
Lock-free Contention Adapting Search Trees
Kjell Winblad

Uppsala Univeristy
kjell.winblad@it.uu.se

Konstantinos Sagonas
Uppsala Univeristy

konstantinos.sagonas@it.uu.se

Bengt Jonsson
Uppsala Univeristy

bengt.jonsson@it.uu.se

ABSTRACT
Concurrent key-value stores with range query support are crucial
for the scalability and performance of many applications. Existing
lock-free data structures of this kind use a fixed synchronization
granularity. Using a fixed synchronization granularity in a concur-
rent key-value store with range query support is problematic as the
best performing synchronization granularity depends on a number
of factors that are difficult to predict, such as the level of contention
and the number of items that are accessed by range queries. We
present the first lock-free key-value store with linearizable range
query support that dynamically adapts its synchronization granu-
larity. This data structure is called the lock-free contention adapting
search tree (LFCA tree). An LFCA tree does local adaptations of
its synchronization granularity based on heuristics that take con-
tention and the performance of range queries into account. We
show that the operations of LFCA trees are linearizable, that the
lookup operation is wait-free, and that the remaining operations
(insert, remove and range query) are lock-free. Our experimental
evaluation shows that LFCA trees achieve more than twice the
throughput of related lock-free data structures in many scenarios.
Furthermore, LFCA trees are able to perform substantially better
than data structures with a fixed synchronization granularity over a
wide range of scenarios due to their ability to adapt to the scenario
at hand.

CCS CONCEPTS
• Software and its engineering→ Concurrent programming
structures; • Information systems→Unidimensional range search;
Key-value stores;

KEYWORDS
concurrent data structures, range queries, lock-freedom, adaptivity,
linearizability

ACM Reference Format:
Kjell Winblad, Konstantinos Sagonas, and Bengt Jonsson. 2018. Lock-free
Contention Adapting Search Trees. In SPAA ’18: 30th ACM Symposium on
Parallelism in Algorithms and Architectures, July 16–18, 2018, Vienna, Austria.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3210377.3210413

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPAA ’18, July 16–18, 2018, Vienna, Austria
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5799-9/18/07. . . $15.00
https://doi.org/10.1145/3210377.3210413

1 INTRODUCTION
On multicore machines, concurrent key-value stores (maps) with
range query support are crucial for the scalability of applications
such as big scale data processing and in-memory databases (e.g.,
Google’s F1 [21] and Yahoo’s Flurry [24]). It is thus of no surprise
that the multicore revolution has motivated a number of data struc-
tures of this type, e.g., [1, 2, 4, 17]. A key-value store represents a
set of items (keys), each with an associated value. Sets can be seen
as a simplification of key-value stores that do not have any values
associated with the items. From here on, we will discuss sets but
we note that what applies to sets also applies to key-value stores as
sets can trivially be modified to become key-value stores.

Concurrent sets that support both single-item operations (insert,
remove and lookup1) and multi-item operations (e.g., range query
and clone2) face the following dilemma: Single-item operations
usually benefit from as fine-grained synchronization as possible,
as this leads to few conflicts. In contrast, multi-item operations
usually benefit from more coarse-grained synchronization, as this
leads to less time spent on synchronization-related overhead (e.g.,
fewer locks need to be acquired). We say that the conflict time for
an operation is the amount of the time during which the operation
can conflict with other concurrent operations. More coarse-grained
synchronization can also lead to short conflict times for operations
in concurrent sets that internally use and exploit immutable data
in a way that we will now explain. We will use the lock-free k-ary
search tree [4] to illustrate how immutable data can be used to make
the conflict time for range queries short. Lock-free k-ary search
trees store all items inside immutable leaf nodes that can contain k
items each. The insert and remove operations of such trees work
by replacing leaf nodes. A range query Q in a k-ary search tree
first collects all the immutable leaf nodes that Q needs. The range
query Q ends its conflict time and linearizes once this collection
phase finishes. The items that Q needs to return are scanned from
the collected leaf nodes after Q ’s conflict time. This removal of this
scanning from the conflict time is possible due to the immutability
of the leaf nodes.

An even more extreme way to exploit immutability in range
queries is to store all items in a single immutable data structure.
Such a data structure, that we call Im-Tr, is constructed from a single
mutable reference pointing to an immutable balanced search treeT .
A new instance of T reflecting an update (insert or remove) can be
constructed in O(logn) time (where n is the number of items before
the update) as one only needs to “copy” nodes on a path from the
root to a leaf to create the new instance [12]. The insert and remove
operations of Im-Tr change the mutable reference using an atomic
1An insert operation inserts an item (replacing an existing item if one with an equal
key already exists), the remove operation removes an item with the given key if such
an item exists and the lookup operation returns an item with the given key if such an
item exists.
2A range query operation returns all items with keys within the given range (specified
by two keys) and clone makes a clone of the data structure.

https://doi.org/10.1145/3210377.3210413
https://doi.org/10.1145/3210377.3210413

1 2 4 8 16 32 64
Number of Threads

0

5

10

15

Th
ro

ug
hp

ut
 (o

ps
/μ

s)

k-ary (Fine)
Im-Tr (Coarse)

(a) Using small range queries

1 2 4 8 16 32 64
Number of Threads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Th
ro

ug
hp

ut
 (o

ps
/μ

s)

k-ary (Fine)
Im-Tr (Coarse)

(b) Using large range queries

Figure 1: Throughput of coarse- vs fine-grained synchronization.

compare-and-swap (CAS) operation so the reference points to a new
immutable instance reflecting the update. Using this scheme, which
is also described by Herlihy [9], it is trivial to perform range queries
with constant conflict time as they only need to get a snapshot by
reading the mutable reference and then perform the range query
in the snapshot.

Figure 13 illustrates the scalability of a data structure that uses a
fixed relatively fine-grained synchronization (the lock-free k-ary
search tree [4] with the k parameter set to 64) and one that uses
coarse-grained synchronization (Im-Tr) in two scenarios that only
differ in the sizes of the ranges involved in the range queries. As
shown in the graphs, fine-grained synchronization achieves supe-
rior scalability when the size of ranges in range queries is small
(Fig. 1a) as the mutable reference of Im-Tr gets heavily contended,
while Im-Tr with coarse-grained synchronization has superior scal-
ability when range queries are large (Fig. 1b) as the k-ary search
tree’s range queries have long conflict times in this scenario.

As the above example illustrates, having concurrent sets with
a fixed synchronization granularity is far from ideal. A natural
way to deal with this problem is to design sets that can adapt their
synchronization granularity to the workload at hand. In earlier
work [17], we have described the first data structure that dynami-
cally changes its synchronization granularity based on heuristics
that take both the performance of single-item operations and multi-
item operations into account, called the contention adapting search
tree (CA tree for short). The CA tree is lock-based.

The lock-based CA tree performs well in a variety of scenarios
due to its ability to adapt its synchronization granularity to the
workload at hand. However, lock-based data structures are prone to
a number of problems that are inherent from the use of locks, e.g.,
waiting, priority inversion, convoying, and lock overhead (memory
usage, acquire and release time). The performance of lock-based
algorithms is also heavily dependent on the lock implementation
itself and on scheduling. For all these reasons, lock-free data struc-
tures that guarantee system-wide progress even in the presence of
adversary scheduling can be preferable to lock-based ones. Further-
more, it is crucial with a wait-free (i.e., makes progress within a
bounded number of steps) lookup operation for applications where
lookups are very common, which the lock-based CA tree is lacking.

3The benchmark used to produce the graphs in Fig. 1 was executed on an Intel machine
with 64 logical cores using the Oracle JVM. With small and large range queries we refer
to range queries that on average include about 2.5 items and 25k items respectively.
Further details about the experiment can be found in Section 7.

This paper presents a lock-free variant of the CA tree, called the
lock-free contention adapting search tree (LFCA tree for short). LFCA
trees support lock-free insert, remove and range query operations
as well as a wait-free lookup operation. Operations update the data
stored in an LFCA tree by swapping immutable leaf nodes pointing
to immutable balanced search trees storing the actual items. The
granularity of the LFCA tree is adjusted by splitting and joining
such leaf nodes that also store a statistics value which is updated
based on CAS successes or failures as well as based on the number
of leaf nodes range queries need to access.

The technique that the LFCA tree uses for supporting range
queries is interesting in its own right as it is applicable to other
lock-free data structures such as the lock-free k-ary search tree [4].
A range query operation is performed by replacing the needed
leaf nodes with nodes of a special node type that contains the
information needed by other threads to help in completing the
operation. The previously proposed method for doing range queries
in the k-ary search tree [4] is prone to starvation [2, 22].

