =⊥

min(i) = q[i] 6=⊥ ∧∀j < i : q[j] =⊥
ticket(i) = q[i](⊥,W ) ∧ maxplusone(i)
enter(i) = q[i](W,C) ∧ min(i)
exit(i) = q[i](C,⊥)
copy(i) = q[i] = q′[i]
idle = ∀i : copy(i)
a(i) = (ticket(i) ∨ enter(i) ∨ exit(i))

∧∀j 6= i : copy(j)
initial = ∀i : q[i] =⊥
sys = initial ∧ 2(∃i : a(i) ∨ idle)

Fig. 3. Bakery algorithm in LTL(MSO)

5.1 The Bakery Algorithm

In the bakery algorithm for mutual exclusion due to
Lamport [24], there are an arbitrary number of processes
waiting to get a “ticket” to get into the critical section.
Each process that wants to get into the critical section
receives a ticket which is the maximum of all the out-
standing tickets plus one. When a process has the low-
est outstanding ticket, it enters the critical section and
drops the ticket when leaving. The algorithm is shown
in Fig. 2, where ticketi is used to denote the ticket value
of process i or 0 if it does not have a ticket.

To model the bakery algorithm in LTL(MSO), we
change the perspective: rather than modeling the vec-
tor of process states, we let a configuration represent
the states of the sequence of ticket numbers, using the
configuration variable q. For each i, the value of q[i] is

– ⊥ if there is no process that has ticket i+ 1,
– W if some process with ticket i+ 1 is Waiting, and
– C if some process with ticket i+ 1 is in Critical.

Note that we do not model tickets with number 0,
since this is the ticket number of all “inactive” processes,
and that ticket i + 1 is modeled by q[i]. We implicitly
use the invariant that each positive ticket number can
be held by at most one process. This invariant can be
verified separately, or not be assumed (for example by
adding one more value of q[i] representing that several
processes have this ticket number).

The initial configuration and transition relation of
the bakery algorithm can then be specified by the for-
mulas shown in Fig. 3.

We use the auxiliary formula maxplusone(i) to spec-
ify that i refers to the position representing next ticket,
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i.e., the maximum ticket number plus one, and the aux-
iliary formula min(i) to specify that i refers to the posi-
tion representing the ticket that is next in line, i.e., the
ticket with the minimum ticket number.

We use one action formula for the transition between
states: ticket(i) specifies the transitions from ⊥ to W ,
allowing ticket number i+ 1 to be taken, enter(i) speci-
fies the transition from W to C, allowing a process with
ticket number i + 1 to proceed to the critical section,
and finally exit(i) specifies the transitions from C to ⊥,
allowing a process with ticket number i+ 1 to leave the
critical section and return the ticket.

The system is specified by the formula sys which
is the conjunction of the formula initial specifying the
set of initial configurations and the formula 2(∃i : a(i) ∨
idle) specifying that in each step either some action a(i)
is taken by process i, or the system idles. The idle tran-
sitions are needed to verify liveness properties.

Mutual exclusion can be specified by the formula

mutex = 2¬(∃i : ∃j : i 6= j ∧ q[i] = C ∧ q[j] = C) .

In order to specify non-starvation, we add a fairness as-
sumption for the actions enter(i) and exit(i). We add
no fairness assumption for ticket(i), since the arrival of
new processes should not be controlled by the algorithm
itself.

faira(i) = (enter(i) ∨ exit(i))
∧ (∀j 6= i : copy(j))

fairness = ∀i : 23

[
faira(i)
∨¬Enabled(faira(i))

]
non-starvation = ∀i : 2 (q[i] = W −→ 3q[i] = C)

To check that the algorithm satisfies mutual exclusion
and non-starvation, we check whether the formulas

sys ∧ ¬mutex
sys ∧ fairness ∧ ¬non-starvation

have any models.
The property that models are of arbitrary but fixed

size implies that we actually verify the algorithm under
the assumption that there is an arbitrarily chosen up-
per bound on the number of tickets in use at any time.
For safety properties, this is not a limitation since vi-
olations will be finite sequences of execution steps, but
for fairness assumptions it can play a role. For the bak-
ery algorithm, it can be seen that an arbitrary upper
limit on ticket numbers does not affect non-starvation
for waiting processes, but in general one must be aware
of this modeling constraint.

5.2 Szymanski’s Algorithm

In the previous example there were an arbitrary num-
ber of processes, but there was a complete symmetry
between the processes. In this example we will look at
another algorithm that works for an arbitrary number

1: await ∀j : j 6= i : ¬s[j]
2: w[i], s[i] := true, true
3: if ∃j : j 6= i : (pc[j] 6= 1) ∧ (¬w[j])

then s[i] := false ; goto 4
else w[i] := false ; goto 5

4: await ∃j : j 6= i : s[j] ∧ ¬w[j]
then w[i], s[i] := false, true

5: await ∀j : j 6= i : ¬w[j]
6: await ∀j : j < i : ¬s[j]
7: s[i] := false ; goto 1

Fig. 4. Szymanski’s algorithm

of processes, but with the difference that they are orga-
nized in a linear array and thus will not be completely
symmetric with respect to each other.

In Szymanski’s algorithm for mutual exclusion [35,
20], there are an arbitrary number of processes organized
in a linear array, where the index of the array denotes
the process ID. In the algorithm, the local state of each
process i consists of a control state pc[i], ranging over
the integers from 1 to 7 and of two boolean flags, w[i]
and s[i]. A process i is in the critical section when its
control state pc[i] is equal to 7. We model this using
three variables named pc, and w, and s, ranging over an
array of the same length as the number of processes. The
behavior for each process i is given in Fig. 4, expressed
in pseudo-code where the lines are numbered with the
value of the control state pc. The version considered here
is an idealized version. In most implementations a global
guard (such as, e.g., ∀j : j < i : s[j]) is not atomic: in a
more refined description of the algorithm this is a loop
which checks the states of other processes.

For instance, according to the statement at line 6, if
the control state of a process i is 6, and the value of s
is false in all processes with a lower index (i.e., for all
processes j with j < i), then the control state of process
i may be changed to 7. In a similar manner, according to
the statement at line 4, if the control state of a process
i is 4, and if there is at least another process j (either
with a lower index or a higher index than i) where the
value of s[j] is true and the value of w[j] is false, then
the control state, w[i], and s[i], in i may be changed to
5, false, and true, respectively.

