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Abstract. Contracts capture assumptions (preconditions) and guaran-
tees (postconditions) of functions in a software program, and are an
important paradigm for documenting program code, for program under-
standing, and to enable modular program verification. In this paper, we
focus on contracts for stateful software modules, for instance modules
implementing data-structures like queues. Such modules offer different
kinds of functions to their environment: observers, which are pure func-
tions used to query the state of the module; and mutators, which can
change the module state. We present a novel technique to synthesize
contracts for the mutators of a module, in which pre- and postconditions
are expressed as Boolean combinations of the observers. Our method
builds on existing algorithms for active learning of register automata to
model the possible behaviours of the stateful module. We then present
techniques for synthesizing contracts from a learned register automaton.
The entire method is fully black-box and automated. Based on our pro-
posed approach, we develop a tool called CoGent that generates a set of
contracts for a mutator from a given register automaton of a module.
Finally, we evaluate our tool using the APIs for various data structures.

1 Introduction

The annotation of program functions with contracts, consisting of pre- and post-
conditions, serves several purposes. Contracts are an important form of docu-
mentation, and are as such widely used to describe the intended use of library
and API functions. Contracts give rise to the Design-by-Contract (DbC) method-
ology [18], by stating both the assumptions made about the states in which a
function may be called, and the guarantees established in return by the func-
tion. In formal verification, contracts are the main vehicle to decompose larger
programs into smaller units that can be analysed in isolation (e.g., [6, 7]).

It is non-trivial, however, to come up with correct contracts for a given func-
tion. In most of today’s code bases, functions are documented only with un-
structured text, or with informal contracts in which pre- and postconditions are
stated in natural language. Like any kind of formal specification, the process of
writing formal contracts (with pre- and postconditions being logical formulas) is
an extremely time-consuming and error-prone process, and is in fact sometimes
considered the main bottleneck preventing application of formal methods in an
industrial context.



Over the last years, researchers have therefore considered the automated in-
ference of formal contracts from implementations (e.g., [1, 2, 4, 5, 13, 19, 20, 22]).
Such inferred contracts can serve as documentation of existing programs, and as
auxiliary annotations in verification. However, although various approaches to
contract inference have been proposed, methods that are (i) scalable enough to
handle real-world code bases, (ii) precise enough to generate correct and complete
contracts, (iii) refined enough to produce contracts that are human-readable so
far remain elusive.

In this paper, we present a new approach to automatically infer contracts for
software modules. Our approach starts with applying existing active black-box
learning methods [8, 9] to build a behavioural model of a program in the form
of a finite-state register automaton. We then construct contracts for all mutator
functions of the software module in terms of the available observer functions: for
this, state transitions associated with a mutator are analysed, and the effects
of the transitions are summarized using observers. Under certain assumptions
on the shape of the automaton, the computed contracts are guaranteed to de-
scribe only the behaviour of the module that is reachable, i.e., they implicitly
take module invariants into account. This is because the reachable states of
the automaton correspond to the module states that are reachable from some
designated initial state.

The contributions of this paper are:

– A new black-box framework for synthesizing program contracts for software
modules (Section 4).

– An algorithm to extract program contracts from finite-state register au-
tomata (Section 4).

– An implementation of our approach in the tool CoGent (Section 5), and an
evaluation of our method using software modules taken from the Java API
(Section 6).

Outline: The remainder of this paper is structured as follows. Section 2 illus-
trates program contracts with an example of a stateful data structure that serves
as a running example for this paper. Section 3 describes the semantics of pro-
gram contract, and introduces to basic concepts and notations for dealing with
register automata and active automata learning. Section 4 outlines the steps
for synthesizing program contracts with illustrations using the running example.
Section 5 describes the implementation details of our tool, CoGent, and Section 6
presents its evaluation on various data structures. Section 7 compares our ap-
proach with some of the earlier attempts for synthesizing program contracts in
the literature, followed by the conclusions in Section 8.

2 Motivating Example

As an illustration, consider the Java class BoundedList in Fig. 1. It contains
methods BoundedList() for constructing a list object, list, of maximum size
defined by maxSize. The class further contains the methods push and pop, which



1 public class BoundedList {
2 private LinkedList <Integer >

list;
3 private int maxSize;
4

5 public BoundedList (){
6 maxSize = DEFAULT_SIZE;
7 list = new LinkedList <Integer

>();
8 }
9

10 public void push(Integer e) {
11 if(maxSize > list.size())

list.push(e);
12 }
13

14 public int pop() {
15 return list.pop();
16 }
17

18 public boolean contains(Integer
e) {

19 return list.contains(e);
20 }
21

22 public boolean isEmpty () {
23 return (list.size == 0) ?$\

true$: false;
24 }
25

26 public boolean isFull () {
27 return (list.size == maxSize)

?$\true$: false;
28 }
29 }
30

Fig. 1: A module for a BoundedList (in Java)

{(p = q) ∧ ¬isFull()} push(p) {contains(q)}{
(¬(p = q) ∧ ¬contains(q))

∨ (isFull() ∧ ¬contains(q))

}
push(p) {¬contains(q)}

Fig. 2: Contracts for the BoundedList module in Fig. 1

are mutators, and the observer methods contains, isEmpty, and isFull. The
class BoundedList internally uses the LinkedList class available in JDK v1.8.
The method push takes an integer as an input parameter and inserts the inte-
ger into the list. Method pop does not accept any parameter but removes an
element from the list and outputs the removed integer. The method contains

returns True if the argument passed in the method already exists in the list,
and False otherwise. Methods isEmpty and isFull return True if the list is
empty and full respectively, otherwise, False. The module serves as a running
example for illustrating our proposed approach.

