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Abstract. Automata learning is an established class of techniques for
inferring automata models by observing how they respond to a sample of
input words. Recently, approaches have been presented that extend these
techniques to infer extended finite state machines (EFSMs) by dynamic
black-box analysis. EFSMs model both data flow and control behavior,
and their mutual interaction. Different dialects of EFSMs are widely used
in tools for model-based software development, verification, and testing.
This survey paper presents general principles behind some of these recent
extensions. The goal is to elucidate how the principles behind classic au-
tomata learning can be maintained and guide extensions to more general
automata models, and to situate some extensions with respect to these
principles.

1 Introduction

Behavioral models of components and interfaces are the basis for many powerful
software development and verification techniques, such as model checking, model
based test generation, controller synthesis, and service composition. Ideally, such
models should be part of documentation (e.g., of a component library), but in
practice they rarely exist, or become outdated as the implementations evolve.

One approach to overcome the problem of nonexisting or outdated mod-
els is to develop techniques for automatically generating models of compo-
nent behavior are being developed. In this paper, we are interested in a par-
ticular such technique, active automata learning [Ang87,RS93], using which
we can infer automata models that represent the dynamic behavior of a soft-
ware or hardware component. Mature techniques, based on active automata
learning, are available for generating finite-state models that describe control
flow, i.e., possible orderings of interactions between a component and its envi-
ronment [HHNS02,HNS93,ABL02,SL07]. These techniques suppress data val-
ues, but have nevertheless been demonstrated to be useful for, e.g., mining



APIs [ABL02], supporting model-based testing [HHNS02,WBDP10] and con-
formance testing [AKT+12], and for analyzing security protocols [SL07,GIO12].
Perhaps the most well-known algorithm for inferring finite automata is L∗ [Ang87],
which has been implemented in the LearnLib framework [IHS15]. However, in
many situations it is crucial for models to also be able to describe data flow, i.e.,
constraints on data parameters that are passed when the component interacts
with its environment, as well as the mutual influence between control flow and
data flow. For instance, models of protocol components must describe how differ-
ent parameter values in sequence numbers, identifiers, etc. influence the control
flow, and vice versa.

In order to capture both control flow and data flow aspects of component
behavior (as well as their mutual influence), finite state machines can be, and
commonly are, equipped with variables. Variables can store the values of data
parameters; they can influence control flow by means of guards, and the con-
trol flow can cause variable updates. Finite state machines with variables are
often called extended finite state machines (EFSMs). Different dialects of EF-
SMs are successfully used in tools for model-based testing (such as ConformiQ
Qtronic [Hui07], which produces high-quality test suites), web service composi-
tion [BPT10], model-based development [GHP02], and by software model check-
ers to formally verify properties of all program behaviors [JM09].

Recently, various techniques have been employed to extend automata learning
to EFSM models, which combine control flow with guards and assignments to
data variables [CHJS16,AJUV15,BHLM13].

In this paper, we provide a condensed account of one way in which AAL can
be generalized from the learning of DFAs to the learning of EFSM-like models.
Our aim is to show how such a generalization can be obtained while keeping as
much as possible of the structure that underpins mainstream AAL algorithms
for DFAs. In particular, we will emphasize how such a generalization can pre-
serve AAL as a gradual refinement process, which exploits central concepts from
automata theory to converge monotonically to a correct target automaton. This
view allows AAL to be seen as a partition refinement process, which generates
successively more refined approximations to the Nerode congruence, and allows
to give rather strong convergence guarantees.

The described generalization is very close to that presented in [CHJS16].
However, whereas [CHJS16] aims to describe a complete implementation of an
AAL algorithm for EFSM-like models, here the aim is to focus on how central
principles of AAL are generalized to the EFSM case. We have therefore tried to
simplify the notation and concept machinery to a bare minimum; we describe
only the main mechanisms of the AAL algorithm. In order to try to make the
paper accessible, we have structured it into four parts:

– The next section summarizes main concepts underlying AAL for DFAs.
– Section 3 introduces register automata, a simple formalism for expresing

EFSMs.
– Section 4 introduces the main concepts in the AAL generalization by means

of an example.



– Section 5 formally defines the generalized concepts, and establishes key the-
orems of correctness and convergence.

Related work. The problem of inferring behavioral models from implementa-
tions has been addressed in a number of different ways. Dynamic analysis ap-
proaches that combine automata learning techniques with methods for inferring
constraints on data are the most closely related to our work. The pattern they
follow is typically similar to CEGAR (counterexample-guided abstraction refine-
ment): a sequence of models is refined in a process that is usually monotonic and
converges to a fixpoint. All the approaches, however, suffer from limitations with
respect to capturing the mutual influence of data flow and control flow on each
other, and/or in what relations can be expressed between data parameters.

In white-box scenarios, access to the source code is presumed, so domain
knowledge, manual abstractions, and/or symbolic execution can be used. White-
box inference based on active automata learning (AAL) has been explored in
several works. AAL has been combined with predicate abstraction [ACMN05]
to infer interface specifications of Java classes, and with CEGAR [HJM05] to
infer interface specifications as finite-state automata without data parameters.
In [XSL+13], AAL is combined with support vector machines to infer constraints
on data parameters; in [GRR12], AAL is combined with symbolic execution to
recover guards from the analyzed system, producing DFA models where labels
are guards over parameters of alphabet symbols.

In black-box scenarios, an early method for inferring EFSM-like models
is [LMP08], where models are generated from execution traces by combining
passive automata learning with the Daikon tool [EPG+07]. Since constraints on
data parameters are only created for individual traces, there is no way to model
the influence of data values on subsequent control flow. A more recent approach
is that of [WTD16] which uses a different EFSM model than in this paper, and
provides no statements about correctness or convergence.

Other approaches use AAL to infer data constraints from tests: In [AJUV15],
a manually supplied abstraction on the data domain makes it possible to ap-
ply finite-state active automata learning techniques to the test cases. The ap-
proach has been successfully used in practical applications [ASV10,AdRP13],
but a drawback is that a priori insight into the target component’s behavior is
required, making it not quite black-box. In [HSM11], automated (alphabet) re-
finement is used. Since the presented approach works at the level of concrete rep-
resentative inputs, the resulting models have no symbolic interpretation but are
rather minimal concrete representative systems. In [MM14] and [DD17], AAL is
used to learn symbolic automata, and counterexamples used to refine transitions
(representing equivalence classes in the language of the symbolic automata). The
goal is to handle very large alphabets without having to store values in registers.
The authors of [BHLM13] infer EFSMs that they claim to be incomparable with
register automata, and that can represent components where data parameters
are ‘globally fresh’, i.e., never before seen or stored since the last reset of the
component.



The approach of this paper can be specialized to learning register automata
where the only operation on data is comparison for equality. Descriptions of
such approaches have appeared in [HSJC12], and we have successfully applied
it to generate models of container-like interfaces (such as sets, stacks, queues,
etc.) [HIS+12]. [IHS14] provides a then up-to-date overview of the extension of
active automata, including [AHK+12,BHLM13,HSJC12]. This model was also
considered in our earlier work [BJR08], which however is less suitable for imple-
mentation.

2 Background: Active learning of DFAs

In this section, we review the main ideas underlying active automata learning
(AAL) of DFAs. The exposition is intended to highlight the principles on which
extensions, as outlined in Sections 4 and 5, are based. Essentially, our intention
is to show how AAL can be seen as a partition refinement procedure, which is
based on the Nerode congruence, to which an exploration process is added. We
first recall standard notions from the theory of finite automata.

Languages Let A be a finite set of symbols. A word over A is a finite sequence of
symbols in A. A language over A is a set of words over A. Let A∗ denote the set
of all words over A, and let ww′ denote the concatenation of words w and w′.

Automata A deterministic finite automaton (DFA) over A is a structure M =
(Q, δ, q0, F ) where Q is a non-empty finite set of states, q0 ∈ Q is the initial
state, δ : Q×A→ Q is the transition function, and F ⊆ Q is the set of accepting
states. The transition function is extended from input symbols to words of input
symbols in the standard way, by defining δ(q, ε) = q and δ(q, ua) = δ(δ(q, u), a).
An input word u is accepted iff δ(q0, u) ∈ F . The language accepted by M,
denoted by L(M), is the set of accepted input words.

Nerode Congruence Let L be a language over A. Two words w,w′ over A are
Nerode equivalent, denoted w ≡L w′ if wv ∈ L ⇔ w′v ∈ L for all words v ∈ A∗.
It follows that ≡L is an equivalence relation, and also a (right) congruence (i.e.,
w ≡L w′ implies wv ≡L w′v for any w,w′, v). Given two words u and u′, a
distinguishing suffix for u and u′ is a word v such that either uv or u′v is in L,
but not both. Thus, two words are Nerode equivalent if there is no distinguishing
suffix for them.

