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Abstract. This paper is concerned with the problem
of checking, by means of testing, that a software com-
ponent satisfies a specification of temporal safety prop-
erties. Checking that an actual observed behavior con-
forms to the specification is performed by a test oracle,
which can be either a human tester or a software module.
We present a technique for automatically generating test
oracles from specifications of temporal safety properties
in a metric temporal logic. The logic can express quanti-
tative timing properties, and can also express properties
of data values by means of a quantification construct.
The generated oracle works on-line in the sense that
checking is performed simultaneously with observation.
The technique has been implemented and used in case
studies at Volvo Technical Development Corp.: a cruise
control module and a throttle module.

1 Introduction

Embedded computer systems are increasingly employed
in safety-critical applications, such as cars, airplanes,
etc. Their functionality must therefore be thoroughly
validated before being deployed in their actual environ-
ment. Of particular concern is to ascertain that they
meet safety requirements. For instance, in a car, an acti-
vated cruise control must be switched off when the driver
presses the braking pedal. All techniques and tools that
can increase confidence in the functioning of an embed-
ded system are applicable: special-purpose languages for
specification and design, compilers and code generators,
and testing and verification techniques for validating the
specification and the code.

* This work was supported by VINNOVA within the ASTEC
competence center and by Volvo Technical Development Corpora-
tion

Testing is one of the most important techniques to
check that a component satisfies safety requirements. It
has the advantages that it is easy to conduct and that
source code need not be available: When a system is com-
posed of components that are implemented by different
subcontractors, source code is often not available, and
testing may be the only means to check conformance to
safety requirements.

To obtain a high degree of confidence, the testing
procedures should subject the system to a wide range of
input signals, and check that the behavior of the system
conforms to its safety requirements. It is tedious to per-
form a large number of tests manually; test execution
should therefore be automated in order to cover a large
range of possible input values. Two major problems in
both manual and automated testing are the following.

1. To select appropriate inputs to the system, in or-
der to investigate its behavior under a variety of
operating and failure conditions. Ideally, the selec-
tion should reveal as many potential deficiencies of
the system as possible, using the available resources
(time, number of tests, etc).

2. To check that the output of the system conforms to
its requirements, in particular safety requirements.
This problem is often referred to as the oracle prob-
lem.

These two problems can be considered separately from
each other. In this paper, we address the oracle problem.

A common approach to the oracle problem is to pre-
pare a number of test cases or test sequences, each of
which is a predefined sequence of input and correspond-
ing output values. This approach works well only if the
system under test is deterministic, i.e., if output values
are uniquely determined by input values and their order-
ing in time, an assumption that is not valid in general
for distributed embedded systems.

An alternative approach that we consider in this pa-
per is to generate a test oracle from the safety require-
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ments. A test oracle is a separate module, which observes
both the input and the output of a component, and is
able to determine whether the observed sequence of in-
puts and outputs conforms to the (safety) requirements
for the system. This approach does not assume unique
output values, and solves the oracle problem in one con-
struction. A potential problem is that it may not be
trivial to construct a test oracle for an arbitrary require-
ment.

The structure of our approach is illustrated in Fig-
ure 1, which shows a module that generates input values
to the component under test. These inputs and the gen-
erated outputs are observed by the test oracle, which
reports violations of the component’s requirements.

In practice, test oracles are usually constructed man-
ually in some programming or scripting language from
a specification or from an informal understanding of the
requirements. In this paper, we instead advocate to gen-
erate oracles from requirements written in an abstract
specification language, which can be used both for docu-
mentation, validation, formal verification, and test oracle
generation. The advantages of this are that formulation
of requirements is separated from the technicalities of
testing, and that requirements need only be maintained
in one form when they are changed. Such a specifica-
tion language should be able to express properties that
describe the systems’ behavior over time, such as:

whenever the input signal val has a value which
exceeds 5, the output signal alert will be true
within 0.3 seconds,

or such as:

when a positive edge of the input signal acc oc-
curs, the output value ref-speed must start to in-
crease until it reaches the value maz-speed. Be-
tween the start and the end point, the increase
should correspond to an acceleration of 0.5 km/h/s.

Temporal logic [16] is a family of specification formalisms
that have been used mainly for formal verification. Sev-
eral model checkers (e.g., SPIN [12] and SMV [18]) use
temporal logic to specify requirements to be checked.
Some temporal patterns are easily represented in tem-
poral logic. There are also many requirements which re-
sult in clumsy formulas, and which could be more easily
formulated in a procedural formalism for defining test
oracles more directly, or in some sequence diagram like
formalism. An advantage of a logical formalism is the
availability of operators, by which new requirements can
be composed from existing parts. As a support for tem-
poral logic specification, Dwyer et al. [5] have proposed
a pattern system containing the most widely used types
of temporal formulas. They found that a vast majority
of specifications used in model checkers are covered by
these patterns.

The generation of a test oracle from a temporal logic
formula is similar to the problem of generating an au-
tomaton which accepts the set of behaviors that are

defined by a temporal logic formula. This problem is
well-understood for propositional temporal logics, and
is implemented in model-checkers such as SPIN [12].
Recently, the techniques for implementing small Biichi
automata efficiently from temporal logic formulas have
been significantly improved [3,6,25,9]. A difference be-
tween model checking and testing is that an oracle for
model checking need not be deterministic, since a model
checker has access to a complete system model and can
consider all possible outcomes of nondeterministic choices
in a tester (e.g., by backtracking). Of course, a determin-
istic oracle is likely to make verification faster by reduc-
ing backtracking, but backtracking cannot be eliminated
if the system model is nondeterministic. In contrast, an
on-line test oracle should preferrably be deterministic,
since it is difficult to backtrack during testing.

In the context of testing, generation of oracles has
been considered for temporal logics with discrete time [4,
11,20,21,24] Our work differs from that work, mainly by
considering a richer logic which contains past operators,
metric time, and can handle data values by means of a
quantification construct.

Since there are many different temporal logics with
metric time, our method for constructing test oracles
should be easily adaptable to new logic constructs. We
have therefore tried to make it syntax-directed, and to
focus on general principles which can be adapted to other
similar specification constructs.

As a specification language for requirements, we have
in the case studies at Volvo used TRIO, which is a metric
temporal logic that has previously been used for specify-
ing safety requirements of embedded system components
at Volvo [19]. TRIO is a first-order logic with special
constructs for handling metric time. It is very expres-
sive, and can easily express undecidable properties. In
this presentation, we will instead use a more restrictive
temporal logic, which can only express safety properties,
and which can express properties of metric time and of
data using so-called freeze quantification [2]. Intuitively,
this construct has a natural operational interpretation
as assigning the value of an expression to a variable in a
temporal formula.

We have implemented the translation to test oracles,
and used it on safety requirements for two softare mod-
ules provided by Volvo Technical Development: a Cruise
controller and a torque controller. As the target lan-
guage for constructing test oracles, we have used FIL,
a language used by Volvo for fault-injection in testing
computer components in cars. A FIL program executes
cyclically. In each cycle the program reads output val-
ues from the component, performs calculations, and then
writes input values of the components and updates in-
ternal variables of the FIL program.

