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We present a new approach for efficient process synchronization in parallel discrete event simulation on
multicore computers. We aim specifically at simulation of spatially extended stochastic system models where
time intervals between successive inter-process events are highly variable and without lower bounds: this
includes models governed by the mesoscopic Reaction-Diffusion Master Equation (RDME). A central part of
our approach is a mechanism for optimism control, in which each process disseminates accurate information
about timestamps of its future outgoing interprocess events to its neighbours. This information gives each
process a precise basis for deciding when to pause local processing in order to reduce the risk of expensive
rollbacks caused by future “delayed” incoming events. We apply our approach to a natural parallelization of the
Next Subvolume Method (NSM) for simulating systems obeying RDME. Since this natural parallelization does
not expose accurate timestamps of future interprocess events, we restructure it to expose such information,
resulting in a simulation algorithm called Refined Parallel NSM (Refined PNSM). We have implemented Refined
PNSM in a parallel simulator for spatial extended Markovian processes. On 32 cores, it achieves an efficiency
ranging between 43–95% for large models, and on average 37% for small models, compared to an efficient
sequential simulation without any code for parallelization. It is shown that the gain of restructuring the
naive parallelization into Refined PNSM more than outweighs its overhead. We also show that our resulting
simulator is superior in performance to existing simulators on multicores for comparable models.

Additional Key Words and Phrases: Parallel Discrete-Event Simulation; PDES; Optimism control; Multicore;
Spatial Stochastic Simulation

1 INTRODUCTION
Discrete Event Simulation (DES) is an important tool in a wide-ranging area of applications, e.g.,
in design and manufacturing, healthcare and epidemics, modeling of chemical and biological
systems, etc. To improve performance and accommodate for large scale models, a vast repertoire of
techniques have been developed for Parallel DES (PDES) during the last 30 years [16, 22, 30, 33].
In the last decade, a driving factor has been the advent of parallel computing platforms, such as
GPUs and multicores [17]. Multicores allow fine-grained low-latency communication between
processing elements, which is essential for efficient parallel simulation of many classes of models.
This has been exploited in new synchronization techniques (e.g., [7, 35, 44]). Still, achieving good
performance and speedup on multicores for larger number of processing elements has proven to
be very difficult in the general case.

In PDES, the simulation model is partitioned onto logical processes (LPs), each of which processes
timestamped events to evolve its partition along a local simulation time axis. Events that affect the
state of neighboring LPs are exchanged to incorporate inter-LP dependencies. A major challenge
in PDES is to ensure that each LP’s processing of incoming events from other LPs is correctly
interleaved with its local events, to guarantee that causally dependent events are processed in
the right order. If an LP could know the timestamps and causal dependencies of future incoming
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events, it would be able to optimally advance its local simulation as far as possible, without
encountering incoming events that arrive “too late” (so called stragglers), thereby violating its
local timestamp ordering. Unfortunately, LPs do not in general have this information e.g., since
future incoming events may result from still unprocessed events in other LPs. To handle this lack of
information, several approaches have been developed: conservative approaches introduce additional
synchronization which allow an LP to process an event only when it is guaranteed that no straggler
will later arrive [33], possibly causing significant performance loss by excessive synchronization
and blocking of local LP execution; optimistic approaches allow stragglers by invoking suitable
corrective action (rollback) [22, 30], possibly damaging performance by excessive checkpointing and
processing of rollbacks. Many intermediate techniques have been proposed that allow stragglers,
but control the optimism by various heuristic techniques (see for example the surveys [8, 21]).
The advent of conservative and optimistic approaches can be regarded as resulting from a lack

of accurate information. If each LP could know the timestamps and causal dependencies of future
incoming events from other LPs, it could optimally advance its local simulation as far as is possible
without causing stragglers. In the absence of precise information about future incoming events,
each LP must continuously decide whether to continue local processing, risking future rollback
costs, or to pause local processing, risking lost performance. Many techniques for controlling
optimism can be seen as striking a trade-off between these risks [39]. However, they cannot change
the basic fact that the achievable efficiency is fundamentally limited by the accuracy of available
information on future inter-LP events.

In this paper, we show that a mechanism by which the LPs can obtain precise information about
timestamps of future incoming inter-LP events is a crucial building block for the design of efficient
PDES algorithms on multicores. We substantiate this claim by parallelizing a widely used algorithm
for simulation of spatial stochastic systems in two steps: we first design a natural parallelization, in
which each LP has access to modestly precise information about future incoming inter-LP events.
This information only allows it to communicate rather crude estimates of timestamps of future
inter-LP events to its neighbours. We thereafter refine this natural parallelization algorithm, by
restructuring each LP’s simulation algorithm in away that makes available more precise information
about future inter-LP events. This information is disseminated using the technique of Dynamic
Local Time Window Estimates (DLTWE), introduced in our previous work [3],
Our parallelization is performed in the context of spatial simulation of models governed by

the mesoscopic Reaction-Diffusion Master Equation (RDME) [18]. The RDME describes a spatial
Markov process, where the spatial domain is discretized into subvolumes, also known as voxels,
each containing discrete numbers of entities (e.g., proteins) that evolve by performing reactions
local to a subvolume or diffusions to neighboring subvolumes. In general, each subvolume can host
several types of reactions and diffusions with different combinations of entities. The inter-event
times between reactions and diffusions are stochastic, highly variable and without a lower bound.
Chains of events may propagate fast over the spatial domain, making parallelization particularly
challenging.

The most important algorithm for simulating this class of models is the Next Subvolume Method
(NSM) [12]. In the NSM, the event queue contains the timestamp for the next event of each
subvolume, but does not say which reaction or diffusion will happen. In other words, the reactions
and diffusions in a subvolume are aggregated into one subvolume event. Only when processing
a subvolume event, it is determined (by a weighted coin toss) whether it is a reaction (and of
which type) or a diffusion to some neighboring subvolume. The advantage of the NSM is that the
event queue contains as many entries as there are subvolumes, thereby adding modestly to the
memory requirements. The NSM algorithm has been used to study, e.g., protein fluctuations taking
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part in cell division [14], regulatory processes relevant for differentiation of stem cells [41], or the
polarization of yeast cells [25].
A natural parallelization of NSM, here called Direct Parallel NSM (Direct PNSM), has been

proposed in, e.g., [10, 23]. It partitions the subvolumes and event queue onto LPs. The event queue
of each LP represents the timestamp of the next event in each of its subvolumes. However, since
the event queue does not say which type of event will be processed, the timestamp of the next
diffusion to a particular neighboring LP is not represented, making it hard to communicate precise
information for optimism control.

In this paper, we therefore propose a refinement of Direct PNSM, called Refined PNSM, motivated
by the need to disseminate accurate information about timestamps of future inter-LP diffusions.
Refined PNSM differs from Direct PNSM in that each LP explicitly keeps the outgoing inter-LP
diffusions to each neighboring LP separate. That is, outgoing inter-LP diffusions are not included
in the aggregated subvolume event of their respective subvolume. Instead, each LP maintains, for
each of its neighboring LPs, a separate event queue for outgoing diffusions to that neighbor, which
explicitly represents the timestamp of the next occurrence of each outgoing diffusion. This exposes
precise information about timestamps of future outgoing inter-LP diffusion events, which can then
be disseminated to neighboring LPs using the Dynamic Local Time Window Estimates (DLTWE)
technique [3]. A disadvantage of Refined PNSM is that more memory is required for representing
the diffusion queues, and that effort is required to update the DLTWE estimates from these queues.

The DLTWE method for synchronization between LPs in our Refined PNSM is a further develop-
ment of the method introduced in our previous work [3]. There it was used to parallelize the All
Events Method (AEM) [1], which is an alternative to NSM for simulation of RDME models. The
AEM does not aggregate reactions and diffusions in a subvolume, but maintains the next timestamp
of all reactions and diffusions of the subvolumes in the event queue. The advantage of AEM is
that it is more efficient in estimating the effects of perturbations in kinetic parameters thanks to a
tighter coupling of sample trajectories (see [1] for an in-depth discussion and benchmarks). This
tighter coupling comes at the cost of an increased event queue, thus causing sequential AEM to be
significantly slower than sequential NSM. This disadvantage also applies to the parallelization of
AEM which therefore achieves poor speedup relative to sequential NSM. However, its speedup over
sequential AEM is quite good, due to the availability of precise information about timestamps of
future inter-LP diffusions, as we showed in our previous work [3]. More details on the comparison
with parallel AEM is found in Section 5.8.