Regular Languages The index of an equivalence relation is the number of equiv-
alence classes. The language L is regular if ≡L has finite index. A main result
in classical automata theory is that a language is regular if and only if it can be
recognized by a DFA. The proof that a regular language L can be recognized by
a DFA constructs the DFA M = (Q, δ, q0, F ) where Q is the set of equivalence
classes of ≡L, where q0 is [ε]≡L , where δ is defined by δ([w]≡L , a) = [wa]≡L , and
where F is defined by [w]≡L ∈ F ⇐⇒ w ∈ L, and then demonstrates that
L(M) = L.



Active Automata Learning Active Automata Learning (AAL) is most of-
ten formulated in the so-called MAT (for minimally adequate teacher) model of
learning [Ang87]. In this model, learning proceeds by asking two kinds of queries.

– A membership query consists in asking whether a word w is in L.
– An equivalence query consists in asking whether a hypothesized DFA H is

correct, i.e., whether L(H) = L. The query is answered by yes if H is correct,
otherwise by a counterexample, which is a word from the symmetric difference
of L and L(H).

The basic problem in any inductive learning is to generalize from the classifi-
cation of a finite set to a classification of an infinite set. In AAL, this problem
is to infer a language (i.e., a classification of an infinite set of words) from the
classification of the finite set of words for which membership queries have been
performed, or which have been returned by unsuccessful equivalence queries.

If we look at the construction of a DFA from a regular language, it shows
that in order to construct a DFA we need

(i) at least one representative word in each Nerode equivalence class, and
(ii) a criterion which determines whether two words are in Nerode equivalent.

A learning algorithm starts with a small sample, which may not contain suffi-
ciently many words for this need. In this case, these two concepts can only be
approximated.

(i) The set of representative words is approximated from below, since we can
only know about equivalence classes which have representative words in the
sample.

(ii) The Nerode equivalence is overapproximated based on suffixes that are avail-
able in the sample. That is, two words are considered equivalent if the sample
contains no concatenations of these words with a distinguishing suffix.

These considerations lead to the structuring of AAL algorithms as maintaining
two finite sets of words:

– a non-empty prefix-closed set U of short prefixes (sometimes called access
strings), which contains representatives of Nerode equivalence classes, and

– a set V of suffixes, which is used to define an overapproximation to the
Nerode equivalence.

The set V represents an overapproximation of the Nerode equivalence, here de-
noted ≡L,V , defined by w ≡L,V w′ if wv ∈ L ⇐⇒ w′v ∈ L for all words v ∈ V .
It is easy to see that ≡L,V is an equivalence relation, which overapproximates
≡L. If L is has finite index, then in fact ≡L,V coincides with ≡L for sufficiently
large finite V (it is sufficient that V contains a distinguishing suffix for each pair
of inequivalent words).

Several AAL algorithms (of which [RS93] was maybe the first) maintain the
property that the words in U are pairwise inequivalent wrt. ≡L,V . We will follow
this approach here.



We say that the set U is closed wrt. V if for each u ∈ U and a ∈ A there is
a u′ ∈ U such that ua ≡L,V u′. Whenever U is closed wrt. V , we can construct
a DFA H(U, V ) = (U, δ, ε, F ) where δ(ua) is the u′ such that ua ≡L,V u′ and
where F is defined by u ∈ F ⇐⇒ u ∈ L.

It can be shown [Ang87, Lemma 3] that if U is prefix-closed and V is suffix-
closed, then H(U, V ) correctly classifies all words in UV .

AAL iterates two phases: hypothesis construction and hypothesis validation.

– During hypothesis construction, membership queries are performed for all
words in UV ∪ UAV . The purpose of this is to compute the relation ≡L,V
on U ∪ UA. Whenever the set U is not closed wrt. V , then it is extended:
if there is some ua with u ∈ U such that ua 6≡L,V u′ for all u′ ∈ U , then
ua is added to U , triggering new membership queries. The extension of U is
continued in this way until U is closed wrt. V .

– When U is closed wrt. V , then the hypothesis H(U, V ) is validated by sub-
mitting it in an equivalence query. If the query returns “yes”, then the
learning is completed, and H(U, V ) accepts L. If the query returns a coun-
terexample word w, this is used to extend V as follows. By the fact that
w is a counterexample, there is a suffix av of w such that ua ≡L,V u′ but
uav ∈ L 6⇐⇒ u′v ∈ L for some u, u′ ∈ U . (To se this, let w = a1 · · · an,
and define the sequence u0, u1, . . . , un of short prefixes in U by u0 = ε and
ui−1ai ≡L,V ui for i = 1, . . . n, i.e., u0 . . . un is the sequence of states visited
when H(U, V ) processes w. Let vi be the suffix ai+1 · · · an of w length n− i.
By the fact that w is a counterexample, we have u0v0 ∈ L 6⇐⇒ un ∈ L,
which implies that ui−1vi−1 ∈ L 6⇐⇒ uivi ∈ L for some i; we can then take
ui−1 as u and ui as u′.) This means that v is a new separating suffix that
should be added to V . After adding v to V , U is no longer closed wrt. V ,
so the algorithm can resume a next round of hypothesis construction, which
will eventually generate a new hypothesis, etc.

Starting from some initial approximations (e.g., the singleton set consisting of
the empty word), the sets U and V are successively extended, until U contains
one element of each equivalence class of ≡L, and ≡L,V coincides with ≡L. At
termination the hypothesis is correct, by definition of equivalence query.

Since each round of hypothesis construction and validation adds at least one
word to U , there can be at most n equivalence queries, where n is the index of L.
Since each equivalence query adds only one word to V , this means that |V ] ≤ n
when the algorithm finishes, implying that in total, at most n2|A] membership
queries will be performed during hypothesis construction. During hypothesis
validation, at most 2 log(m) membership queries need be performed (in addition
to the equivalence query), where m is the length of the largest counterexample
word returned.

3 Basic Definitions for Register Automata

In this and the following section, we introduce the principles for our general-
ization to data languages and register automata. In this section, we generalize



the concepts of languages and automata by defining data languages and register
automata. These are parameterized on a vocabulary that determines how data
can be examined, which in our setting is called a theory.

Definition 1 (Theories). A theory is a pair 〈D,R〉 where D is an infinite
domain of data values, and R is a set of relations on D.

The relations in R can have arbitrary arity. Known constants can be represented
by unary relations. The assumption that the domain D be infinite allows to avoid
some technical complexities. Some examples of theories are

– 〈N, {=}〉, the theory of natural numbers with equality; instead of the set of
natural numbers, we could consider any other infinite domain, e.g., the set
of strings (representing passwords or usernames),

– 〈R, {<}〉, the theory of real numbers with inequality; this theory also allows
to express equality between elements.

The above theories can all be extended with constants (allowing, e.g., theories
of sums with predefined concrete constants). Technically, such an extension is
achieved by defining new relations for every constant that can be added to a
data values. As an example, 〈N, {=}〉 could be extended to a theory that also
allows modeling sums of data values with the constant 5 by adding relation =5

with a =5 b for a, b ∈ N iff a + 5 = b. In the following, we assume that some
theory has been fixed.

Data languages. We assume a set Σ of actions, each with an arity that de-
termines how many parameters it takes from the domain D. For simplicity, we
assume that all actions have arity 1; it is straightforward to extend the techniques
to handle actions with arbitrary arities.

A data symbol is a term of form α(d), where α is an action and d ∈ D is
a data value. A data word is a sequence of data symbols. The concatenation of
two data words w and w′ is denoted ww′. In this context, we often refer to w as
a prefix and w′ as a suffix. For a data word w = α1(d1) . . . αn(dn), let Acts(w)
denote its sequence of actions α1 . . . αn, and V als(w) its sequence of data values
d1 . . . dn. Let |w| denote the number of data symbols in w.

Two data words w = α1(d1) . . . αn(dn) and w′ = α1(d′1) . . . αn(d′n) are R-in-
distinguishable, denoted w ≈R w′, if

– Acts(w) = Acts(w′), and
– R(di1 , . . . , dij ) ⇔ R(d′i1 , . . . , d

′
ij

) whenever R is a j-ary relation in R and
i1, · · · , ij are indices among 1 . . . n.

Intuitively, w and w′ are R-indistinguishable if they have the same sequences of
actions and cannot be distinguished by any of the relations in R.