Related Work. Testing automation for embedded sys-
tems has been addressed in the framework of the lan-
guage LUSTRE. Ouabdesselam et al [21,22] and Ray-
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Fig. 1. Role of Test Oracle

mond et al [24] expresses requirements as synchronous
observers in LUSTRE. These can be seen as test oracles
that are expressed in a high-level executable language.
Raymond et al [24] also present methods for generat-
ing relevant inputs in test sequences. Our specification
language is more expressive than LUSTRE.

Kesten et al [13,14] present algorithms for trans-
forming propositional temporal logic with past opera-
tors into automata for use in model-checking. In this
work, the resulting automaton form can be highly non-
deterministic, making it non-suitable for test oracles.
Fisher [8] presents a transformation of temporal logic
into an executable form, where nested temporal formulas
are flattened by introducing new variables, and where a
formula is decomposed to reveal how the past affects the
future. Fisher handles arbitrary propositional formulas
with past and future operators. The resulting programs
exhibit nondeterminism, which is handled by backtrack-
ing.

Generation of test oracles is considered by O’Malley
et al. [20], who present a technique for automatically
generating test oracles from formulas in GIL (Graph-
ical Interval Logic), an interval-based temporal logic.
The translation resembles the generation of determin-
istic finite automata from regular expressions. GIL can-
not express quantitative timing properties. The Tempo-
ral Rover [4] is a tool which generates executable code
in, e.g., C, C++, or Java, from temporal logic assertions
that are included as comments in the source file. The
Temporal Rover has a similar function as our test oracle
generator. The logic considered by the Temporal Rover
does not have a quantification construct. Havelund and
Rosu [11] describe how to synthesize oracles for different
fragments of linear past-time logic, and how the oracle
code can be made to run efficiently. They do not consider
future operators, metric time, or quantification. Gener-
ation of test oracles have also been considered in the
context of simulation, where they are usually called sim-
ulation checkers. An example is FoCs [1], developed at
IBM Haifa Research Laboratory, which generates simu-

lation checkers from propositional temporal logic speci-
fications.

Approaches to generating oracles for procedures in-
clude Peters and Parnas [23], who derive oracles for input-
output specifications from a formal notation based on
boolean expressions and bounded quantification.

Mandrioli et al. present a technique for test case gen-
eration from TRIO specifications. Instead of generat-
ing an oracle, they generate execution sequences which
should be observed when the system executes. A major
problem with this approach is that each execution se-
quence (test case) must predict the outputs and timing of
all outputs of the system. This can only be done for com-
pletely deterministic systems, which is rather restricitve
since a specification usually allows some freedom in the
timing of output events within certain constraints. In the
nondeterministic case [15, Sec. 5], a “history checker” [7]
can check whether output conforms to the specification.
This history checker is off-line, i.e., it can only check a
completed behavior.

Our case studies owe much to the specification of a
cruise controller in TRIO developed by Nielsen [19]. A
full version of the specification case studies presented in
this paper have appeared in the report [10].

Outline. In the next section, we present the execution
model for components in embedded systems and test or-
acles. Section 3 presents our temporal logic. The method
for generating test oracles from this logic is presented in
Section 4. A discussion of how the translation was ap-
plied to a case study specification is contained in Sec-
tion 6. Conclusions and directions for future work are
presented in Section 7.

2 System Model

We assume that a system, or a component of a system,
can be observed through a set of system variables, whose
values change over time. We will not formally distinguish
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between input and output variables, since they are ob-
served in the same way by the test oracle (such a distinc-
tion would however be important when selecting input
values). We assume that a test oracle observes the system
periodically, at a potentially infinite sequence of time in-
stants, and that there is a constant delay between any
two consecutive observation instants. The delay could,
e.g., be taken as the duration of a basic control loop
of the component during which inputs are read, internal
computations are carried out, and outputs are generated.

Time instants are totally ordered by <. For a time
instant ¢, let ¢t denote the succeeding time instant, and
t~ denote the preceding time instant. We adopt the con-
vention that ¢~ is ¢ when ¢ is the initial time instant. A
state is a mapping from system variables to values. We
use s to range over states, and s[v] to denote the value of
variable v in state s. A behavior is a mapping from the
infinite sequence of consecutive time instants to states.
We use o to range over behaviors, and o(t) to denote
the state at instant ¢ in the behavior . Thus o (¢)[v] is
the value of variable v at time instant ¢ of the behavior
.

In the following, let T = vy, ..., v, be the set of sys-
tem variables. We assume a distinguished variable now,
which always contains the value of the current time, i.e.,
it can be thought of as an idealized system clock. Note
that the advance of now need not be synchronized with
the successive time instants. For instance, if the distance
between successive time instants is 3 microseconds, then
now advances by 3 microseconds between successive time
instants.

3 Metric Temporal Logic

A temporal logic is a language for expressing properties
of behaviors. For each time instant ¢ and behavior o, the
value of formula ¢ at time instant ¢ in the behavior o,
denoted o(t)[¢], can be either true or false. As an exam-
ple, a formula can say that “in exactly 3 time instants,
the variable x will be larger than in the current time in-
stant”. Such a formula may be true or false, depending
on the time instant at which it is evaluated.

Let us now define the temporal logic used in this
paper. We assume a given vocabulary for forming ez-
pressions over system variables, consisting of constants,
function and predicate symbols, such as <, +, mod, etc.
We assume that each symbol in this vocabulary has a
direct correspondence in the language for programming
test oracles. Thus, an expression over system variables
can be directly translated into a corresponding expres-
sion in the target programming language for test oracles.
Examples of expressions are over system variables, such
as v1 +4, v1 < v, etc. The evaluation of system variables
in states is extended to the evaluation of expressions in
the natural way. For instance, o(t)[v1 + 4] is defined as
o(t)[v1] + 4.

Two special cases of expressions are as follows.

— A boolean-valued expression is also called a state for-
mula. Examples of state formulas are v; < vy and
iseven(vs).

— A distance termis an integer-valued expression, whose
value is always nonnegative. In formulas, distance
terms are used to denote distance in time.

Temporal formulas are formed from state formulas and
distance terms by applying temporal operators. Let ¢
and 1 range over temporal formulas, and T range over
distance terms.

— Any state formula is also a temporal formula, ex-
pressing that the state formula holds at the current
time instant.

— o ¢ states that ¢ will hold in the next time instant.

— o ¢ states that ¢ was true in the previous time in-
stant. By convention, e ¢ is equivalent to ¢ in the
initial time instant.

— ¢ W ¢ states that ¢ will hold at all time instants from
the current time instant up to the next time instant
at which v holds, or that ¢ holds at all present and
future time instants.

— ¢ S 1 states that 1 held at some past time instant,
and that ¢ held at all time instants between the last
time instant at which ¢ was true and the current
time instant.