The full model in LTL(MSO) is given in Fig. 5. Auxil-
iary predicates copy, copy-w, copy-s and copy-other
have been added to denote that some variables are not
affected by the transition. The action formulas a1(i)
through a7(i) are used to specify the transitions in the
algorithm. To see how the above statements are mod-
eled, line 1 can for example be modeled by the following
formula:

∃i :

 pc[i](1, 2)
∧ (∀j : j 6= i : ¬s[j])
∧ w′[i] = w[i] ∧ s′[i] = s[i]


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copy(i) = pc[i] = pc′[i] ∧ w[i] = w′[i] ∧ s[i] = s′[i]
idle = ∀i : copy(i)
copy-w(i) = w[i] = w′[i]
copy-s(i) = s[i] = s′[i]
copy-other(i) = (∀j 6= i : copy(j))
a1(i) = pc[i](1, 2) ∧ (∀j 6= i : ¬s[j])∧

copy-w(i) ∧ copy-s(i)
a2(i) = pc[i](2, 3) ∧ w′[i] ∧ s′[i]
a3a(i) = pc[i](3, 4) ∧ ¬s′[i] ∧ copy-w(i)∧

∃j 6= i : ¬(pc[j] = 1) ∧ ¬w[j]
a3b(i) = pc[i](3, 5) ∧ ¬w′[i] ∧ copy-s(i)∧

¬(∃j 6= i : ¬(pc[j] = 1) ∧ ¬w[j])
a3(i) = a3a(i) ∨ a3b(i)
a4(i) = pc[i](4, 5) ∧ ¬w′[i] ∧ s′[i]∧

(∃j 6= i : s[j] ∧ ¬w[j])
a5(i) = pc[i](5, 6) ∧ (∀j 6= i : ¬w[j])∧

copy-w(i) ∧ copy-s(i)
a6(i) = pc[i](6, 7) ∧ (∀j < i : ¬s[j])∧

copy-w(i) ∧ copy-s(i)
a7(i) = pc[i](7, 1) ∧ ¬s′[i] ∧ copy-w(i)
a(i) = a1(i) ∨ a2(i) ∨ a3(i) ∨ a4(i)∨

a5(i) ∨ a6(i) ∨ a7(i)
initial = ∀i : pc[i] = 1
sys = initial∧

2(∃i : (a(i) ∧ copy-other(i)) ∨ idle)
fairness = ∀i : 23(a(i) ∨ ¬Enabled(a(i)))
mutex = 2¬∃i : ∃j : i 6= j ∧ pc[i] = 7 ∧ pc[j] = 7
non-starvation = ∀i : 2 (pc[i] = 2→ 3pc[i] = 7)
safety = sys ∧ ¬mutex
liveness = sys ∧ fairness ∧ ¬non-starvation

Fig. 5. Szymanski’s algorithm in LTL(MSO)

where the difference to line 1 is mainly that the program
counter pc is made explicit.

Like in the Bakery algorithm in Section 5.1, we add
a system formula sys by conjoining the formula initial
specifying the set of initial configurations and the for-
mulas for the transitions of the algorithm. The formulas
safety for verifying mutual exclution and liveness for
verifying non-starvation are also written in a similar way.

5.3 Dijkstra’s Algorithm

In Fig. 6, we show an idealized version of Dijkstra’s pro-
tocol [26] for ensuring mutual exclusion among an arbi-
trary number of processes. Each process i has a control
state ranging over the integers from 1 to 7 and a vari-
able flag[i] ranging over {0, 1, 2}. Furthermore, a global
variable p ranging over process indices is used. In the
algorithm, line 6 represents the critical section.

We model the global variable with a configuration
variable p such that p[i] is true iff the global variable p
points to process i. The resulting LTL(MSO) model is
given in Fig. 7.

1: flag[i] := 1
2: if p 6= i then

await flag[p] = 0 then
3: p := i
4: flag[i] := 2
5: if ∃j 6= i : flag[j] = 2 then goto 1
6: flag[i] := 0 ; goto 1

Fig. 6. Dijkstra’s algorithm

copy(i) = pc[i] = pc′[i] ∧ flag[i] = flag′[i]∧
p[i] = p′[i]

copy-flag(i) = flag[i] = flag′[i]
copy-p = ∀k : p[k] = p′[k]
copy-other(i) = ∀j 6= i : copy(j)
idle = ∀i : copy(i)
set-p(i) = ∀j : p′[j]↔ j = i
zeropflag = ∀k : (p[k] −→ flag[k] = 0)
a1(i) = pc[i](1, 2) ∧ flag′[i] = 1 ∧ copy-p
a2a(i) = pc[i](2, 3) ∧ ¬p[i] ∧ zeropflag ∧ copy-p
a2b(i) = pc[i](2, 4) ∧ p[i] ∧ copy-flag(i) ∧ copy-p
a2(i) = a2a(i) ∨ a2b(i)
a3(i) = pc[i](3, 4) ∧ set-p(i) ∧ copy-flag(i)
a4(i) = pc[i](4, 5) ∧ flag′[i] = 2 ∧ copy-p
a5a(i) = pc[i](5, 1) ∧ copy-flag(i) ∧ copy-p∧

∃j 6= i : flag[j] = 2
a5b(i) = pc[i](5, 6) ∧ copy-flag(i) ∧ copy-p∧

¬∃j 6= i : flag[j] = 2
a5(i) = a5a(i) ∨ a5b(i)
a6(i) = pc[i](6, 1) ∧ flag′[i] = 0 ∧ copy-p
a(i) = a1(i) ∨ a2(i) ∨ a3(i)∨

a4(i) ∨ a5(i) ∨ a6(i)
initial = ∀i : pc[i] = 1 ∧ flag[i] = 0 ∧ ¬p[i]
sys = initial∧

2(∃i : (a(i) ∧ copy-other(i)) ∨ idle)
fairness = ∀i : 23(a(i) ∨ ¬Enabled(a(i)))
mutex = 2¬∃i : ∃j : i 6= j ∧ pc[i] = 6 ∧ pc[j] = 6
non-starvation = ∀i : 2 (pc[i] = 1→ 3pc[i] = 6)
safety = sys ∧ ¬mutex
liveness = sys ∧ fairness ∧ ¬non-starvation

Fig. 7. Dijkstra’s algorithm in LTL(MSO)

1: flag[i] := 0
2: if ∃j < i : flag[j] = 1 then goto 1
3: flag[i] := 1
4: if ∃j < i : flag[j] = 1 then goto 1
5: await ∀j > i : flag[j] 6= 1
6: flag[i] := 0 ; goto 1

Fig. 8. Burns’s algorithm

5.4 Burns’s Algorithm

Burns’s mutual exclusion algorithm [26] is given in Fig. 8.
Each process i has a control state ranging over the in-
tegers from 1 to 7 and a variable flag[i] ranging over
{0, 1}. The critical section is represented by line 6.
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copy(i) = pc[i] = pc′[i] ∧ flag[i] = flag′[i]
copy-flag(i) = flag[i] = flag′[i]
copy-other(i) = ∀j 6= i : copy(j)
idle = ∀i : copy(i)
a1(i) = pc[i](1, 2) ∧ ¬flag′[i]
a2a(i) = pc[i](2, 1) ∧ (∃j < i : flag[j])∧

copy-flag(i)
a2b(i) = pc[i](2, 3) ∧ (¬∃j < i : flag[j])∧

copy-flag(i)
a2(i) = a2a(i) ∨ a2b(i)
a3(i) = pc[i](3, 4) ∧ flag′[i]
a4a(i) = pc[i](4, 1) ∧ (∃j < i : flag[j])∧

copy-flag(i)
a4b(i) = pc[i](4, 5) ∧ (¬∃j < i : flag[j])∧

copy-flag(i)
a4(i) = a4a(i) ∨ a4b(i)
a5(i) = pc[i](5, 6) ∧ (∀j > i : ¬flag[j])∧

copy-flag(i)
a6(i) = pc[i](6, 1) ∧ ¬flag′[i]
a(i) = a1(i) ∨ a2(i) ∨ a3(i)∨

a4(i) ∨ a5(i) ∨ a6(i)
initial = ∀i : pc[i] = 1 ∧ flag[i] = 0
sys = initial∧

2(∃i : (a(i) ∧ copy-other(i)) ∨ idle)
fairness = ∀i : 23(a(i) ∨ ¬Enabled(a(i)))
mutex = 2¬∃i : ∃j : i 6= j ∧ pc[i] = 6 ∧ pc[j] = 6
non-starvation = ∀i : 2 (pc[i] = 1→ 3pc[i] = 6)
safety = sys ∧ ¬mutex
liveness = sys ∧ fairness ∧ ¬non-starvation