A data language L is a set of data words that respects R in the sense that
w ≈R w′ implies w ∈ L ↔ w′ ∈ L. We will often represent data languages as
mappings from the set of data words to {+,−}, where + stands for accept and
− for reject.



Example 1. As a running example, we will use a simple version of a priority queue
with bounded capacity. A priority queue stores a set of keys from some totally
ordered set. We will use the set of rational numbers as the set of keys. An actual
priority queue may store values along with keys, but here we only model the
keys. The interface of the priority queue supports two operations: - offer inserts
a given key into the priority queue. It succeeds if the queue is not full; - poll asks
for the smallest key in the queue; the operation returns that key and removes
it; if the queue contains several copies of the smallest key only one is removed;
if the queue is empty, the operation does not succeed. The interface consists of
operations with input parameters and return values. In order to represent it as a
data language, we let data symbols represent successul operations: a successful
offer is represented by the data symbol offer(d), where d is the inserted key, a
successful poll operation is represented by the data symbol poll(d), where d is
the returned key. We represent the interface as the data language consisting of
sequences of data symbols that correspond to possible sequences of successful
operations.

Register Automata We assume a set of registers x1, x2, . . .. A parameterized
symbol is a term of form α(p), where α is an action and p a formal parameter.
A guard is a conjunction of negated and unnegated relations (from R) over the
formal parameter p and registers. An assignment is a simple parallel update
of registers with values from registers or the formal parameter p. We represent
an assignment which updates the registers xi1 , . . . , xim with values from the
registers xj1 , . . . , xjn or p as a mapping π from {xi1 , . . . , xim} to {xj1 , . . . , xjn}∪
{p}, meaning that the value of the register or formal parameter π(xik) is assigned
to the register xik , for k = 1, . . . ,m. Using multiple-assignment notation, this
would be written as xi1 , . . . , xim := π(xi1), . . . , π(xim).

Definition 2 (Register automaton). A register automaton (RA) is a tuple
A = (L, l0,X , Γ, λ), where

– L is a finite set of locations, with l0 ∈ L as the initial location,
– X maps each location l ∈ L to a finite set X (l) of registers, and
– Γ is a finite set of transitions, each of form 〈l, α(p), g, π, l′〉, where
• l ∈ L is a source location,
• l′ ∈ L is a target location,
• α(p) is a parameterized symbol,
• g is a guard over p and X (l), and
• π (the assignment) is a mapping from X (l′) to X (l) ∪ {p}, and

– λ maps each l ∈ L to {+,−}. ut

We require register automata to be determinate and non-blocking; these concepts
are defined after the definition of runs.

A restriction of register automata, as defined by Definition 2, is that transi-
tions do not allow to assign arbitrary expressions to registers, only the value of
a formal parameter or a register. A main reason for this restriction is to limit
the number of possibilities for inferring guards and assignments that match the



results of membership queries, thereby making learning more tractable. As an
example, suppose that a SUL accepts sequences with increasing parameter val-
ues, e.g., offer(1) offer(2) offer(3) offer(4). We could then learn a RA if the
theory includes, e.g., the relation issucc, defined by issucc(x, y) iff x+ 1 = y. If
assignments to registers would allow expressions that include e.g., the +1 opera-
tor, or even arbitrary addition, then the learning algorithm would have to choose
between a potentially large number of different guards and assignments on each
transition, This would complicate the design of a learning algorithm. On the
other hand, we do not foresee any conceptual difficulty in extending the theory
for learning RAs in order to produce more expressive classes of RAs; this could
possibly be done by making the implementation of tree queries more advanced
and extending the Nerode equivalence (cf. Section 4). However, in order to fo-
cus on the conceptual extensions needed to learn RAs, we have so far excluded
expressions in assignments of RAs.

Let us formalize the semantics of RAs. A state of an RA A = (L, l0,X , Γ, λ) is
a pair 〈l, µ〉 where l ∈ L and µ is a valuation over X (l), i.e., a mapping from X (l)

to D. A step of A, denoted 〈l, µ〉 α(d)−−−→ 〈l′, µ′〉, transfers A from 〈l, µ〉 to 〈l′, µ′〉
on input of the data symbol α(d) if there is a transition 〈l, α(p), g, π, l′〉 ∈ Γ with

– µ |= g[d/p], i.e., d satisfies the guard g under the valuation µ, and

– µ′ is the updated valuation µ′ = µ ◦ [p 7→ d] ◦ π (i.e., µ′(xi) = µ(xj) if
π(xi) = xj , and µ′(xi) = d if π(xi) = p).

Here, and in the following, we use [p 7→ d] to denote a mapping, with suitable
domain and range determined by context, which maps p to d and leaves all other
elements in its domain unchanged.

A run of A over a data word w = α1(d1) . . . αn(dn) is a sequence of steps of
A

〈l′0, µ0〉
α1(d1)−−−−→ 〈l′1, µ1〉 . . . 〈l′n−1, µn−1〉

αn(dn)−−−−→ 〈l′n, µn〉 .

The run is initialized if l′0 is the initial location and µ0 is the initial (empty)
valuation. An initialized run is accepting if λ(l′n) = + and rejecting if λ(l′n) = −.
The word w is accepted (rejected) by A under µ0 if A has an accepting (rejecting)
initialized run over w.

An RA is non-blocking if for any initialized run ending in 〈l, µ〉 and any data

symbol α(d) there is a step of form 〈l, µ〉 α(d)−−−→ 〈l′, µ′〉. An RA is determinate if
there is no data word over which it has both accepting and rejecting initialized
runs. We require RAs to be non-blocking and determinate. We have chosen to
work with determinate, rather than deterministic, RAs. This distinction is not
important, since a determinate RA can be easily transformed into a deterministic
RA by strengthening its guards, and a deterministic RA, by definition, is also
determinate. Our construction of RAs in Section 5 will generate determinate
RAs which are not necessarily deterministic.

We use RAs as acceptors for data languages. The language accepted by A,
denoted L(A), is the set of data words that it accepts.



Example We illustrate by an RA that accepts the language modeling a priority
queue with bounded capacity. We choose to represent a priority queue with ca-
pacity 2. Figure 1 shows a RA that accepts the corresponding data language. For
conciseness, we have omitted nonaccepting locations. Thus the RA in Figure 1
should be extended with a terminal non-accepting location; from each location,
there should be transitions to the non-accepting location for data symbols that
do not satisfy any of the existing guards. For instance, from l1 there is a transi-
tion to the non-accepting location for poll(p) symbols where p 6= x1.

l0 l1 l2

offer(p) | true
x1:=p

poll(p) | p=x1
−

offer(p) | p≥x1
x1,x2:=x1,p

offer(p) | p≤x1
x1,x2:=p,x1

poll(p) | p=x1
x1:=x2

Fig. 1: Register automaton modeling a priority queue with capacity 2.

4 Generalizing Active learning to EFSM models

In this section, we discuss how the principles on which AAL for DFAs was
based can be generalized to the learning of register automata. The challenge that
faces AAL for register automata is to infer all the features of an RA, including
locations, registers, guards, and assignments, using only membership queries and
counterexamples returned by equivalence queries. The only a priori information
available is the set Σ of actions that appear in data symbolc, and a theory which
is expressive enough, in the sense that the language accepted by the RA respects
the relations of the theory. For instance, in the case of the priority queue of
our running example, the theory could be the theory of rational numbers with
inequality. We will here try to illustrate how this challenge can be solved by
suitable generalizations of the concepts underlying AAL for DFAs.

Recall from Section 2 that the essence of AAL for regular languages is to
maintain a set U of short prefixes, which represent states in the DFA to be
constructed, and an overapproximation of the Nerode equivalence, represented
by a set V of suffixes. During hypothesis construction, the approximation of
the Nerode equivalence triggers the expansion of U until it is closed, so that
a hypothesis automaton can be formed. During hypothesis validation, returned
counterexamples are used to refine the Nerode equivalence by expanding V .

In our generalization to learning register automata, we still let the algorithm
maintain a set U of short prefixes. In contrast to the DFA case we will not let the
short prefixes in U represent states of the RA: this would be highly impractical
since an RA in general has an infinite number of states. Instead, we let short



prefixes represent locations in the RA to be constructed; this seems like a natural
way to obtain a suitable number of equivalence classes.

4.1 Symbolic Decision Trees and Approximated Nerode Equivalence

Let us now consider how to generalize the approximated Nerode equivalence.
We first note that in the literature there is no standard generalization of Nerode
equivalence for register automata, which we can just adapt and approximate. 5

We must therefore first define such an equivalence. It appears most convenient
to first define an approximated Nerode equivalence, parameterized on a set of
suffixes (which is what is actually needed for automata learning), from which
a proper Nerode equivalence can be derived as the limit of increasingly precise
approximations (as shown in Section 6).