We have implemented Refined PNSM with optimism control based on dissemination of informa-
tion in its diffusion queues. We have also implemented Direct PNSM, both in a purely optimistic
version without optimism control, as well as with optimism control based on the information
available in its event queues: we have spent significant effort to investigate how to best use this
information. The algorithms are compared on a representative set of benchmarks comprising both
unstructured (tetrahedral) and structured (cartesian) meshes. On a 32-core machine, consisting of
4 sockets with 8 cores earch, Refined PNSM achieves an efficiency ranging between 43–95% for
large models, and in average 37% for small models, compared to an efficient sequential simulation
without any code for parallelization. In comparison to the Direct PNSM (with optimism control),
the Refined PNSM shows an increase in efficiency between 22–82% for the large models. A detailed
analysis of our optimism control in the Refined PNSM shows that rollbacks are almost eliminated,
and that the amount of blocking is modest. It follows that our refinement of Direct PNSM increases
the parallel efficiency to an extent that significantly outweighs its overhead.
We also compare our resulting simulator, based on Refined PNSM, to other existing parallel

simulators on multicores for the RDME that have been reported in the literature. We show that our
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simulator is superior in performance. E.g., in comparison to the simulator reported by Wang et al.
[43], we achieve a performance speedup on 32 cores which is approx. 44% better than theirs.

In summary, the contributions of this paper include:
• a methodology for parallelizing simulation algorithms based on the insight that availability
and dissemination of precise information about future inter-LP events is crucial for efficiency,
• an efficient parallelization of the NSM simulation algorithm on multicores, which is superior
in performance to other multicore simulators reported in the literature, and
• experimental evidence that, on multicores, restructuring a simulation algorithm to expose
precise information about future inter-LP events increases the parallel efficiency to an extent
that significantly outweighs its overhead. We remark that it is beyond our scope to consider
simulators that run on clusters.

An implementation of the Refined PNSM solver is scheduled for release with the upcoming
version 1.4 of the URDME simulation framework [11].
Organization of Paper. The next section reviews previous related research. In Section 3, we describe
the stochastic simulation framework at which our work is aimed, and the NSM algorithm. In
Section 4, we describe the parallelization of the NSM by Direct and Refined PNSM, and their
respective optimism control techniques. In Section 4.4, the algorithm is explained in detail. The
experimental evaluation is found in Section 5. There we tune the optimism control parameters for
the Direct and Refined PNSM algorithms, and compare their performance. The performance of the
Refined PNSM algorithm is also compared to that of other comparable works. Section 6 contains
the conclusions.

This paper is a revised and extended version of [27].

2 RELATEDWORK
Numerous methods for parallelization of discrete event simulation (PDES) have been proposed.
Here we will only review works that are closest to our contributions; in general, we refer to the
comprehensive surveys in [8, 16, 21].
Approaches to parallelization in PDES are coarsely classified into conservative [33] and opti-

mistic [22, 30]. Optimistic approaches [22, 30] have the potential to achieve a higher degree of
parallelism, but performance may be reduced by excessive rollbacks. To limit the frequency of
rollbacks, various optimism control techniques have been developed. The suitability of a technique
depends on the employed computing platform; different techniques may perform well for dis-
tributed systems, e.g., communicating over MPI, as compared to shared memory multicores. Several
techniques let LPs regulate their event processing rate in response to various statistics that are
locally available to that LP, such as the frequency of rollbacks [36], or the expected timestamps of
future incoming events as estimated from statistics of past incoming events [15]. Another idea is to
employ moving constant size time windows that bound how far each LP can advance its local time
(e.g., [28, 38, 40]). Such time windows are computed using model-specific lookahead, e.g., derived
from known minimum communication delays. Our DLTWE technique also aims to provide a bound
for how far LPs can safely advance local time. However, in our setting there is no statically available
lookahead since inter-event times have no lower bound. Instead, time windows are computed and
updated dynamically, enabling more accurate optimism control, even in situations where there
are no minimum static time windows. It should be mentioned that while DLTWEs are rather
accurate bounds for safe advancement of local LP times, they are not completely safe, since they
may sometimes be decreased when new inter-process events are scheduled on short notice.

A further development of these approaches is the class of “near-perfect” state information (NPSI)
protocols, including the elastic time algorithm [39]. Here, the time window is based on the global
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virtual time (GVT) and on information about future messages to neighboring LPs, which are
computed and communicated over a special high-speed network. Our optimism control can be seen
as a refinement of ththe elastic time approach, where near-accurate information on future inter-LP
messages is disseminated and used by neighboring LPs. Also, our realization of this technique
exploits the low inter-process latency offered by modern multicores, removing the need for a
dedicated high-speed network.

PDES on multicores has gained increased attention lately. As an example, load balancing can be
improved on multicores by allowing subdomains to be globally accessible by all cores (e.g., [7, 35]).
This adds cost for synchronizing data accesses across cores. Marziale et al. [31] tries to remedy the
cost of inter-core accesses by grouping domains of a certain granularity to one single LP. Lin et
al. [26] employ a technique called Multi-Level Queuing, in order to minimize the contention among
threads in a multicore RDME simulator. Our implementation partitions the simulation domain
in a way that tries to minimize the interaction between subdomain. Although this interaction
is still significant, we suffer much less from contention between cores. There are several other
optimizations for multicores that we do not consider, which could be inherited also into our
framework, including NUMA-optimizations presented by Wang et al. [44] implemented for the
general optimistic simulator ROSS [6], and optimizations for memory access latency by Pellegrini
and Quaglia [34].

Parallel simulation of RDMEmodels using the Next SubvolumeMethod was previously addressed
by [10, 23, 26, 43]. The simulators are implemented inMPI, where each LP simulates a subvolume [26,
43] or a subdomain [10, 23]. We observe, as above, that the low-latency intercore communication
offered by shared memory multicores gives us more efficient synchronization between processing
elements. Dematté and Mazza [10] first proposed that optimistic PDES is favorable for solution of
RDME models. Control of optimism was realized by a static time window [23] or Breathing Time
Warp [43]. In Section 5.8, we compare our implementation to measurements reported by Wang et
al. [43] and Lin et al. [26].

3 SPATIAL STOCHASTIC SIMULATION
The Reaction-Diffusion Master Equation (RDME) [18] describes systems where entities, called
species, diffuse over a discretized space and may undergo transitions, or reactions, when in proximity
to each other. The dynamics of the transitions are described by a spatially extended Markov process.
The RDME is thus frequently used to model biological systems where the copy number (discrete
count) of chemical species is low and discrete effects therefore play an important role.
The spatial domain is divided into subvolumes, each of which maintains the copy number of

all participating species. The dynamics of the model is a continuous-time Markov chain over the
state space, which consists of all copy numbers in all subvolumes. Two types of transitions are
possible; a) in a reaction a combination of chemical species residing in a subvolume reacts and
produces a new combination within the same subvolume, and, b) in a diffusion a single entity of a
chemical species moves to a neighboring subvolume. The next occurrence time for each transition
is exponentially distributed with a rate that is proportional to the product of the copy numbers of
the involved species, as given by the law of mass action.