A contract relates a method call with the module states immediately before
and after that call. Being in a black-box setting, we cannot refer directly to the
internal module state. Instead we refer to the module state indirectly via the
return values of calls to observer methods. An observer method does not modify
the state of the module, and is used to extract information about the module
state.

Let a condition be a Boolean combination of observer calls f(r1, . . . , rm),
where r1, . . . , rm are variables of the appropriate types, and constraints formu-
lated using the predicates from some background theory. In this paper, we define
a contract for a method m with parameters p1, . . . , pn in a module to be of the



form

{P} m(p1, . . . , pn) {Q}

where P , called the precondition and Q, called the postcondition, are conditions.
The conditions P,Q can contain variables p1, . . . , pn, as well as further variables
used to relate pre- and post-states. As a simplifying assumption, and without loss
of generality, every variable in P or Q that does not occur among the p1, . . . , pn
has to occur as an argument of some observer in P or Q. Let the parameters of
the contract be p1, . . . , pn together with additional variables appearing in P,Q.

A contract {P} m(p1, . . . , pn) {Q} is valid if, for every valuation of variables
occurring in the contract, whenever m is called in a reachable state of the module
in which P is True, the method call m(p1, . . . , pn) terminates and leaves the
module in a state in which Q is True.

As illustration, for the module BoundedList in Fig. 1, we aim to synthesize
contracts for the mutators push and pop. The contracts may include the given
Boolean observer methods contains, isEmpty, and isFull, as well as relations
between the occurring parameters. To this end, we first compute a model of the
module in terms of a register automaton. While the behaviour of a software
module can in general not be described by a finite register automaton, such
a finite automaton can be derived for data structures with bounded capacity.
For BoundedList with maxSize = 2, for example, the computed automaton has
four locations and two registers, see Fig. 3. The register automaton captures the
reachable behaviour of both the mutators and the observers.

To generate contracts for a mutator m, we then consider the transitions
that are associated with m. Such transitions describe how the return values of
observer methods can change as a result of calling m: transitions can update the
values of registers, and the observers are described by location-specific guards.
We present an algorithm, which for each location generates a location-specific
contract for m from its outgoing m-transitions; as a second step, the location-
specific contracts are then combined to obtain an overall contract for m.

In general, we would like generated contracts to be both valid and maximal,
by which we mean that the precondition cannot be weakened without making
the contract invalid. Two example contracts for the push method are given
in Fig. 2. We can observe that the first contract in Fig. 2 is valid, but it is
not maximal, since the postcondition could also be established by assuming
contains(q) already in the precondition. The second contract is both valid and
maximal.

3 Background

In this section, we give background for the contract synthesis approach, described
in Section 4. The synthesis approach works by using active automata learning to
obtain a register automaton model of the stateful behaviour of the module. The
register automaton then forms the basis for contract synthesis. In this section,
we describe program contracts, register automata and active learning.



3.1 Contracts

Throughout the paper, we assume a background theory, i.e., a (many-sorted)
first-order language with constant, function, and relation symbols, with fixed
interpretation over the appropriate domains. Terms and formulas are constructed
as usual from those symbols, as well as from variables taken from a set V. A
valuation µ is a mapping from variables V to their domains. Valuations are
extended to terms and assertions in the usual way. We write µ |= ϕ to express
that ϕ evaluates to True in µ.

We assume a set M of methods, each with a signature that determines the
number of input parameters, their types, and the return type of the method. We
assume a distinguished subset of M, the set of observer methods: an observer
method is special in that it does not modify any state variables. Throughout the
paper, we assume that each observer method returns a Boolean value. The other
methods are called mutators.

A method call is a term of form m(d1, . . . , dn), where m is a method action
and d1, . . . , dn are data values from the appropriate domains. A parameterized
method call is a term of form m(p1, . . . , pn), where p1, . . . , pn are variables; in
this context we sometimes call them formal parameters of the method call.

As mentioned in Section 2, a condition is a Boolean combination of observer
calls f(r1, . . . , rm), where r1, . . . , rm are variables of the appropriate types, and
constraints formulated using the predicates from the background theory. We say
that a condition P entails condition Q, written P ⇒ Q, if the formula P → Q is
valid when every observer method is considered as an uninterpreted first-order
predicate.

A contract is a triple {P} m(p1, . . . , pn) {Q} consisting of a precondition P ,
a mutator call m(p1, . . . , pn), and a postcondition Q.

3.2 Register Automata

We assume a set of registers x1, x2, . . ..