Symbolic Suffixes Let us consider how to define our approximated Nerode
equivalence, parameterized on a set of suffixes. Recall that in the DFA case, the
parameter is simply a finite set V of suffixes. In the RA case, sets of suffixes are
typically infinite, due to the infinite data domain. A natural way to characterize
such sets is by sets of sequences of actions. To this end, define a symbolic suffix
to be a sequence of actions. A set V of symbolic suffixes represents the set of
suffixes v with Acts(v) ∈ V. Let [[V]] denote the set of suffixes represented by V.

We must now define an approximated Nerode equivalence, parameterized by
a set V of symbolic suffixes. We first note that we cannot directly copy the
definition of Nerode equivalence from the DFA case, i.e., to let two words be
equivalent if their composition with an arbitrary suffix in [[V]] result in words
that are either both inside or outside the language. Let us illustrate this for
the priority queue example: letting V = {poll} would make any two words of
form offer(d) with different data values d inequivalent, since after offer(d), the
continuation poll(d′) is accepted if and only if d′ = d. Thus, V = {poll} would
induce an infinite number of equivalence classes, which can not be used for
constructing RAs.

Symbolic Decision Trees A better idea is to let the equivalence reflect the idea
that prefixes represent RA locations. A location l remembers data values from
the already processed sequence of data symbols in its registers. The processing
of future sequences of data symbols from a location involves to evaluate their
data values using guards on relevant transitions. This future processing can be
represented by an RA, in which l is an initial location with registers that store the
remembered data values. If the future sequences of interest are restricted to the
suffixes in a set [[V]] where V is finite, then such an RA can be tree-shaped with
l as its root. Thus, the processing of a set of suffixes in [[V]] after a given prefix
u can be represented by a tree-shaped “RA-fragment”, whose initial location
may therefore have registers that store data values from u. and which only has

5 The Nerode equivalence defined in [CHJ+15b] is defined only for the theory of equal-
ities over an infinite domain, and can be obtained as a special case of the approach
described in Section 6.



branches that correspond to the symbolic suffixes in V. Following [CHJS16], we
use the term symbolic decision tree (SDT) for such an RA-fragment.

{x1}

offer(p)
true

poll(p)
p = x1

(a) V = {offer, poll}

{x1}

offer(p)
p ≥ x1

offer(p)
p ≤ x1
x2 := p

poll(p)
p = x1

poll(p)
p = x1

poll(p)
p = x2

(b) V = {offer, poll, offer poll}

Fig. 2: SDTs for u = offer(5) for various V in the priority queue example.

Let us illustrate this on the priority queue example for the prefix u = offer(5)
and the set V = {offer, poll} of symbolic suffixes. The acceptance/rejection of
suffixes in [[V]] after the prefix offer(5) can be represented by the SDT in Fig-
ure 2(a). We require that an SDT refers to data values in the prefix u only via
registers in its initial location. Thus, in the initial location, the value 5 from
offer(5) is stored in a register. We annotate the root location by the set of its
registers. In other words, the SDT generalizes from specific data values in pre-
fixes (in this case 5) by using the guard p = x1 instead of the more specific
p = 5. In this way, the same SDTs can hopefully be used to represent the effect
of suffixes in [[V]] for many different prefixes. In order to know which values from
the prefix are stored in which registers, we use the convention that register xi
stores the ith data value from the prefix. Thereafter, suffixes of form poll(d)
are accepted if the data value d equals the value stored in the register, whereas
suffixes of form offer(d) are always accepted. In the same way as for the RA in
Figure 1, we omit rejecting locations, and transitions leading to them.

Note that the initial location of an SDT only has registers for the data
values of the prefix that are actually used in the SDT. Thus, even if the prefix
u is very long, the SDT may use only a few of its data values, and equally
many registers. Also note that the SDT in Figure 2(a) is different from the
corresponding fragment of the RA in Figure 1, which starts in location l1: the
latter makes finer distinctions for parameters of offer actions, since it must also
care about suffixes of length 2 or more. To move closer to the corresponding
fragment in the RA of Figure 1, we can extend the set V of symbolic suffixes
to {offer, poll, offer poll}. We can then obtain the SDT in Figure 2(b), in which
the outgoing offer-transitions are split by guards that compare the received data
value to that stored in the register.



{x1}

offer(p)
x2 := p

poll(p)
p = x1

poll(p)
p = x1
x1 ≤ x2

poll(p)
p = x2
x2 ≤ x1

Fig. 3: Alternative SDT for u = offer(5) and V = {offer, poll, offer poll} in the
priority queue example.

The construction of SDTs that accept and reject suffixes in [[V]] after some
prefix u can in principle be done in different ways. For instance, for the prefix
u = offer(5) and the set of symbolic suffixes V = {offer, poll, offer poll}, we could
instead of the SDT in Figure 2(b) produce the SDT in Figure 3. Following our
previous work, we prefer the SDT in 2(b) to that in Figure 3, since it obeys
the principle to perform comparisons between data values as early as possible to
avoid direct comparisons between registers, and since such a principle makes it
easier to define a canonical form for RAs.

In order to learn uniquely defined RAs, wee need to determine the form for
SDTs. We do this by postulating the existence of a tree oracle T , which for
each data word u and set of symbolic suffixes V produces an SDT, denoted
TV(u). In our running example the tree oracle will, for the prefix offer(5) and
suffixes {offer, poll} produce the SDT in Figure 2(a). Tree oracles should satisfy
a number of criteria, listed in Definition 4.

The tree oracle introduced here can be realized by a procedure which con-
structs SDTs by performing a bounded set of membership queries. For simple
theories, such as 〈N, {=}〉 and 〈R, {<}〉, introduced in the beginning of Section 3,
it is not difficult to devise techniuqes for SDT construction (see, e.g., [CHJS16]).
An extension to sequence numbers is reported in [FH17]. For theories with a large
number of relations, tree oracles may have to perform choices between a number
of possible ways combine them for classifying suffixes. Different tree oracles may
induce different approximations of the Nerode equivalence, and consequently
generate different RAs.

Approximated Nerode Equivalence Having introduced the notation TV(u)
for the SDT for u and V, we can use the constructed SDTs to define an approxi-
mated Nerode equivalence. A natural first idea is to let two prefixes, u and u′, be
equivalent wrt. V if TV(u) and TV(u′) are the same. However, since RAs can per-
form arbitrary assignments between registers, it is sufficient that the registers in
the root location of TV(u) can be renamed so that TV(u) and TV(u′) become the
same. The approximated Nerode equivalence between two SDTs will therefore



be parameterized on a bijection between their registers. It suffices to specify the
bijection for registers of the initial location; for the others it can be determined
from the structure of the trees. Thus, for a set V of symbolic suffixes and prefixes
u, u′, let u 'γT ,V u′ denote that γ is a bijection from the registers of the initial
location of TV(u) to the registers of the initial location of TV(u′) which can be
extended to a bijection from all registers of TV(u) to all registers of TV(u′), and
which converts TV(u) into TV(u′). Let u 'T ,V u′ denote that u 'γT ,V u′ for some

bijection γ. The point of this equivalence is that whenever u 'γT ,V u′, then for
the purpose of classifying the suffixes in [[V]], we can let let the prefix u′ lead to
the same location as u, and let the assignments on transitions be defined so that
the data value that is assigned to register xi after u is assigned to register γ(xi)
after u′.

{x2}

offer(p)
true

poll(p)
p = x2

Fig. 4: TV(u′) for u′ = offer(5)offer(7)poll(5) and V = {offer, poll}

To illustrate the approximated Nerode equivalence, Figure 4 shows TV(u′)
for u′ = offer(5)offer(7)poll(5) and V = {offer, poll}. We see that offer(5) 'γT ,V
offer(5)offer(7)poll(5), where γ maps x1 to x2.

4.2 Towards a Learning Algorithm

We have now developed sufficient machinery to illustrate our generalized AAL
learning on the priority queue.

Suppose we start our learning algorithms with U = {ε, offer(5), offer(5)offer(7)}
and V = {offer, poll}. We construct the RA-fragments TV(u) for u ∈ U , as shown
in Figure 5.