Overall, we claim that LFCA trees are important concurrent data
structures as they provide an unique set of desirable properties:
Efficient non-blocking operations Our experimental compari-

son shows that LFCA trees achieve substantially better through-
put than the best of the competing lock-free data structures over
a wide range of scenarios. Also, LFCA trees perform better than
lock-based CA trees in many scenarios (especially in scenarios
with more threads than hardware threads).

Configuration-less As an LFCA tree automatically adjusts its
structure using heuristics, there is no need for the user to config-
ure the LFCA tree to use a certain synchronization granularity.

Adaptive As the synchronization granularity changes with the
workload, the data structure can perform very well even when
theworkload changes during the lifetime of the data structure. As
the adaptations of the granularity happen through local changes,
the data structure can even adapt to scenarios where the work-
load is different in different parts of the data structure.

Flexible Performance characteristics of an LFCA tree can be changed
by providing a different set implementation. We do not experi-
ment with this property, but see no reason why the LFCA tree
would be different from the lock-based CA tree in this regard [17].

Outline: We start with a high level description of how LFCA trees
work and an overview of related work (Section 3) before we describe
the algorithm in detail (Section 4) and give a proof sketch (Section 5).
An optimization for range queries is described (Section 6) before
we experimentally evaluate the LFCA tree (Section 7) and conclude
the paper (Section 8).

2 A BIRD’S EYE VIEW OF LFCA TREES
A lock-free CA tree consists of route nodes (round boxes in Fig. 2a)
and base nodes (square shaped boxes in Fig. 2a). The route nodes
form a binary search tree with the base nodes as leaves. The actual
items that are stored in the set represented by an LFCA tree are
located in immutable data structures rooted in the base nodes,
called leaf containers. All operations use the binary search tree
property of the route nodes to find the base node(s) whose leaf
container(s) should contain the items involved in the operation if
they exist. An update operation (insert or remove) is illustrated

2

(a) Initial (b) Update: insert (c) Adaptation:
split

(d) Adaptation:
join

Figure 2: LFCA Trees illustrating various operations.

by Figs. 2a and 2b. An update operation uses a compare-and-swap
(CAS) to attempt to replace a base node b1 with a new base node
b4 reflecting the update, until the update succeeds. The update can
be made efficient even though the data structure in the base node
is immutable, since many immutable balanced tree data structures
(e.g., red-black trees and treaps) support creating a new instance
with an update in O(logn) time, where n is the number of items
in the data structure [12, 19]. Before an update operation returns
it checks whether the statistics value stored in the updated base
node indicates that a structural adaptation should happen. The first
kind of adaptation, called split, is illustrated by Figs. 2a and 2c. A
split aims at reducing the contention in the LFCA tree and replaces
a base node b1 with a route node linking together two new base
nodes (b4 and b5) so that approximately half of the original items
are in each of them. The second kind of adaptation, called join, is
illustrated with Figs. 2a and 2d and aims at optimizing the structure
of the LFCA tree for range queries that span multiple base nodes
and for situations where the contention is low. A join splices out
a base node b2 and its parent and replaces the base node b3 with
a new base node b4 containing the items of both b2 and b3. Splits
and joins of the base nodes can also be supported efficiently (i.e.,
in O(logn) time, where n is the number of items in the involved
instances) in many immutable balanced tree data structures (e.g.,
treaps [19] that are used by our LFCA tree implementation).

3 RELATEDWORK
There are several data structures with range query support. The
SnapTree by Bronson et al. [3] has an efficient linearizable clone
operation that returns a copy of the data structure from which
a range query operation can easily be derived. SnapTree’s clone
operation waits for active update operations to complete and forces
subsequent update operations to copy nodes lazily before node
modifications, so that the clone is not modified.

The lock-free k-ary search tree is an external (i.e. the items are
stored in leaf nodes) unbalanced search tree with up to k keys stored
in every node [5]. Range queries in k-ary search trees are performed
by doing a read scan and a validation scan of the immutable leaf
nodes containing items in the range [4]. The range query operation
needs to retry if the validation scan fails. The k-ary search tree
is an example of the fixed synchronization granularity approach
discussed in the introduction. Another example of this approach
based on software transactional memory is the Leaplist [1]. Both
the k-ary search tree and the Leaplist make use of immutable data
structures to reduce the conflict time of range queries in the way
explained in the introduction. As they both use arrays as their
immutable data structures, updates become very expensive when

the parameter that decides both the synchronization granularity
and the maximum size of the immutable data structures is set too
high. Even though this problem could be fixed by using immutable
balanced search trees instead of the arrays, they would still use a
fixed synchronization granularity and would thus only perform
well in certain scenarios.

Chatterjee has proposed a general method for performing range
queries in lock-free ordered set data structures [6] based on an
idea for doing snapshots by Petrank and Timnat [14]. Chatterjee’s
method makes use of a list of so-called range collector objects that
all updates and range queries need to access. Unfortunately, the
scalability of Chatterjee’s method suffers from a global sequential
hot spot in the list of range-collector objects that all range queries
have to modify in the worst case.

The KiWi data structure by Basin et al. [2] supports wait-free
range queries and lookup operations as well as lock-free update op-
erations. Update operations help range queries by storing additional
versions of inserted items when it is needed for the range queries.
Similarly to Robertson’s data structure [15], KiWi’s range queries
atomically increment a global version counter which is used by
update operations to decide whether storing an additional version
for an item is necessary. KiWi’s global version number counter is
bound to become a scalability bottleneck with a high enough level
of parallel range queries. LFCA trees do not suffer from such global
scalability bottleneck as their range query operation only need to
synchronize with update operations that operate on items in the
same range as the range query.

The above non-adaptive set data structures with support for
efficient range queries and scalable updates [1, 2, 4, 6, 15, 16] have
range queries with a conflict time that depends at least linearly
on the number of items covered by the range given to the range
query. The CA trees (both the lock-based and the lock-free) can do
much better over a wide range of scenarios as the conflict time of
their range queries can be constant (i.e., independent of the number
of items covered by the range query) and their heuristics work
towards getting a good trade-off between range queries conflict
time and the scalability of updates.

Even though the fundamental ideas behind the lock-based CA
tree [17] and LFCA tree are the same, lock-freedom gives LFCA
trees better progress guarantees that are of importance for real-
time systems. The lookup operation of LFCA trees is wait-free
and can thus perform efficiently regardless of how contended the
data structure is, which is crucial for many applications as lookups
often dominate the workload. Still, the lock-based CA tree has a
few advantages over LFCA tree. The use of locks makes it possible
to use mutable sequential data structures to store the items. This
can be advantageous in systems where memory management is
expensive and when range queries are infrequent, as it reduces the
number of memory allocations that are needed. The use of locks
also makes it easier to extend the interface of the data structure
with more linearizable operations.

The technique for joining base nodes in LFCA trees has some
similarities with the replace operation of non-blocking Patricia
tries [20]. The replace operation deletes an item and adds another
item in a way that appears atomic. Our join is simpler, as a single
thread can “mark” the involved nodes in a non-collaborative fashion,
since other threads can abort the join without affecting correctness.

3

Several works have previously explored the idea of dynami-
cally switching between a data structure that uses coarse-grained
synchronization to a data structure that use fine-grained synchro-
nization in one transformation step [7, 11, 13]. The drawback of
the global mode switching approach proposed in these papers com-
pared to LFCA tree’s approach is that the switch between the modes
is time-consuming and coarse-grained, whereas the LFCA tree can
smoothly transition between different levels of synchronization
granularity. Work has also been done to adapt to contention in
other types of data structures (e.g., [8]).

4 ALGORITHM
Pseudo-code for all the non-trivial parts of the lock-free CA tree
can be found in Figs. 3 to 5 and 7. The pseudo-code is derived from a
model of the lock-free CA tree implemented in the C programming
language with some minor adjustments for readability. This section
contains a detailed description of the algorithm and the pseudo-
code. In the next section, a detailed proof sketch will be given,
showing that the operations are linearizable and have the stated
progress guarantees.

Node types. A lock-free CA tree is built from instances of the
node types that are defined in Fig. 3, lines 14–52. Note that the
keyword with_fields_from (on lines 26, 32 and 39) is used to add
fields from another struct definition. All internal route nodes are
of type route_node (lines 14–20). The route nodes contain a key
field (line 15) which is used to direct searches for a specific item
in the tree. Together, they form a binary search tree. Leaves are
called base nodes (lines 21–42) and have a data field (line 22) that
points to immutable data structure instances (called leaf containers)
that contain the items that are in the represented set. That a base
node B is of type normal_base (lines 21–25) indicates that B is not
involved in an ongoing operation. A base node of type range_base
is a node that currently is or has been involved in a range query.
Similarly, a base node of type join_main or join_neighbor is a
node that currently is or has been involved in a join operation.