— ¢ B 1) is the past-time analogue of ¢ W 1), and states
that either ¢ S v, or that ¢ was true at all previous
time instants.

— ©.¢ states that ¢ has been true for at least 7 units
of absolute time, where 7 is evaluated in the current
time instant.

— ¢1 A ¢2 and ¢ V ¢ are temporal formulas if ¢; and
@2 are temporal formulas.

From the temporal operators defined above, additional
operators can, in the usual way, be defined as follows.

— O ¢ states that ¢ will hold at all present and future
time instants. It can be defined as O ¢ = ¢ W false

— B ¢ is the past time analogue of O ¢, and can be
defined as O ¢ = ¢ B false

— © ¢ states that ¢ has been true sometimes in the
past, and can be defined by © ¢ = true S ¢.

— ©,¢ states that ¢ has been true for at least one time
instant during the last 7 units of absolute time, where
7 is evaluated in the current time instant, and can
be defined by ©.,.¢ = <, —¢.

Quantification In order to express properties of data
values and metric time, we use a special form of quantifi-
cation, so-called “freeze quantification”, which is a gen-
eralization of the quantification presented by Alur and
Henzinger in the logic TPTL [2]. If exp is an expression
(without temporal operators) and z is a variable, then
the formula z := exp.¢ states that ¢ is true with the
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a(t)e ¢] = o(t™)[¢]

a(t)le ¢] = o(t7)[¢]

o(t)e W] =3 >t. o)) A V"t <t <t o(t")g]] Vv [V >t.o(t)[e
a(t)[¢ S ] = 3#H <t.o)[yY] AN V't <t' <t.a(t")]e)]

a(t)[¢ B ) =<t a(t')[tp] ANVt <t" <t.ot)[e]] Vv [Vt <t.ot)[e]]
o(t)[0 ¢] = V' >t.ot')g]

a(t)[3 ¢ =Vt <t.o(t)[d

a(t)[© ¢ = 3 <t.o(t')[¢]

o(t)[O-¢) = V' >t : (o(t')[now] < o(t)[now] +a(t)[7]) . a(t')[¢]

o (t)[C- 9] = 3t >t : (ot')[now] < o(t)[now] +a(t)[7]) . o(t')[¢]

o(t)[©- 9] = Vt' <t (o(t)[now] — o(t)[7]) < o(t')[now] . o(t')[¢]

o(t)[©r 9] = 3t <t : (o(t)[now] — o(t)[7]) < o(t')[now] . o(t')[¢]

o(t)z :=exp.g] = o(t)[¢[o(t)[exp]/z]

Table 1. Semantics of Temporal Operators and of Quantification

current value of exp substituted for z. Note that z is
a logical variable, used only in the formula. We assume
that each logical variable z is quantified at most once
in a formula, and that logical variables are distinguished
from system variables (in order to avoid name clashes in
the usual way). The semantics for freeze quantification
is formally defined as

o(t)[z := exp.g] = o(t)[¢lo(t)exp]/z]]

Intuitively, in a formula z := exp.¢, the current value
of exp is “frozen” (recorded) in the variable z before
evaluating the formula ¢. By referencing now in exp,
this can be used to express time bounds. For instance,
the formula

z:=now . (pAnow <z +5 W (now>z+5)

states that the formula ¢ must be true for 5 time units
from now on. We will use = . ¢ as a shorthand for z :=
now . ¢. The property can also be expressed as

z .0V (now >z +5))

The idea of freeze quantification to freeze the current
time was presented by Alur and Henzinger [2]. We can
extend the idea to freezing the value of any expression,
not just the value of now. For instance, the formula

T.Yy:=v.
now<z+3 W(w=y+5 A now<z+3)

states that the variable v will have increased by 5 within
3 time units,

We can define bounded variants of the “henceforth”
and “sometimes” operators in terms of freeze quantifi-
cation, as follows.

— O,¢, defined as d:= 7. z. O (¢ V (now > x + d)),
states that ¢ is true from the current time instant
onwards for at least 7 units of absolute time. If 7 is a
constant, the definition can be simplified to z. O (¢V
(now >z + 7)).

— .0, defined as

di=1.2.(now<z+d) W (¢ Anow <z +d) ,

states that ¢ will be true at some present or future
time instant within the next 7 units of absolute time.

A formula is called a past formula if it has no future-
time temporal operators, and a future formula if it has
no past-time temporal operators.

Semantics over Infinite and Finite Behaviors Formally,
the semantics of the operators presented above can be
defined as in Table 1, which defines when an infinite be-
havior satisfies a temporal logic formula at a particular
time instant. We say that a behavior o satisfies a tem-
poral formula ¢ is o(t)[¢)] is true, where ¢ is the initial
time instant.

The semantics in Table 1 is a standard way (as in,
e.g., [16]) to elegantly define the meaning of temporal
operators. However, it is not directly usable for generat-
ing test oracles, since an oracle will never “see” an entire
infinite behavior, only a finite sequence of time instants,
which can be regarded as a finite prefix of an infinite be-
havior. We shall therefore define when the oracle should
report violations of a specifications on the basis of a fi-
nite observation.

Let a behavior prefix be a mapping from a finite prefix
of the sequence of time instants to states. We say that
a behavior o extends a behavior prefix p if o and p are
equal on the domain of p.

Definition 1. A behavior prefix p violates a temporal
formula ¢ for time instant ¢ if there is no behavior o,
which extends p, for which o(t)[¢] is true. A behavior
prefix p violates a temporal formula ¢ if p violates ¢ for
the initial time instant.

Intuitively, a behavior prefix violates a formula if it
cannot be extended to a behavior that satisfies the for-
mula. In such a situation, it seems reasonable to say that
the formula is violated.
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The logic defined in this paper is designed in order
to express so-called safety properties; these are special
in the the sense that if a behavior o does not satisfy a
safety property ¢, then o extends some behavior prefix
that violates ¢. Formally, a formula ¢ defines a safety
property if whenever o(t)[¢] is false for behavior o and
time instant ¢, then o extends a behavior prefix p that
violates ¢ for t. Intuitively this means that if a behavior
does not satisfy a safety property ¢, then ¢ will be vio-
lated within a finite number of time instants. This can
be paraphrased by saying that a safety property is of
the form “something bad will not happen”; here “bad”
could be taken to denote “violation”.

We intend to establish that all formulas expressible
in our logic are safety properties. If we exclude quan-
tification, this is a well-known result. To include quan-
tification in the result, we must be a little more careful,
since subformulas can have free variables that are bound
in some outermore freeze quantification. We say that a
formula ¢ with free variables is a safety property if each
instance of ¢ is a safety property.

Theorem 1. All formulas expressible in the logic of this
section define safety properties.

Proof. By structural induction over the formula. Let us
consider some of the most interesting cases:

— Consider the formula O ¢, and assume that ¢ is a
safety property. Assume that o(t)[¢] is false. Then
there must be some time instant ¢ > ¢ such that
o(t')[¢] is not true. Since ¢ is a safety property, ¢ is
violated for ¢' by some behavior prefix p, which by
definition then also violates O ¢ for .