Since the SDTs are different, the corresponding prefixes are inequivalent, and
should therefore lead to three different locations. The recepy for AAL prescribes
to expand U until it is closed. In the DFA case, “closed” means that each one-
symbol continuation of some prefix in U is equivalent to some prefix which is
already in U . The naive generalization of this condition would be expensive to
check, since each prefix has an unbounded number of one-symbol continuations,
and often cause unnecessary work. Therefore, our generalization of “closed” per-
forms this check only for one “representative” symbol for each transition from
the initial location of the corresponding RA-fragment. Our framework thus re-
quires to define, for each prefix u and each guard g, a representative data value,
denoted dgu. We say that U is closed wrt. V if for each u ∈ U and each transition



{ }

offer(p)
true

(a) u = ε

{x1}

offer(p)
true

poll(p)
p = x1

(b) u = offer(5)

{x1}

poll(p)
p = x1

(c) u = offer(5)offer(7)

Fig. 5: SDTs TV(u) for V = {offer, poll} in the priority queue example.

from the initial location of TV(u) labeled by parameterized symbol α(p) and
guard g, the extension uα(dgu) is equivalent to a prefix in U . It is not crucial how
the representative data value dgu is chosen, but it is advisable to avoid corner
cases, such as unnecessarily letting dgu be equal to a data value in u. For the
following, let us assume that representative data values are chosen as follows.

– The representative data value for the guard true is 5 after ε and 7 after
offer(5) (avoiding the corner case 5).

– For a guard of form p = xi, there is obviously only one possible representative
data value, viz. the value of xi.

In our example, let us check whether our set U is closed wrt. V.

– u = ε: the extension offer(5) is also in U .
– u = offer(5): here there are two outgoing transitions.
• offer(p): the extension offer(5)offer(7) is also in U .
• poll(p): for the guard p = x1, the extension offer(5)poll(5) has the same

SDT as ε.
Recall that for the presentation we have omitted transitions leading to reject-
ing locations. E.g., after offer(5), we have thus omitted the poll-transition
with guard p 6= x1; the treatment of these cases is trivial in this example.

– u = offer(5)offer(7): the only continuation is u = offer(5)offer(7)poll(5),
which has the SDT of Figure 4, equivalent to that of offer(5).

Thus the set U is indeed closed wrt. V. In the DFA case, we should be able
to construct a hypothesis automaton. However, in our setting there is still one
problem remaining, which is that we cannot construct a transition from the loca-
tion represented by offer(5)offer(7) to that represented by offer(5)offer(7)poll(5).
The reason is that the SDT after offer(5)offer(7)poll(5) has a register containing
data value 7 in its initial location, whereas the SDT after offer(5)offer(7) has
a register which contains 5. Thus, we can not construct the assignment for the
transition, since there is no register of TV(offer(5)offer(7)) whose contents can
be assigned to the register of TV(offer(5)offer(7)poll(5)). Following [CHJS16],
we solve this issue by requiring U and V to be register-consistent, meaning that
the registers of uα(dgu), except possibly the register which stores dgu, should be
a subset of the registers of u. If U and V are not register consistent, then V is



extended by a symbolic suffix that forces the missing register to be added to
TV(u).

To remedy this deficiency, the learning algorithm discovers that the missing
register x2 is used in a poll transition after offer(5)offer(7)poll(5). This corre-
sponds to a suffix in [[{poll poll}]] after offer(5)offer(7). Thus, in order to add
the corresponding register to TV(offer(5)offer(7)), the set of suffixes must be
extended with poll poll. Resuming hypothesis construction, we construct TV(u)
for u in U and V = {offer, poll, poll poll}. The resulting SDTs are in Figure 6.

{ }

offer(p)
true

offer(p)
true

(a) u = ε

{x1}

offer(p)
true

poll(p)
p = x1

(b) u = offer(5)

{x12}

poll(p)
p = x1

poll(p)
p = x2

(c) u = offer(5)offer(7)

Fig. 6: SDTs TV(u) for V = {offer, poll, poll poll} in the priority queue example.

The new set of symbolic suffixes achieves both closedness and register con-
sistency. We can thus proceed to constructing a hypothesis. The main principles
for this construction are as follows.

– Each prefix u in U induces a location. Its registers are the registers of the
initial location of TV(u).

– Each initial transition of TV(u) induces a transition from the location induced
by u, with the same guard, to the prefix that is equivalent to its representa-
tive one-symbol extension. Its assignment is derived from the parameter γ
of this equivalence.

Using these principles, we construct the hypothesis shown in Figure 7.

l0 l1 l2

offer(p) | true
x1:=p

poll(p) | p=x1
−

offer(p) | true
x1:=x1

poll(p) | p=x1
x1:=x2

Fig. 7: Hypothesis RA for V = {offer, poll} in priority queue example.

We then move to the hypothesis validation phase. The hypothesis RA in
Figure 7 is supplied in an equivalence query. Since it is not equivalent to the



one in Figure 1, the equivalence query will return a counterexample. Suppose
that this counterexample is the word w = offer(5)offer(3)poll(3), which is re-
jected by the hypothesis but is in the language. Let us now illustrate how we
generalize counterexample processing to the RA setting. The word w suggests
that something is wrong with the symbolic path induced by w, i.e., the sequence
of transitions that goes through the sequence of locations l0l1l2l1. In the DFA
case, a counterexample indicates that a one-symbol extension of some prefix in
U , which has incorrectly been assumed to be equivalent to another prefix in U ,
should be added to U ; it describes how to extend V to achieve this effect. In the
RA case, a counterexample can point to additional deficiencies in the hypothesis:

– a guard may need to be refined, since it is satisfied by different data values
that induce inequivalent subsequent behavior, but V must be extended to
expose this difference,

– a representative one-symbol extension of a prefix in U may indeed be equiva-
lent to another prefix in U , but an incorrect bijection has been used to check
this.

These cases are also resolved by extending V and resuming hypothesis construc-
tion.

In our case, investigating the symbolic path induced by w reveals that the se-
quence of transitions l1l2l1 treats the two suffixes offer(7) poll(5) and offer(3) poll(5)
in the same way, although the first is in the language and the second is not. This
discrepancy is visible after the location induced by the prefix offer(5), and there-
fore its outgoing offer-transition must be refined. The remedy is to extend V by
the symbolic suffix offer poll. Then the tree oracle will construct and SDT for
offer(5) with two outgoing offer-transitions. Resuming hypothesis construction,
we construct TV(u) for u in U and V = {offer, poll, poll poll, offer poll}. The
resulting SDTs are in Figure 8.

{ }

offer(p)
true
x1 := p

offer(p)
true

poll(p)
p = x1

(a) u = ε

{x1}

offer(p)
p ≥ x1

offer(p)
p ≤ x1
x2 := p

poll(p)
p = x1

poll(p)
p = x1

poll(p)
p = x2

(b) u = offer(5)

{x1, x2}

poll(p)
p = x1

poll(p)
p = x2

(c) u = offer(5)offer(7)

Fig. 8: SDTs TV(u) for V = {offer, poll, offer poll, poll poll} in the priority queue
example.



Constructing an automaton based on these fragments yields the desired RA
in Figure 1.

5 Learning Register Automata: Formal Development

Let us now define the generalization more formally. We continue the line of
definitions from Section 3.

5.1 Symbolic Decision Trees

A symbolic suffix is a sequence of actions. An abstract suffix is a set of sym-
bolic suffixes. For an abstract suffix V, let [[V]] denote the set of data words v
with Acts(v) ∈ V, let α-1V denote the set of symbolic suffixes α1 . . . αn with
αα1 . . . αn ∈ V, and let Initacts(V) be the set of actions α with α-1V 6= ∅.

Assume a data word u with V als(u) = d1 . . . dk. Let µu be the valuation
with domain {x1, . . . , xk} such that µu(xi) = di for i = 1, . . . , k. A u-guard is
a predicate g over x1, . . . , xk and the formal parameter p. We require that to
each u-guard g is assigned a unique representative data value, denoted dgu, which
satisfies µu |= g[dgu/p] (thus, each u-guard must have at least one satisfying
instantiation of the formal parameter p); moreoever, if some other u-guard g′

satisfies µu |= (g′ ⇒ g) and µu |= g′[dgu/p], then dg
′

u = dgu.
We extend the definitions of u-guards to sequences, as follows. A sequence

τ = (αk+1, gk+1) · · · (αk+m, gk+m) of action-guard pairs is a u-path if either
(i) m = 0, or (ii) gk+1 is a u-guard and (αk+2, gk+2) · · · (αk+m, gk+m) is a
uαk+1(d

gk+1
u )-path. We define Gτ as gk+1[xk+1/p] ∧ gk+m[xk+m/p]. For a suf-

fix v of form αk+1(dk+1) · · ·αk+m(dk+m), we say that v satisfies τ after u if
µuv |= Gτ . Intuitively, Gτ is the condition on dk+1, . . . , dk+m under which v satis-
fies the sequence of guards gk+1, . . . , gk+m, given some valuation of {x1, . . . , xk},
and letting xk+i represent dk+i for i ≥ 1.