Data in nodes that can be modified by more than one thread
are marked with the modifier atomic. These fields can only be
accessed by the atomic and sequentially consistent functions aload
(that loads the value at a given address), astore (that stores the
given value at the given address) and CAS (a compare-and-swap
that stores the value of its third parameter at the location of a given
address (first parameter) iff the value at the given address is equal to
the second parameter and returns true, or returns false otherwise).

Lookup. The wait-free lookup operation (lines 135–138) calls
the find_base_node function (pseudo-code for this and other sim-
ilar functions appears in an extended version of this paper [23]),
which traverses the route nodes using binary search until a base
node is found, and then performs the lookup in the corresponding
immutable data structure.

Insert and Remove. The functions for inserting and removing a
single item (Fig. 4, lines 129–134) are performed by the do_update
function (lines 106–127) with the remove or insert function and the
item in question as arguments. The do_update function searches
for a base node using the given key, and then tries to replace that
base node and its leaf container with a new one in which the key

1 // Constants
2 #define CONT_CONTRIB 250 // For adaptation
3 #define LOW_CONT_CONTRIB 1 // ...
4 #define RANGE_CONTRIB 100 // ...
5 #define HIGH_CONT 1000 // ...
6 #define LOW_CONT -1000 // ...
7 #define NOT_FOUND (node*)1 // Special pointers
8 #define NOT_SET (treap*)1// ...
9 #define PREPARING (node*)0 // Used for join
10 #define DONE (node*)1 // ...
11 #define ABORTED (node*)2 // ...
12 enum contention_info { contended, uncontened, noinfo }
13 // Data Structures
14 struct route_node {
15 int key; // Split key
16 atomic node* left; // < key
17 atomic node* right; // >= key
18 atomic bool valid = true; // Used for join
19 atomic node* join_id = NULL; // ...
20 }
21 struct normal_base {
22 treap* data = NULL; // Items in the set
23 int stat = 0; // Statistics variable
24 node* parent = NULL; // Parent node or NULL (root)
25 }
26 struct join_main with_fields_from normal_base {
27 node* neigh1; // First (not joined) neighbor base
28 atomic node* neigh2 = PREPARING; // Joined n...
29 node* gparent; // Grand parent
30 node* otherb; // Other branch
31 }
32 struct join_neighbor with_fields_from normal_base {
33 node* main_node // The main node for the join
34 }
35 struct rs { // Result storage for range queries
36 atomic treap* result = NOT_SET; // The result
37 atomic bool more_than_one_base = false;
38 }
39 struct range_base with_fields_from normal_base {
40 int lo; int hi; // Low and high key
41 rs* storage;
42 }
43 enum node_type {
44 route, normal, join_main, join_neighbor, range
45 }
46 struct node with_fields_from normal_base, range_base,
47 join_main, join_neighbor{
48 node_type type;
49 }
50 struct lfcat{
51 atomic node* root;
52 }
53 // Help functions
54 bool try_replace(lfcat* m, node* b, node* new_b){
55 if(b->parent == NULL)
56 return CAS(&m->root, b, new_b);
57 else if(aload(&b->parent->left) == b)
58 return CAS(&b->parent->left, b, new_b);
59 else if(aload(&b->parent->right) == b)
60 return CAS(&b->parent->right, b, new_b);
61 else return false;
62 }
63 bool is_replaceable(node* n) {
64 return (n->type == normal ||
65 (n->type == join_main &&
66 aload(&n->neigh2) == ABORTED) ||
67 (n->type == join_neighbor &&
68 (aload(&n->main_node->neigh2) == ABORTED ||
69 aload(&n->main_node->neigh2) == DONE)) ||
70 (n->type == range &&
71 aload(&n->storage->result) != NOT_SET));
72 }

Figure 3: Data structures and help functions.

4

73 // Help functions
74 void help_if_needed(lfcatree* t, node* n){
75 if(n->type == join_neighbor) n = n->main_node;
76 if(n->type == join_main &&
77 aload(&n->neigh2) == PREPARING){
78 CAS(&n->neigh2, PREPARING, ABORTED);
79 }else if(n->type == join_main &&
80 aload(&n->neigh2) > ABORTED){
81 complete_join(t, n);
82 }else if(n->type == range &&
83 aload(&n->storage->result) == NOT_SET){
84 all_in_range(t, n->lo, n->hi, n->storage);
85 }
86 }
87 int new_stat(node* n, contention_info info){
88 int range_sub = 0;
89 if(n->type == range &&
90 aload(&n->storage->more_than_one_base))
91 range_sub = RANGE_CONTRIB;
92 if (info == contended && n->stat <= HIGH_CONT) {
93 return n->stat + CONT_CONTRIB - range_sub;
94 }else if(info == uncontened && n->stat >= LOW_CONT){
95 return n->stat - LOW_CONT_CONTRIB - range_sub;
96 }else return n->stat;
97 }
98 void adapt_if_needed(lfcatree* t, node* b){
99 if(!is_replaceable(b)) return;
100 else if(new_stat(b, noinfo) > HIGH_CONT)
101 high_contention_adaptation(t, b);
102 else if(new_stat(b, noinfo) < LOW_CONT)
103 low_contention_adaptation(t, b);
104 }
105
106 bool do_update(lfcatree* m,
107 treap*(*u)(treap*,int,bool*), int i){
108 contention_info cont_info = uncontened;
109 while(true){
110 node* base = find_base_node(aload(&m->root), i);
111 if(is_replaceable(base)){
112 bool res;
113 node* newb = new node{
114 type = normal,
115 parent = base->parent,
116 data = u(base->data, i, &res),
117 stat = new_stat(base, cont_info)
118 }
119 if(try_replace(m, base, newb)){
120 adapt_if_needed(m, newb);
121 return res;
122 }
123 }
124 cont_info = contended;
125 help_if_needed(m, base);
126 }
127 }
128 // Public interface
129 bool insert(lfcat* m, int i){
130 return do_update(m, treap_insert, i);
131 }
132 bool remove(lfcat* m, int i){
133 return do_update(m, treap_remove, i);
134 }
135 bool lookup(lfcat* m, int i){
136 node* base = find_base_node(aload(&m->root), i);
137 return treap_lookup(base->data, i);
138 }
139 void query(lfcat* m, int lo, int hi,
140 void (*trav)(int, void*), void* aux){
141 treap* result = all_in_range(m, lo, hi, NULL);
142 treap_query(result, lo, hi, trav, aux);
143 }

Figure 4: Help functions and public interface.

has been removed or inserted (lines 113–119). The replacement is
done using the try_replace function, which uses a CAS to attempt
to change the pointer of the base node’s parent to a new base node
with the updated leaf container. If successful, the CAS operation is
the linearization point of the operation; if unsuccessful, the whole
operation is retried. A replacement attempt is made only if the
found base node is replaceable (line 111 and lines 63–72). If the base
node is irreplaceable, then it may be involved in another operation;
in this case do_update will first attempt to help this operation
(line 125 and lines 74–86) before proceeding.

Note that the new base node gets a value for its stat field which
is based on the replaced node’s stat field and type as well as on
whether conflicting operations have been detected (i.e., a base node
which was not replaceable has been found or a try_replace call
has failed; see line 117 and lines 87–97). Once a base node has been
successfully replaced, the update operation calls adapt_if_needed
to adapt the granularity of the data structure if the heuristics sug-
gests that this is beneficial (line 120 and lines 98–104), before re-
turning.