Fig. 9. Burns’s algorithm in LTL(MSO)

We model the values 0 and 1 with the booleans such
that 0 is false and 1 is true. The LTL(MSO) model for
the algorithm is given in Fig. 9.

5.5 A Termination Detection Algorithm

We can also models ring shaped parameterized systems
in our framework, which we illustrate with an algorithm
for termination detection among an arbitrary number
of processes organized in a ring shaped network, due to
Dijkstra et al. [11]. The algorithm uses a colored token
which is passed around the ring to check that all pro-
cesses in the ring have terminated.

A process can either be non-idle or idle. When all
processes are idle, we say that the system has termi-
nated. A process can spontaneously change its state from
non-idle to idle, i.e., it terminates. To detect that all pro-
cesses are idle, a designated processes sends out a token
which it colors white. When the token is passed to the
next processes, the process passing the token paints it
black if it is non-idle. When the token comes back to
the process which sent out the token, it is white if the
system has terminated, and black otherwise.

The system can be modeled by numbering the pro-
cesses from 0 to n − 1 and using three arrays holding
three local variables the processes. Only process 0 may

- q[i] := true
- if i > 0 ∧ ¬q[i− 1]

then q[i] := false
- if ¬q[n− 1]

then q[0], w := false, false
- if i = 0 ∧ q[0] ∧ (t[0] = black ∨ ¬w)

then t[0], t[1], w := none,white, true
- if i < n− 1 ∧ t[i] 6= none ∧ q[i]

then t[i], t[i+ 1] := none, t[i]
- if i = n− 1 ∧ t[n− 1] 6= none ∧ ¬q[n− 1]

then t[n− 1], t[0] := none, t[i]
- if i < n− 1 ∧ t[i] 6= none ∧ ¬q[i]

then t[i], t[i+ 1] := none,black
- if i = n− 1 ∧ t[n− 1] 6= none ∧ ¬q[n− 1]

then t[n− 1], t[0] := none,black

Fig. 10. A Termination Detection Algorithm

initiate the algorithm by sending out a new token. The
variables are q[i] which is true iff process i is idle, and
t[i] ranging over {black,white,none}, which has the
value none when process i does not have the token, and
otherwise denotes the color of the token. In addition,
process 0 has a boolean variable w, which is true if it
has stayed idle during the current round. The value of
w is only relevant for process 0.

Initially, we have q[i] = false for all i, and t[0] =
black, and t[i] = none for all 0 < i < n, and w = false.
The algorithm can be described by the statements in
Fig. 10, for each process i.

The three first types of statements describe the un-
derlying computation: a process can become idle au-
tonomously (first statement), and it can become non-idle
if its predecessor is non-idle (second statement). In addi-
tion (third statement), process 0 must set w to false if it
becomes non-idle. The fourth statement starts a round
of the detection algorithm. In the next two statements, a
process just forwards the token if it is idle. Finally, in the
last two statements, if a process is non-idle, the token is
painted black and then forwarded. Note how the ring is
modeled by allowing process n− 1 to communicate with
process 0.

The model is given in Fig. 11. The formula safety is
used to verify that if process 0 signals termination, then
all processes are idle.

6 Communication Protocols

Our framework can be used to model queues and stacks
by letting each position in the word represent a posi-
tion in the queue or the stack. Integer variables can also
be modeled, using the word to represent the digits of
the word in some base. These data types are common
in communication protocols, where processes communi-
cate through a queue and integer variables can be used
to model sequence numbers of the messages that are
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copy(i) = t[i] = t′[i] ∧ w[i] = w′[i] ∧ q[i] = q′[i]
copy-other(i) = ∀j 6= i : copy(j)
copy-other2(i, j) = ∀k : ¬(k = i ∨ k = j)→ copy(k)
copy-q(i) = q[i] = q′[i]
copy-t(i) = t[i] = t′[i]
idle = ∀i : copy(i)
move-token(i, j) = t[i] = t′[j]
adjacent(i, j) = j = i+ 1 ∨ (j = 0 ∧ i = $)
pass(i, j) = i 6= 0 ∧ t[i] 6= none∧

(¬q[i] −→ t′[j] = black)∧
(q[i] −→move-token(i, j))∧
t′[i] = none∧
copy-q(i) ∧ copy-q(j)∧
w[0] = w′[0]

start(i, j) = i = 0 ∧ q[i]∧
(t[i] = black ∨ ¬w[0])∧
t′[i] = none ∧ t′[j] = white∧
w′[0] ∧ copy-q(i) ∧ copy-q(j)

comp1(i) = q′[i] ∧ copy-t(i) ∧ w[0] = w′[0]
comp2(i, j) = ¬q[i] ∧ copy(i) ∧ copy-t(j) ∧ q′[j]∧

(j = 0 −→ ¬w′[0])∧
(j 6= 0 −→ w[0] = w′[0])

a1(i) = copy-other(i) ∧ comp1(i)
a2(i) = ∃j : adjacent(i, j)∧

copy-other2(i, j)∧
(start(i, j) ∨ pass(i, j) ∨ comp2(i, j))

a(i) = a1(i) ∨ a2(i)
initial = ∀i : (i = 0 −→ t[i] = black ∧ ¬w[i])∧

(i 6= 0 −→ t[i] = none) ∧ ¬q[i]
sys = initial ∧ 2(∃i : a(i) ∨ idle)

termination = 2

[
(∃i = 0 : t[i] = white ∧ w[0])
−→ ∀i : q[i]

]
safety = sys ∧ ¬termination

Fig. 11. A Termination Detection Algorithm in LTL(MSO)

passed. We will use communication protocols to illus-
trate how we can represent these data types and opera-
tions on them.

Queues and Stacks Let us describe how to represent
queues and stacks in our framework. We use a configu-
ration variable q where q[i] is the queue or stack content
at position i. Since our transitions preserve the length
of the words, we cannot dynamically create new posi-
tions. Therefore, to allow for a dynamic data structure,
we add a padding symbol ⊥ to represent empty slots. Re-
call that configurations are of arbitrary length, so even
though we can not model unbounded queues, we can
model arbitrary-length queues. The difference between
unbounded and arbitrary length can play a role for live-
ness properties, but not for safety properties.