For a set Π of u-paths and action α, let InitgsΠ(α) denote the set of guards g
with (α, g)τ ∈ Π for some τ . Let φΠ(α) be the constraint ∀p. [

∨
InitgsΠ(α)]. For

an abstract suffix V, let φΠ(V) be the conjunction of φΠ(α) over α ∈ Initacts(V).
Intuitively, φΠ(V) is the constraint over {x1, . . . , xk} under which a data symbol
α(d) with α ∈ Initacts(V) is is guaranteed to find a satisfying initial guard in Π.

For g ∈ InitgsΠ(α) define (α, g)-1Π as the set of uα(dgu)-paths τ ′ with
(α, g)τ ′ ∈ Π. Define a (u,V)-cover as a set Π of u-paths satisfying µu |= φΠ(V),
such that for each α ∈ Initacts(V) and g ∈ InitgsΠ(α) we have (i) (φΠ(V) ∧
g[x|u|+1/p]) ⇒ φ(α,g)-1Π(α-1V), and (ii) (α, g)-1Π is a (uα(dgu), α-1V)-cover. In-
tuitively, these conditions imply that Π can process any suffix v ∈ [[V]] after u
without being blocked by lack of a satisfying guard. The constraint φΠ(V) char-
acterizes those valuations of {x1, . . . , xk} from which Π can be used to classify
suffixes in [[V]]. It is analogous to a path constraint in symbolic execution; to see
this, note that the condition µu |= φΠ(V) means that it is satisfied by the prefix
u, and that condition (i) is a natural condition for propagating path constraints.

Definition 3. A (u,V)-tree T is a mapping from a (u,V)-cover to {+,−}.



We write InitgsT (α) for InitgsDom(T )(α) and φT for φDom(T )(V). If T is a (u,V)-

tree and g ∈ InitgsT (α), then define (α, g)
−1
T as the (uα(dgu), α-1V)-tree T ′

defined by Dom(T ′) = (α, g)-1Dom(T ) and T ′(τ) = T ((α, g)τ). Intuitively,
(α, g)-1T is the subtree of T reached after the action-guard pair (α, g). We will
sometimes use the term symbolic decision trees (SDTs) for (u,V)-trees.

Definition 4. A tree oracle T is a function which maps each data word u and
abstract suffix V to a (u,V)-tree TV(u), subject to the consistency conditions that

1. whenever g ∈ InitgsTV(u)(α) then Tα-1V(uα(dgu)) is (α, g)-1TV(u), and
2. for any u, V and V ′, we have (φTV(u) ∧ φTV′ (u))⇒ φT(V∪V′)(u).

Intuitively, Condition 1 states that the SDT produced by Tα-1V(uα(dgu)) must be
the same as the correponding subtree of TV(u), reached after the action-guard
pair (α, g). This implies that the tree oracle can construct SDTs recursively
bottom-up from the leaves of a tree. Condition 2 is a natural technical condition,
used only in our subsequent discussion on counterexample processing. Intuitively,
it states that if a prefix satisfies both the path constraint for processing suffixes
in [[V]] and the path constraint for processing suffixes in [[V ′]], then that prefix
should satisfy the path constraint for processing suffixes in [[V ∪ V ′]].

We say that T respects the language L if for each u, V, and τ ∈ Dom(TV(u)),
it holds that (TV(u)(τ) = + ⇔ uv ∈ L) whenever v satisfies τ after u. Let
memT ,V(u), also called the set of memorable parameters, denote the set of reg-
isters among {x1, . . . , xk} that occur on some u-path in Dom(TV(u)).

The above definitions are illustrated by the SDTs in Section 4. Each SDT is
labeled by the coresponding set memT ,V(u) of memorable parameters. Consider,
e.g., the (u,V)-tree in Figure 8(b). Here, the middle branch corresponds to the u-
path τ = (offer, p ≤ x1)(poll, p = x2). The corresponding constraint Gτ becomes
x2 ≤ x1∧x3 = x2). In the examples, all constraints φTV(u) are true. However, if we
would consider a priority queue of capacity three, then after u = offer(5)offer(7),
a natural tree oracle would for suitable V result in φTV(u) being x1 ≤ x2, since
guards for subsequent offer-symbols make sense only under this condition.

5.2 Approximated Nerode Equivalence

We can now define the generalization of the approximated Nerode equivalence.
The generalization of the approximated Nerode equivalence is parameterized by
a tree oracle and an abstract suffix.

Two (u,V)-trees, T and T ′, are said to be equivalent, denoted T ≡ T ′, if
Dom(T ) = Dom(T ′), and T (τ) = T ′(τ) for each τ ∈ Dom(T ). For a mapping γ
on registers, we define its extension to u-guards and u-paths in the natural way.
For a (u,V)-tree T , we define γ(T ) by Dom(γ(T )) = {γ(τ) : τ ∈ Dom(T )} and
γ(T )(γ(τ)) = T (τ).

Definition 5 (Approximated Nerode Equivalence). Let T be a tree oracle
which respects L. Let u,u′ be data words and V be an abstract suffix. Then u 'γT ,V
u′ denotes that γ : memT ,V(u)→ memT ,V(u′) is a bijection from memT ,V(u) to



memT ,V(u′) such that γ̂(TV(u)) ≡ TV(u′), where γ̂ extends γ by mapping x|u|+i
to x|u′|+i for i ≥ 1.

Let u 'T ,V u′ denote that u 'γT ,V u′ for some bijection γ.
Intuitively, two words u and u′ are equivalent if the bijection γ transforms

the SDT for processing suffixes in [[V]] after u to the SDT for processing suffixes
in [[V]] after u′. Note that in general, when u 'T ,V u′, there can be several
bijections γ such that u 'γT ,V u′.

5.3 Register Automata Construction

To generalize automata construction and AAL to RAs, we must impose some
technical requirements on tree oracles, to ensure that generated hypothesis au-
tomata converge monotonically towards an acceptor for the language.

Definition 6 (Monotone tree oracle). A tree oracle T which respects the
language L is monotone if whenever V ⊆ V ′, then for any u, u′ and action
α ∈ Initacts(V),

1. for each g ∈ InitgsTV(u)(α) there is a g′ ∈ InitgsTV′ (u)(α) such that
φTV(u) ⇒ (g′ ⇒ g) and µu |= g′[dgu/p],

2. memT ,V(u) ⊆ memT ,V′(u),
3. whenever there are two u-paths τ ∈ Dom(TV(u)) and τ ′ ∈ Dom(TV′(u)) with

the same sequences of actions, such that φTV′ (u)∧ Gτ ∧Gτ ′ is satisfiable, then
TV(u)(τ) = TV′(u)(τ ′).

4. u 'γT ,V′ u′ implies u 'γT ,V u′.

Intuitively, if V ⊆ V ′, then the first condition states that the initial guards
make more distinctions between data values when V increases. More precisely,
each guard in InitgsTV(u)(α) is refined into a guard that is stronger under the
associated path condition, and also includes its representative data value; more
guards may have to be added in order to fill the induced gaps. The second
condition states that more registers are needed to make these distinctions. The
third condition states that a refinement must preserve the classification of all
suffixes in [[V]]. An alternative statement of this condition is that if some suffix v
satisfies both τ and τ ′ after u, where u satisfies φTV′ (u), then v must be classified
in the same way by TV(u) and TV′(u). The fourth condition states that increasing
V will induce a refinement of the approximated Nerode equivalence.

We now have sufficient machinery to generalize the construction of DFAs to
construction of RAs. Let U be a set of data words, and let V be an abstract
suffix with Σ ⊆ Initacts(V).

– U is closed wrt. V if for each u ∈ U and each g ∈ InitgsTV(u)(α) there is a
u′ ∈ U such that uα(dgu) 'T ,V u′.

– U is register-consistent wrt. V if for each u ∈ U , each α ∈ Σ, and each
g ∈ InitgsTV(u)(α) we have memT ,V(uα(dgu)) ⊆ (memT ,V(u) ∪ {x|u]+1}).

– U is constraint-consistent wrt. V if for each u ∈ U , each α ∈ Σ, and each
g ∈ InitgsTV(u)(α) we have (φTV(u) ∧ g[x|u]+1/p]) =⇒ φTV(uα(dgu))



Closedness ensures that each transition in the automaton to be constructed has
a target location. Register-consistency states that the memorable parameters
of uα(dgu), possibly except x|u]+1, are also memorable parameters of u. In the
automaton to be constructed, it ensures that any data value from u that must
be remembered after uα(dgu) is also remembered after u. Constraint-consistency
intuitively states that the initial guards of SDTs have stabilized, in the sense
that the path constraints of form φTV(u) are kept invariant by each transition.