— Consider the formula z := exp . ¢, and assume that
¢ is a safety property. Assume that o(t)[z := exp . @]
is false, i.e., o(t)[¢[o(t)[exp]/x]] is false. Since by as-
sumption @[o(t)[exp]/z] is a safety property, it must
be violated for ¢ by some behavior prefix p, which by
definition also violates x := exp . ¢ for t.

Other cases are treated in a similar manner.

We note that Theorem 1 crucially depends on the fact
that the logic does not have negation, except in expres-
sions. For instance, the formula ~0O v # 8 is not a safety
property. It is satisfied by a behavior o if ¢ has no state
where v = 8. However, it is not possible to find any pre-
fix of such a o, which cannot be extended by some state
where v = 8. For convenience, we can allow negation of
past formulas, since the negation of a past formula can be
rewritten into an equivalent past formula without nega-
tion outside a temporal operator using the equivalences

e‘rd) _|<>T_1¢
pBY =[S (¢ A1)
¢S Y = B (—¢A )]

We can then also allow implications ¢1 = ¢2 where
¢1 is a past formula.

4 Translating Temporal Logic Formulas to Test
Oracles

In this section, we present a technique for translating
temporal logic requirements into executable test oracles.
The test oracles will be described on a general level, in
terms of their state variables and how they are main-
tained. In Section 5, we will report from an application,
where oracles are represented in a concrete language
used in test equipment. The input to the translation is a
temporal logic formula ¢ which expresses a requirement
of a system component. The translation shall generate
a test oracle, i.e., an executable program module which
observes the input and output variables of the system
component, and reports when the observed behavior vi-
olates @. Violations could be reported, e.g., via a variable
written by the test oracle and read by some entity which
monitors the test execution.

As described in Section 2, we assume that the oracle
observes the system periodically at the sequence of con-
secutive time instants. The oracle maintains information
in local variables, but must not affect the variables of the
tested component. At each time instant, it reads values
of the (input and output) system variables of the tested
component, and then uses these values, together with the
values of its internal variables, to compute new values of
its internal variables. We assume that the oracle is suffi-
ciently fast to be able to execute its local computations
generated at one time instant before the occurrence of
the next time instant.

We assume that the requirement @ to be checked
satisfies the following properties.

— future or quantification operators must not occur in-
side past operators.

— abound variable (in a freeze quantification) does not
appear inside a past operator.

Our presentation of the oracle generation has three parts.
We first describe how the oracle handles past subfor-
mulas. These can be handled separately, since they do
not contain future operators or quantification. In Sub-
section 4.2 we describe how formulas without quantifica-
tion are handled. Finally, in Subsection 4.3, we present
how to extend the translation to consider formulas with
quantification.

4.1 Handling of Past Subformulas

A general strategy of the oracle that checks & is to con-
tinuously maintain the values of all past subformulas of
&. This is done by maintaining the following variables:

— For each past subformula ¢ of ¢ which either has a
past operator different from e as main connective, or
such that e ¢ is a subformula of ¢, the oracle has
a local log variable, here denoted log(¢). Its value is
continuously updated to be equal to o(t)[¢] at any
time instant ¢.
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— For each subformula of form ©,¢ the oracle has a
local timer variable, denoted timer(¢), which intu-
itively measures for how long ¢ has been continuously
true.

Let us now describe how the oracle updates timers and
log variables.

Timers. Each timer of form timer(¢) is maintained by
starting and resetting it. It is inactive whenever ¢ is false
and active whenever ¢ is true.

— In the initial time instant, the timer timer(¢) is in-
active if ¢ is false, and active with value 0 if ¢ is
true.

— The timer timer(¢) is started whenever ¢ is true in
the current time instant and false in the preceding.

— The timer timer(¢) is reset and stopped when ¢ is
false in the present time instant, and true in the pre-
ceding, thus becoming inactive.

Proposition 1. Under the above rules, we can infer
that whenever ¢ is true at time instant t, then the timer
timer(¢) is active and satisfies

a(t")[now] + o(t)[timer(¢)] = o(t)[now]

where t' is the earliest time instant such that ¢ is true
at all time instants from t' up to and including t.

Log Variables To maintain correct values of log vari-
ables, the oracle should at each time instant update the
value of each variable log(¢) so that its value at time in-
stant ¢ becomes o(t)[¢]. This is done by assigning log(¢)
the value of the expression x(¢), which is defined re-
cursively below. Intuitively, x(¢) expresses the current
value of ¢ in terms of current values of system variables
and previous values of subformulas of ¢.

x(9) = ¢ if ¢ has no temporal operators
X(#1 A d2) = x(é1) A x(#2),

X(#1V ¢2) = x(é1) V x(#2)-

x(e¢)  =log (¢)

x(@S¥) =x@) vV (x(¢) Alog™ (¢ S )
x(@By) =x@®) vV (x(¢)Alog™ (¢ B 1))
x(B¢) =x(¢) Alog™ (B ¢)

x(©¢)  =x(¢)Vieg (¢ ¢)

x(©-9) = x(¢) A timer(¢) > [7]

x(©-9) = x(¢)V timer(=¢) < |7]

Here log™ (¢) denotes the value of log(¢) in the previous
time instant, and |7| denotes the largest multiple of the
time between successive time instants, which is less than
or equal to 7.

Using the above definitions, the value of log(¢) at
time instant ¢ can be obtained from system variables
and timers at time instant ¢ and from log variables at
time instant ¢~. In the oracle code, care should be taken
so that at each time instant, all uses of a log variable
(e.g., in right-hand sides of assignments) are performed

before the log variable is updated. The assignments can
be guarded by a boolean expression which is false when
log(¢) need not be changed.

The initial values for each log variable log(¢) is de-
fined by the expression Z(¢), which is defined as follows.

@) = ¢ if ¢ has no temporal operators,
¢1 A ¢2) =L(¢1) NI(2),
¢1V ¢2) = I(¢1) V I(2).

Proposition 2. With the previous rules for maintain-
ing log variables and timers, we have after the updates
at time instant t

o (t)[log(¢)] = o (t)[¢]
for each log variable log(p).

Proof. By induction over successive time instants, check-
ing that the definitions for each operator in terms of x(¢)
is correct.

Example 1. Asillustration, we will consider two require-
ments taken from the cruise control module case study.
The first requirement states that

(ccont A —e —ccont) = e (—ccont S cca)

should hold at all time instants, i.e., that the signal ccont
can become true only if cca has been true at least once
since ccont was true the last time. The requirement is
checked by introducing the log variables log(—ccont) and
log(—ccont S cca), which are updated using the rules:

log(—ccont) = -ccont
log(—ccont 8 cca) = cea V (—ccont A log™ (—ccont S cca)

A violation is reported if the expression
(ccont A —log™ (—econt)) = log™ (—econt S cea)
evaluates to false.