Definition 1 (Register automaton). A register automaton (RA) is a tuple
A = (L, l0,X , Γ ), where L is a finite set of locations, l0 ∈ L is the initial
location, X maps each location l ∈ L to a finite set X (l) of registers, where in
particular X (l0) = ∅, and Γ is a finite set of transitions. Each transition in Γ
is of form

⟨l,m(p1, . . . , pn), g, eout, xi1 := ei1 , . . . , xim := eim , l′⟩,

where l ∈ L is a source location, l′ ∈ L is a target location, m(p1, . . . , pn) is a
parameterized method call, g is a guard, i.e., a conjunction of negated and non-
negated relations over p1, . . . , pn and X (l), eout is an expression over p1, . . . , pn
and X (l), and xi1 := ei1 , . . . , xim := eim is an assignment which updates the
registers xi1 , . . . , xim in X (l′) with the values of expressions ei1 , . . . , eim . In this
work, we assume that each expression eij is either a register in X (l) or a formal
parameter in p1, . . . , pn. ⊓⊔



We write x, p, and e for tuples of registers, parameters, and expressions. Let
us formalize the semantics of RAs. A state of an RA A = (L, l0,X , Γ ) is a pair
⟨l, µ⟩ where l ∈ L and µ is a valuation over X (l), i.e., a mapping from X (l) to the
appropriate domains. The initial state is the pair ⟨l0, µ0⟩ where µ0 is the empty

mapping. A step of A, denoted ⟨l, µ⟩ m(d)/µ(eout)−−−−−−−−→ ⟨l′, µ′⟩, transfers A from ⟨l, µ⟩
to ⟨l′, µ′⟩ on the method call m(d), returning µ(eout), if there is a transition
⟨l,m(p), g, eout, xi1 := ei1 , . . . , xim := eim , l′⟩ ∈ Γ such that

– µ |= g[d/p], i.e., d satisfies the guard g under the valuation µ, and
– µ′ is the updated valuation which maps xi to µ(ei) when xi is in xi1 , . . . , xim ,

and maps other registers xi in X (l′) to µ(xi).

A state ⟨l, µ⟩ is reachable if there is a sequence of steps

⟨l0, µ0⟩
m1(d1)/o1−−−−−−−−→ ⟨l1, µ1⟩ ⟨l1, µ1⟩

m2(d2)/o2−−−−−−−−→ ⟨l2, µ2⟩ · · · ⟨ln−1, µn−1⟩
mn(dn)/on−−−−−−−−→ ⟨l, µ⟩

leading from the initial state ⟨l0, µ0⟩ to ⟨l, µ⟩.
We can now define validity of a contract relative to a register automaton A.

Let P be a condition, let σ be a valuation of the variables in P , and let ⟨l, µ⟩ be
a state of A. We say that P is true in ⟨l, µ⟩ under σ, denoted ⟨l, µ⟩ |= σ(P ), if
σ(P ) evaluates to true when each observer call in σ(P ), of form obs(d1, . . . , dn),
is replaced by the value returned when calling obs(d1, . . . , dn) in ⟨l, µ⟩.

Definition 2. A contract {P} m(p1, . . . , pn) {Q} is valid for a RA A if for any
assignment σ of values to the parameters of the contract, and any reachable state
⟨l, µ⟩ of A with ⟨l, µ⟩ |= σ(P ), we have that

– there is an output o and state ⟨l′, µ′⟩ with ⟨l, µ⟩ m(σ(p1,...,pn))/o−−−−−−−−−−−→ ⟨l′, µ′⟩, and
– for any such output o and state ⟨l′, µ′⟩ it holds that ⟨l′, µ′⟩ |= σ(Q).

Example
Fig. 3 showcases such a RA that serves as a model for capturing the behaviour
of the BoundedList API (cf. Fig. 1) when the maximum capacity of the list
is set to 2. The language for the model consists of sequences of API method
calls. An execution of such a sequence may result in modifying the state of
the list, causing state transitions, thereby producing an output sequence that
adheres to the expected I/O behaviour of the methods within the sequence.
The RA is composed of nodes, each representing a specific state of the list, and
edges that signify state transitions. Each edge is labeled to denote the actions
performed by a method during execution. In the following, we illustrate the
labels corresponding to the edges for a mutator and an observer:

(i)
pop() 8 true → {x1 := x2}

x1
(ii)

contains(q) 8 (x1 = q) ∨ (x2 = q)

true

Consider a state ℓ2 where the list has two elements stored in registers x1 and
x2, with x1 holding the most recently pushed element. In this state, a state



ℓ0start

ℓ3ℓ1

ℓ2

contains(q)8true
false

isFull()8true
false

isEmpty()8true
true

pop()8true
exception

push(p)8true→{x1:=p}
ϵ

push(p)8true
ϵ

isFull(),isEmpty()8true
ϵ

contains(q)8true
ϵ

pop()8true→{}
x1

contains(q)8(x1=q)
true

contains(q)8¬(x1=q)
false

isFull(),isEmpty()8true
false

push(p)8true→{x2:=x1,x1:=p}
ϵ

pop()8true→{x1:=x2}
x1

contains(q)8(x1=q)∨(x2=q)
true

contains(q)8¬(x1=q)∧¬(x2=q)
false

isEmpty()8true
false

isFull()8true
true

push(p)8true
ϵ

Fig. 3: Register automaton modeling a list (Fig. 1) with maximum capacity 2

transition occurs when the method pop() (a mutator) is invoked, as indicated by
an edge labeled with (i). This label indicates that the method’s guard condition
is satisfied (true) and it outputs the recently pushed element stored into x1 while
moving the second element x2 into x1, thereby releases x2. In fact, a call to pop()
always outputs the last stored element unless the list is empty, in which case it
throws an exception while leading to a trap state. The mutator push, however,
in ℓ2 does not change the state as the list has reached its maximum capacity.
We use the notation ϵ to denote the void return type for method push. On the
other hand, a method call contains(q) (an observer) in ℓ2 checks if an element
passed by the parameter q is present in the list, is labeled with (ii), meaning the
method outputs true upon satisfying the condition (x1 = q) ∨ (x2 = q). Note
that the label (ii) has no register assignments since observers do not modify
register values and therefore, do not change the module state. In some cases
we represent a single label for more than one method calls, method signature
separated by comma (‘,’ ), those exhibit similar behaviour.