Practically, the RDME is simulated using sampling methods that produce single trajectories from
the relevant probability space. Since the advent of the original algorithm, known as the Gillespie’s
Direct Method [19], numerous such sampling methods have been proposed. For spatial models, the
most commonly used exact sampling method is the Next Subvolume Method [12] (NSM).
The NSM algorithm is a form of DES, which proceeds by repeatedly a) selecting an event from

the event queue, b) processing it by updating the simulation state, i.e., modifying the population
in one or more subvolumes, and finally, c) updating other scheduled events in the event queue.
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The last step consists of updating the next occurrence times of events whose rates depend on the
copy numbers of the subvolumes modified in step b, and subsequently sorting the event queue.
The new next occurrence times are obtained either by rescaling of the old occurrence time or by
sampling [5].
An important property of the NSM is that the events in the event queue are not the next

occurrence times of each reaction and diffusion within each subvolume. Instead, all reactions and
diffusions within a subvolume are aggregated into a single subvolume event, whose rate is the sum
of the individual rates of the aggregated reactions and diffusions. Thus, the event queue contains the
next occurrence time of the next reaction or diffusion within each subvolume. Upon executing the
aggregated subvolume event, a random draw decides which particular reaction or diffusion event
occurred in that subvolume. This significantly reduces the size of the event queue and improves
simulation efficiency.

3.1 Considerations for Faithfulness to Physical Model
In order to complete the description of the RDME with some context in which it arises, we here
briefly review some aspects of the physical modeling involved in deriving a sufficiently accurate
description in terms of a RDME from a not yet discretized physical model. The purpose is to
gain an understanding into how the spatial discretization, in particular the choice of subvolume-
and subdomain sizes, affects the accuracy of the RDME formulation. Thus, conditions for how
the discretization can be performed come both from the physical model as well as from what is
computationally tractable in a parallel implementation. General aspects of the RDME are discussed
in [18, Ch. 8] and [42, Ch. XIV]; the present discussion draws upon [13, Ch. 2.2]. It is not necessary
to digest the material of this section for appreciating the results in the rest of the paper.

The traditional well-stirred master equation covering the reactive kinetics in a single subvolume
is derived from the physical premises that the molecules move around freely in vacuum and react
when colliding in [20]. Diffusion-controlled kinetics [4], which is what the RDME tries to model,
is different as diffusing by Brownian motion in a liquid means that the mean free path, i.e., the
distance traveled between particle collisions, is at most on the order of the diameter of the solvent
molecules, which is typically much smaller than that of the tracer particle itself. The mathematical
description of Brownian motion is the Itô diffusion,

dξ = σdW (t), (1)

where ξ = [ξ1; ξ2; ξ3] is the tracer particle coordinate, σ the diffusion constant, and whereW (t) is
a three-dimensional Wiener process (which can be regarded as a continuous analogue of a random
walk). The solution to (1) is a 3D Gaussian distribution and one can show that the mean first exit
time from the ball ∥ξ ∥ < r is given by

τ =
r 2

3σ 2 . (2)

The fractional nature of the movement is evident since by (2), r/τ ∼ τ−1/2 and the limit τ → 0
(i.e. the molecule’s “speed”) makes no sense.

Under diffusion the molecule moves around irregularly in a space filling fashion, thus slowly
searching through the entire volume. In this way a molecule traveling a distance on the order of
its own radius ρ searches through a volume proportional to ρ3. On the average, by (2) this takes
time proportional to ρ2/σ 2. A large number N = σ 2/ρ2∆t of such translocations therefore searches
through a total volume of about σ 2ρ∆t . Although this is to be regarded as a crude estimate since
the regions will partially overlap, when ∆t is sufficiently small the linear scaling with ∆t will still
be valid.
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This observation opens up for a rate model in terms of a continuous-time Markov chain because
we can form a reaction probability which is proportional to ∆t and retrieve the Markov chain in the
limit ∆t → 0. However, this model is only valid in a local volume of radius less than about σ∆t1/2
with ∆t a characteristic time scale (e.g., average life time of the molecules). Beyond this volume the
diffusion is too slow to consider the system as well-stirred and unresolved spatial effects may build
up.

As the kinetics can no longer be regarded as well-stirred in the whole volume, a reasonable idea
is to subdivide the domain V into smaller computational subvolumes Vj . This is done such that
their individual volume |Vj | is sufficiently small to make them behave as practically well-stirred by
the presence of diffusion. It is clear from (2) that the diffusion rate per molecule in subvolume Vk is
proportional to σ 2/h2k , where hk is a measure of the length scale of subvolume Vk .

By construction, the RDME is only a valid model under certain requirements. Denote the mini-
mum average survival time of the molecular species by τ∆. Then we should have that

ρ2 ≪ h2 ≪ σ 2τ∆, (3)
where, as before, the molecular radius is denoted by ρ and where h is a suitable measure of the
length of each subvolume. The upper bound guarantees that the mixing in between reaction events
by diffusion is sufficiently fast that each subvolume can be regarded as well-stirred. The lower bound
on the subvolume size guarantees that molecules and reaction events can be properly localized
within the subvolumes. Importantly, it follows that for a typical discretization satisfying (3), the
total diffusion intensity will dominate that of the reactions.
Consider now a spherical region of space of radius H , discretized into smaller subdomains of

radii about h. In total there are MV ∼ (H/h)3 smaller such subvolumes and to set the scale we
assume a reaction intensityWr in each. By the above discussion there is also a diffusion intensity
Wd in each subvolume, andWd is fairly much greater thanWr in order for the modeling to be valid.

SinceWd ∝ 1/h2, we have that the total event intensity ∼ MVh
−2 = H 3h−5. Further, there are

MA ∼ (H/h)2 subvolumes at the boundary, so the total diffusion intensity out of the spherical
region is ∼ MAh

−2 = H 2h−4. It follows that the ratio of private to external events scales as ∼ Hh−1,
i.e., it increases with a larger private domain H and a finer discretization h. In other words, for a
large enough finely discretized thread-private domain, there will be enough internal events to hide
the cost associated with the specialized treatment at the boundary.
To conclude, the simulation work for a given model increases as h−5, which is quite fast, more

than can be compensated for by parallelization. Thus, the parameter h should not be chosen smaller
than necessary for simulation accuracy by (3). Once h has been chosen, the observation that private
to external events scales as ∼ Hh−1 implies the existence of a size H of subdomains that can
reasonably be allocated to LPs when parallelizing.

4 PARALLELIZATION
In this section, we present our parallelization of the NSM. In Section 4.1, we first present a straight-
forward parallelization, called Direct PNSM. Thereafter, in Section 4.2, we present a refined version
of the Direct PNSM, the Refined PNSM. Direct and Refined PNSM both have parameters that can be
tuned to control the optimism, as described in Section 4.3. Both methods are exact parallelizations
of the NSM, i.e., no additional error in the solution is introduced.

4.1 Direct PNSM
The Direct Parallel NSM (Direct PNSM) is a straightforward parallelization of the NSM algorithm to
optimistic PDES based on Time Warp [22]. The subvolumes of the simulation model are partitioned
into approximately equally sized subdomains, each of which is assigned to an LP. Each LP simulates
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the dynamics of the local subdomain while maintaining three main data structures: a) the subdomain
state, i.e., for each subvolume, the copy number for each species, b) a time-sorted event queue,
containing the occurrence time of future events in its subdomain, and c) a rollback history, which is
a time-sorted sequence of events that have already been processed.

Each LP advances the simulation by finding the next event to process, either from the top of the
event queue or from a message that has been received from another LP. In the NSM, a local event
specifies the subvolume to be processed. A random draw then decides which individual transition
occurs in the subvolume. Thereafter, the event is processed by a) updating the states of affected
subvolumes, b) adding the event to the rollback history, and c) if the event was taken from the local
event queue, determining a new next occurrence time for it.
If the event is a diffusion to another LP, a timestamped message is transmitted to the neighbor.

In practice, the information is written into a bidirectional FIFO channel. Upon arrival, the message
must be processed in the correct temporal order with respect to the local events of the receiving LP.