Below, we model sending and receiving a message
denoted by the parameter m to and from a queue rep-
resented using a configuration variable denoted by the
parameter q. Messages are sent by replacing the ⊥ to
the right of the rightmost message, and received by re-
placing the leftmost message by a ⊥. The empty queue

is described by empty(q).

send(q,m) = ∃i :


q′[i] = m ∧ q[i] = ⊥

∧ ∀j 6= i : q[i] = q′[i]
∧ ∀j : i = j + 1→ q[j] 6= ⊥
∧ ∀j > i : q[j] = ⊥



receive(q,m) = ∃i :

 q′[i] = ⊥ ∧ q[i] = m
∧ ∀j 6= i : q[i] = q′[i]
∧ ∀j < i : q[j] = ⊥


empty(q) = ∀i : q[i] = ⊥

Using this technique for modeling a queue, the contents
of the queue do not change position. Send and receive
operations change only a single position in the word.
This property makes it easier to analyze the model using
our verification techniques, described in [8,2,28]. A side-
effect is that the contents of the queue will shift towards
right unless the queue becomes empty. This makes no
difference for the verification of safety properties, since
the queue is initialized with any finite capacity, and can
be made large enough to accomodate any finite execu-
tion.

For stacks, we model the push and pop operations
below. The stack grows from left to right. The empty
stack is described by empty(q).

push(q,m) =


q′[i] = m ∧ q[i] = ⊥

∧ ∀j 6= i : q[i] = q′[i]
∧ ∀j : i = j + 1→ q[j] 6= ⊥
∧ ∀j > i : q[j] = ⊥



pop(q,m) =


q′[i] = ⊥ ∧ q[i] = m

∧ ∀j 6= i : q[i] = q′[i]
∧ ∀j : i = j + 1→ q[j] 6= ⊥
∧ ∀j > i : q[j] = ⊥


empty(q) = ∀i : q[i] = ⊥

We model sends to lossy channels, where messages
may be lost, with the formula lossend(q,m) defined as

send(q,m) ∨ ∀i : q[i] = q′[i]

i.e., the message can be lost immediately when sending.

Integers Integer variables can be represented in many
ways using a word. One alternative is to use a binary
encoding of the integer value, such that the word repre-
sents the value of the integer variable in binary with the
most significant bit to the left. This has the advantage
that addition and multiplication can be performed using
a regular transition relation. For example, if we use the
configuration variable x and y to represent two numbers,
the operation x := x+ y can be modeled by the formula

∃C :


$ 6∈ C

∧ ∀i : (x′[i]↔ x[i])↔ (y[i]↔ i ∈ C)

∧ ∀i : i− 1 ∈ C ↔

 (x[i] ∧ y[i])
∨ (x[i] ∧ i ∈ C)
∨ (y[i] ∧ i ∈ C)



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The second-order variable C is used to implement a
carry-bit in the addition. The formula consists of three
conjuncts. The first sets the carry-bit to false in the
last position, corresponding to the least significant bit.
The second part adds x[i] and y[i] and the carrybit
i ∈ C, putting the result in x′[i] (to see this, note that
(ϕ1 ↔ ϕ2)↔ (ϕ3 ↔ ϕ4) is true iff an even number of the
formulas ϕ1, ϕ2, ϕ3, ϕ4 are true). The last part updates
the carry-bit for i− 1 in case there was an overflow.

The binary encoding works well when the system
consists only of integer variables and has been used for
the verification of numerous examples, for example in
the tool LASH [6]. When integer variables are used in
combination with other datatypes, for example as a pro-
cess index or a sequence number in a communication
protocol, it can be more natural to use a unary encod-
ing. With this encoding, addition and multiplication can
not be expressed as a regular transition relation, but op-
erations relating the variable with the other datatypes,
for example changing the state of a process pointed to
by a process index variable, can be performed.

In the following subsections, we model two commu-
nication protocols using the encodings of data types de-
scribed above.

6.1 The Alternating Bit Protocol

We illustrate encoding of queues in our framework with
the well-known Alternating Bit Protocol [4], a protocol
used for delivering messages over unbounded channels
which are faulty in the sense that they may lose messages
but not reorder them.

There are two channels, one for sending messages
from the sender to the receiver, and one for sending
acknowledgments from the receiver to the sender. Each
message is given a sequence number and the sender waits
for an acknowledgment from the receiver before sending
a new message. Until this acknowledgment is received,
the sender may resend the message. When the receiver
has acknowledged the message, the procedure is repeated
but with the sequence number inverted. Both the sender
and the receiver ignore messages with unexpected se-
quence numbers.

To model the service provided by the protocol, we
consider two operations protsend and protreceive, mod-
eling calls from the upper layers of the protocols. Thus,
protsend denotes that there is a new message from the
sender side, and protreceive denotes that the receiver
side signals that a message has been received. We de-
note the two channels msg and ack, where msg is the
channel used for messages and ack is the channel used
for acknowledgments.

A high level description for the sender and the re-
ceiver is given in Fig. 12. The notation S OR S′ means
that either S or S′ is executed, but not both of them.

One property of the algorithm specifies that the op-
erations protsend and protreceive alternate after each

Sender

1: protsend
2: (lossend(msg, 0) OR receive(ack, 1)) ; goto 2

OR
receive(ack, 0)

3: protsend
4: (lossend(msg, 1) OR receive(ack, 0)) ; goto 4

OR
receive(ack, 1) ; goto 1

Receiver

1: (lossend(ack, 1) OR receive(msg, 1)) ; goto 1
OR

receive(msg, 0)
2: protreceive
3: (lossend(ack, 0) OR receive(msg, 0)) ; goto 3

OR
receive(msg, 1)

4: protreceive ; goto 1

Fig. 12. The Alternating Bit Protocol

other such that the two operations never occur consecu-
tively. We model this by adding an observer that records
the last operation (protsend or protreceive) initial-
ized to protreceive and checks that a protsend oper-
ation can not occur when the observer is in state prot-
send and similarly that a protreceive operation can
not occur when the observer is in state protreceive.

An LTL(MSO) model of the Alternating Bit Protocol
is given in Fig. 13.

6.2 A Sliding Window Protocol

We illustrate the use of integers with a sliding window
protocol (for a general description on sliding window pro-
tocols, see, e.g., Tannenbaum [36] Ch. 3). Like the Al-
ternating Bit Protocol, the protocol is intended to pro-
vide reliable transmission of messages across an unreli-
able channel.

The sender and receiver employ a so-called sliding
window protocol, in which messages sent over the chan-
nel are provided with a sequence number, assigned in
a cyclic fashion from 0 to max − 1 and then starting
at 0 again. The receiver acknowledges messages using a
separate channel, which we model with a direct commu-
nication between the receiver and the sender.