Range queries. The range query operation (lines 139–143) first
calls all_in_range (line 141) to create a snapshot of all base nodes
in the requested range and then traverses the snapshot to complete
the range query (line 142). The function all_in_range (lines 162–
215) goes through all base nodes that may contain items in the range
in ascending key order, starting with the base node containing the
smallest keys, to replace them, using a CAS, by base nodes of another
type. The base nodes are found by the functions find_base_stack
and find_next_base_stack in a depth-first traversal of the con-
cerned portion of the tree. This traversal uses a stack s to store the
search path to the current base node. The replacing base node is of
type range_base (lines 39–42), which has fields for specifying the
range of the ongoing range query (lo and hi) as well as a storage
field pointing to a result storage (lines 35–38). This storage has a
result field, which is initially NOT_SET and will be set once the
range query has been completed (line 211). A range_base node is
initially irreplaceable as long as its result field is NOT_SET; see the
is_replaceable function (lines 63–72). A range query’s lineariza-
tion point is when all concerned base nodes have been replaced and
the result field of the result storage has been replaced by the actual
result of the query (line 211). The lo and hi fields of nodes of the
range_base type are used by operations that try to help an uncom-
pleted range query in order to make an irreplaceable range_base
node replaceable; see help_if_needed (lines 74–86). Thus, range
queries achieve atomicity by ensuring that all base nodes contain-
ing items in the range are irreplaceable for a short instance, and are
able to maintain the non-blocking progress guarantee by enabling
other threads to help them.

Once a range query has been completed, a special field in the
result storage associated with the range query is set to a value
indicating if more than one base node were needed to complete the
range query. This information is used by the new_stat function
(lines 87–97) when calculating a statistics value for a base node.
Before all_in_range returns, adapt_if_needed (lines 98–104) is
called (line 213) with a random base node within the range as
parameter. This is done to ensure that the structure of the tree stays
up-to-date with the collected heuristics.

5

144 node* find_next_base_stack(stack* s) {
145 node* base = pop(s);
146 node* t = top(s);
147 if(t == NULL) return NULL;
148 if(aload(&t->left) == base)
149 return leftmost_and_stack(aload(&t->right), s);
150 int be_greater_than = t->key;
151 while(t != NULL){
152 if(aload(&t->valid) && t->key > be_greater_than)
153 return leftmost_and_stack(aload(&t->right), s);
154 else { pop(s); t = top(s); }
155 }
156 return NULL;
157 }
158 node* new_range_base(node* b, int lo, int hi, rs* s){
159 return new node{... = b, // assign fields from b
160 lo = lo, hi = hi, storage = s}; }
161 treap*
162 all_in_range(lfcat* t, int lo, int hi, rs* help_s){
163 stack* s = new_stack();
164 stack* backup_s = new_stack();
165 stack* done = new_stack();
166 node* b;
167 rs* my_s;
168 find_first:b = find_base_stack(aload(&t->root),lo,s);
169 if(help_s != NULL){
170 if(b->type != range || help_s != b->storage){
171 return aload(&help_s->result);
172 }else my_s = help_s;
173 }else if(is_replaceable(b)){
174 my_s = new rs;
175 node* n = new_range_base(b, lo, hi, my_s);
176 if(!try_replace(t, b, n)) goto find_first;
177 replace_top(s, n);
178 }else if(b->type == range && b->hi >= hi){
179 return all_in_range(t, b->lo, b->hi, b->storage);
180 }else{
181 help_if_needed(t, b);
182 goto find_first;
183 }
184 while(true){ // Find remaining base nodes
185 push(done, b);
186 copy_state_to(s, backup_s);
187 if(!empty(b->data) && max(b->data) >= hi) break;
188 find_next_base_node: b = find_next_base_stack(s);
189 if(b == NULL) break;
190 else if(aload(&my_s->result) != NOT_SET){
191 return aload(&my_s->result);
192 }else if(b->type == range && b->storage == my_s){
193 continue;
194 }else if(is_replaceable(b)){
195 node* n = new_range_base(b, lo, hi, my_s);
196 if(try_replace(t, b, n)) {
197 replace_top(s, n); continue;
198 } else {
199 copy_state_to(backup_s, s);
200 goto find_next_base_node;
201 }
202 }else{
203 help_if_needed(t, b);
204 copy_state_to(backup_s, s);
205 goto find_next_base_node;
206 }
207 }
208 treap* res = done->stack_array[0]->data;
209 for(int i = 1; i < done->size; i++)
210 res = treap_join(res, done->stack_array[i]->data);
211 if(CAS(&my_s->result,NOT_SET,res) && done->size > 1)
212 astore(&my_s->more_than_one_base, true);
213 adapt_if_needed(t, done->array[r() % done->size]);
214 return aload(&my_s->result);
215 }

Figure 5: Helper function for the range query operation.

Adaptations. The granularity of the immutable parts of a LFCA
tree can be changed with two different types of adaptations. The
first one, called high-contention adaptation (or split), splits the items
in a base node into two new base nodes, in order to decrease the
contention in a part of the tree where the contention has been high.
The second type, called low-contention adaptation (or join), joins
the content of two base nodes into a new base node, in order to
improve the performance of range queries. Joins can potentially
also improve the performance of the LFCA tree for uncontended
single-item operations as a join can make the search paths to items
shorter (because the part of the tree consisting of route nodes may
be unbalanced), but joins may also make updates slightly more ex-
pensive (due to increased amount of memory allocation and coping
when creating new instances of the leaf containers). An adaptation
is issued by the function adapt_if_needed (lines 98–104) that is
executed by the update operations (line 120) and by range queries
(line 213). Whether an adaptation should occur and what kind of
adaptation it should be is decided based on a statistics value cal-
culated by the new_stat function (lines 87–97). High-contention
or low-contention adaptation is issued if this statistics value is
above (line 100) or below (line 102) a threshold, respectively. The
new_stat function calculates the statistics value based on its two
parameters: a base node and a parameter that is encoding informa-
tion about detected contention. The core idea behind the heuristics
is to make the synchronization more fine-grained in parts of the
data structure where contention has been common and to make it
more coarse-grained in parts where contention has been uncom-
mon or where range queries often need to access more than one
base node.

If no contention information is given to the new_stat function
(as is the case when this function is called by adapt_if_needed),
then the value is the value of the stat field in the base node sub-
tracted by x , where x is a positive constant if it is a base node of type
range whose corresponding range query was completed by reading
more than one base node (lines 89–91). When update operations
call new_stat to get the value that will be used for the stat field of
the new base node that the update operation creates they also pass
information whether contention was detected (cf. line 117). This
information is used to increase the statistics value if contention has
been detected (line 93), and decrease the statistics value otherwise
(line 95). The constant that is used to increase the statistics value
when contention is detected is larger than the constant that de-
creases the statistics value when no contention has been detected
so that adaptations happen quickly when contention is common
and to avoid frequent adaptations back-and-forth. The constants
used in our heuristics can be found in lines 2 to 6.

High-contention adaptation. The function for high-contention
adaptation (lines 277–287) splits the content of a base node b into
two new base nodes that are linked together with a route node r.
The function attempts to replace the base node bwith r using a CAS
operation (line 286). This replacement is atomic to other operations
and does not change the contents of the tree.

Low-contention adaptation. The function for low-contention adap-
tation (lines 268–276) intuitively replaces two neighboring base
nodes b and n0 by a new node n2, which contains the union of the
items in b and n0. It splices out b and its parent route node from

6

(a) Before join (b) Replace b (c) Replace n0 (d) Store join info (e) Secure join (f) Replace n1 (g) Splice out 40 (h) Let m die

Figure 6: Figures showing the main steps of the low-contention join operation.

the tree and replaces n0 by n2. Figure 6 illustrates the major steps
which are done by a successful low-contention adaptation.

A successful low-contention adaptation (lines 268–276) is done
in two phases. The first phase, illustrated in Figs. 6a to 6e and per-
formed by secure_join_left in lines 216–250 (or the correspond-
ing function for the right case), “marks” the part of the tree that will
be involved in the join, to prevent other threads from changing it
while the join is ongoing. Other threads cannot help complete this
phase, but system-wide-progress is guaranteed as other threads can
interrupt this phase by killing the join (line 78). The second phase
(Figs. 6f to 6h), which is performed by complete_join (lines 251–
267), is executed only if the first phase was successful (line 272).
Other threads can help the join to complete this second phase
(line 81). The second phase completes the join by splicing out b and
its parent and replaces n1 by n2.

We will describe how the low-contention adaptation works by
going through a successful join of the base node b in Fig. 6a. As b
is the left child of its parent, secure_join_left is called (line 270).
Lines 217–222 find the neighbor n0 of b (the leftmost leaf of b’s
parent’s right branch) and replaces b with a new base node m of
type join_main (Fig. 6b). Note that the join would have aborted
if n0 would have been irreplaceable or if the replacement of b
would have failed (which would have meant that b was no longer
in the tree). Next, n0 is replaced with a new base node n1 of type
join_neighbor, which is linked to m with the field main_node
(line 227 and Fig. 6c). Both m and n1 are now irreplaceable (lines 63–
72). The only way for other threads to make them replaceable at this
point is to set the field neigh2 of m to ABORTED. On lines 228–233,
the join_id field of both the parent and the grandparent of m is
set to the reference m to make sure that they are not modified by
any other join operation. Using the reference m, which is a unique
identifier for the join operation, to mark the route nodes involved
in the join makes it easy for threads to collaboratively change this
field in the second phase. In lines 234–236, more information that
is needed by complete_join to finish the operation is stored in m
(cf. Fig. 6d). The final step of the first phase is done in lines 237-243
(cf. Fig. 6e). These lines attempt to set m’s field neigh2 to a base
node n2 which can replace both m and n1 using a CAS operation. If
this CAS is successful, we know that the following are true directly
after the change:
• Both m and n1 must have been irreplaceable at the time of the
change, as this means that the field neigh2 has not been set to
ABORTED by any other thread.