Definition 7 (Hypothesis automaton). Let U be a set of words, which con-
tains ε, and V an abstract suffix, with Σ ⊆ Initacts(V), such that U is closed,
register-, and constraint-consistent wrt. V. Then the hypothesis automaton H(U,V)
is the RA H(U,V) = (L, l0,X , Γ, λ), where

– L = U and l0 = ε,
– X maps each location u ∈ U to memT ,V(u) (thus X (l0) is the empty set),
– λ(u) = + if u ∈ L, otherwise λ(u) = −, and
– for each g ∈ InitgsTV(u)(α) there is a transition 〈u, α(p), g, π, u′〉 in Γ , where
• u′ is the unique short prefix in U such that uα(dgu) 'T ,V u′
• π : memT ,V(u′) → (memT ,V(u) ∪ {p}) is defined as [x|u|+1 7→ p] ◦ γ−1

for some γ with uα(dgu) 'γT ,V u′

Remark In order to remove some arbitrariness in the last part of the construc-
tion, e.g., in order to construct canonical automata, we could let the set Γ contain
a transition of form 〈u, α(p), g, γ-1, u′〉 for each γ such that uα(dgu) 'γT ,V u′ (and
not just for one of them).

We will now prove a theorem, which states thatH(U,V) is consistent with the
observations used to construct it, i.e., the set of words uv with u ∈ U and v ∈ [[V]].
This will generalize the corresponding property for DFAs (e.g., [Ang87, Lemma
3]), stating that if U is prefix-closed and V is suffix closed, thenH(U, V ) correctly
classifies all words in UV . The property of prefix-closedness is generalized as
follows. We say that a set U of data words is V-induced if whenever uα(d) ∈ U
then u ∈ U and d = dgu for some g ∈ InitgsTV(u)(α).

Theorem 1. Let T be a monotone tree oracle which respects L. Let V be a
suffix-closed abstract suffix with α-1V 6= ∅ for each α ∈ Σ, and U be a V-induced
set of words. Then H(U,V) correctly classifies all words uv with u ∈ U and
v ∈ [[V]].

Proof. The proof follows a similar pattern as the corresponding proof for the
DFA case (see, e.g., [Ang87, Lemma 3]).

We first prove that for all u ∈ U , the hypothesis H(U,V) can process u
to reach the state 〈u, µu|X (u)〉, using induction on u (we let µ|X denote the
restriction of valuation µ to the set X of registers). For u = ε, this follows from
H(U,V)(ε) = l0 = ε, and X (ε) = ∅. For the inductive step, assume uα(d) ∈ U .
Since U is V-induced we have u ∈ U and d = dgu for some g ∈ InitgsTV(u)(α). By
the inductive hypothesis, H(U,V) can process u to reach the state 〈u, µu|X (u)〉.
By the construction of H(U,V), there is a transition 〈u, α(p), g, π, uα(d)〉 in Γ ,



where π = [x|u|+1 7→ p]. This implies that the transition 〈u, α(p), g, π, uα(d)〉
takes H(U,V) from the state 〈u, µu|X (u)〉 to the state 〈u, µuα(d)|X (uα(d))〉. It also
follows that H(U,V) accepts u iff u ∈ L.

We next prove that H(U,V) correctly classifies all words uv with u ∈ U and
v ∈ [[V]]. Assume wlog. that uv ∈ L. Let m = |v|, let vi be the suffix of v of
length m − i, and let ti be the prefix of v of length i (i.e., v can be written as
tivi for i = 0, . . . ,m). Assume that H(U,V) processes v in a run

〈u0, µ0〉
α1(d1)−−−−→ 〈u1, µ1〉 · · · 〈um−1, µm−1〉

αm(dm)−−−−−→ 〈um, µm〉

where 〈u0, µ0〉 = 〈u, µu|X (u)〉. By the construction of H(U,V) and the semantics
of register automata, this means that for i = 1, . . . ,m there is a transition
〈ui−1, αi(p), gi, πi, ui〉 such that µi−1 |= gi[di/p] and πi = [x|ui-1|+1 7→ p]◦γ−1 for
some γ with ui−1αi(d

gi
ui−1

) 'γT ,V ui, and that µi = (µi−1 ◦ [p 7→ di])◦ [x|ui-1|+1 7→
p] ◦ γ−1 = µi−1 ◦ [x|ui-1|+1 7→ di] ◦ γ−1.

We will now prove (by induction over i) that for i = 0, . . . ,m we have
(i) µi |= φTV(ui), and (ii) TV(ui)(τ) = + for each τ ∈ Dom(TV(ui)), such
that vi satisfies τ after uti. The base case is trivially true, since by construc-
tion, µu |= φTV(u), and since T respects L. For the inductive step, we assume
as inductive hypothesis that µi−1 |= φTV(ui−1), and that TV(ui−1)(τ) = +
for each τ ∈ Dom(TV(ui−1)) that is satisfied by vi−1 after uti−1. We must
prove properties (i) and (ii) for i. For (i), from µi−1 |= φTV(ui−1) (the induc-
tive hypothesis) and µi−1 |= gi[di/p], it follows by constraint consistency that
(µi−1 ◦ [x|ui-1|+1 7→ di]) |= φTV(ui-1αi(d

gi
ui-1 ))

. From ui−1αi(d
gi
ui−1

) 'γT ,V ui, we

then infer that (µi−1 ◦ [x|ui-1|+1 7→ di] ◦ γ−1) |= φTV(ui), i.e., that µi |= φTV(ui).
For (ii), assume that τ ′ ∈ Dom(TV(ui)) is satisfied by vi after uti. We first
note that αi · · ·αm ∈ V since V is suffix-closed. Hence, by the assumption that
TV(ui−1)(τ) = + for each τ ∈ Dom(TV(ui−1)) that is satisfied by vi−1 af-
ter uti−1, using Condition 1 on tree oracles (in Definition 4), we have that
Tα-1

i V(ui)(τ
′′) = + for each τ ′′ ∈ Dom(Tα-1

i V(ui)) that is satisfied by vi after uti.

Since α-1
i V ⊆ V and since vi satisfies both τ ′ and τ ′′ after uti, it means that

φTV(ui) ∧ Gτ ′ ∧ Gτ ′′ is satisfiable. Hence, by Condition 3 in Definition 6 we have
TV(ui)(τ

′) = +. This establishes the inductive step.
Letting i be m, it follows that TV(um)(ε) = +. Since um is the final location

in the run of H(U,V) over uv, this means that H(U,V) accepts uv. ut

5.4 Generalizing Active Automata Learning

The generalization of AAL for RAs will follow the same pattern of alternation
between hypothesis construction and hypothesis validation as for DFAs, during
which the sets U and V are increased.

During hypothesis construction, the tree oracle is used to construct SDTs
of form TT ,V(u), from which the approximated Nerode equivalence 'T ,V is con-
structed.



– Whenever the set U is not closed wrt. V, then U is extended: if there is
some u ∈ U , α ∈ Σ, and g ∈ InitgsTV(u)(α), for which there is no u′ with
uα(dgu) 'T ,V u′, then uα(dgu) is added to U , triggering new membership
queries.

– Whenever the set U is not register-consistent wrt. V, then V is extended: if
there is some u ∈ U , α ∈ Σ, and g ∈ InitgsTV(u)(α), such that there is a xi
with 1 ≤ i ≤ |u| which is in memT ,V(uα(dgu)) but not in memT ,V(u), then
extend V with a symbolic suffix of form αα1 . . . αm such that xi occurs on
some path of form (α1, g1) · · · (αm, gm) in Dom(TV(uα(dgu))).

– Whenever the set U is not constraint-consistent wrt. V, then V is extended:
if there is some u ∈ U and α ∈ Σ, such that there is a g ∈ InitgsTV(u)(α) with
(φTV(u) ∧ g[x|u]+1/p]) 6⇒ φTV(uα(dgu)), then extend V with the set of symbolic
suffixes of form αα1 . . . αn with α1 . . . αn ∈ V.

This process of extending U and V is continued until U is closed, register con-
sistent, and constraint consistent wrt. V.