Whenever an LP receives a diffusion message that causes a causality violation (wrong temporal
order of event updates), a so-called straggler, it must perform a rollback to a local time before the
straggler’s timestamp, using information from the rollback history. To do so, events are processed
“backwards” until such a previous time is reached. In addition, all diffusion messages that have
been sent by the LP during the rollback interval must be undone by sending anti-messages to the
corresponding LPs. An anti-message cancels any event that was sent earlier with the same or a
later timestamp. Anti-messages can cause cascading rollbacks that may involve several LPs, and
are costly to resolve. In our implementations we use a refinement of the rollback technique, called
selective rollback [3]. It is an adaptation of the breadth-first rollback mechanism [9], and prescribes
that an LP that receives a straggler or an anti-message reverts only the events that are causally
dependent on the received straggler or anti-message.
Rollbacks are undesirable, as the processing of rollbacks degrades performance. Hence, an LP

should ideally not advance its local simulation time past the timestamp of a diffusion message
that will be received in the future. For this purpose, we would like to design an optimism control
strategy. Such a strategy involves the computation of time window estimates, which represent when
the next diffusion message will be sent to a given neighbor, based on some available information in
the inter-LP diffusion process. These estimates are then communicated to the respective neighbors
via shared variables. The receiving neighbor is then able to use the estimates to derive a bound on
its local simulation. If the timestamp of the next local event is larger than this bound, the neighbor
blocks the execution, thereby causing waiting time, but reducing the risk of rollbacks.
However, it is not feasible to construct an accurate estimator of future inter-LP diffusion times

in the Direct PNSM, since the method aggregates inter-LP diffusions into subvolume events. In a
nutshell, the problem can be described as follows. Consider a subvolume on the boundary of an
LP, which contains a number of intra-LP and a number of inter-LP diffusions, as well as a number
of reactions. Since the NSM is used, the next occurrence time of the subvolume specifies solely
when the next event in the subvolume occurs, without specifying which of the reaction or diffusion
events it will be. Which event precisely occurs is determined only when the next occurrence time is
reached, thus the simulator cannot know the time of a specific inter-LP diffusion event in advance.
As the model dynamics are stochastic and variable in time, the best alternative for deriving

time window estimates in the Direct PNSM algorithm is to compute the expected time of the next
diffusion event from the inter-LP diffusion rates and the current local simulation time, explained
in detail in Section 4.3. The estimates are communicated to neighbors and updated during each
simulator loop execution. We refer to this best effort technique as Time Window Estimates (TWE)
in the evaluation.
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4.2 Refined PNSM
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DLTWE1

LP2
lvt2

DL
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E 2

LP3
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DLTW
E3

LP4
lvt4

DL
TW

E 4

Fig. 1. Schematic drawing of the Refined PNSM algorithm. The domain is divided into several LPs (grey and

blue areas), each operating at a local simulation time lvti . Each LP contains a number of subvolumes (solid

lines), within which a set of reactions and diffusions take place. Looking at LP0, all reactions and internal

diffusions (blue overlay) are stored in a local event queue. The local event queue contains aggregated next

occurrence times for each subvolume. All outgoing inter-LP diffusions (red, green, orange and pink overlay)

are stored in inter-LP queues, one per neighbor. The inter-LP event queues contain explicit next occurrence

times of each diffusion, and are used to compute DLTWEs. The DLTWEs are communicated to the LP’s

neighbors, which use them to derive a bound on their local simulation. A straightforward way to use the

bounds are to advance the local simulation if the resulting local simulation time satisfies lvti < DLTWEi ,
otherwise block the execution in order to minimize the risk of rollbacks.

To alleviate the problem of limited information about future messages in the Direct PNSM, we
have developed a refined approach, dubbed Refined PNSM. It is an extension to the Direct PNSM.
We propose that outgoing inter-LP diffusions are not contained in aggregated subvolume events,
but instead form separate events with an explicit next occurrence time. These timestamps are
near-accurate predictors of inter-LP diffusion events and can be used for optimism control. LP-local
events are still aggregated per subvolume, which is more memory efficient.

In practice, within each LP we create a) one event queue containing the aggregated subvolume
events, representing reactions and intra-LP diffusions, and b) for each of its neighbors, an event
queue containing all outgoing inter-LP diffusions to that neighbor (see Figure 1).
The prediction of future inter-LP messages in the Refined PNSM is straightforward. The next

occurrence times of the outgoing inter-LP diffusions are extracted from the top of the inter-LP
queues. Then, they are communicated to each neighbor as a time window estimate, and updated
whenever the top entry of the queue changes. The top entry can change in two ways: either a) the
corresponding diffusion is performed, bringing the next entry to the top, or b) the population in
the corresponding voxel changes in such a way that the rate of the top entry changes, thereby
changing its time of occurrence. This is essentially the Dynamic Local Time Window Estimate
(DLTWE) technique, introduced in our previous work [3].

The DLTWEs are accurate predictors of future inter-LP diffusions, which a receiver may use
to significantly reduce the amount of rollbacks. In contrast to the mechanism for communicating
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timestamps of future inter-LP events in Direct PNSM, they accurately predict the times at which the
inter-LP events will occur. However, rollbacks cannot be completely ruled out, since the estimates
are updated whenever the state changes in the model, and may be updated to an earlier time as
well. Thus, a neighbor may read an estimate, decide that it is safe to progress with local simulation,
upon which the estimate is updated to an earlier time. This corresponds to case b) in the previous
paragraph. The corresponding message from which the estimate was derived may then cause a
rollback at arrival.

4.3 Tuning of Optimism Control
Typically, adaptive PDES can be tuned for optimal performance. In particular, the goal is to find the
optimal trade-off between the cost of over-optimism (“too many rollbacks”) against the cost of lost
opportunity (“too much waiting time”). For the Direct PNSM and Refined PNSM, we consider two
forms of tuning.
The first form of tuning is given in terms of a parameter n, which defines how many of the

received time window estimates should be used to compute a bound for the local simulation.
Our experiments have shown that if all estimates are used, the result is an overly conservative
simulation. In fact, for n being equal or greater than the number of neighbors of any LP, Refined
PNSM approximates a conservative simulation. By only considering a subset of the communicated
estimates, the level of optimism can be increased. A further observation is that some neighbors may
generate significantly more messages than others, thus provoking more rollbacks. The parameter n
thus refers to the set of n neighbors, which have caused the highest amount of rollbacks for the LP
during the most recent time window of the the simulation. An exception is made for LPs with only
a few neighbors, for which the DLTWEs of all neighbors are used.
The second form of tuning can be performed only in the Direct PNSM, and consists in scaling

the expected next diffusion time with a tunable parameter k ≥ 0. The communicated time window
estimate then equals t + σ · k , where t is the local simulation time of the sending LP and σ is the
expected inter-event time to the next inter-LP diffusion event. A small k implies a larger cost of
lost opportunity, while a large k leads to a larger amount of rollbacks.

4.4 Detailed Algorithm Description of the Refined PNSM

Table 1 Structure of an LP.
1 structure LPi :
2 m ▷ Number of neighbors
3 n ▷ Optimism control parameter
4 EventQueue[0 . . .m] ▷ Time-sorted queues of events
5 SubvolumeState[1 . . .ni ] ▷ State of subdomain
6 History ▷ History of past events
7 Channel[1 . . .m] ▷ Channels of incoming messages
8 Dltwe1...m ▷ Incoming DLTWEs, one per neighbor

Below we outline the structure of an LPi withm neighbors. Each LP contains:
• EventQueue[0 . . .m] is an array of priority queues, containing scheduled events sorted by
timestamp. Here, EventQueue[1 . . .m] are the inter-LP queues, each containing the diffusion
events destined for a particular neighbor, and EventQueue[0] is the intra-LP queue, containing
subvolume events that aggregate reactions and diffusions within the LP;
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Algorithm 1Main loop of the Refined PNSM algorithm, executed by each LPi .
1 while true do

▷ First phase: find the next event to process
▷ Peek at top of each message channel:

2 emsg← earliest message in { RetrieveMsg(Channel[j]) | 1 ≤ j ≤ m}
3 elocal← earliest event in {peek(EventQueue[j]) | 0 ≤ j ≤ m}
4 if emsg.time ≤ elocal.time then ▷ If emsg precedes any local event
5 e ← pop emsg from its message channel ▷ Next event e is from a neighbor
6 else
7 BadNbrs← {indices of the n neighbors having caused the most rollbacks}
8 while ∃j ∈ BadNbrs s.t.Dltwej < elocal.time do ▷ Next event’s time > selected DLTWEs
9 if (∃m ∈ Channel[j]) ∨ (∃k,∃em ∈ Channel[k]s.t.k , j ∧ em .time < Dltwej ) then
10 restart main loop
11 e ← pop elocal from event queue ▷ The next event to be processed is local