Initially, the sender transmits messages with consec-
utive sequence numbers 0, 1, 2, etc. Since the channel
may lose messages, the sender cannot know whether the
messages will reach the receiver. Therefore, the sender
also waits for acknowledgments from the receiver. An
acknowledgment with sequence number n signals that
the receiver has correctly received messages up to se-
quence number n − 1. There must never be more than
max − 1 outstanding messages. Therefore, after sending
messages 0 through max − 2, the sender must wait for
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copy(x) = ∀i : x[i] = x′[i]
copy-other(x, i) = ∀j 6= i : x[j] = x′[j]
copy-channels = copy(msg) ∧ copy(ack)
idle = copy-channels ∧ copy(pc) ∧ copy(obs)
observe(v) = obs′[0] = v ∧ copy-other(obs, i)
sa1 = pc[0](1, 2) ∧ copy-other(pc, 0)∧

copy-channels ∧ observe(protsend)
sa2a = pc[0](2, 2) ∧ copy-other(pc, 0)∧

lossend(msg, 0) ∧ copy(ack) ∧ copy(obs)
sa2b = pc[0](2, 2) ∧ copy-other(pc, 0)∧

receive(ack, 1) ∧ copy(msg) ∧ copy(obs)
sa2c = pc[0](2, 3) ∧ copy-other(pc, 0)∧

receive(ack, 0) ∧ copy(msg) ∧ copy(obs)
sa3 = pc[0](3, 4) ∧ copy-other(pc, 0)∧

copy-channels ∧ observe(protsend)
sa4a = pc[0](4, 4) ∧ copy-other(pc, 0)∧

lossend(msg, 1) ∧ copy(ack) ∧ copy(obs)
sa4b = pc[0](4, 4) ∧ copy-other(pc, 0)∧

receive(ack, 0) ∧ copy(msg) ∧ copy(obs)
sa4c = pc[0](4, 1) ∧ copy-other(pc, 0)∧

receive(ack, 1) ∧ copy(msg) ∧ copy(obs)
sender = sa1 ∨ sa2a ∨ sa2b ∨ sa2c ∨ sa3∨

sa4a ∨ sa4b ∨ sa4c
receiver = Defined similarly as sender with

pc[1] instead of pc[0] and observing
protreceive

a = sender ∨ receiver
initial = pc[0] = 1 ∧ pc[1] = 1∧

empty(msg) ∧ empty(ack)∧
obs[0] = protreceive

sys = initial ∧ 2(a ∨ idle)
receivealt = 2 (obs[0] = protreceive→ ¬(ra2 ∨ ra4))
sendalt = 2 (obs[0] = protsend→ ¬(sa1 ∨ sa3))
safety = sys ∧ ¬sendalt ∧ ¬receivealt

Fig. 13. The Alternating Bit Protocol in LTL(MSO)

an acknowledgment. After receiving an acknowledgment
for a message, say 3, the sender may continue to send
messages max − 1, 0, and 1. If no acknowledgment ar-
rives for any outstanding messages, it is assumed to be
lost and the sender should resend outstanding messages
after some period of time.

The range of sequence number representing the out-
standing messages is called the sender window and is
modeled by two variables low and high, where the out-
standing messages have sequence numbers n with low ≤
n < high, if low ≤ high, and with low ≤ n or n < high,
if high < low . The integer variable next denotes the se-
quence number of the next message the receiver expects
to receive. A high level version of the protocol is given
in Fig. 14, where addition is performed modulo max .

We model this protocol in LTL(MSO) with a config-
uration variable for each of the integer variables with the
same name. The formula low[i] will be true if and only
if the integer variable low is equal to i. The channel will
be limited to a fixed capacity (say 3). Since the messages
contain arbitrary sequence numbers and we have a finite

Initially, low = 0, next = 0, and high = 0.
1: (enlarge window)

if low 6= high+ 1
then high := high+ 1

2: (send)
for any n if[

(low ≤ high→ low ≤ n ∧ n < high)
∧ (high < low → low ≤ n ∨ n < high)

]
then send(c, n)

3: (receive)
receive(c, next);next := next+ 1

4: (synchronous ack)
low := next

Fig. 14. A Sliding Window Protocol

copy(x) = ∀i : x[i] = x′[i]
copy-other(x, i) = ∀j 6= i : x[j] = x′[j]
copy-channel = copy(c1) ∧ copy(c2) ∧ copy(c3)
copy-proc = copy(low) ∧ copy(high) ∧ copy(next)
idle = copy-channel ∧ copy-proc
adjacent(i, j) = j = i+ 1 ∨ (j = 0 ∧ i = $)
between(i, j, k) = (i ≤ k → i ≤ j ∧ j < k)∧

(k < i→ i ≤ j ∨ j < k)
addone(x) = ∃p, q : adjacent(p, q)∧

x[p] ∧ ¬x′[p] ∧ x′[q]∧
∀r : r = p ∨ r = q ∨ (¬x[r] ∧ ¬x′[r])

allfalse(x) = ∀i : ¬x[i]
a1 = ∃l, h : low[l] ∧ high[h] ∧ ¬adjacent(h, l)∧

copy(low) ∧ addone(high) ∧ copy(next)∧
copy-channel

a2 = ∃l, h,m : low[l] ∧ next[m] ∧ high[h]∧
between(l,m, h) ∧ copy-proc
∧ c′1[m] ∧ allfalse(c1)∧
copy-other(c1,m) ∧ copy(c2) ∧ copy(c3)

a3 = ∃n : c3[n] ∧ ¬c′3[n] ∧ next[n]∧
copy(low) ∧ copy(high) ∧ addone(next)∧
copy(c1) ∧ copy(c2) ∧ copy-other(c3, n)

a4 = (∀j : low′[j]↔ next[j])∧
copy(high) ∧ copy(next) ∧ copy-channel

a5 = ∃j : c1[j] ∧ ¬c′1[j] ∧ allfalse(c2) ∧ c′2[j]∧
copy-proc ∧ copy-other(c1, j)∧
copy-other(c2, j) ∧ copy(c3)

a6 = ∃j : c2[j] ∧ ¬c′2[j] ∧ allfalse(c3) ∧ c′3[j]∧
copy-proc ∧ copy(c1)∧
copy-other(c2, j) ∧ copy-other(c3, j)

a = a1 ∨ a2 ∨ a3 ∨ a4 ∨ a5 ∨ a6
sys = initial ∧ 2(a ∨ idle)
initial = ∀i : (i = 0↔ low[i]) ∧ (i = 0↔ high[i])∧

(i = 0↔ next[i]) ∧ ¬c1[i] ∧ ¬c2[i] ∧ ¬c3[i]
inside-window = 2∀l, n, h :[

low[l] ∧ next[n] ∧ high[h]
→ n = h ∨ between(l, n, h)

]
safety = sys ∧ ¬inside-window

Fig. 15. A Sliding Window Protocol in LTL(MSO)

alphabet, we can not model a channel of arbitrary size.
Instead, we use three configuration variables c1, c2, and
c3, where ck[i] is true if and only if position k in the
channel contains a message with sequence number i.

The full LTL(MSO) model is given in Fig. 15. The
formula a1 corresponds to enlarging the window, the
formula a2 to sending a message, the formula a3 to re-
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ceiving a message, the formula a4 to a synchronous ack,
and the formulas a5 and a6 to movement within the
channel.