When U is closed, register consistent, and constraint consistent wrt. V, hypoth-
esis validation submits the hypothesis H(U,V) in an equivalence query. If the
query returns “yes”, then the learning is completed, implying that H(U,V) ac-
cepts L. If the query returns a counterexample word w, this is used to extend
V, as follows. Let w = α1(d1) · · ·αn(dn). Assume wlog. that H(U,V) accepts w
but w 6∈ L. Thus there is an initialized run of H(U,V) over w

〈u0, µ0〉
α1(d1)−−−−→ 〈u1, µ1〉 · · · 〈un-1, µn-1〉

αn(dn)−−−−→ 〈un, µn〉

where 〈u0, µ0〉 is the initial state and λ(un) = +. For each i = 1, . . . , n, the

step 〈ui-1, µi-1〉
αi(di)−−−−→ 〈ui, µi〉 is derived from a transition 〈ui−1, αi(p), gi, πi, ui〉

with µi−1 |= gi[di/p], which is added to H(U,V) based on the properties that
ui−1αi(d

gi
ui−1

) 'γT ,V ui for some γ, and where πi = [x|u|+1 7→ p] ◦ γ−1 and

µi = µi−1 ◦ [x|u|+1 7→ di] ◦ γ−1. For i = 1, . . . , n, let Vi be the suffix-closure of
V ∪ {αi+1 · · ·αn}. By generalizing from the DFA case, we claim that if w is a
counterexample then there must be an i among 0, . . . , n such that either

1. ui-1αi(d
gi
ui-1) 6'γiT ,Vi ui, or

2. case 1 does not apply, but the guard in InitgsTVi-1 (ui-1)
(αi) which has dgiui-1

as representative value is not implied by gi; in this case, the symbolic suffix
Vi−1 shows that the guard gi can be strengthened.

To prove that the existence of such an i is guaranteed, we assume (to get
a contradiction) that ui−1αi(d

gi
ui-1) 'γiT ,Vi ui, and that gi is also a guard in

InitgsTVi (ui-1)
(αi) for i = 1, . . . , n. We can then show that w would not be

a counterexample, using a similar technique as in the proof of Theorem 1.
Let vi be the suffix of length n − i of w, and let wi be the prefix of w of
length i. We shall establish, by induction over i, that for i = 0, . . . , n we have
(i) µi |= φTVi (ui), and (ii) TVi(ui)(τ) = − for each τ ∈ Dom(TVi(ui)), such



ui

ui−1 αi(d
gi
ui-1)

Case 1

γ̂i(TVi(ui-1αi(d
gi
ui-1))) 6≡ TVi(ui)

Case 2

gi 6⇒ guard for dgiui-1 in
InitgsTVi-1 (ui-1)(αi)

v

v′

Fig. 9: Counterexamples for discussion

that vi satisfies τ after wi. The base case is trivially true, since by construc-
tion, φTV0 (ε) is true, and since T respects L. For the inductive step, we assume
as inductive hypothesis that µi−1 |= φTVi-1 (ui-1), and that TVi−i(ui−1)(τ) = −
for each τ ∈ Dom(TVi−1(ui−1)) that is satisfied by vi−1 after wi−1. We must
prove properties (i) and (ii) for i. For (i), it follows by constraint consistency
that µi |= φTV(ui). It also follows by Condition 1 in Definition 4 on tree ora-
cles that µi |= φT{αi+1···αn}(ui)

. By Condition 2 of Definition 4, it follows that

µi |= φTVi (ui). For (ii), assume that τ ′ ∈ Dom(TVi(ui)) is satisfied by vi after wi.
We note that αi+1 · · ·αn ∈ Vi. Hence, by Condition 1 on tree oracles (in Defini-
tion 4), we have that Tα-1

i (Vi−1)(ui)(τ
′) = − for each τ ′′ ∈ Dom(Tα-1

i (Vi−1)(ui))
that is satisfied by vi after wi. Since vi satisfies both τ ′ and τ ′′ after wi, it means
that φTVi (ui) ∧ Gτ ′ ∧ Gτ ′′ is satisfiable. Hence, by Condition 3 in Definition 6
we have TVi(ui)(τ ′) = −. This establishes the inductive step. By specializing
to i = n, we establish that w is rejected by H(U,V), which contradicts the
assumption that w is a counterexample.

Thus, a value of i can be obtained by invoking the tree oracle for abstract
suffixes of form Vi. We should let i be as large as possible, since adding a shorter
symbolic suffix to V induces fewer membership queries. The subsequently gen-
erated hypothesis automaton is guaranteed to refine the current one. In Case 1,
some equivalence between prefixes is refuted, inducing either a new location or
a removed transition (in case there are several transitions differing only in the
remapping between two locations) In Case 2, some guard will be refined.

Starting from some initial approximations, e.g., U = {ε} and V = Σ, the sets
U and V are successively extended, until an equivalence query returns “yes”. In
the next section, we will give conditions, corresponding to regularity in the DFA
case, under which termination is guaranteed.

6 Canonical Automata Construction

Nerode Equivalence If our tree oracle is monotone, then the equivalence ' can
be used to define a Nerode Equivalence. Let u ≡γT u′ denote that u 'γT ,V u′ for

all abstract suffixes V. Let u ≡T u′ denote that u ≡γT u′ for some γ.



Define a data language L to be regular with respect to T if ≡T has finite
index. Note that the regularity of L is relative to the particular tree oracle T
that is used. Of course, it is assumed that T respects L. We can now state and
prove an analogue of the classical Myhill-Nerode theorem.

Theorem 2 (Myhill-Nerode). Let L be a data language, and let T be a mono-
tone tree oracle which respects L. If L is regular wrt. T , then there is a RA that
accepts L.

Proof. Choose a V such that 'T ,V is maximally refined, such that memT ,V(u),
and such that TV(u) is maximally refined for all u. Such a V must exist by
standard finiteness arguments.

In the proof, we will first construct an RA A, and thereafter establish that A
accepts L. First, we define the set L of locations with transitions between them,
using the following spanning tree construction. The spanning tree construction
incrementally constructs a set L of locations, each of which can be either marked
or unmarked. Initially, L contains only the single unmarked location lε, which is
also the initial location. The set L is then extended and modified as follows: As
long as L contains unmarked locations, select an unmarked lu ∈ L and do:

1. for each α ∈ Σ and each g ∈ InitgsT(α-1V)(u)
(α):

– if there is already some lu′ in L with uα(dgu) 'γT ,V u′ for some γ, then add
〈lu, α(p), g, π, lu′〉 to Γ , where π : memT ,V(u′)→ (memT ,V(u) ∪ {p}) is
defined as π = [x|u|+1 7→ p] ◦ γ−1,

– otherwise add luα(dgu) (unmarked) to L, and add 〈lu, α(p), g, π, luα(dgu)〉
to Γ , where π = [x|u|+1 7→ p] ◦ Id,

2. mark lu;

When this procedure has finished, and L contains only marked locations, it is
taken as the set of locations of A. The procedure is guaranteed to terminate since
there is a finite number of equivalence classes of 'T ,V . Note that in general, L
may contain fewer locations than there are equivalence classes of 'T ,V , since not
all equivalence classes need to have their own location. This can happen if some
equivalence classes are “subsumed” by other ones. For instance, in the theory of
equality, assume that L accepts only words of form α(d1)α(d2)α(d3)α(d4) with
d1 = d3 and d2 = d4. Then the equivalence class u = α(1)α(2) is sufficient to
cover the behavior for all prefixes of length 2. In particular, u subsumes the
behavior of the prefix u(1)u(1), which is not equivalent to u.

We now construct A as H(L,V). We must only check that A indeed accepts
L. This follows from Theorem 1, and the argument given when describing the
hypothesis validation phase above: if there is a word w which is incorrectly classi-
fied by A, then we can add a suffix of Acts(w) to V and refine the equivalence or
some guard, which contradicts that 'T ,V is maximally refined and that guards
are maximally refined. ut

By similar arguments as in the proof of the preceding theorem, we can also
prove an analogous theorem for the AAL procedure.



Theorem 3 (Termination of AAL). Let L be a data language, and let T be
a monotone tree oracle which respects L. If L is regular wrt. T , then the active
automata learning algorithm of Section 5.4 will terminate and return a RA that
accepts L.

Proof. The proof relies on using the RA constructed by Theorem 3 as bound on
the monotonically increasing sets of locations, guards, and registers. ut

7 Conclusions

We have presented a condensed illustration and account of a symbolic active
learning algorithm for generating EFSM models of black-box components us-
ing dynamic analysis. The algorithm, outlined in Section 5.4, shows the basic
principles of the SL∗ algorithm of our previous work [CHJS16].

We have implemented this approach in the tool RA-lib [CHJ15a]. Our pre-
liminary implementation demonstrates that the approach can infer protocols
comprising sequence numbers, time stamps, and variables that are manipulated
using simple arithmetic operations or compared for inequality even in a black-
box scenario.

We hope that the presentation of principles of SL∗ in this paper can inspire
further techniques for model learning.
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