▷ Second phase: process selected event
12 if e .time < SubvolumeState[e .dest].time ∨ e is an anti-message then
13 SelectiveRollback(e) ▷ Rollback if e is a straggler (possibly local) or an anti-message
14 if e is an anti-message then restart main loop
15 add e to History
16 update SubvolumeState[e .subvol]
17 update timestamps of affected future reactions/diffusions in EventQueue[0 . . .m]
18 if e is a diffusion then
19 if e .dest is local then
20 update SubvolumeState[e .dest]
21 else
22 send diffusion message to LPj where e .dest ∈ LPj .SubvolumeState
23 for each neighbor LPj do
24 LPj .Dltwei ← time of peek (EventQueue[j]) ▷ Update the DLTWEs of neighbors

• SubvolumeState is an array representing the state of each subvolume in the subdomain, i.e.,
the number of entities of each species, and the timestamp of the last event affecting the
subvolume (i.e., each subvolume has an individual timestamp),
• History is a time-sorted sequence of events already processed by the LP; old events are
regularly removed from the history by fossil collection,
• Channel[1 . . .m] is an array of incoming message channels, one for each neighbor, and
• Dltwe1...m is a set of incoming DLTWE estimates, one for each neighbor.

For an event e , we let e .time denote its timestamp; for a diffusion event e , we let e .dest denote its
destination subvolume, which may reside in a different LP.
The main simulator loop consists of two phases, the selection of the next event to process, and

the processing of the event. It has some similarities to the algorithm we previously presented in [3],
where, in addition, the functions RetrieveMsg and SelectiveRollback are explained in more
detail.
The first phase (lines 2–11), selects the next event to be processed, as follows. First, for each

incoming channel, the first message that is not canceled by a later anti-message in the channel, is
retrieved by means of the function RetrieveMsg. Intuitively, the retrieved message is the first one
in the channel that should be processed, after all anti-messages occurring in the channel have been

, Vol. 1, No. 1, Article . Publication date: February 2019.



:12 Jonatan Lindén, Pavol Bauer, Stefan Engblom, and Bengt Jonsson

processed. The earliest message is assigned to emsg. Second, the earliest local event elocal from all
event queues is read. If emsg is earlier than elocal (line 4), then emsg is assigned to e for processing.
Otherwise, the event elocal is assigned to e for processing, but only if none of the n selected DLTWE
estimates is violated (line 8). If a DLTWE estimate would be violated, the LP blocks until a message
from the corresponding neighbor, or an earlier message from another neighbor, is received, at
which time the main loop is restarted, in order to process the message (line 10).

The second phase (lines 12–24) updates the subdomain state of the LP by processing the event
e that was selected in the first phase. If e is an aggregated event, the type of transition and the
destination are resolved by a random draw. It starts by checking whether e is a straggler or a local
diffusion which violates causality in its destination subvolume, or if it is an anti-message; in all three
cases a rollback is necessary. The rollback is performed by the function SelectiveRollback(e)
(line 13), which reverses the effect of all events, that are causally dependent on e . Thus, subvolumes
may be rolled back to different times. The latter is also the reason why we might have rollbacks
induced by other local events. In case the rollback performed was due to an anti-message, the main
loop must restart (line 14), since the state of the subvolume of the currently selected event e may
have changed. For a detailed description of the rollback function, we refer to our previous work [3].
After these checks, the selected event e is processed by adding it to the event history (line 15),

updating the states of affected subvolumes, and updating the times of future events in the event
queue that are affected by the state change(s) (lines 16 through 20). If e is a diffusion to another
subdomain, a message is sent (line 22) to the appropriate LP. After that, the DLTWEs are updated
(line 24) to inform the neighbors of the possibly new estimated times of the next diffusion events.

4.5 Faithfulness of Parallelization
An important step in the development of a parallel simulator for stochastic systems is to ensure
that the algorithm is implemented correctly. A strong evidence of correctness is the ability to
generate exactly the same solution as a sequential simulator, for a given model. Such an ability is
not only a strong indicator of correctness, but also facilitates the finding of programming errors
throughout the implementation. We identify two properties of our parallel simulator that allow for
the generation of solutions that agree with those generated by the sequential simulator.

The first property is the use of the same streams of random numbers in the sequential as well as the
parallel simulation. This can be achieved by assigning unique generator seeds to the pseudorandom
number generators (PRNGs) used in the sequential as well as parallel simulator, for each subvolume
in the model.

The second property is that the state of the PRNGs are reverted during rollbacks. Many PRNGs
are reversible, e.g., linear congruential generators such as the Posix standard’s drand48() and
similar (our case), or more complex ones, such as the Mersenne twister [32]. For each entry in the
event history, it is known how many pseudorandom numbers that were used, thus it is simply a
matter of reverting the corresponding subvolume’s or subvolumes’ PRNG(s) the same number of
steps. Hence, the state of a subvolume, including the random number generator, is transparent to
rollbacks. Reverting the random number generator is also important for the reason that sampling
bias is otherwise introduced into the parallel simulation. Such bias is the result of the systematic
rejection of events that have been generated based on random numbers that are close to the
maximum range of the generator (e.g., uniformly distributed random numbers close to 1). These are,
for example, diffusion events that will occur further away from the local simulation time, and thus
have a higher probability to be rolled back than events that occur shortly after the local simulation
time.
Both these properties have been implemented in the Direct PNSM simulator, and have been

used to verify that it computes the same trajectories as the corresponding sequential simulation
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algorithm. A trajectory is in our case a sequence of model states at predefined instants of virtual time
(i.e., the state at a subvolume after the processing of the latest event with a timestamp smaller than
the predefined instant). For the Refined PNSM, there is no corresponding sequential implementation,
since its discretization does not make sense in a sequential setting. However, Refined PNSM is
implemented on the code base of Direct PNSM, indicating that part of the code has been validated
in this way. As an alternative technique, correctness of parallel simulators of stochastic systems
may also be verified by statistical tests between the sequential and parallel solutions, as shown
by Wang et al. [43]. However, in this case it is very time-consuming, if not impossible, to assess
whether a change in the parallel simulator has resulted in an error.

5 EVALUATION
In this section, we evaluate the efficiency and scalability of the Refined PNSM and the Direct PNSM
algorithms. We look at the following five questions:
• How do we tune the optimism control? (Section 5.4)
• How effective is the Refined PNSM algorithm? (Section 5.5)
• How big is the overhead of the Refined PNSM algorithm? (Section 5.6)
• How does load imbalance affect the performance? (Section 5.7)
• How well does the Refined PNSM compare to other works? (Section 5.8)
• Which model parameters affect the performance of the Refined PNSM algorithm? (Section 5.9)

5.1 Algorithms
To evaluate and compare the Direct PNSM and the Refined PNSM we implemented both algorithms.
For both implementations, the baseline is the sequential implementation of the NSM method used
in the URDME simulation framework [11], that has been shown to be efficient in comparison to
other NSM implementations [11, Suppl. data]. Thus, all implementations share the same code for
the sequential logic, but are extended for parallel execution in different ways. The optimism control,
as described in Sections 4.1 and 4.2, was made optional and tunable in both implementations. In
the following, we refer to the different configurations as follows.

nsm The original sequential NSM simulator.
d-pnsm The Direct PNSM algorithm, with optimism control turned off.
d-pnsm[twe] Identical to d-pnsm, but with approximative adaptive optimism control turned

on, as defined in Section 4.1.
r-pnsm The Refined PNSM algorithm, with optimism control turned off.
r-pnsm[dltwe] Identical to r-pnsm, but with adaptive optimism control using DLTWEs turned

on, as defined in Section 4.2.
The DLTWE technique requires detailed state information which is only available in the Refined
PNSM algorithm, whereas the approximative TWE technique can directly use aggregated informa-
tion, and therefore also works for the Direct PNSM algorithm.
To understand how the effort of the simulators is used, a fine-grained, low overhead (approx.