Ezxample 2. Consider the requirement that at all time
instants

©1000[abs(vs — vsa)/vs > 0.05] = -cca ,

stating that if two independent measurements, vs and
vsa, of the vehicle speed for at least 1000 time units
differ more than 5% (with reference to wvs), then the
signal cca must be false. A false value of cca will disable
the automatic cruise control, motivated by the fact that
the deviation between vs and wvsa indicates a potential
problem.



8 J. Hakansson, B. Jonsson and O. Lundqvist: Generating On-Line Test Oracles

The generated oracle has a timer variable, named
timer(abs(vs — vsa)/vs > 0.05) which is started when-
ever abs(vs —wvsa)/vs > 0.05 becomes true. It will report
a violation whenever the boolean expression

—(timer(abs(vs — vsa)/vs > 0.05) > [1000]) V —cca

becomes false.

4.2 Formulas without Quantification

In this subsection, we assume that there is no freeze
quantification in ¢. By maintining the values of past-
time subformulas in log variables, as described in Subsec-
tion 4.1, we need only be concerned with the problem of
handing future-time operators, o, W, and O. The strat-
egy used by the oracle to detect violations of ¢ will be to
continuously maintain a “derivative” of &, which repre-
sents the requirement on the remaining behavior, given
what has been observed so far. At initialization, this re-
quirement is equivalent to €. At each time instant ¢, the
oracle updates the current derivative of @ to represent
the requirement on the computation from time instant
t*T and onwards, given that the sequence of states from
the initial time instant up to ¢ has been observed. This
update is based on system and log variables at time in-
stant ¢t and on the previous value of the derivative. When
the derivative becomes unsatisfiable (equivalent to false),
the oracle reports a violation of &.

Our mechanism for maintaining derivatives of ¢ builds
on the correspondence between temporal logic and au-
tomata [26,17], using the fact that any formula ¢ in
propositional temporal logic can be represented by an
automaton over infinite words, whose runs correspond
to the set of behaviors that satisfy ¢. Each state of such
an automaton can roughly be considered as a derivative
of ¢, which represents the requirement on the remain-
ing behavior, given what has been observed so far. The
standard construction of an automaton (e.g., in [26]) in
general yields a nondeterministic automaton. Since the
test oracle ought to be deterministic, we can either de-
terminize this automaton, or (as we will do in this paper)
keep the automaton nondeterministic and maintain the
derivative as a set of possible current automaton states,
thus performing a subset-construction “on-the-fly”.

Let us now describe the oracle construction more pre-
cisely. Let @ be the requirement to be checked. Define a
core subformula of & as a formula ¢ which either has W
or O as its main operator, or for which o ¢ is a subfor-
mula of ¢. We transform @ into a (possibly nondetermin-
istic) automaton, in which each state (henceforth called
node, to avoid confusion with states of the tested system)
corresponds to a conjunction A ¢; of core subformulas

j

¢;. For each node, the oracle has a boolean variable, here
denoted at(A ¢;). At each time instant ¢, these variables
i

are updated so that the requirement on the computation

from time instant t* onwards is equal to the disjunction
of all conjunctions A ¢; for which at(A ¢;) is true.
J J

The rules for updating the variables of form at(A ¢;)
g

are obtained from the construction for transforming a
temporal logic formula into an automaton, as follows.
For each conjunction A ¢;, we find an equivalent for-
J

mula of form

/j\¢j V(pi A °Q¢z’k)

where each p; is a past formula, and each Q(ZS““ is a

conjunction of core subformulas of . The rewriting is
carried out by using the following equivalences to de-
compose each core subformula into two parts: one which
states properties about the past and present behavior,
and one which describes the behavior from the next time
instant and onwards.

SWH=9 V (& A o (8 W)
0¢ =¢AoD¢

To motivate the rule for YW, we note that a formula of
form ¢ W 1 is equivalent to saying that either 1) is true
now, or that ¢ is true now and ¢ W ¢ is true in the next
time instant. After using the above rules, the formula
/J\qﬁj should have been rewritten into a boolean combi-

nations of formulas, each of which is either a past formula
or has o as its main connective. The result is rearranged
into a disjunction of conjunctions, and finally the o op-
erators are moved outside conjunctions, if necessary, to
arrive at the above form.

Using the equivalence

Ao = (i A opdi)

(3

the rules for maintaining the control variables of the or-
acle can be formulated as follows.

— The initial values of the variables at(A ¢;) are ob-
i

tained by transforming & into a disjunction of con-
junctions. This represents “pre-initial” requirements,
which should be updated by using the values of sys-
tem and log variables at the first time instant.

— At each non-initial time instant ¢, the value of each
variable of form at(Q ¢ir) should be true if there is

some conjunction A ¢;, decomposed as
J
Ao = (i A oA Pik)

J .
i

such that at(A ¢;) is true at time instant ¢~ and p; is
j

true at time instant ¢. If there is no such conjunction,
then at(/l‘c\ ¢ir) should be false at time instant ¢. If ¢ is

the initial time instant, the rule is the same, except
that at(A ¢;) should be true in the intialized state of
J

the oracle.
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— The oracle will report a violation whenever all boolean
variables of form at(A ¢;) are false.
J

The relationship between the control variables and the
requirement on the remaining computation is captured
in the following characterization.

Proposition 3. Assume the previous rules for main-
taining log variables, timers, and control variables. Then
a behavior o satisfies requirement @ if and only if at time
instant t it satisfies
/\ .
\i/(o A Gir)

where the disjunction is taken over all i such that the
variable a,t%\ oir) s true at time instant t.

Proof. By induction over successive time instants. Us-
ing the rules for decomposition, the derivative at time
instant ¢ is decomposed, and disjunctions whose past-
part is not satisfied by the system and log variables in
the current time instant are discarded.

Since the number of boolean variables of form at(A ¢;)
J

is bounded by the number of possible combinations of
subformulas of &, there may in the worst case be an
exponential number of such variables. In practice, this is
not a big obstacle, since requirements are usually rather
small, and since many of the variables at(/j\ ¢;) can often

be discarded, using a reachability analysis on the rules
for updating, since they can never become true in any
execution.

Ezxample 3. The requirement
¢ =0 (ccanc => o —cca)

states that whenever the button cccanc is pressed (i.e.,
the corresponding signal becomes true), the signal cca
must be set to false, meaning that it will be false in the
next time instant.

We see that there are three possible boolean control
variables: at(®), at(—cca A @), and at(—cca). From the
decompositions

] = (-ccanc Ao D)
V (o (—cca A D))
—cca NP = (—eca A —ccanc A o D)

V (—eea A o (—eca A D))

we see that the variable at(—cca) is unreachable since
there is no next-part of form o —¢ca in the above decom-
positions. The rules for updating the other variables are
as follows.

— at(®) is true if either it was true in the preceding
instant and ccanc is false, or at(—cca A &), was true
in the preceding instant and —cca A —ccanc is true.

— at(—cca A ) is true if either it was true in the pre-
ceding instant and cca is false, or at(®) was true in
the preceding instant.