3.3 Active Learning of Register Automata

The first step of our contract generation uses active automata learning (AAL) to
automatically learn a register automaton model of the system under test (SUT).
AAL is an automated black-box technique which a priori needs know only a
module’s methods and their signatures. Classical AAL learns finite automata or



Mealy machines from tests, using, e.g., the classic L∗ algorithm [3] or the more
recent TTT algorithm [16]. These, and other AAL algorithms are implemented
in LearnLib [15]. Finite-state models do not capture how parameter values in
method calls affect the module state and successive method calls. In order to
capture data aspects of module behaviour, finite-state models can be, and com-
monly are, equipped with variables, sometimes called registers. Variables can
store the values of data parameters; they can influence control flow by means of
guards, and the control flow can cause variable updates. Finite state machines
with variables are often called extended finite state machines (EFSMs). We will
employ a specific such model, namely register automata (RAs), in which regis-
ters are used as variables. An extension of AAL to learning of RAs is SL∗ [9],
which has been implemented in RALib, an extension of LearnLib [8].

The SL∗ algorithm must know the set of methods and their signatures. Like
other AAL algorithms, it operates in two alternating phases: hypothesis con-
struction and hypothesis validation. During hypothesis construction, sequences
of method calls are submitted on the SUT, and the corresponding return values
are observed to collect information about the module behaviour. When certain
convergence criteria are met, the AAL algorithm constructs a hypothesis, which
is a minimal deterministic RA that is consistent with the observations so far. To
validate that the hypothesis agrees with the behaviour of the SUT, learning then
moves to the validation phase, in which the SUT is subject to a conformance
testing algorithm which aims to validate that the behaviour of the SUT agrees
with the hypothesis. If conformance testing does not find any counterexample,
learning terminates and returns the current hypothesis as the inferred model
of the SUT. If a counterexample (i.e., a sequence of method calls on which the
SUT and the hypothesis disagree) is found, the hypothesis construction phase
is re-entered to build a more refined hypothesis. If the loop of hypothesis con-
struction and validation does not terminate, this indicates that the behaviour of
the SUT cannot be captured by a deterministic RA whose size and complexity
is within reach of the employed learning algorithm. Still, even in these cases, the
last constructed hypothesis can be used as an approximate model of the SUT.

4 Contract Synthesis

In this section, we describe our approach for inferring contracts for a module.

4.1 Learning a Behavioural Model

The first step of our approach is to obtain a register automaton model of the
module. Sometimes, such an automaton model is readily available and can be
supplied directly for generating contracts. Otherwise, such a register automaton
can be learned using AAL as described in Section 3.3. Recall that AAL is fully
automated and black-box, but may have practical limitations on the size of
the learned model. For these reasons, we may modify the module so that its
behaviour can be captured by an RA of modest size. A typical modification for



container modules is to bound their capacity so that they become “full” for a
small number of contained items: this will not change the set of valid contracts,
as long as they do not count the number of contained items. For our running
example such an automaton is shown in Fig. 3.

4.2 Generating Contracts from a Register Automaton

Given a register automaton model of our module, we present an algorithm for
synthesizing contracts for each mutator method m. Recall that a contract is of
form {P} m(p1, . . . , pn) {Q}. Our methodology considers synthesizing contracts
for one postcondition at a time. This means, our algorithm synthesizes contracts
of the above form, given as input a postcondition Q, as well as a set Vcontr of
variables that can occur in P ; the set Vcontr should include p1, . . . , pn and the
variables in Q. In our running example, a starting postcondition Q could be
contains(q), where q is a parameter, or even ¬contains(q). In the following
description, we will use generation of preconditions P in contracts of form

{P} push(p) {contains(q)}

to illustrate the successive steps in our algorithm. The generation of contracts
proceeds through the following steps.

Step 1: Generating Weakest Preconditions: For each location l, we derive
the weakest precondition wpl(m,Q), i.e., the weakest condition on the registers
of l under which m will terminate and yield a state in which Q evaluates to
true. This can be done using standard techniques (e.g., [11]). For each location
l, let [[Q]]l be the condition on the registers of l and parameters of Q under
which Q evaluates to True. The condition [[Q]]l can be obtained from Q by
replacing each nonnegated observer call obs(p) by the disjunction of the guards
of transitions from l in which obs(p) return True, and analogously for negated
observer calls. Then, letting t1, . . . , tm be the outgoing transitions from l for
method m, wpl(m,Q) is obtained as

wpl(m,Q) =
∨
i

gi ∧
∧
i

(
gi → [[Q]]l′i [ei1/xi1 , . . . , eim/xim ]

)
(1)

where gi is the guard, l′i is the target location, and xi1 := ei1 , . . . , xim := eim is
the assignment of ti.