2%) instrumentation of the simulator was implemented, which records the time spent on different
activities of interest. We categorize the activities of interest as follows (line numbers refer to
Algorithm 1):

aggregated Time spent on evaluating events from the queue with aggregated events. Corre-
sponds to lines 15–24, if e is picked from the aggregated queue.

inter-LP Time spent on evaluating events from the inter-LP queues, lines 15–24, if e is picked
from an inter-LP queue.
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messaging Time spent on processing events from neighboring LPs, lines 15–24, if e is a received
diffusion event.

overhead Time spent on updating the event history and fossil collection, that are directly
related to the parallelization overhead. These are not detailed in Algorithm 1.

rollback Time spent in SelectiveRollback, line 13, and time spent on re-simulating the time
interval reverted by the rollback. The re-simulation cost is naively estimated to be equal to
the cost of the rollback.

waiting Time spent on waiting for a neighboring LPs time window estimate, lines 8–10.
time window update Time spent on computing the timewindow estimates in the d-pnsm[twe]

algorithm, as described in Section 4.1.
Of the above mentioned categories, aggregated, inter-LP and messaging represent useful work.

The rollback cost is caused by over-optimism, and waiting is the cost caused by too much conser-
vatism.

5.2 Benchmarks
We now give a brief description of the benchmarks considered in the evaluation. The benchmarks
are constructed to represent a variety of realistic RDME model properties. The topology is varied,
which has an impact on the connectivity of LPs, and the reaction to diffusion event ratio (D:R ratio)
is varied, which has an impact on the amount of communication between LPs.
(1) The reversible isomerization benchmark consists of spatial models defined on three different

geometries; sphere, disc and rod. The geometries are discretized into three-dimensional un-
structured meshes, leading to a high number of neighbors for each LP, except in the case of
the rod model. For each shape, a model is generated in two different sizes of about 14.000
(small) and 140.000 (large) subvolumes. Additionally, a configuration of the large sphere
model with a lower population density has been evaluated, denoted sparse. The motivation
for the latter benchmark is that the RDME is typically used when the simulated population is
low, as described in Section 3. Each model contains two chemical species, A and B, which
are allowed to freely diffuse within the domain with equal diffusion rates. The species may
undergo the reversible reaction,

A
c−→ B, B

c−→ A,

with the tunable reaction intensity c . To arrive at a specific D:R ratio, we have determined
the parameter in preceding test runs. For each model size, we set the D:R ratio to either 1:1,
10:1, or 100:1, which are the magnitudes found in realistic models, as in [14, 41].

(2) The spatial predator-prey (denoted pp in the following) model was used as a benchmark in
the study by Wang et al. [43]. The benchmark is the spatial extension of the Lotka-Volterra
model, proposed by Schinazi [37]. The system contains three species, A, B, and C , where the
initial copy number for each is set to 1000 per subvolume. The model reads

A + B
0.01−−−→ A + 2B,

B +C
0.01−−−→, 2C

C
1−→ ∅.

(4)

We have used the model parameters proposed by Wang et al. [43]. The diffusion rates of
species B andC are d1B = 2.5 and d1C = 5, while dA = 0 in all cases. In contrast to the previous
models, the geometry is two-dimensional and the discretization is given by structured meshes,
leading to a small number of neighbors per LP. The model has been run at two sizes, viz.,
40.000 (small) and 160.000 (large) subvolumes, and at a D:R ratio of 1:1.

, Vol. 1, No. 1, Article . Publication date: February 2019.



Exposing Inter-Process Information for PDES of Spatial Stochastic Systems on Multicores :15

0
0.0 0.1 1.0 2.0 5.0 0.0 0.1 1.0 2.0 5.0

n = 1 n = 2

no
rm

al
iz
ed

ex
ec
ut
io
n
tim

e

parameter k
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(b) r-pnsm[dltwe] on the sphere[l,d10] and the

pp[l,d1] models.

Fig. 2. Instrumentation data for the tuning of the d-pnsm[twe] and r-pnsm[dltwe] algorithms for 32 cores.

Time is normalized to the first bar of each group per benchmark.

(3) A model of the Min-protein system in the E. coli bacterium [14]. The system consists of five
different species, whose interactions are described by five reactions. The model is challenging,
both in that the species oscillate through the length of the bacteria, and that two of the
species are limited to the membrane of the bacteria. The reaction- and diffusion-rates of
the model can be found in [14], and the model is also available for download in the current
release of URDME [2]. We evaluate three models corresponding to three different lengths
of the bacterium, viz., 4 µm with ∼9.000 subvolumes, 10 µm with ∼24.000 subvolumes, and
15 µmwith ∼35.000 subvolumes, roughly corresponding to wild-type E. coli, and two different
lengths of a mutant E. coli, all discussed in [14].

For the reversible isomerization and the predator-prey benchmarks, we will denote specific model
configurations as [s , dy], where the first parameter, the system size s , is either s (small) or l (large),
and the second parameter is the D:R ratio, interpreted as y : 1. For the low population density
sphere model, we have added the keyword “sparse” to the parameter list. For the mincde benchmark,
the bacterium length s identifies the benchmark configuration, e.g., [s µm].

5.3 Experimental Setup
All experiments were run on a 4 socket Intel Sandy Bridge E5–4650 machine. Each processor has 8
cores and 20MB L3-cache. Hyperthreading was not used, and threads were pinned to cores. The
computer runs Linux 4.9.0, and the binaries were compiled using GCC 6.3.0. The three-dimensional
models were constructed using Comsol Multiphysics 4.3 and converted to computational models
using the URDME framework. The two-dimensional structured meshes used in the spatial predator-
prey model were constructed using custom Matlab scripts. All the meshes were then partitioned
into subdomains using the multilevel k-way partitioning method provided by the Metis library [24].
Metis optimizes the partitioning for minimal number of diffusions crossing subdomain boundaries,
while maintaining an equal number of subvolumes in each subdomain.

5.4 Tuning the Optimism Control
In this section we tune the parameters of the d-pnsm[twe] and r-pnsm[dltwe] algorithms, as
described in detail in Section 4.3. For both algorithms, we tune how many of an LP’s received time
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Fig. 3. Graph representing all LPs and the channels having caused the most rollbacks, for the d-pnsm
algorithm during a simulation run of the sphere[l, d10] benchmark, with 16 threads. Each node represents an

LP, and each edge represents a channel. Each LP is annotated with the total amount of time it has spent on

processing rollbacks, in seconds. For each LP, the channel having caused the most rollbacks has been added

as an edge from the sending LP to this LP, annotated with the percentage of the LP’s rollbacks it has caused.

Only for the slowest LP, such an edge has been omitted.

window estimates are used, denoted as parameter n. For the d-pnsm[twe], we additionally tune
the parameter k in the time window estimate, as described in Section 4.3.
Figure 2(a) shows the time breakdown of the d-pnsm[twe] algorithm, for different values of

k and n in the sphere[l,d10] model. Each bar shows the time breakdown of a simulation with 32
cores and a combination of values of k and n. We find that the optimal values of k and n are at 0.1
and 1, respectively. The same values were found to be optimal for other benchmarks as well. In the
figure, we also observe how the cost of rollbacks increases for bigger k , i.e., when communicating a
bigger time window estimate.

The instrumentation data of the r-pnsm[dltwe] algorithm is shown in Figure 2(b), for different
values of the parameter n, evaluated on the sphere[l,d10] and the pp[l,d1] models. We see that the
best performance is achieved for n = 1, which we have also confirmed for several other benchmarks,
not shown. Thus, in general, the best performance is achieved by observing the timestamps of
future incoming diffusion events from only a single neighbor, viz., the one that has caused the most
rollbacks.
The observation that the best performance is obtained when each LP waits on the DLTWE

of only one other LP can, we believe, be explained as follows. An important goal of optimism
control is to make each LP progress at approximately the same speed, i.e., no LP should advance its
simulation time significantly further than the slowest LP. Intuitively, the neighbors of the slowest
LP have to wait the most for the slowest LP. For any LP, most of the time, an LP’s speed will directly
or indirectly be constrained by the slowest LP. Controlling the simulation speed of an LP more
strictly, by increasing n, would only increase the overhead of the simulation, since it is still the
slowest LP that limits the speed. Furthermore, increasing n can make the simulation more rigid than
necessary by reducing the freedom that is necessary to accommodate modest temporary variations
in simulation speed. It should be noted that with our selective rollback technique, a straggler need
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not cause a rollback; hence our simulator benefits from allowing modest differences in simulation
time between LPs. It should further be noted that it is quite difficult to predict statically, in advance,
which neighbour will cause the most rollbacks.