A violation is reported if at(—cca A $) was true in the
preceding instant, and cca is true in the present.

4.8 Formulas with Quantification

Let us now consider how to extend the construction in

the previous subsection to formulas with quantification.

A future-time core subformula ¢ of & may then have free

variables, which are bound in some scope that includes

¢. We can think of these free variables as parameters of

¢. Whenever a control variable of form at(A ¢;) is true,
J

the oracle should therefore also maintain actual values
of the parameters of each ¢; in the conjunction A ¢;.
J

Thus, for each conjunction A ¢; the oracle maintains a
J

local variable for each parameter in some conjunct of
A ¢;. When at(A ¢;) is true, the values of these variables
J J

represent the “actual” values of the parameters of A ¢;.
J
When at(A ¢;) is false, the values of these variables is
J

irrelevant.

Unfortunately, this extension is in general not suf-
ficient to represent the requirement on the remaining
behavior. Two complications are the following.

— The requirement on the remaining computation may
need to use conjunctions in which the same core sub-
formula will appear several times, with different ac-
tual parameter values. As an example, let the original
requirement be

d=0z:=v.0u#zx

stating that the value of the system variable u is
never equal to a present or past value of v. Assum-
ing that the successive values of v are vg,vy,... the
requirement on the remaining behavior in the second
time instant may become

dANDOu#vg AN Du#uv

To represent this requirement, we need two instances
of the subformula O u # z. Continuing this example,
we see that there is in general no bound on the num-
ber of instances of a particular subformula that may
be needed in a conjunction.

— A similar problem arises when the requirement on the
remaining computation needs to use a disjunction of
two instances of the same conjunction of core subfor-
mulas. As an example, consider the requirement

P=u£0W (z:=v.u#0Wu=12z) ,

stating that w must be different from 0 until it be-
comes equal to some past value of v. The requirement
on the remaining behavior in the second time instant
may become

®Vu=v Vu=un

In order to represent such a requirement in the cur-
rent scheme, we would need at(u = x) to be true with
both the value vy and the value v; for the parameter
x.
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If problems of these types arise, we will handle them
by weakening the (representation of the) requirement on
the remaining behavior. It is then possible that some
violations are not reported, but the oracle will not report
false violations. This is done as follows.

— In cases where two different instances of a conjunct
would be needed in a conjunction, one of the in-
stances is dropped from the conjunction

— In cases where two different instances of a conjunc-
tion would be needed (corresponding to two disjuncts
in the represented requirement), we replace by true
those conjuncts that are instantiated differently. In
cases where an entire conjunction is replaced by true
the oracle will allow any future behavior, and thus
has no further function.

In some cases, we can avoid these drastic measures by a
semantic analysis of the requirement. In Subsection 4.4,
we present a simple subsumption mechanism, based on

monotonicity, to handle several commonly occuring cases.

We now present the modified oracle construction in
more detail. As already stated, for each conjunction A ¢;
J

of core subformulas of the original requirement &, the
oracle has a variable at(A ¢;) and variables that corre-
J

spond to the free variables (parameters) of the conjuncts
of A ¢;. The intention is that at each time instant ¢, the
J

requirement on the computation from time instant ¢*
and onwards is equal to

\VAC A Pk [di/z])

(2

where the disjunction is taken over all ¢ such that where
the disjunction is taken over all ¢ such that at(é\ i)

is true at time instant ¢, and where d; are the current
values of the parameters z; of /k\ ik -

The mechanism for updating the oracle variables is
obtained by transforming each conjunction A ¢; into an
J

equivalent formula as follows

Noi = i A ondi A0

2
where p; is a past formula, each /k\¢ik is a conjunction of

core subformulas of @, and where 6 is a “substitution” of
form 1 = e; A+ - Az, = ey, which states how variables

T1,...,T,m which are free in V(Pz A O/I'c\qsik) but still
i
bound in A ¢;, correspond to expressions e, ..., ey over
J
free variables of A ¢;. The transformation is carried out
J

using the same equivalences as before, i.e., the rules

SWY=9 V (6 A o($ W)
D¢ =¢AoD¢

plus the following rule for quantification

z:=exp.pdpNO = ¢ N (0 Az =expl) ,

where expf denotes the result of replacing in exp each
left-hand side z; of 8 by a corresponding right- hand side
e; of 6. This results in extending the current substitution
0 into (6 A z = exph).

If in some decomposition

V@i A ongu A 6)

K3

Npj =
J

some conjunction Q@k contains several occurrences of

the same subformula (with different parameters), then
all but one of these conjuncts are dropped. As a re-
sult, the right-hand side of the equivalence may become
weaker than the left-hand side.

The rules for maintaining oracle variables are now
formulated as follows.

— The initial values of the variables at(A ¢;) are ob-
j

tained by transforming @ into a disjunction of con-
junctions. Note that these conjunctions have no free
parameters.

— At each non-initial time instant ¢, and for each con-
trol variable at(Q ¢ik), consider all decompositions of

form

é.\¢j = \/ A oA ik A 6) ,

such that at(A ¢;) is true at time instant ¢~ and p; is
j

true at time instant ¢, where the values of non-system
variables in p; are obtained using the substitution 8
and current values of the parameters of A ¢;.

J

- If at(Q ¢ir) occurs only in one such decomposi-
tion, then at%\ ¢ir) should be true at time in-
stant t. The appropriate values of the parameters
of /1? ¢;, are obtained from the parameters of A ¢;

J
via the substitution 6.

- If at%\ ¢ir) does not occur in such a decomposi-

tion, then at%\ ¢ir) should be false at time instant

t.
- If at(/k\ @) occurs in several such decompositions,

for which the assignments to parameters would
be inconsistent, then the conjuncts that are af-
fected by inconsistent assignments are removed
(replaced by true). If the resulting conjunction
/k\¢,-/k does not appear in another such decompo-

sition, then at(Q ¢ir) should become true, other-

wise the pruning of inconsistently assigned con-
juncts continues.
— The oracle will report a violation whenever all
boolean variables of form at(A ¢;) are false.
J

As an illustration, consider the requirement

d=0zx:=v.0u#czx
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which states that for each time instant, there is never a
present or future time instant at which the value of w is
equal to the current value of v. Let the successive values
of v be vg,v1, . ... The decomposition of & is

P=u#zAho(Du#zANP)Az=v .

The decomposition of O u # z AP is (after renaming the
bound variable in @ to y to avoid name clashes)

Ut TANUFEY
S=No(0u#zAOu#yAD)
ANy=wv
To avoid the explosion of the formula, we weaken the
conjunction inside the o operator, e.g., to become

uZzrAuFy
& — Ao(Ou#zAP)
ANy=wv

An oracle that uses this decomposition, will in effect per-
form the weaker check that u is never equal to the first
or current value of v.

Proposition 4. Assume the previous rules for main-
taining log variables, timers, control variables, and quan-
tification. Then a behavior o satisfies requirement @ also
satisfies

V(oA i)

vk
at any time instant t, where the disjunction is taken over
all © such that at%\ oix) 1is true at time instant t.