• The node referenced by m’s parent field is the parent of m, the
node referenced by m gparent field is the grandparent of m, and

m’s field otherb is set to the sibling of m. This follows from the
observations that (i) the only type of change that can happen to
a path from the root of the tree to a base node that is inside the
tree is that a route node gets spliced out which can only happen
if both the spliced out node and its parent has their join_id
fields set to something different from NULL, (ii) the join_id field
of the spliced out node is never set to NULL again, and (iii) no
other threads can change the join_id field of parent and gparent
while the neigh2 field of m is set to PREPARING.

Once the neigh2 field of m has been successfully set to the new base
node, the first phase of the operation is finished and the second
phase can start. Note that the changes done by the operation would
have been rolled back on lines 245–248 if some CAS operations had
failed.

As mentioned, the second phase of a low-contention adaptation
is done by complete_join (lines 251–267). Multiple threads can
execute this function with the same base node of type join_main
as input parameter. This happens when another thread needs to
change a base node of type join_main or join_neighbor and the
join associated with the base node has finished the first phase but
not yet the second (which means that the base node is irreplaceable;
see lines 63–72). That other thread will call the help_if_needed
function that in turn will call complete_join (line 81). The first
modification that is done by the second phase is to replace the base
node n1 with the base node n2 that is referenced to by the field
neigh2 in m which was set in the first phase (cf. Fig. 6f). Note that
any thread that executes complete_join with the base node m as
parameter can perform this step as it is done with a CAS operation
(line 254 and the try_replace function). The next change is to set
the valid flag of the parent to false (line 255). The sole purpose
of this is so that the range query operation can avoid traversing
branches that are no longer relevant for the range query (line 152).
On lines 256–257, it is determined what will be the replacement of
m’s parent. If m and n2 share the same parent (in this case b->otherb,
which is set on line 235, will be equal to n1, a.k.a. b->neigh1)
the replacement will be n2, otherwise the replacement will be the
branch of the parent that does not lead to m (this case is illustrated
in Fig. 6f). The parent of m and m itself is spliced out from the tree
on lines 258–265 (cf. Fig. 6g). Note that only one thread can succeed
with the splice out as it is done with a CAS operation. Likewise, only
one thread can succeed in resetting the join_id of the grandparent
of m (line 262). The only remaining step after these lines have
executed is to set the neigh2 field of m to DONE, which is done
on line 266 (cf. Fig. 6h). This is done to indicate that the join has
completed and to make n2 replaceable.

7

216 node* secure_join_left(lfcatree* t, node* b){
217 node* n0 = leftmost(aload(&b->parent->right));
218 if(!is_replaceable(n0)) return NULL;
219 node* m = new node{
220 ... = b, // assign fields from b
221 type = join_main};
222 if(!CAS(&b->parent->left, b, m)) return NULL;
223 node* n1 = new node{
224 ... = n0, // assign fields from n0
225 type = join_neighbor,
226 main_node = m};
227 if(!try_replace(t, n0, n1)) goto fail0;
228 if(!CAS(&m->parent->join_id, NULL, m))
229 goto fail0;
230 node* gparent = parent_of(t, m->parent);
231 if(gparent == NOT_FOUND ||
232 (gparent != NULL &&
233 !CAS(&gparent->join_id,NULL,m))) goto fail1;
234 m->gparent = gparent;
235 m->otherb = aload(&m->parent->right);
236 m->neigh1 = n1;
237 node* joinedp = m->otherb==n1 ? gparent: n1->parent;
238 if(CAS(&m->neigh2, PREPARING,
239 new node{... = n1, // assign fields from n1
240 type = join_neighbor,
241 parent = joinedp,
242 main_node = m,
243 data = treap_join(m, n1)}))
244 return m;
245 if(gparent == NULL) goto fail1;
246 astore(&gparent->join_id, NULL);
247 fail1: astore(&m->parent->join_id, NULL);
248 fail0: astore(&m->neigh2, ABORTED);
249 return NULL;
250 }
251 void complete_join(lfcatree* t, node* m){
252 node* n2 = aload(&m->neigh2);
253 if(n2 == DONE) return;
254 try_replace(t, m->neigh1, n2);
255 astore(&m->parent->valid, false);
256 node* replacement =
257 m->otherb == m->neigh1 ? n2 : m->otherb;
258 if (m->gparent == NULL){
259 CAS(&t->root, m->parent, replacement);
260 }else if(aload(&m->gparent->left) == m->parent){
261 CAS(&m->gparent->left, m->parent, replacement);
262 CAS(&m->gparent->join_id, m, NULL);
263 }else if(aload(&m->gparent->right) == m->parent){
264 ... // Symmetric case
265 }
266 astore(&m->neigh2, DONE);
267 }
268 void low_contention_adaptation(lfcatree* t, node* b){
269 if(b->parent == NULL) return;
270 if(aload(&b->parent->left) == b){
271 node* m = secure_join_left(t, b);
272 if (m != NULL) complete_join(t, m);
273 }else if (aload(&b->parent->right) == b){
274 ... // Symmetric case
275 }
276 }
277 void high_contention_adaptation(lfcatree* m, node* b){
278 if(less_than_two_items(b->data)) return;
279 node* r = new node{
280 type = route,
281 key = split_key(b->data),
282 left = new node{type = normal, parent= r, stat= 0,
283 data = split_left(b->data)}),
284 right = ..., // Symmetric case
285 valid = true};
286 try_replace(m, b, r);
287 }

Figure 7: Low and high contention adaptation.

5 CORRECTNESS
In this section, we outline the main steps for proving that the algo-
rithm is correct (in the sense of being a linearizable [10] implemen-
tation of a set of items which also supports range queries), and has
the stated progress guarantees. We first provide global invariants,
thereafter argue for linearizability, and finally for progress.

We define a route or base node to be reachable if it can be reached
from the root of the tree by following left and right pointers. We
define the contents of the tree as the union of all items in the leaf con-
tainers of reachable base nodes. The contents serve as the abstract
state of the LFCA tree in our argument for linearizability. Finally,
we define a base node to be replaceable if the is_replaceable
function returns true when applied to it. The LFCA tree satisfies
the following invariants and properties.
(1) The reachable route nodes and items in leaf containers of reach-

able base nodes are organized as a binary search tree. There is one
exception to this, illustrated by Fig. 6f of a join operation, when
the leaf container of node m is included in the leaf container of
node n2. More precisely, this happens if a reachable route node n
(corresponding to the parent of m in Fig. 6f) is such that n−>left
is a base node m of type join_main andm−>neigh2 is a pointer
to a reachable node; if so, then the items in the leaf container of
m are exactly the set of items in the leaf container of m−>neigh2
which are smaller than n−>key. There is also a symmetric case
when n−>right is a base node of type join_main. Note that in
these cases, the search find_base_node will reach the elements
in m’s leaf container only via n, and after n is spliced out, the
same elements will be found in the leaf container of m−>neigh2.
In both cases, the tree appears like a valid binary search tree.

(2) A replaceable base node can not become irreplaceable (but can
be replaced by an irreplaceable node).