The safety property inside-window specifies that
the receiver is never outside the sending window, which
can be seen as a check that the protocol synchronizes
correctly.

7 Büchi Normal Form

In this section, we describe how to transform a restricted
formula in LTL(MSO) into an equivalent formula in Büchi
Normal Form, defined as follows.

Definition 1. (Büchi Normal Form) A formula is in
Büchi Normal Form if it is of the form

φI ∧ 2φT ∧ 23φF

where the formulas φI , φT , φF are MSO formulas with-
out temporal operators, and φI contains no primed con-
figuration variables. ut

Formulas in Büchi Normal Form correspond to Büchi
regular transition systems (BRTS), defined in Section 8,
which accept models of a formula. In this section, we
show how to transform a formula in LTL(MSO) into an
equivalent formula in Büchi Normal Form.

The idea of the construction is to generalize the stan-
dard translation of propositional temporal logic to Büchi
Automata [38,39] — the semantics of temporal opera-
tors is translated to additional state and transition in-
formation in the BRTS. In our case, temporal operators
are translated to new configuration variables which rep-
resent the values of certain temporal subformulas. The
semantics of temporal operators is maintained by con-
straints on the possible changes of the new configuration
variables.

We assume, without loss of generality, that a for-
mula φ is in negative normal form, i.e., that negations
only occur in front of atomic formulas (as negations can
always be “pushed” to the atomic formulas). Note that
¬(ϕW ψ) equals ¬ψW (¬ϕ ∧ ¬ψ) ∧ 3¬ϕ. Define a core
subformula of φ as a subformula of φ which has a tem-
poral operator as its main connective. We will denote by
ψ(i) a formula where i is the (possibly) only free vari-
able of ψ . We introduce auxiliary variables to track the
values of core subformulas of φ , as follows.

– For each core subformula ψ(i) we introduce an auxil-
iary configuration variable xψ . Intuitively, the value
of xψ[i] represents the same value as ψ(i) at each
timepoint.

– For each core subformula of the form 3ψ1(i) we
introduce an auxiliary configuration variable y3ψ1

(called an eventuality variable). Intuitively, if the for-
mula y3ψ1 [i] is true, then the formula ψ1(i) must be
true at some future time point.

Here is the reason why our translation is only applica-
ble to restricted LTL(MSO) formulas: since words are
one-dimensional, it is not possible to use configuration
variables to encode the value of subformulas with more
than one free variable.

The value of any subformula ψ can be represented
by an encoding 〈〈ψ〉〉 into the extended set of configura-
tion variables, together with constraints on the auxiliary
variables. We first define the encoding 〈〈ψ〉〉 of a formula
ψ as follows. Note that the only change is to replace core
subformulas by a corresponding auxiliary variable.

〈〈ψ〉〉 4
= ψ for ψ in MSO

〈〈ψ1 ∧ ψ2〉〉
4
= 〈〈ψ1〉〉 ∧ 〈〈ψ2〉〉

〈〈ψ1 ∨ ψ2〉〉
4
= 〈〈ψ1〉〉 ∨ 〈〈ψ2〉〉

〈〈∃i : ψ1〉〉
4
= ∃i : 〈〈ψ1〉〉

〈〈∀i : ψ1〉〉
4
= ∀i : 〈〈ψ1〉〉

〈〈∃I : ψ1〉〉
4
= ∃I : 〈〈ψ1〉〉

〈〈∀I : ψ1〉〉
4
= ∀I : 〈〈ψ1〉〉

〈〈2ψ1(i)〉〉 4
= x2ψ1

[i]

〈〈3ψ1(i)〉〉 4
= x3ψ1 [i]

〈〈ψ1(i)W ψ2(i)〉〉 4
= xψ1Wψ2 [i]

Let localconstr(φ) be the conjunction of a set of lo-
cal constraints on the auxiliary variables of φ as defined
below.

1. For each auxiliary variable xψ the corresponding lo-
cal constraint is:

∀i :
(
x2ψ1 [i]↔

[
〈〈ψ1(i)〉〉 ∧ x′2ψ1

[i]
])

when ψ(i) is 2ψ1(i),

∀i :
(
x3ψ1 [i]↔

[
〈〈ψ1(i)〉〉 ∨ x′3ψ1

[i]
])

when ψ(i) is 3ψ1(i), and

∀i :
(
xψ1Wψ2 [i]↔

[
〈〈ψ2(i)〉〉 ∨

(
〈〈ψ1(i)〉〉 ∧ x′ψ1Wψ2

[i]
)])

when ψ(i) is ψ1(i)W ψ2(i) .

2. Let y3ψ1
, . . . , y3ψk

be the set of eventuality variables.
We define their local constraint as follows.

k∧
m=1

∀i :
([
y3ψm

[i] ∧ ¬y′3ψm
[i]
]
→ 〈〈ψm(i)〉〉

)
Intuitively, whenever y3ψm

[i] flips from true to false, it
has “observed” that ψm(i) was true in the previous state.
Then we know that ψm(i) was true at least once in the
past.

We will require that all eventuality variables are false
infinitely often and that they become true when appro-
priate. Let evconstr(φ) be the eventuality constraint,
defined below.

k∧
m=1

∀i :
(
¬y3ψm [i] ∧

[
y′3ψm

[i]↔ x′3ψm
[i]
])
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Intuitively, that the eventuality variables are false means
that they have witnessed the “eventuality” (that which
should become true). The second constraint says that
they should “reset” — i.e., they should check whether
another eventuality should be witnessed, which is the
case precisely when x′3ψm

[i] is true.
Note that, in case some core subformula ψ does not

have a free variable i, the local constraints encode the
value of ψ on each of the positions i. This is correct, but
perhaps not optimal.

We will transform a formula φ into the formula 〈〈φ〉〉 ∧
2 localconstr(φ)∧23 evconstr(φ) , which is clearly in
Büchi Normal Form. The rest of this section will estab-
lish soundness of this transformation — meaning that
a formula is satisfiable if and only if the transformed
formula is satisfiable. The proof is done in two steps.
The first lemma below states properties of the auxiliary
variables, while the second proves soundness of the con-
struction.

Lemma 1. If
(M,Val , t) |= 2 localconstr(φ)∧23 evconstr(φ), then
for all core subformulas ψ(i) of φ we have

1. (M,Val , t) |= ∀i : (x2ψ1
[i]→ 2〈〈ψ1(i)〉〉)

for ψ(i) = 2ψ1(i)
2. (M,Val , t) |= ∀i : (x3ψ1 [i]→ 3〈〈ψ1(i)〉〉)

for ψ(i) = 3ψ1(i)
3. (M,Val , t) |= ∀i : (xψ1Wψ2

[i]→ 〈〈ψ1(i)〉〉 W 〈〈ψ2(i)〉〉)
for ψ(i) = ψ1(i)W ψ2(i) .

Proof.