Illustration: Let us illustrate the generation of the weakest precondition
wpl1(push(p), contains(q)) for the method push(p) relative to the postcondition
contains(q), where l1 is the location in the RA fragment depicted in Fig. 4. Here,
l1 is the location representing a bounded list containing a single element stored
in the register x1. The transition from ℓ1 to ℓ2 is the only transition from l1 for
the method push. It inserts a second element into the list, causing two elements
to be stored into the registers x1 and x2. We first obtain [[contains(q)]]l2 as
(q = x1 ∨ q = x2). Using Eq. (1), we then derive the weakest precondition



ℓ1 ℓ2

push(p)8True→[x2:=x1,x1:=p]
ϵ

contains(q)8(q=x1)∨(q=x2)
True

Fig. 4: The single transition for the method push from location ℓ1, together with
the transition for contains from location ℓ2.

wpl1(push(p), contains(q)) as (q = x1∨q = x2)[x1/x2, p/x1], i.e., (p = q)∨(x1 =
q). ⊓⊔

Step 2: Generating Location-Specific Preconditions: The weakest precon-
dition wpl(m,Q) is not adequate as a precondition, since in general it mentions
registers, while a precondition can only refer to the module state through ob-
server calls. Therefore, in each location l, we generate location-specific precondi-
tions Prel(m,Q) such that [[Prel(m,Q)]]l implies wpl(m,Q). To this end, define
the set O as containing all possible parameterized method calls obs(p) whose
parameters p are taken from Vcontr. Next, let Cl be the set of formulas, which
are either (i) of form [[obs(p)]]l or of form [[¬obs(p)]]l for a parameterized observer
call obs(p) in O, or (ii) a (nonnegated or negated) relation between variables in
Vcontr. We generate Prel(m,Q) as a disjunction of conjunctions of formulas in
Cl, where each disjunct is obtained as a minimal conjunction of formulas in Cl
which implies wpl(m,Q). The generation of Prel(m,Q) can be performed using
a SAT/SMT-solver by observing that the validity of

(c1 ∧ · · · ∧ ck) → wpl(m,Q)

is equivalent to unsatisfiability of

(c1 ∧ · · · ∧ ck) ∧ ¬wpl(m,Q),

implying that we can obtain minimal conjunctions c1 ∧ · · · ∧ ck with the above
properties by asking a SAT/SMT-solver to produce minimal unsatisfiable sub-
sets (MUS) of formulas in Cl ∪ {(¬wpl(m,Q))}. From each of these we obtain
a conjunction of formulas in Cl by first removing ¬wpl(m,Q), and replacing
each conjunct of form [[obs(p)]]l (or [[¬obs(p)]]l) by the corresponding parameter-
ized observer method call obs(p) (or ¬obs(p)). We discard conjunctions, such as
obs(p) ∧ ¬obs(p), which are syntactical contradictions. Since the generation of
minimal unsatisfiable subsets may not explicitly generate the empty set of con-
juncts (which is equivalent to False), we finally add, for each non-parameterized
observer obs() for which [[obs()]]l is True, the disjunct ¬obs(); by symmetry we
add the disjunct ¬obs() if [[obs()]]l is False. These disjuncts are redundant in
the the location-specific precondition at location l, but may be non-redundant
in another location l′ where [[obs()]]l′ is neither True nor False; in such a case
they allow to form weaker global preconditions in Step 3. The result is our
sought location-specific precondition Prel(m,Q), structured as a disjunction of
conjunctions over formulas in O.



ℓ1 ℓ2

contains(q)8(q=x1)
True

contains(q)8¬(q=x1)
False

isFull(),isEmpty()8True
False

Fig. 5: Observers in location ℓ1 in the automaton for BoundedList

Illustration: In Step 1, we obtained wpl1(push(p), contains(q)), the weakest
precondition in location l1, as (p = q) ∨ (x1 = q). In Fig. 5, we show a frag-
ment of the learned RA, showing calls to observers in location l1. To construct
Prel1(push(p), contains(q)), we collect in Cl the guards for contains(q) (i.e.,
(q = x1)) and for ¬contains(q) (i.e., ¬(q = x1)) together with equalities and
dis-equalities between occurring parameters. By interacting with a SAT/SMT
solver, we identify the following minimal unsatisfiable subsets:

(i) {(p = q),¬wpl1(push(p), contains(q))}
(ii) {(q = x1),¬wpl1(push(p), contains(q))}

which, after removing the negated weakest preconditions, yields the follow-
ing two minimal disjuncts to be used in the precondition: (i) (p = q), and
(ii) contains(q). Since none of these disjuncts entails the other, we use both
when forming the formula in DNF, as ((p = q) ∨ contains(q)). As the final
step, we consider unparameterized observer calls that always return True or
False in location l1. Considering that in l1, the list contains one item, these are
¬isEmpty() and ¬isFull(). Therefore, we add the two disjuncts isEmpty() and
isFull(). By making them antecedents in an implication, we can then write
Prel1(push(p), contains(q)) in the following way:

(¬isFull() ∧ ¬isEmpty()) → ((p = q) ∨ contains(q)).