4.4 Simplification by Monotonicity

In this subsection, we will propose a simple mechanism
which in some cases can avoid the weakening of the re-
quirement incurred by removing duplicate conjuncts, as
described in Section 4.3, which is based on a simple sub-
sumption mechanism.

Let < be the standard ordering on real numbers and
integers, and the ordering false < true on booleans. We
will call an expression increasing or decreasing wrp. to
an argument, if its value is increasing (decreasing) wrp.
to that argument. For instance,

— x > 7 is increasing in z, and
— x < 7 is decreasing in z.

We observe that the future-time temporal operators are
monotonic in all of their arguments, i.e., if the argument
becomes larger (i.e., “more true”), then the formula be-
comes larger. The same is true for conjunction and dis-
junction.

Monotonicity can be used for simplification of con-
junctions and disjunctions as follows. If @[] is a formula
which is increasing in z, then we can transform conjunc-
tions and disjunctions as follows.

¢lz] A gly] = ¢[min(z,y)]
¢lz] v gly] = ¢max(w,y)]

Let us consider some examples.

Ezxample 4. As afirst example, consider the requirement
Ob = Ojc, stating that whenever the boolean system
variable b is true, then the variable ¢ should be true for
at least 5 time units. The requirement is defined in terms
of freeze quantification as

¢=0(0 = z.0(cV(now>z+15)))
A decomposition of ¢ yields

—b A o
(cV (now > x +5))
V Ao (O(cV(now>z+5)AP)| ~’
A T = now

A further decomposition of O (¢ V (now > y + 5)) A &
(where we have renamed the free variable z to y to avoid
name clashes) yields

-bA(cV (now >y +5))
Ao (O (cV (now>y+5))AP)

(cV (now >y +5))
A (e V (now > z + 5))
O (eV (now >y +5))

Vilaoe A O (eV (now > z +5))
NP
|\ T =now

The expression now > x + 5 is decreasing in z, hence we
can use monotonicity to simplify the formula into

=bA(cV (now >y +5))
Ao (O (cV (now >y+5))AP)

(¢ V (now > max(z,y) + 5))
V [ Ao (O (cV (now > max(z,y) + 5)) A D)
AN T = now

As a further optimization, we could use the observation
that since y has previously been bound in a freeze quan-
tification, a free occurrence of y will always be bound
to a past value of now, implying that the expression
max(z,y) is always equal to z.

Ezxample 5. An example requirement from the cruise con-
trol module is

(e —igsw Nigsw) V (e igsw A migsw)]
$=0 | = )
& gqccont

stating that at an edge of the signal igsw, the signal
ccont must be set to false within d time units. Let us
use @[z] to denote

(now <z +d) W (—cecont A (now < z + d))
Let us also denote e (—igsw A igsw) V (e igsw A —igsw)

by e igsw # igsw, denote (e igsw # igsw) by e igsw =
igsw, and denote —ccont A (now < z + d) by ¢[z]. The
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requirement can then be expressed in terms of freeze
quantification as
¢ =0 [eigsw # igsw = z . ¢[z]] .
The occurrences of the past operator e cause the oracle
to have a variable log(igsw) to record values of igsw.
The relevant control variables will be of form at(®) and
at(® A ¢[y]), where the second conjunct has a parameter
y. Decompositions of these conjunctions become
d = eigsw=igswVy[z] Ao Az =now
V (now <z +d) Ao (P A P[z]) Az = now
(e igsw = igsw V Y[z]) A Yly]
Ao & ANz =now
vV (now < z+4d) Aly]
Ao (DA @z]) Az =now
V(e igsw =igswV ¢Y[z]) A (now < y + 4d)
Ao (DA Ply]) Az =now
V  (now < z+4d)A (now < y+4d)
Ao (DA @[z] Aoy]) Az = now

By monotonicity, ¢[z] Ad[y] is equivalent to #[min(z,y)],
and even to ¢[y] observing that we always have y < z
in the above situation. The same holds for ¢[z]. We also
note that we can simplify (now < z + d) to true if z =
now. After simplification, we get

PAPlY] =

@ = eigsw=igswVY[z] Ao ®Ax =now
Vo (@A @P[z]) Az = now
PPy = (e igsw = igsw V ¢Y[z]) AY[y]

Ao @Az =now
v yly]
Ao (DA ¢[z]) Az =now
V. (now <y+4d)
Ao (DA Q[y]) Az =now
The rules for updating the control variables become

— at(®) should be true if either at(®) in the preceding
instant and e igsw = igsw V Y[now] is true in the
present, or at(® A @[y]) was true in the preceding
instant, and (e igsw = igsw V Ynow]) A ¢¥[y] is true
presently.

— at(® A @ly]) should be true if either at(P) in the pre-
ceding instant, or if at(® A ¢[y]) was true in the pre-
ceding instant, and either ¥[y] or now < y+d is true
presently; the new value of y is set to now if ¥[y] is
true, otherwise y is unchanged.

An example where monotonicity cannot be applied is the
formula,

e —resume T
A resume
A speed < ref
—
v = speed. x.
o now < x + 2(ref — v)
w
speed = ref
A
speed = v = 0.5km/h/s
L now —

expressing that when a positive edge of the input sig-
nal resume occurs and speed is lees than ref, the output
value speed must start to increase until it reaches the
value ref. Between the start and the end point, the in-
crease should correspond to an acceleration of 0.5 km/h/s.
This formula is neither increasing nor decreasing in z
and v, due to the last subformula which expresses the
average acceleration over the time period at which the
variable speed attains the value ref.

4.5 Correctness

In this section, we consider soundness of the generated
oracle, meaning that it will not report false violations,
and completenss, meaning that violations are reported
within some reasonable delay.

Theorem 2 (Soundness). Whenever the oracle gen-

erated to check a formula ® has assigned all boolean vari-

ables of form at(A ¢;) to false, then the observed behavior
J

violates 9.
Proof. (Sketch) Follows from Proposition 4

It is more complicated to give a theorem about com-
pleteness of the oracle, saying that the oracle will always
report violations as soon as they occur, or after some
delay. In view of the weakening of requirements that in-
clude quantification, we will state a completeness result
only for unquantified formulas. We will further restrict
the treatment by assuming that there is an upper bound
K on the values that may be assumed by the distance
term 7 in operators Bl and <.

To check whether the original requirement & has been
violated at a time instant ¢ is essentially the problem of
checking whether the current derivative of & is satis-
fiable, i.e., whether there is an infinite continuation of
the observed behavior that satisfies the current deriva-
tive. In the case where all system variables are boolean,
this problem is NP-hard. Thus, to check whether ¢ has
been violated at ¢t we can either run a satisfiability check
in exponential time, or wait until all variables of form
at(/j\ ¢;) become false at some later time instant. That

this happens is guaranteed by the following theorem.