(3) A replaceable base node n is reachable iff n is obtained either
as n−>parent−>left or as n−>parent−>right. A reachable
node that has become non-reachable cannot become reachable
again. The parent of a reachable and replaceable base node never
changes.
Having established these properties of the LFCA tree, we can

now proceed to establishing linearizability of operations.
update Anupdate operation replaces a replaceable base node using

a CAS operation, which succeeds only if the node is pointed to by
the left or right pointer of its parent route node. By invariant
(2) and (3), this ensures that the replaced node is reachable when
the CAS succeeds. We let the linearization point of an update
operation coincide with the successful CAS. Since the operation
replaces a reachable node, the corresponding operation replaces
a leaf container that is included in the contents of the tree just
before the linearization point. To make sure that the operation
indeed changes the contents of the tree in the intended way,
we should make sure that it does not replace a node that is
of type join_main or join_neighbor, in a situation where it
participates in an uncompleted join and can have duplicated
elements in another leaf container. This follows by noting that
such a node is not replaceable, and therefore cannot be subject
to an update operation.

lookup By invariant (3), only joins can make reachable base nodes
non-reachable by making a route node non-reachable. Thus by

8

invariant (1), a lookup operation always reaches a base node
that was reachable and reflects the presence of the item searched
for either at the point (i) when the route node that it currently
“visits” is spliced out during a join operation (at lines 258–265),
or if this does not happen (ii) when it reads the pointer to its
destination base node. Thus, one of the above points can serve
as linearization point.

range query A range query visits reachable nodes in its scope in
increasing item order. For each node, it checks that the node is
replaceable, and if so replaces it by a node of type range_base,
thereby making it irreplaceable (unless the range query has been
completed by another thread, in which case such a replacement
has no effect). By the limitations on how nodes can be replaced,
this guarantees to visit and replace a contiguous sequence of
base nodes in the scope of the range query. After completing
these replacements, the concerned base nodes are irreplaceable
and the operation linearizes, whereafter the base nodes become
replaceable.

Let us also show that a join preserves the contents of the tree. A
join replaces two reachable (i.e., located in reachable base nodes) leaf
containers by a new one. The new leaf container is replacing one of
the old leaf containers using a successful CAS (line 254), whereafter
the remaining old leaf container is spliced out at lines 258–265.
Since the corresponding base nodes are irreplaceable when the
replacements happen, and in addition the parent and grandparent
of the join_main node are marked, no other operation can interfere
with invariant (1), viz. that the new joined base node contains the
union of the elements in the replaced base nodes.

Let us next consider progress properties of the involved oper-
ations. We first note that the lookup operation is wait-free. This
follows by observing that it traverses the nodes of the tree with-
out any possibility of being blocked. Progress is achieved at each
pointer traversal, as the search space is decreased.

We then note that update operations are lock-free, since they
reach the base node to be replaced without being blocked. The
update may need to retry, either due to a failed CAS, or because
the concerned base node is irreplaceable, because of interference
from some other operation. At all such places the operation causing
the interference must have made progress. Furthermore, when an
operation can not proceed directly due to irreplaceable base nodes,
then the operation can always make them replaceable by helping
or (in case of a non-secured join) aborting the interfering operation.
Range query operations are also lock-free, for analogous reasons.

6 OPTIMIZATION FOR RANGE QUERIES
If possible, it can be advantageous for range queries to avoid writ-
ing to shared memory as this induces less cache-coherence traffic.
Therefore, we have applied an optimization to our LFCA tree im-
plementation that optimistically tries to perform a range query
without writing to shared memory. If this optimistic attempt fails,
the range query is performed using the algorithm described in
Section 4. The optimistic attempt consists of a test scan and then
a validation scan of the base nodes needed for the range query.
If nothing has changed between the test and the validation scan,
one can be certain that all base nodes in the scans were present at
some point and the optimistic attempt can succeed. This scheme is

essentially the same as the one described for doing range queries
in the k-ary data structure [4]. We refer to that paper for how to
prove this scheme correct.

7 EVALUATION
We will now experimentally evaluate LFCA trees. Our implemen-
tation uses an immutable treap for the leaf containers and em-
ploys the optimization described in Section 6. To facilitate cache
friendly range queries, the treap implementation stores all items
in fat leaf nodes containing arrays that can store up to 64 items.
The LFCA tree is compared to recent proposals for performing
linearizable range queries in ordered sets: SnapTree [3], k-ary [4],
Chatterjee’s method applied to a lock-free skiplist [6] (ChatterjeeSL)
and KiWi [2]. We also include the lock-based CA tree [22] in the
comparison; it uses the same immutable treap as the LFCA tree in its
leaf containers, and is optimized to take advantage of the immutabil-
ity of the leaf containers so that range queries and lookups do not
read the items in the leaf containers while holding locks. Finally, the
lock-free ConcurrentSkipListMap from the Java library, which only
supports non-linearizable range queries (NonAtomicSL), and the
coarse-grained data structure (Imm-Tr-Coarse) that we described in
the introduction are also included. All data structures are in Java as
implemented by their respective authors. The maximum number
of items in the nodes is set to 64 for k-ary, Im-Tr-CA and SL-CA
as this value has previously been shown to give good results [4].
KiWi’s constants are set as described in the KiWi paper [2].

The benchmarkswere run on amachinewith four Intel(R) Xeon(R)
E5-4650 CPUs (2.70GHz each with eight cores and hyperthread-
ing, giving a total of 32 actual and 64 logical cores), turbo boost
turned off, 128GB of RAM, running Linux 4.9.0-4-amd64 and Oracle
JVM 1.8.0_151 (with the JVM flags -Xmx8g -Xms8g -server -d64
-XX:+UseCondCardMark). Each data point comes from the average
of three measurements runs of 10 seconds each that were preceded
by three warm up runs, also of 10 seconds each, whose purpose is
to give the JiT compiler enough time to compile the code.

The keys for the operations lookup, insert and remove as well as
the starting keys for range queries are randomly generated integers
from a range of size S . The data structure is pre-filled before the
start of each benchmark run so that it contains S/2 random integers.
We use S = 106 in all experiments presented in this section, which
corresponds to a set of size approximately 5 × 105. (Results for
S = 105 and S = 107 can be found in the extended version of this
paper [23].) Range queries calculate the sum of the items in the
range and the number of items in the range. As a sanity check,
the average number of items that are traversed per range query is
calculated and checked against the expected value.

The benchmark scenarios measure throughput of a mix of opera-
tions performed by N threads. In figure captions, the scenarios are
described by strings of the form w:A% r:B% q:C%-R, meaning that
the benchmark performs (A/2)% insert, (A/2)% remove, B% lookup
operations and C% range queries of maximum range size R. The
range sizes are randomly set to values between 1 and R.

We start with three scenarios without range queries; cf. Fig. 8. As
the machine only has 64 hardware threads, thread counts above 64
show how the data structures perform when there are more threads
than hardware can execute in parallel. Both the lock-based and the

9

1 2 4 8 16 32 64 128
Number of Threads

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (o

ps
/μ

s)

KiWi
k-ary
SnapTree
ChatterjeeSL
NonAtomicSL
Im-Tr-Coarse
CA tree (Locks)
LFCA tree

(a) w:50% r:50%

1 2 4 8 16 32 64 128
Number of Threads

0

5

10

15

20

25

30

(b) w:20% r:80%

1 2 4 8 16 32 64 128
Number of Threads

0

10

20

30

40

50

(c) w:1% r:99%

Figure 8: Single-itemoperations only. Throughput (operations/µs) on the y-axis and thread count on the x-axis. The sub-figures
are ordered in increasing amount of lookups. (Note that the SnapTree is hidden behind the CA trees in Fig. 8a).

1 2 4 8 16 32 64 128
Number of Threads

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (o

ps
/μ

s)

KiWi
k-ary
SnapTree
ChatterjeeSL
NonAtomicSL
Im-Tr-Coarse
CA tree (Locks)
LFCA tree

(a) w:20% r:55% q:25%-10

1 2 4 8 16 32 64 128
Number of Threads

0

2

4

6

8

10

12

14

16

(b) w:20% r:55% q:25%-1000

1 2 4 8 16 32 64 128
Number of Threads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(c) w:20% r:55% q:25%-100000

Figure 9: Range queries and single-item operations. Throughput (operations/µs) on the y-axis and thread count on the x-axis.
The sub-figures are ordered in increasing range query size

lock-free CA tree compare well with the competing data structures
both whenwe have 50% updates and 50% lookups (Fig. 8a) and in the
read-heavy scenarios with up to 99% lookups (Figs. 8b and 8c). This
shows that the LFCA tree can be a good choice even without range
queries. The LFCA tree performs substantially better than the lock-
based CA tree at 64 threads and beyond in the read-heavy scenario,
which is likely due to LFCA tree’s wait-free lookup operation.