⊓⊔

Step 3: Generating Global Preconditions: After obtaining location-specific
preconditions, we can finally obtain a location-agnostic precondition Pre(m,Q)
as the conjunction

Pre(m,Q) =
∧
l∈L

Prel(m,Q) (2)

over location-specific preconditions for all locations. The so obtained formula for
Pre(m,Q) is then simplified to a formula which is equivalent in each reachable
location of the RA. The simplification transforms it into disjunctive normal form
(DNF), and then pruning disjuncts that are either infeasible, i.e., evaluating to
false in each location (this can be determined by inspecting the RA for the
module), or redundant, i.e., entailed by some other disjunct.

Illustration: In Step 2, we obtained the following location-specific preconditions
for postcondition contains(q) while synthesizing contracts for method push:



location ℓ0 (empty list): {(¬isFull() ∧ isEmpty()) → (p = q)}
location ℓn (full list): {(isFull() ∧ ¬isEmpty()) → contains(q)}
other locations ℓi : {(¬isFull() ∧ ¬isEmpty()) → ((p = q) ∨ contains(q))}

Then, taking the conjunction of the above preconditions and applying the sim-
plification techniques described in Step 3, we obtain the global precondition as
follows:

((p = q) ∧ ¬isFull()) ∨ contains(q)

which is the sought precondition for our final contract. ⊓⊔

4.3 Correctness and Optimality

In this section, we state and prove that our technique generates valid contracts
(Theorem 1) which, under some conditions, are also maximal (Theorem 2).

Theorem 1 (Contract Validity). If our method synthesizes a contract of
form {P} m(p1, . . . , pn) {Q} for an RA A, then this contract is valid for A.

Proof: The theorem follows by observing that the steps our methods produce
results with the desired properties:

Step 1: For each location l, the generated weakest precondition wpl(m,Q) has
the property to guarantee that a method call of form m(p1, . . . , pn) in loca-
tion l is guaranteed to terminate and result in a state where Q evaluates to
true. This follows by standard techniques for computing weakest precondi-
tions.

Step 2: For each location l, the location-specific precondition Prel(m,Q) gen-
erated in Step 2 has the property that [[Prel(m,Q)]]l → wpl(m,Q). This
follows from the observation that [[Ci]]l → wpl(m,Q) for each disjunct Ci in
[[Prel(m,Q)]]l.

Step 3: Since Prel(m,Q) is a conjunct of Pre(m,Q), it follows that Pre(m,Q)
entails Prel(m,Q) for any l, hence [[Pre(m,Q)]]l → [[Prel(m,Q)]]l. Thus, if
[[Pre(m,Q)]]l is true in l, then a method call of form m(p1, . . . , pn) in l is
guaranteed to terminate and result in a state where Q evaluates to true.
Since l is arbitrary, the theorem follows. ⊓⊔

We say that an RA is fully reachable if for each location l and valuation µ of
the registers X (l) of l, the state ⟨l, µ⟩ is reachable.

Theorem 2 (Synthesis of Maximal Contracts). Let A be a fully reachable
RA, let m be a method, let the condition Q and set of variables Vcontr be the
input to our contract generation. If the condition R is such that its parameters
are in Vcontr and the contract {R} m(p1, . . . , pn) {Q} is valid for A, then our
method synthesizes a contract of form {P} m(p1, . . . , pn) {Q} such that R ⇒ P .



Proof: Let R be a condition as above. Put R in DNF. Assume that c1 ∧ · · · ∧ ck
is a disjunct of R. Consider a location l of A. Since {R} m(p1, . . . , pn) {Q} is
valid for A, the corresponding condition [[c1]]l∧· · ·∧ [[ck]]l guarantees that calling
m(p1, . . . , pn) in l is guaranteed to terminate and result in a state in which Q
holds. Since wpl(m(p1, . . . , pn), Q) is the weakest formula with such a property,
it follows that [[c1]]l ∧ · · · ∧ [[ck]]l implies wpl(m(p1, . . . , pn), Q). If none of [[c1]]l,
. . . , [[ck]]l is False, our MUS generation will then find a subset of [[c1]]l, . . . , [[ck]]l
which implies wpl(m(p1, . . . , pn), Q), and generate the conjunction of the corre-
sponding subset of c1, . . . , ck as a disjunct of Prel(m,Q). If some [[ci]]l is False,
then ci will be added as a disjunct of Prel(m,Q). In both cases, the result is
that Prel(m,Q) is entailed by R. Since P is obtained as the conjunction of the
different Prel(m,Q) for l ∈ L, this implies that also P is entailed by R. ⊓⊔

The condition that A be fully reachable in Theorem 2 shows that our tech-
nique may generate unnecessarily strong preconditions if some states are not
reachable in A. This deficiency can be addressed by adding a procedure for gen-
erating invariant, which for each location l generates a characterization Inv l of
the valuations µ such that ⟨l, µ⟩ is reachable. The formulas Inv l are then used
in Step 2, but generating minimal disjuncts c1 ∧ · · · ∧ ck such that

(c1 ∧ · · · ∧ ck ∧ Inv l) → wpl(m,Q)

is valid. We leave this extension as future work.

5 Implementation

We implement the strategies outlined in Section 4 in a Python tool called CoGent,
abbreviation of Contract Generator. We build CoGent in integration with z3
SAT/SMT solver [10] for checking SAT/UNSAT of logical entailments and iden-
tifying minimal unsatisfiable subsets. For this purpose, we use z3 Python library,
z3py [12], as the constraint solver. In addition, we have used the Python library
Sympy [24] for simplification of Boolean expressions to conversion to DNF.