To investigate how the waiting time, and the rollbacks, are distributed among the LPs, measure-
ments were done for the d-pnsm algorithm, during a simulation run of the sphere[l,d10] benchmark,
on 16 threads. For each LP, the total amount of time spent on processing rollbacks was recorded. For
each channel, the number of rollbacks caused by stragglers received by the channel was recorded.
The resulting graph is shown in Figure 3. The nodes in the graph represent the LPs, annotated with
the total amount of time each LP spent on processing rollbacks. For each LP, one incoming edge,
representing a channel, was added to the graph, viz., the channel having caused the most rollbacks
to this LP (only for the slowest LP, such an edge was omitted). Each edge is annotated with the
percentage of the number of rollbacks that were attributable to the corresponding channel. We see
that each LP’s rollbacks come from the same direction; in the end, the speed of every LP is limited
by the slowest LP. The structure of rollbacks would also explain why increasing the parameter
n does not improve performance: observing the DLTWE of the neighbor producing the second
most rollbacks would, as can be seen in the graph, also be constrained, to the greatest part, by the
slowest LP. Thus, the second DLTWE would only add overhead, and would not lead to a better
control of the simulation speed.

5.5 Scalability Comparison
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Fig. 4. Speedup over nsm for the sphere[l,d10] model. The d-pnsm and r-pnsm did not complete for more

than 16 cores due to rollback explosions. For 16 cores, the success rate of the d-pnsm is approx. 91%, and for

the r-pnsm it is approx. 94%.

In this section we compare the scaling of the two algorithms d-pnsm and r-pnsm, with and
without optimism control.

In Figure 4, the speedup curves for the four parallel algorithms, evaluated on the sphere[l,d10]
benchmark, are shown.
We would like to point out that the d-pnsm and the r-pnsm algorithms, i.e., the algorithms

without optimism control, often suffer from rollback explosions, in which case the simulation does
not finish within a reasonable amount of time (3 times the expected finishing time), or runs out
of memory. In the cases the algorithms finish, the amount of rollbacks is relatively low. Similar
behavior has previously been observed by others [29]. We have nevertheless chosen to include the
data for the successful runs only for both the algorithms, as it is illustrative for the understanding
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of the performance of the algorithms. For the sphere[l,d10] benchmark, 16 cores, the success
probability of the d-pnsm algorithm is 91%, and of the r-pnsm algorithm it is 94%. For 32 cores it is
33% for the d-pnsm algorithm, and 0% for the r-pnsm algorithm, clearly showing the necessity of
using a mechanism for optimism control.

Now, comparing the speedup for the d-pnsm and the r-pnsm algorithms in Figure 4, we see that
the d-pnsm exhibits up to 40% better performance than the r-pnsm, for 2–16 cores, considering
only successful runs. The performance cost of the optimism control for the two algorithms r-
pnsm[dltwe] and d-pnsm[twe] is also illustrated in the figure. For the r-pnsm[dltwe] algorithm,
the performance cost of the optimism control is marginal as can be seen by comparison with the
performance of the r-pnsm algorithm. This is because the basis for the time window calculation,
in this case maintaining the inter-LP queues, is already included in the r-pnsm algorithm. For
the d-pnsm[twe], the performance cost of the optimism control is 63% for 16 cores, as seen by
comparison with the performance of the d-pnsm algorithm.
Comparing both algorithms with optimism control on the same benchmark, the d-pnsm[twe]

algorithm has better performance than the r-pnsm[dltwe] when only a small number of cores are
being used. For 8 cores, it is 9% faster. However, for 16 cores and more, the opposite holds, and the
r-pnsm[dltwe] is up to 42% faster. The r-pnsm[dltwe] algorithm clearly scales better than the
d-pnsm[twe].
The overall performance of the r-pnsm[dltwe] and the d-pnsm[twe] algorithms is illustrated

in Figure 5. The following performance comparisons are only based on benchmarks that both
algorithms handle. For these, for 32 cores, the r-pnsm[dltwe] achieves an efficiency ranging
between 43–95% on the large models, compared to nsm. Compared to the d-pnsm[twe], we
see a performance improvement in the range of 22–82%. For the smallest model, under several
different diffusion ratios, the performance of the r-pnsm[dltwe] is up to about 4x better than the
d-pnsm[twe] algorithm. The average speedup of r-pnsm[dltwe] over nsm for all benchmarks is
17.

On 16 cores, the performance improvement of the r-pnsm[dltwe] over the d-pnsm[twe] is in
general smaller. The r-pnsm[dltwe] algorithm has on average 23% better performance.

We observe that for both algorithms, the two-dimensional structured mesh model of the predator-
prey model is less challenging than the other models, since the number of neighbors per LP is
small. We also observe that the smaller models are more challenging, due to the limited amount
of parallelism available. Especially for the small sphere models, the performance difference of
the d-pnsm[twe] and the r-pnsm[dltwe] is particularly accentuated. It also seems that both the
r-pnsm[dltwe] and the d-pnsm[twe] algorithm performs better in highly diffusive models, which
was hinted at in Section 3.1.

We note that the d-pnsm[twe] algorithm did not handle models with smaller population density,
viz., the mincde and the sparse sphere models. We believe this to be due to the estimates becoming
increasingly unreliable as the copy number of the boundary subvolumes decrease, causing a
dead-lock.

5.6 Overhead of the Refined PNSM
In this section we investigate the overhead of the r-pnsm algorithm over the sequential nsm and
the d-pnsm algorithm, i.e., the cost of the parallelization and the cost of maintaining the inter-LP
queues.
First, to estimate the parallelization overhead over nsm, we ran the d-pnsm sequentially (on a

single LP) and compared it to the nsm, on the sphere[l,d10] benchmark. Note that, in the sequential
case, the r-pnsm algorithm is identical to d-pnsm. The parallelization incurred an overhead of
approx. 36%.
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Fig. 5. Speedup over nsm, 32 cores (top) and 16 cores (bottom), for all benchmarks. Error bars denote 95%

confidence interval over 10 runs.

Next, in order to better understand the differences in Figure 4, we observe the instrumentation
data of the same experiment, shown in Figure 6. The total height of each bar in the figure corresponds
to their execution time. The execution time is normalized to that of the r-pnsm[dltwe] for each
number of cores. To estimate the overhead of the r-pnsm algorithm over the d-pnsm, we calculate
the difference in the amount of effort spent on all activities except waiting and rollback for each
algorithm, as defined in Section 5.1. We see that the r-pnsm exhibits a significant amount of
overhead over the d-pnsm: 38% at 8 cores, and 40% at 16 cores.

As we observed in Figure 4, the d-pnsm[twe] algorithm is faster than the r-pnsm[dltwe] for 2
and 8 cores, but the r-pnsm[dltwe] is faster for 16 cores and more. An explanation is provided by
Figure 6: For the r-pnsm[dltwe] the relative amount of effort not spent on useful work increases by
41% when going from 8 to 16 cores, due to waiting. For the d-pnsm[twe], the same effort more than
doubles. Similar values are found for any increase in the number of cores. Thus, the initial cost of
the r-pnsm[dltwe] is higher, but the rate at which the overhead increases for the r-pnsm[dltwe]
is lower than for the d-pnsm[twe], making it scale better.
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Fig. 6. Instrumentation data for all algorithms on the sphere[l,d10] model. Time is normalized to the first bar

of each group of cores. We recall from Figure 4, that the d-pnsm and r-pnsm did not complete for more than

16 cores due to rollback explosions. For 16 cores, the success rate of the d-pnsm is approx. 91%, and for the

r-pnsm it is approx. 94%.