Let us now consider scenarios that also contain range queries;
cf. Fig. 9. These scenarios show the key strength of the CA trees.
Namely, their ability to change the sizes of their immutable parts
to fit the workload at hand. Figure 9a shows that the LFCA tree
performs better than all the other data structures in a scenario
with relatively small range queries of maximum size 10. In the
scenario with moderately-sized range queries of maximum size
1000 (Fig. 9b), the LFCA tree outperforms all the other data struc-
tures with an even wider margin even though the lock-based CA
tree also performs very well there. Data structures clearly bene-
fit from fine-grained synchronization in the scenarios with range

queries up to a maximum size of 1000 (e.g., Im-Tr-Coarse scales
relatively poorly in the scenarios of Figs. 9a and 9b). In contrast, in
the scenario with large range queries (Fig. 9c), it seems like the com-
bination of immutable data and coarse-grained synchronization is
the best as Im-Tr-Coarse’s performance is on par with LFCA trees’s
performance. Therefore, it seems like the LFCA tree can perform
extremely well across a wide variety of workloads (only single-key
operations, small range queries and large ones) due to its ability
to adapt its structure to fit the workload. The performance drop
that can be observed for the lock-based CA tree after 64 threads is
probably due to lock-related problems that become more apparent
when thread preemption becomes more common (e.g., threads may
need to wait for a thread that has got preempted by the OS).

With the benchmark configurations discussed above, the threads
spend much more time in range queries than in single-item opera-
tions when the range queries are large. Thus, another benchmark
is needed to measure the data structures’ ability to handle large
range queries concurrently with frequent update operations. To

10

2 4 8 32 128 512 2K 8K 32K 128K
Range Size

0

200

400

600

800

1000

1200

1400

1600

(o
pe

ra
tio

ns
/μ

s)
 *

(ra
ng

e
siz

e)

KiWi
k-ary
SnapTree
ChatterjeeSL
NonAtomicSL
Im-Tr-Coarse
CA tree (Locks)
LFCA tree

(a) Range queries (parallel updates)

2 4 8 32 128 512 2K 8K 32K 128K
Range Size

0

1

2

3

4

5

6

op
er

at
io

ns
/μ

s
(b) Updates (parallel range queries)

Figure 10: On the left, throughput for the 16 range query
threads, and on the right, throughput for the threads doing
only inserts and removes.

this end, we use a similar benchmark to the one developed by the
KiWi authors. In this benchmark, half the threads (16) do update
operations (insert and remove with equal probability) while the
other half (also 16) do range queries with a range of fixed size. In the
results for the benchmarks, the throughput for updates (Fig. 10b) is
presented separately from the range query throughput (Fig. 10a) so
that one can study the performance of these operations separately.
Note that in the graphs that show the range query throughput,
the number of operations per µs is shown multiplied by the range
query size on the y-axis to make the graphs more readable. The
range query size used in the experiment is shown on the x-axis.

Taking both the performance of the range queries and updates
into account, it is clear that the LFCA tree is the best data structure
for all range query sizes. It is tightly followed by the lock-based
CA tree. Looking only at the throughput for the update opera-
tions, k-ary, NonAtomicSL and KiWi can also keep up quite well
(at least with some range query sizes). However, when also tak-
ing range queries into account, these data structures are all far
behind LFCA tree for all range query sizes above 128. In short,
k-ary, NonAtomicSL and KiWi can perform well only in a few sce-
narios that fit their synchronization granularity and the sizes of
their immutable parts, while the CA trees can perform well in a
wider range of scenarios thanks to their ability to adapt.

We now take a look at the statistics shown in Tables 1 and 2.
They show the base node count (measured after the experiments),
the average number of traversed base nodes per range query and
the number of splits and joins per millisecond for the scenarios that
are shown in Figs. 9b and 10, respectively. These statistics indicate
that the heuristics works as intended. That is, larger range queries
result in fewer base nodes and more threads result in more base
nodes. Looking at the number of base nodes traversed per range
query, it is also clear that range queries spend a relatively short
time traversing shared mutable data (compared to the non-adaptive
data structures in the comparison) even for large range queries.
This explains how the LFCA tree can perform so much better than
the non-adaptive data structures which is compared against.

The five parts of Fig. 11 show results from a time series exper-
iment that was run in order to illustrate into how an LFCA tree
adapts its structure when the workload suddenly changes and how
this adaptation affects its performance. The top part of the figure
shows the number of route nodes, and the bottom part the through-
put which is achieved at different time points. At time zero, the
LFCA tree contains only one base node with 500K items. The ex-
periment begins with the workload w:20% r:55% q:25%-1000, which

Table 1: Statistics for the LFCA tree in the scenarios of Fig. 9b
(w:20% r:55% q:25%-1000).

Threads 1 2 4 8 16 32 64

route nodes 0 53 130 270 440 740 980
traversed base nodes

range queries 1.0 1.0 1.0 1.0 1.0 1.1 1.1
splits

milliseconds 0 0.024 0.048 0.1 0.23 0.53 1.0
joins

milliseconds 0 0.019 0.036 0.078 0.19 0.46 0.91

Table 2: Statistics for the LFCA tree in the scenarios of Fig. 10.
16 threads doing range queries and 16 threads doing updates.

Range Size 2 128 512 2K 8K 32K 128K

route nodes 2.9K 2.3K 2.1K 1.3K 680 370 330
traversed base nodes

range queries 1.0 1.0 1.3 2.6 5.5 12 42
splits

milliseconds 1.1 1.3 1.5 2.4 5.0 10 13
joins

milliseconds 0.79 1.0 1.3 2.3 4.9 10 13

0

200

400

600

800

1000

1200

1400
Nu

m
be

r o
f R

ou
te

 N
od

es

initial to X-1000 X-10 X-1000 X-10 X-100000

0 1 2
0
2
4
6
8

10
12
14
16

Th
ro

ug
hp

ut
 (o

ps
/μ

s)

3 4
0
2
4
6
8

10
12
14
16

5 6 7
0
2
4
6
8

10
12
14
16

8 9
0
2
4
6
8

10
12
14
16

10 11 12
0.0

0.1

0.2

0.3

0.4

Time (seconds)

Figure 11: Time series illustrating sudden changes in the
workloads. Number of route nodes in the top and through-
put in the bottom. Only the maximum size of the range
queries changes between the figures. X = 20% r:55% q:25%.

is executed using 30 threads for 2.4 seconds. Every 2.4 seconds the
maximum range query size changes: besides the initial value (1000)
it also takes the values 10, 1000, 10 and 100000 (cf. the values at
the top line of Fig. 11). From the time series, we can see that, after
each workload change, the rate of change for the number of route
nodes gradually decreases until the number of route nodes stabilizes
around a certain value. In the parts titled “initial to X-1000” and
“X-100000”, one can also see a positive change in throughput when
the number of route nodes increases/decreases quickly. The change
in throughput while the number of route nodes changes quickly is
not as big in the three middle parts (“X-10”, “X-1000” and “X-10”),
which is not strange considering that the synchronization granu-
larity changes relatively less in these parts.

11

The benchmark set up for the time series experiment is a bit
involved in order to obtain numbers that are not disturbed by taking
measurements during very short periods of time. It goes as follows.
For every time point shown with a dot in the graphs, average
measurements from five experiment runs in different JVM instances
were collected. Each such run consists of 35 warm up runs and 10
measurement runs (that we take the average measurements from).
A warm up or a measurement run does the following after the
LFCA tree has been filled with 500K items: It performs a triggering
run (skipped in the first workload of the time series) of 2.2 seconds
that applies the workloadW (whereW is the previous workload
in the time series), before the actual warm up/measurement run
is executed for t seconds (t is always 2 seconds for the warm up
runs), after which the number of route nodes and the number of
performed operations by the threads are collected. For example, a
run to collect measurements for time point 3.4 seconds performs
a triggering run with the workload w:20% r:55% q:25%-1000 and
then a measurement run with the workload w:20% r:55% q:25%-
10 (running for 1 second). The throughput for a time point tn is
calculated as o(tn)−o(tn−1)

(tn−tn−1) , where tn−1 denotes the previous time
point in the time series and o(t) denotes the average number of
performed operations measured for time point t .

8 CONCLUDING REMARKS
We have given a detailed description and correctness arguments
for the LFCA tree, the first lock-free data structure supporting
range queries that adapts its structure based on heuristics that
take detected contention and information about range queries into
account. LFCA trees make use of information gathered at runtime
to get a good trade-off between the performance of operations
that generally benefit from coarse-grained synchronization and
those that generally benefit from fine-grained synchronization.
Our experimental evaluation, in the previous section as well as in
its extended version of this paper [23], shows that this has real
benefits in practice, as the LFCA tree can maintain exceptionally
good performance across a wide range of scenarios.

DATA AVAILABILITY STATEMENT
The source code for the LFCA tree as well as the code for the
benchmarks are available online [18].