In our work, we first learn the RA model of the target API using the tool
RAlib [8, 9]. RAlib utilizes a given test harness tailored to the target API in
order to learn the automaton. The test harness maps each method from the API
to a symbol for learning the model. Next, we operate CoGent by giving inputs an
XML representation of the automaton model and the target mutator for which
we are interested in synthesizing contracts. The tool automatically identifies the
observers (following the observer semantics) present in the API and generates
pre and postconditions for the mutator. These conditions are quantifier-free first-
order logic expressed in terms of Boolean valuations of observers and relation
between input parameters. Thus the tools RAlib and CoGent in combine offer a
comprehensive solution to synthesizing contracts for the mutators from an API.

Fig. 6 shows the architecture of our tool where each step described in this pa-
per is represented as a Python module (depicted as a box). The module Driver
runs the contract synthesis engine by operating modules for performing steps
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1 and 2 in rounds for every location in the automaton and each possible post-
condition. While in step 2, the module Solver utilizes z3py API for checking
SAT/UNSAT and eventually deriving MUSes that yield the set of precondi-
tions. Once the module Driver accumulates all location-specific preconditions
for a mutator, it delegates the task of synthesizing global contracts to a module
that merges the preconditions wrt. each postcondition. Additionally, it simplifies
the merged contract with the help of Simplifier, which inherits some of the
functions provided by Sympy.

6 Evaluation

We evaluate our contract generation tool by synthesizing contracts for some of
the modules from Java SEv8, and the Contiki-NG OS. We generate contracts for
the mutators from those modules using the supplied Boolean observers including
isFull and isEmpty methods for handling size bounds. The maximum size for
each data structure is set to 3. Table 1 outlines the details of our tool evaluation.
For each module, the number of non-whitespace, non-comment lines of code is
mentioned within brackets. The average running time (in seconds) for model
learning and synthesizing contract for a mutator are recorded in columns 4 and
5, respectively, using RAlib and CoGent tools. In RAlib, the maximum number of
attempts to find counterexamples is set to 1000 per hypothesis. Column 6 shows
the number of locations in the automaton, and column 7 indicates the total
number of contracts generated by the tool. The final column specifies maximum
number of disjuncts obtained after simplifying the preconditions for the contracts
generated by our tool for each module. Following we illustrate a few contracts
generated for two mutators from Contiki-NG list module.

Contiki-NG, a widely used open-source OS for IoT, includes a critical list
module, which has unique characteristics compared to typical list implementa-
tions. This module is designed to be highly resource-constrained, where the API
allocates a memory block by releasing it if it has been pre-allocated. Addition-



Table 1: Interfaces for Evaluating Our Approach to Synthesizing Contract
Modules Mutators Observers Runtime(s) # # max.

RAlib CoGent locs. cont. disj.

Contiki-NG insert(e1, e2), contains(e), 51.2 21.02 52 19 3
List (45) pop(),push(e1), isFull(),

add(e), isEmpty()
remove(e)

HashMap put(k, v), containsKey(k), 3.33 12.07 15 14 7
(1916) remove(k) containsValue(v),

isEmpty(),
isFull()

Stack (93) push(e), isEmpty(), 1.6 0.6 21 8 3
pop() isFull(),

contains()

PriorityQueue add(e), isEmpty(), 5.4 11.7 53 21 5
(704) remove(e), isFull(),

poll() contains()

BoundedList push(e), pop(), isEmpty(), 15.74 0.97 21 12 3
(43) insert(e1, e2) isFull(),

contains()

ally, the list can function as both a stack and a queue, but storing a block in
either way requires removing it first if it already exists in the list.

To evaluate this module, we create a Java class that simulates the behaviour
of the Contiki-NG list module, treating memory blocks as integer elements,
and generate contracts for the mutators. In the following, we discuss the con-
tracts generated for two specific mutators: add and insert, which establish the
aforementioned behaviour. The add method takes an input element through p,
removes it if it already exists in the list, and then appends the element at the
end. On the other hand, the insert method receives two parameters: p1 and p2.
It removes p2 if it is present in the list and inserts it again after p1.

Here are two of the contracts generated for the add and insert methods:

i {isEmpty() ∨ (contains(p) ∧ ¬isFull())} add(p) {¬isFull()}
ii {isEmpty() ∨ (contains(p2) ∧ ¬isFull())} insert(p1, p2) {¬isFull()}

Contract (i) for method add demonstrates that adding an element that is already
present in the list will not result in the list becoming full. This is because the
method removes the element before adding it again. Similarly, contract (ii) shows
that the list cannot become full if the parameter p2 is already present in the list.
Contract Validation: Next, we validate the synthesized contracts for the mu-
tators listed in Table 1 leveraging symbolic execution [17], a program verification
technique that explores different execution paths to test the validity of the con-
tracts. Symbolic execution treats inputs as symbols representing arbitrary values
and systematically explores feasible code paths with symbolic input values.