1. Suppose (M,Val ′, t) |= x2ψ1
[i] for some valuation

Val ′ = Val [i 7→ m]. Since
(M,Val , t) |= 2 localconstr(φ) we have

(M,Val ′, t) |= 2
(
x2ψ1

[i]↔
[
〈〈ψ1(i)〉〉 ∧ x′2ψ1

[i]
])
.

By induction, it follows that (M,Val ′, t′) |= 〈〈ψ1(i)〉〉
for every t′ ≥ t and thus (M,Val ′, t) |= 2 〈〈ψ1(i)〉〉.

2. Suppose (M,Val ′, t) |= x3ψ1
[i] for some valuation

Val ′ = Val [i 7→ m]. Suppose that (M,Val ′, t) 6|=
3〈〈ψ1(i)〉〉. Then (M,Val ′, t) |= 2¬〈〈ψ1(i)〉〉.
Together with

(M,Val ′, t) |= 2
(
x3ψ1

[i]↔
[
〈〈ψ1(i)〉〉 ∨ x′3ψ1

[i]
])

from the local constraints, we therefore get

(M,Val ′, t) |= 2x3ψ1 [i] .

The eventuality constraint gives

(M,Val ′, t′) |= y′3ψ1
[i]↔ x′3ψ1

[i], for some t′ ≥ t .

Then it follows from (M,Val ′, t) |= 2x3ψ1
[i] that

(M,Val ′, t′) |= y′3ψ1
[i]

and thus

(M,Val ′, t′ + 1) |= y3ψ1
[i] .

Let t′′ > t′ + 1 be the earliest point in time after t′

(which has to exist because of the eventuality con-
straint) when

(M,Val ′, t′′) |= ¬y3ψ1
[i] .

But then since t′′ was the earliest point in time we
have

(M,Val ′, t′′ − 1) |= y3ψ1
[i] ∧ ¬y′3ψ1

[i]

which together with the local constraint of y3ψ gives
us

(M,Val ′, t′′ − 1) |= 〈〈ψ1(i)〉〉 .

Since t′′ − 1 > t′ ≥ t we conclude that

(M,Val ′, t) |= 3〈〈ψ1(i)〉〉

which contradicts the assumption.
3. Suppose (M,Val ′, t) |= xψ1Wψ2

[i] for some valuation
Val ′ = Val [i 7→ m]. Since (M,Val , t) |= 2 localconstr(φ)
we have

(M,Val ′, t) |= 2

(
xψ1Wψ2 [i]↔[
〈〈ψ2(i)〉〉 ∨

(
〈〈ψ1(i)〉〉 ∧ x′ψ1Wψ2

[i]
)]) .

By induction on t it follows that either (M,Val ′, t) |=
2 〈〈ψ1(i)〉〉, or that eventually for some t′ ≥ t we
have (M,Val ′, t′) |= 〈〈ψ2(i)〉〉 before which we have
(M,Val ′, t′′) |= 〈〈ψ1(i)〉〉 for each t′′ : t ≤ t′′ < t′ .
Hence (M,Val ′, t) |= 〈〈ψ1(i)〉〉 W 〈〈ψ2(i)〉〉 as desired.
ut

Lemma 2. Let ψ be a subformula of φ, Val a valu-
ation, and t a timepoint. There is a matrix M such
that (M,Val , t) |= ψ if and only if there is a matrix
M ′, different from M only in the auxiliary variables of
φ, such that (M ′,Val , t) |= 〈〈ψ〉〉 ∧ 2 localconstr(φ) ∧
23 evconstr(φ).

Proof. =⇒ : Define M ′ to be the same as M (of width
n) except for the auxiliary variables. We will show that
the auxiliary variables can be set in M ′ so that
(M ′,Val , t) |= 〈〈ψ〉〉 ∧2 localconstr(φ)∧23 evconstr(φ).

– For each core subformula ψ′(i) of ψ and for each t′′ ∈
N and m ∈ Zn let:

xψ′ ∈M ′(t′′,m) ⇐⇒ (M,Val [i 7→ m], t′′) |= ψ′(i) . (?)

– We show that there exists an infinite sequence of
timepoints (tk)k≥0 with t = t0 < t1 < · · · such that
for each k > 1 (M ′,Val , tk) |= evconstr(φ) . For
each such tk and for each core subformula of ψ of the
form 3ψ1(i) and m ∈ Zn we thus put:
– y3ψ1

6∈M ′(tk,m), and
– y3ψ1 ∈M ′(1+tk,m) ⇐⇒ x3ψ1 ∈M ′(1+tk,m) .

(??)

From tk we find tk+1 by defining M ′ for t′ with tk <
t′ ≤ tk+1 inductively, as follows. The strategy we
employ is to choose the timepoint tk+1 such that the
values of each variable y3ψ1

are all false, i.e.:
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– For each core subformula 3ψ1(i) let

y3ψ1
∈M ′(t′ + 1,m)
⇐⇒

y3ψ1 ∈M ′(t′,m) ∧ (M,Val [i 7→ m], t′) 6|= ψ1(i) .

– If for some earliest point in time t′ > tk we for
every core subformula 3ψ1(i) and m ∈ Zn have
y3ψ1

6∈M ′(t′,m) then let tk+1 = t′ .

Thus we allow the values of y3ψ1
between tk and

tk+1 to change from true to false, but not from false
to true. Note that the eventuality variables satisfy
their local constraints. Now we show that we can al-
ways find tk+1 from tk . Suppose, in contrary, that we
cannot. Then there is some core subformula 3ψ1(i)
and m ∈ Zn such that:

y3ψ1
∈M ′(t′,m) for all t′ > tk .

Since the above holds in particular for t′ = 1 + tk we
have by (??) that x3ψ1

∈M ′(1+tk,m) and therefore
by (?) we get (M,Val [i 7→ m], 1 + tk) |= 3ψ1(i) .
Then (M,Val [i 7→ m], t′′) |= ψ1(i) for some t′′ > tk
and thus our strategy described above gives y3ψ1

6∈
M ′(t′′ + 1,m). This is a contradiction.

⇐= : We prove that
(M ′,Val , t) |= 〈〈ψ〉〉 ∧2localconstr(φ)∧23evconstr(φ)

implies (M ′,Val , t) |= ψ .
Let thus M = M ′ . We proceed by induction over the

structure of ψ .

ψ in MSO : Since 〈〈ψ〉〉 = ψ, we get (M,Val , t) |= ψ .
ψ = ψ1 ∨ ψ2 : We get (M,Val , t) |= ψ1 or

(M,Val , t) |= ψ2 by induction.
ψ = ψ1 ∧ ψ2 : We get (M,Val , t) |= ψ1 and

(M,Val , t) |= ψ2 by induction.
ψ = ¬ψ1 : Then ψ must be in MSO, since ψ is in nega-

tive normal form.
ψ = ∃i : ψ1 : We get (M,Val , t) |= ∃i : 〈〈ψ1〉〉 and by the

semantics

(M,Val [i 7→ m], t) |= 〈〈ψ1〉〉

for some m ∈ Zn . Hence (M,Val , t) |= 〈〈ψ1(m)〉〉 .
Since

2localconstr(φ) ∧ 23evconstr(φ)

is a closed formula, and thus does not depend on i,
it follows that

(M,Val , t) |= 〈〈ψ1(m)〉〉 ∧2localconstr(φ)∧23evconstr(φ) .