Theorem 3 (Completeness). If an observed behavior
o violates the requirement @ at time instant t~ then a
violation will be reported at most 21! x (K /€) x m time
instants later, where |®| is the size of &, m is the number
of B, or ©, operators, and € is the distance in time
between consecutive time instants.

Proof. (Sketch) If o violates the requirement ¢ at time
instant ¢, then there cannot be two later time instants k&
and [ with ¢ < k < [ at which the derivatives are equiva-
lent (meaning that the values of log variables and control
variables are equal), otherwise the behavior which indef-
initely repeats the loop between time instants k and [



J. Hakansson, B. Jonsson and O. Lundqvist: Generating On-Line Test Oracles 13

will satisfy @. A bound on the number of time instants
until o becomes false is therefore obtained as the number
of possible inequivalent derivatives of ¢. Each relativiza-
tion of @ is equivalent to a positive boolean combination
of subformulas of ¢, and combination of truth values of
log variables log(¢) for each past subformula ¢ of &, and
some value of | 7| for a distance term 7 in the formula.

5 Short Description of FIL

In Section 4, we presented a translation from temporal
logic to test oracles represented in an abstract guarded-
command language. In the case studies, the oracles were
realized in the language FIL, which has been designed
specifically for testing components of embedded systems,
in particular in automotive applications.

A FIL program executes cyclically, as a control loop.
Each iteration of the basic control loop

1. reads values of system variables of the component
under test (these can be considered as input variables
of the tester), and values of local variables of the
tester,

2. then performs internal calculations, and

3. finally provides values of input variables of the com-
ponent under test, and new values of updated local
variables.

The duration of each control loop may vary, depending
on how fast these operations can be performed. The du-
ration of a basic control loop can be adjusted (above a
minimum) to the system under test by adding a suitable
delay at the end of each control loop.

A typical FIL program defines a set of “experiments”.
Each experiment consists of injecting one or several faults,
defined by corresponding fault definitions, and then ob-
serving the output of the component. Typically, this out-
put is inspected manually, or observed indirectly through
the behavior of the car. An automatically generated test
oracle makes it possible to automate checking that the
output conforms to stated safety requirements.

We will illustrate the style of FIL programs by an
example, showing the FIL program resulting from the
requirement of Example 5 in Section 4.4.

e (migsw Aigsw) V (e igsw A —igsw)]
$=0 | = )
Cdeadlineccont

stating that at an edge of the signal igsw, the signal
ccont must be set to false within deadline time units.
A FIL representation of the generated oracle is shown
in Figure 2. In this program, the first (noncomment) line
defines Boolean as an enumerated type. The next two
lines define some fault, which will be input to the sys-
tem on test. The fault can be replaced by an arbitrary
definition of faults that will be exercised during test-
ing. The selection and definition of these faults is not in

the scope of this paper. The next three lines define the
signal err as an output of the oracle that will be used
to report violations of the requirement. The test oracle
is defined in the section that begins with experiment-
def. The variable prev_igsw represents the log variable
log(igsw). The variable r1_x represents the parameter x
of the parameterized formula ¢[z]. The variable r1_time
is used to give diagnostic information in an error re-
port. The variable r1_active represents that control is
at variable at(® A ¢[z]) and not at variable at(®).

The log variable prev_igsw is updated in a when-
do clause. The subsequent when-do clause represent
making the variable at(®) false. The following when-do
clause represent the case when the deadline is missed
and a violation is detected. The last when-do clause
represent a transition of control from at(® A ¢[z]) to
at(®). The cases when control is unchanged is implicitly
represented by the absence of a corresponding when-do
clause.

6 Applications to a Case Study

To investigate the practical usefulness of the generated
test oracles, we implemented the translation and applied
it to temporal logic requirements of two components that
were specified by Volvo. One component is a cruse con-
trol module, which had earlier been specified in TRIO
by Nielsen at Prover Technology AB [19], and the other
was a module for throttle control.

6.1 The Cruise Control Module

We made a specification in our temporal logic of the
Cruise Control Module (CCM), containing 36 require-
ments. These formulas were based on requirements for-
mulated in natural language. The fact that we were able
to capture an existing set of requirements in our sub-
set of temporal logic can be taken as evipdence for the
usefulness of this subset. One aspect that could not be
handled well is examplified in a simplified form in the
requirement

When some condition, then signal ccws must start
to follow a curve towards ccsp, which increases
smoothly from the starting point and also con-
nects smoothly to ccsp.

A requirement of this form is hard to formalize in logic.
In principle, one could envisage the construction of a test
oracle which continuously monitors the signal ccws, and
is able to observe a sufficient degree of “smoothness”.
However, our logic seems not appriate for expressing the
functionality of such an oracle.

6.2 The Electronic Throttle Module

The Electronic Throttle Module (ETM) controls the throt-
tle, which controls the air flow into the engine. A major
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# Define boolean type

enumerationdef Boolean as [ FALSE, TRUE ]

# Insert some fault here:

faultdef some_fault() as
emfi_ecu_io_b_stuckat(0, 1)

# The ’err’ readout is used to log failures.
readoutdef err oftype string as
userdef ()

updatemode usercontrolled

# Check requirements:

experimentdef oracle() as
fault some_fault
timer now
variable r1_x oftype time
variable rl_time oftype time
variable rl_active oftype Boolean
variable prev_igsw oftype Boolean

# Initialization

when now > 0 s do
startlogging err
start now
rl_active := FALSE
prev_igsw := FALSE

# Update prev_igsw
when prev_igsw # igsw do
prev_igsw := igsw

# Check if ccont must be set to false.
when igsw = TRUE and prev_igsw = FALSE or prev_igsw = TRUE and
igsw = FALSE and not rl_active do
rl_x := now
rl_time := now
rl_active := TRUE

# Check if req.1 is not ok.
when rl_active = TRUE and not (now > rl x + deadline)
or (ccont = TRUE) and (now > rl_x + deadline) do
update err with ("rl failed at time ” + tostring(rl_time))
rl_active := FALSE

# Check if req.1 remains ok.
when rl_active = TRUE and (now < rl_x + deadline)
and ccont = FALSE do
rl_active := FALSE

campaign
experiment oracle()

Fig. 2. Fil Program for example Requirement.



J. Hakansson, B. Jonsson and O. Lundqvist: Generating On-Line Test Oracles 15

function of the ETM is to control the angle of the trottle have not performed sufficient experiments to conclude

in response to the position of the accelerator pedal and how useful the approach is for detecting errors under

doing consistency checks with requests from the Engine realistic conditions.

Control Module (ECM). As future work, the problem of generating suitable
The requirements that were formalized and then trans-  inputs to drive automated testing process should be in-

lated for the ETM were all of a form saying that some vestigated further.

signal should be set if some condition on other signals

has been true for a specified period of time. Due to the  Acknowledgments Martin Leucker, Sven-Olof Nystrom,

delays between different components in the test setup and the anonymous referees provided many helpful com-

(see below), we had to be careful with allowing an ap- ~ ments.

propriate delay for signal propagation. The translated

requirements were typically on the form
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