To validate contract for a mutator, we generate an arbitrary pre-state that
can be reached after a bounded-length sequence of calls to mutators with sym-



bolic parameters. Symbolic execution is then performed on the targeted mutator,
under the assumption correspond to the precondition from synthesized contract.
The postcondition is treated as an assertion checked after symbolic execution
to identify any execution paths that fail to satisfy the postcondition for certain
parameter values. If the postcondition remains valid throughout symbolic exe-
cution, the contract is considered to be valid for all module states. We utilize
the Symbolic(Java) PathFinder tool (SPF) [21] to facilitate contract validation.
Using the above setup, we successfully validated all contracts obtained through
our proposed method, confirming that none of them are invalid. For a detailed
implementation for contract validation, we encourage to refer to [14].

7 Related Work

We give an overview of the most related areas of research. For a broader survey
of existing contract synthesis approaches, we refer the reader to [2].

Our work can be seen as an approach to precondition inference: given a
method m with a given postcondition Q, produce a precondition P which guar-
antees that Q will hold when the method returns. Data-driven approaches to this
problem (e.g., [22]) start from a set of features, i.e., predicates over m’s inputs;
they collect “good” test inputs (causing Q to be satisfied) as well as “bad” test
inputs (causing Q to be falsified), which induce feature vectors (valuations of the
features) for “good” and for “bad” inputs. A classification algorithm can then
be used to separate “good” from “bad” inputs, producing a precondition. Padhi
et al. [20] augment this technique by the ability to learn new features, when the
existing ones are not sufficient to separate “good” from “bad” inputs. Astorga et
al. [4, 5] further build on this technique to be able to give guarantees relative to
a given test input generator: a precondition is safe if the test generator cannot
find a test input that satisfies the precondition and violates the postcondition;
it is maximal if it includes all inputs found by the test generator that satisfy the
postcondition. Our method is data-driven as well, as active automata learning is
a black-box method and works by executing test cases. Our method differs from
existing inference methods in the intermediate step of constructing a register
automaton, and is, thus, able to discover which states of a system are reachable.

Molina et al. [19] use an analogous technique for generating postconditions
for a given precondition, in which the method is executed with an exhaustive
set of inputs, and postconditions are generated from the observed outputs using
a genetic algorithm. Dynamic methods have also been used to infer program
invariants. Ernst et al. [13] developed the Daikon system, which infers likely in-
variants by observing program executions. The obtained invariants are restricted
to conjunctive Boolean expressions. The approach has later also been extended
to generate likely program contracts. At the moment, it is not clear whether
our method can be extended to synthesise postconditions, although this is an
interesting avenue of future research.

There are also several white-box approaches to synthesize contracts. Alpuente
et al. [1] apply a symbolic execution engine, which explores program paths reach-



able for given a precondition P . For each path, the engine produces a path
condition and symbolic values of program variables, from which correspond-
ing postconditions are synthesized. Singleton et al. [23] present an algorithm,
based on symbolic execution, to extract human-readable concise contracts from
strongest postconditions. Alshnakat et al. [2] use solvers for constrained Horn
clauses (i.e., model checkers) to generate program contracts that are sufficient to
verify given properties of a program. It remains to be investigated how our ap-
proach compares, in terms of the required runtime and readability of contracts,
to white-box approaches.

8 Conclusion

We have presented a novel approach to synthesizing method contracts for state-
ful software modules, specifically those implementing data structures like stacks,
queues, etc. Assuming that the modules are equipped with observer methods for
querying the module state, and mutators for modifying it, our technique synthe-
sizes contracts for the mutators, where pre- and postconditions are expressed as
Boolean combinations of observer calls together with equalities between param-
eters to observers and mutators. Our proposed technique first learns a model
of the module’s behaviour, utilizing existing algorithms for active learning of
register automata. On the basis of the learned model, our technique automati-
cally synthesizes preconditions for any given postcondition. We prove that, under
some assumptions, the obtained preconditions are the weakest possible. We have
developed a tool called CoGent based on our approach, which generates contracts
for mutators from a given register automaton where the contracts cover reachable
behaviours (module locations). Our implementation provides evidence that this
approach can successfully synthesize contracts for various stateful Java modules.
As additional evidence, we validate obtained contracts using symbolic execution.

In future work, we plan to extend our approach to handle non-Boolean ob-
servers and inequalities between input parameters and registers during the model
learning phase. This extension will enable the inference of preconditions in a
more expressive language. In addition, we will enhance contract synthesis with
location-specific invariant generation, to handle some cases in which invariants
about registers are needed to prevent the synthesis of unnecessarily strong pre-
conditions (see Section 4.3).
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Inference for Deductive Verification. Springer International Publishing, 2020, pp.
149–176.

3. D. Angluin, “Learning regular sets from queries and counterexamples,” Informa-
tion and Computation, vol. 75, no. 2, pp. 87–106, 1987.

4. A. Astorga, P. Madhusudan, S. Saha, S. Wang, and T. Xie, “Learning stateful
preconditions modulo a test generator,” in Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2019,
Phoenix, AZ, USA, June 22-26, 2019, K. S. McKinley and K. Fisher, Eds. ACM,
2019, pp. 775–787. [Online]. Available: https://doi.org/10.1145/3314221.3314641

5. A. Astorga, S. Saha, A. Dinkins, F. Wang, P. Madhusudan, and T. Xie,
“Synthesizing contracts correct modulo a test generator,” Proc. ACM
Program. Lang., vol. 5, no. OOPSLA, pp. 1–27, 2021. [Online]. Available:
https://doi.org/10.1145/3485481
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