5.7 Load Imbalance
In this section, we try to characterize the waiting time that cannot be prevented by optimism
control. Since our implementation does not perform dynamic load balancing, it is important that
the simulation model, i.e., its load, is evenly partitioned onto the LPs (which are mapped one-
to-one on processor cores). Otherwise, LPs that are given less simulation work than others, will
spend some of their time on waiting and processing rollbacks, hereafter denoted non-useful work.
However, many models exhibit a load that changes dynamically, in which case the load imbalance
is unavoidable, no matter whether optimism control is used or not.
To capture both the static and the dynamic property of load imbalance, we define the τ -load

imbalance of a simulation run as the amount of time per LP spent on non-useful work exceeding
that of the slowest LP, during each interval of length τ for some time step τ . In particular, as τ → 0,
all time spent on waiting and on processing rollbacks will be characterized as τ -load imbalance,
since for small enough intervals, there will always be some LP that does not have any time spent
on non-useful work. Given a simulation of length t , for τ = t , we denote τ -load imbalance as static
load imbalance. Thus, for a simulation method that does not perform any dynamic load balancing,
one necessary but not sufficient condition for good performance is that the static load imbalance is
close to zero. For a simulation where load balancing is done at a step size of T , a similar condition
would be that the τ -load imbalance is close to zero for τ = T . When τ → 0, given a perfect dynamic
load-balancing procedure, all non-useful work can be removed.
In the case of static load imbalance, it represents an upper bound on the amount of non-useful

work that can be prevented by a suitable optimism control. In the case of τ -load imbalance, it
represents an upper bound on the amount of non-useful work that can be prevented with a load-
balancing mechanism with a minimum step size of τ . In Figure 7(a) we see a simulation run of
the sphere[l,d10] model on 32 threads. Each bar represents the time allocation of an individual
LP, divided into useful work, non-useful work, and the proportion of the non-useful work that is
classified as static load imbalance. In the figure, LP 2 has the least amount of non-useful work, i.e., it
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Fig. 7. Instrumentation data for each thread of the r-pnsm[dltwe] algorithm on the sphere[l,d10] benchmark

in Figures (a) and (b), and mincde[10 µm] in Figures (c) and (d). 32 threads.

is the slowest LP. Thus, for each LP, all non-useful work exceeding that of LP 2, is classified as static
load imbalance, and could possibly have been removed by improving the initial partitioning of the
between LPs. The rest of the non-useful work is then comprised of dynamic load imbalance and
imperfections in the optimism control protocol, and represent an upper bound on the improvement
that can be achieved with a better optimism control. For the sphere[l,d10] model, we could have
achieved at most 7% better performance by improving the optimism control. By improving the
initial partition, we could have achieved at most 12% better performance. In Figure 7(b), we see
the same data, except that we show the part of the waiting time that can be classified as τ -load
imbalance, for a time step of τ = 1s. We see that the difference between static load imbalance and
τ -load imbalance is only marginally different, i.e., the load is very uniform over time, which we
already know by the definition of the model, in Section 5.2. On the other hand, in Figures 7(c)
and 7(d), we have applied the same load imbalance measures, but on the mincde[10 µm] benchmark,
which exhibits considerable load variations. Here we see that the difference between the static
load imbalance and the dynamic load imbalance measure is bigger, the amount of non-useful
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work classified as load imbalance increases by 70%. Thus, for the kind of load that mincde[10 µm]
represents, to improve performance some kind of load balancing would be a suitable method.
Finally, in Figure 8(a), the static load imbalance measure is displayed on the instrumentation

data for the sphere[l,d10] model. Now we see that there is very small room for performance
improvement when it comes to reducing the waiting time by modifying the optimism control.

5.8 Comparison to Other Works
In this section, we compare the performance of the Refined PNSM algorithm to that of similar
algorithms of other works. We have looked at all to us known relevant papers for comparable
experiments; the only two previously published RDME models for which experiments with more
than 12 cores have been reported are [43] and [26].

Wang et al. [43] simulate a predator-prey model on a two-dimensional 200 × 200 structured grid,
using their parallel Abstract NSM algorithm, corresponding to our pp[s,d1] model. Though it is
unknown to us which sequential baseline they use for the comparison, they report a speedup of
11 on 32 cores. For the same benchmark, we achieve a speedup of 15.8. Lin et al. [26] simulate a
three-dimensional calcium wave model using the NTW-MT simulator. They report a speedup of
9 on 32 cores. The parameters for the model were not available to us, thus we could not test our
simulator on the benchmark.
In our previous work [3], we presented the PAEM algorithm, a parallelization of the AEM

algorithm which does not aggregate reactions and diffusions in a subvolume, but maintains the next
timestamp of all reactions and diffusions in the event queue. The sequential AEM is significantly
slower than NSM, largely due to high memory requirements. Compared to sequential AEM, the
PAEM achieved a speedup of 16.4 on 32 cores, for the above benchmark from [43]. The speedup for
PAEM over the NSM, however, is only 5.2 on the same benchmark, largely due to its poor memory
efficiency.

5.9 Performance Indicators: Inter-LP Diffusion Ratio and Degree
In this section, we investigate the relation between the parallel performance and the model param-
eters. We investigate the impact of two performance indicators, namely

Inter-LP Diffusion ratio The number of inter-LP diffusions over the total number of diffu-
sions.

Degree The graph degree of the communication network between LPs.

In Figure 8(b) we compare the benchmark results of three models on 32 cores. Only one of
the performance indicators differ between each model. The rod-sphere benchmark is a modified
version of the rod[l,d10] benchmark, with an inter-LP diffusion ratio that is equal to that of the
sphere[l,d10] benchmark. All the three models have the same number of subvolumes, and the
benchmarks take the same time to complete for the sequential simulator. We also want to ensure
that the same number of inter-LP diffusions is used when deciding if an LP should block. Thus, we
set the algorithm to use all the DLTWEs for this benchmark, and not only the n most important
DLTWEs, as described in Section 5.4.

Comparing the sphere, with a degree of 9.8 to the rod-sphere, with degree 2, we see a performance
difference of 38%. As expected, more time is spent on messaging and processing of inter-LP events
for the sphere model. Additionally, the waiting time is increased. Comparing the rod-sphere,
with an inter-LP diffusion ratio of 0.08, to the rod, with a ratio of 0.002, we see a performance
difference of 71%. This gives some insight into the performance results in Section 5.5, where the large
models in general had better performance than the small models, as they exhibit a smaller inter-LP
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diffusion ratio. Likewise it explains why the rod and the predator-prey benchmarks exhibited better
performance than the other benchmarks, as they have a lower degree.

6 CONCLUSION
We have presented a new efficient approach to synchronization in optimistic PDES for spatial
stochastic simulation of reaction-diffusion models on multicores, and used it to develop a parallel
simulator, called Refined PNSM. The Refined PNSM simulator builds on a natural parallelization of
the Next Subvolume Method, which is restructured in order to expose near-accurate timestamps
of future interprocess events. By disseminating these timestampes using the DLTWE technique,
we can improve the accuracy of the optimism control, thereby significantly reducing the amount
of rollbacks as well as maintaining the blocking at a modest level. Even though the restructuring
incurs a substantial overhead, experimental evaluation shows that the resulting parallel efficiency
significantly outweighs the overhead.
We also show that an optimization, in which each LP only uses a single (in some cases two)

incoming time estimates to control local processing, improves the optimism control by providing
more flexibility to adapt to temporary fluctuations, without signifantly increasing the number of
rollbacks. We have also showed that our resulting simulator is superior in parallel performance
to existing simulators for comparable models that have been reported in the literature, for cases
where it has been possible to obtain relevant data.

More generally, our work shows how the fine-grained and low-latency communication offered
by multicores can be exploited to perform efficient parallelization of simulation, even for models
that are “difficult” in the sense that inter-process ineraction is fine-grained, unpredictable, and
without lower bounds.
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