By the induction hypothesis we get
(M,Val , t) |= ψ1(m) and by the semantics we obtain
(M,Val , t) |= ∃i : ψ1(i) .

ψ ∈ {∃I : ψ1,∀i : ψ1,∀I : ψ1} : Analogous with
ψ = ∃i : ψ1.

ψ = 2ψ1(i) : We get (M,Val , t) |= x2ψ1
[i] . Hence

(M,Val , t) |= 2〈〈ψ1(i)〉〉 by Lemma 1. This means
that (M,Val , t′) |= 〈〈ψ1(i)〉〉 for all t′ ≥ t . By induc-
tion we thus obtain (M,Val , t′) |= ψ1(i) for all t′ ≥ t
which means that (M,Val , t) |= 2ψ1(i) .

ψ = 3ψ1(i) : Analogous with ψ = 2ψ1(i) .
ψ = ψ1(i)W ψ2(i) : We get (M,Val , t) |= xψ1Wψ2

[i] .
Hence by Lemma 1 we have
(M,Val , t) |= 〈〈ψ1(i)〉〉 W 〈〈ψ2(i)〉〉. By the semantics
and the induction hypothesis we thus obtain that
either (M,Val , t) |= 2ψ1(i), or that eventually for
some t′ ≥ t we have (M,Val , t′) |= ψ2(i) before which
(M,Val , t′′) |= ψ1(i) for each t′′ : t ≤ t′′ < t′ . Thus
(M,Val , t) |= ψ1(i)W ψ2(i) . ut

We are now ready to prove the main theorem.

Theorem 1. For any restricted formula φ there exists
a formula BNF (φ) in Büchi Normal Form such that

M |= φ for some matrix M
if and only if

M ′ |= BNF (φ) for some matrix M ′ .

Proof. The following formula is in Büchi Normal Form:

BNF (φ) = 〈〈φ〉〉 ∧2 localconstr(φ)∧23 evconstr(φ) .

It follows from Lemma 2 that there is a matrix M such
that M |= φ if and only if there is a matrix M ′ such that
M ′ |= BNF (φ) . ut

8 Verification

As shown in Section 4.3, to verify that a property holds
for a system, we search for models of a formula that is
a conjunction of the formula describing the system and
the negation of the property. If no such models exist, the
property holds. Models of the formula are counterexam-
ples that explain why the property does not hold. Thus,
the verification task is to find models of formulas.

To search for models of formulas, we use Büchi reg-
ular transition systems, defined below. They play the
role of Büchi automata in the automata-theoretic ap-
proach but for LTL(MSO) instead of LTL. A Büchi reg-
ular transition system is an automaton whose states are
words and where the transition relation is represented
using a regular set. We say that a length-preserving re-
lation R on Σ∗ is regular if the set (of words over Σ×Σ)

(w(1), w′(1))(w(2), w′(2)) · · · (w(n), w′(n))

such that (w,w′) ∈ T is regular. The transition re-
lation of a BRTS is given by such a regular length-
preserving relation, which can also be described by a
finite-state transducer — a finite-state automaton over
pairs of words.
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Definition 2. (Büchi Regular Transition System)
A Büchi regular transition system (BRTS) over an

alphabet Σ is a tuple (Σ∗, I, T ,F) where

– I ⊆ Σ∗ is a regular set of words over Σ called the
set of initial configurations,

– T ⊆ Σ∗ ×Σ∗ is a regular length-preserving relation
on words over Σ, called the transition relation, and

– F ⊆ Σ∗ ×Σ∗ is a regular length-preserving relation
on words over Σ, called the set of final transitions.

An accepting run of (Σ∗, I, T ,F) is a matrix M such
that

– M(0) ∈ I,
– (M(i),M(i+ 1)) ∈ T for any i ≥ 0, and
– (M(i),M(i+ 1)) ∈ F for infinitely many i. ut

In the previous section, we showed how to trans-
late a formula in LTL(MSO) into an equivalent formula
in Büchi Normal Form. This form is characterized by
BRTS.

Theorem 2. For every formula ϕ in Büchi Normal Form,
there is a Büchi regular transition system (Σ∗, I, T ,F)
such that, for every matrix M , we have M |= ϕ if and
only if M is an accepting run of (Σ∗, I, T ,F).

Proof. Let ϕ be in Büchi Normal Form

φI ∧2φT ∧23φF

and (Σ∗, I, T ,F) be the BRTS such that for all matrices
M :

– M(0) ∈ I ⇐⇒ M |= φI and
– (M(0),M(1)) ∈ T ⇐⇒ M |= φT and
– (M(0),M(1)) ∈ F ⇐⇒ M |= φF .

The BRTS (Σ∗, I, T ,F) exists because φI , φT , φF
are formulas in MSO, and thus can be translated into
finite-state automata. ut

Just like in the automata-theoretic approach, check-
ing models of a formula thus reduces into checking for
accepting runs of a BRTS. Since the transition relation of
a BRTS is length-preserving, the existence of an accept-
ing run can be checked by searching for a reachable loop
which contains an accepting state. Unlike the automata-
theoretic approach, however, the set of states of a BRTS
is infinite, requiring new techniques for finding accepting
runs.

The procedure we use for finding accepting runs can
in principle be described as follows. First, the set of
reachable states is computed as Inv = I ◦ T ∗. Sec-
ondly, loops are found by identifying identical pairs in
(F ∩ T ∩ (Inv×Inv))◦T ∗. Thus, the problem reduces
to computing transitive closures and reachability sets.

We have verified safety properties with our tool for
regular model checking with techniques for computing
transitive closures and reachability sets from [8,2], as
well as liveness properties for some of the examples. Ex-
ecution times are given in Table 1.

Safety Liveness

Token Pass 5.5 16.0
Token Ring 8.4 9.8
Bakery 13.9 44.2
Burns 39.6
Szymanski 34.3
Dijkstra 36.4
Termination Detection 38.0
Alternating Bit 179.2
Sliding Window 1687.2

Table 1. Experimental Results: Running times (in seconds) for
verifying safety and liveness properties of the models in the paper

9 Conclusions

We have presented the logic LTL(MSO) for specifying
properties of a class of parameterized and infinite-state
systems, whose state vector can be modeled as a finite
word of arbitrary length. By a sequence of modeling ex-
amples, we showed how this logic can be used to model
and specify different types of protocols. We presented
a technique for verifying that a system model satisfies
a specification, where both the model and the specifi-
cation are formulated in LTL(MSO). This technique is
a natural extension of the automata-theoretic approach
for finite-state model checking [38,39], and reduces the
verification problem to checking whether a Büchi regular
transition system has some accepting runs. In general,
this problem is undecidable, but decidability results for
certain classes have been obtained [22]. We have imple-
mented techniques for checking whether BRTS have ac-
cepting runs, which work well on a number of examples.
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