ACKNOWLEDGMENTS
This work was carried out within the Linnaeus centre of excel-
lence UPMARC (Uppsala Programming for Multicore Architectures
Research Center), and was partly supported by grants from the
Swedish Research Council.

REFERENCES
[1] Hillel Avni, Nir Shavit, and Adi Suissa. 2013. Leaplist: Lessons Learned in Design-

ing TM-supported Range Queries. In Proceedings of the 2013 ACM Symposium
on Principles of Distributed Computing (PODC ’13). ACM, New York, NY, USA,
299–308. https://doi.org/10.1145/2484239.2484254

[2] Dmitry Basin, Edward Bortnikov, Anastasia Braginsky, Guy Golan-Gueta, Eshcar
Hillel, Idit Keidar, and Moshe Sulamy. 2017. KiWi: A Key-Value Map for Scalable
Real-Time Analytics. In Proceedings of the 22Nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP ’17). ACM, New York, NY,
USA, 357–369. https://doi.org/10.1145/3018743.3018761

[3] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. 2010. A
practical concurrent binary search tree. In Proceedings of the 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP ’10). ACM,
New York, NY, USA, 257–268. https://doi.org/10.1145/1693453.1693488

[4] Trevor Brown and Hillel Avni. 2012. Range Queries in Non-blocking k-ary Search
Trees. In Principles of Distributed Systems: 16th International Conference, OPODIS
2012. Proceedings, Roberto Baldoni, Paola Flocchini, and Ravindran Binoy (Eds.).
Springer, 31–45. https://doi.org/10.1007/978-3-642-35476-2_3

[5] Trevor Brown and Joanna Helga. 2011. Non-blocking k-ary Search Trees. In
Principles of Distributed Systems: 15th International Conference, OPODIS 2011.
Proceedings, Antonio Fernàndez Anta, Giuseppe Lipari, and Matthieu Roy (Eds.).
Springer, 207–221. https://doi.org/10.1007/978-3-642-25873-2_15

[6] Bapi Chatterjee. 2017. Lock-free Linearizable 1-Dimensional Range Queries.
In Proceedings of the 18th International Conference on Distributed Computing
and Networking (ICDCN ’17). ACM, New York, NY, USA, Article 9, 10 pages.
https://doi.org/10.1145/3007748.3007771

[7] Chao-Hong Chen, Vikraman Choudhury, and Ryan R. Newton. 2017. Adap-
tive Lock-free Data Structures in Haskell: A General Method for Concurrent
Implementation Swapping. In Proceedings of the 10th ACM SIGPLAN Interna-
tional Symposium on Haskell (Haskell 2017). ACM, New York, NY, USA, 197–211.
https://doi.org/10.1145/3122955.3122973

[8] Phuong Hoai Ha, Marina Papatriantafilou, and Philippas Tsigas. 2007. Self-tuning
reactive diffracting trees. J. Parallel and Distrib. Comput. 67, 6 (2007), 674–694.
https://doi.org/10.1016/j.jpdc.2007.01.011

[9] M. Herlihy. 1990. A Methodology for Implementing Highly Concurrent Data
Structures. In Proceedings of the Second ACM SIGPLAN Symposium on Principles &
Practice of Parallel Programming (PPoPP ’90). ACM, New York, NY, USA, 197–206.
https://doi.org/10.1145/99163.99185

[10] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Trans. Program. Lang. Syst. 12, 3 (July
1990), 463–492. https://doi.org/10.1145/78969.78972

[11] Ryan R. Newton, Peter P. Fogg, and Ali Varamesh. 2015. Adaptive Lock-free
Maps: Purely-functional to Scalable. In Proceedings of the 20th ACM SIGPLAN
International Conference on Functional Programming (ICFP 2015). ACM, New York,
NY, USA, 218–229. https://doi.org/10.1145/2784731.2784734

[12] Chris Okasaki. 1999. Purely functional data structures. Cambridge Univ. Press.
[13] Erik Österlund and Welf Löwe. 2014. Concurrent Transformation Components

Using Contention Context Sensors. In Proceedings of the 29th ACM/IEEE Interna-
tional Conference on Automated Software Engineering (ASE ’14). ACM, New York,
NY, USA, 223–234. https://doi.org/10.1145/2642937.2642995

[14] Erez Petrank and Shahar Timnat. 2013. Lock-Free Data-Structure Iterators.
In Proceedings of the 27th International Symposium on Distributed Computing -
Volume 8205 (DISC 2013). Springer-Verlag New York, Inc., New York, NY, USA,
224–238. https://doi.org/10.1007/978-3-642-41527-2_16

[15] Callum Robertson. 2014. Implementing Contention-Friendly Range Queries in
Non-Blocking Key-Value Stores. Bachelor Thesis. The University of Sydney.

[16] Konstantinos Sagonas and Kjell Winblad. 2016. Efficient Support for Range
Queries and Range Updates Using Contention Adapting Search Trees. In Lan-
guages and Compilers for Parallel Computing - 28th International Workshop, LCPC
(LNCS), Xipeng Shen, Frank Mueller, and James Tuck (Eds.), Vol. 9519. Springer,
37–53. https://doi.org/10.1007/978-3-319-29778-1_3

[17] Konstantinos Sagonas and Kjell Winblad. 2017. A contention adapting approach
to concurrent ordered sets. J. Parallel and Distrib. Comput. (2017). https://doi.
org/10.1016/j.jpdc.2017.11.007

[18] Konstantinos Sagonas and Kjell Winblad. 2018. Contention Adapting Search
Trees. (2018). http://www.it.uu.se/research/group/languages/software/ca_tree.

[19] R. Seidel and C. R. Aragon. 1996. Randomized search trees. Algorithmica 16, 4
(01 Oct. 1996), 464–497. https://doi.org/10.1007/BF01940876

[20] N. Shafiei. 2013. Non-blocking Patricia Tries with Replace Operations. In 2013
IEEE 33rd International Conference on Distributed Computing Systems. 216–225.
https://doi.org/10.1109/ICDCS.2013.43

[21] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy, Chad Whipkey, Eric
Rollins, Mircea Oancea, Kyle Littlefield, David Menestrina, Stephan Ellner, John
Cieslewicz, Ian Rae, Traian Stancescu, and Himani Apte. 2013. F1: A Distributed
SQL Database That Scales. Proceedings of the VLDB Endowment 6, 11 (Aug. 2013),
1068–1079. https://doi.org/10.14778/2536222.2536232

[22] Kjell Winblad. 2017. Faster Concurrent Range Queries with Contention Adapting
Search Trees Using Immutable Data. In 2017 Imperial College Computing Stu-
dent Workshop (ICCSW 2017) (OpenAccess Series in Informatics (OASIcs)). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany.

[23] Kjell Winblad, Konstantinos Sagonas, and Bengt Jonsson. 2018. Lock-free Con-
tention Adapting Search Trees. (2018). Extended version of this paper available
at http://www.it.uu.se/research/group/languages/software/ca_tree.

[24] Yahoo! Developer Network. 2017. Flurry analytics. (2017). https://developer.
yahoo.com/flurry/docs/analytics/ Accessed: 2017-07-26.

12

https://doi.org/10.1145/2484239.2484254
https://doi.org/10.1145/3018743.3018761
https://doi.org/10.1145/1693453.1693488
https://doi.org/10.1007/978-3-642-35476-2_3
https://doi.org/10.1007/978-3-642-25873-2_15
https://doi.org/10.1145/3007748.3007771
https://doi.org/10.1145/3122955.3122973
https://doi.org/10.1016/j.jpdc.2007.01.011
https://doi.org/10.1145/99163.99185
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/2784731.2784734
https://doi.org/10.1145/2642937.2642995
https://doi.org/10.1007/978-3-642-41527-2_16
https://doi.org/10.1007/978-3-319-29778-1_3
https://doi.org/10.1016/j.jpdc.2017.11.007
https://doi.org/10.1016/j.jpdc.2017.11.007
http://www.it.uu.se/research/group/languages/software/ca_tree
https://doi.org/10.1007/BF01940876
https://doi.org/10.1109/ICDCS.2013.43
https://doi.org/10.14778/2536222.2536232
http://www.it.uu.se/research/group/languages/software/ca_tree
https://developer.yahoo.com/flurry/docs/analytics/
https://developer.yahoo.com/flurry/docs/analytics/

	Abstract
	1 Introduction
	2 A Bird's Eye View of LFCA Trees
	3 Related Work
	4 Algorithm
	5 Correctness
	6 Optimization for Range Queries
	7 Evaluation
	8 Concluding Remarks
	Acknowledgments
	References

