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ABSTRACT

We present a fine-grained load migration protocol intended for par-

allel discrete event simulation (PDES) of spatially extended models.

Typical models have domains that are fine-grained discretizations

of some volume, e.g., a cell, using an irregular three-dimensional

mesh, where most events span several voxels. Phenomena of in-

terest in, e.g., cellular biology, are often non-homogeneous and

migrate over the simulated domain, making load balancing a cru-

cial part of a successful PDES. Our load migration protocol is local

in the sense that it involves only those processors that exchange

workload, and does not affect the running parallel simulation. We

present a detailed description of the protocol and a thorough proof

for its correctness. We combine our protocol with a strategy for

deciding when and what load to migrate, which optimizes both for

load balancing and inter-processor communication using tunable

parameters. Our evaluation shows that the overhead of the load

migration protocol is negligible, and that it significantly reduces

the number of rollbacks caused by load imbalance. On the other

hand, the implementation mechanisms that we added to support

fine-grained load balancing incur a significant cost.
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1 INTRODUCTION

Discrete Event Simulation (DES) is an important tool in a wide-

ranging area of applications, such as integrated circuit design,
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systems biology, epidemics, etc. To improve performance and ac-

commodate for large scale models, a vast repertoire of techniques

have been developed for Parallel DES (PDES) during the last 30

years [15, 20, 25]. New synchronization techniques have been trig-

gered by the advent of multicore processors (e.g., [6, 26, 31]). Still,

achieving good performance and speedup for larger numbers of

processing elements has proven to be very difficult in the general

case.

In PDES, the simulation model is partitioned onto logical pro-

cesses (LPs), each of which processes timestamped events to evolve

its partition along a local simulation time axis. Events that affect

the state of neighboring LPs are exchanged to incorporate inter-LP

dependencies. A number of synchronization techniques have been

developed in order to guarantee that causally dependent events are

processed in the right order, ranging from conservative [25] to opti-

mistic [20] approaches, with many intermediate design choices (see,

e.g., the surveys [8, 19]). Such intermediate protocols can reduce

the performance loss caused by temporary variations in relative

speed of different LPs. However, perhaps the most important pre-

requisite for high efficiency in PDES is that the simulation load

is evenly partitioned over LPs This follows from the observation

that the total simulation speed can never exceed that of the slow-

est LP (assuming a one-to-one correspondence between LPs and

processors). For simulation models where the distribution of work

does not vary over time, this can be achieved by a good static parti-

tioning of the model before simulation starts. However, in many

simulation models, the distribution of work varies with time. For

instance, in systems biology, the phenomena of interest are often

non-homogeneous and migrate over the simulation domain; exam-

ples include nerve signals, and the oscillation of proteins involved

in the cell division of bacteria [14]. For such models, good parallel

performance requires a dynamic load balancing mechanism, which

detects when load imbalances arise and corrects them by migrating

load between LPs.

Most existing approaches perform dynamic load balancing as

a globally coordinated operation, at specified (often regular) time

intervals [3–5, 12, 18, 23, 27–29, 32]. For models, where the load

migrates continuously over the domain of the simulation model,

load imbalances arise locally, and it seems more natural to let re-

balancing be a local operation, which involves only those LPs that

are affected by the migrating load, and is performed on-line. Such

a mechanism must be designed carefully to preserve correctness of

the underlying simulation.

https://doi.org/10.1145/3200921.3200928
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In this paper, we present an online fine-grained dynamic load

migration protocol, which is local in the sense that it concerns only

those LPs that are affected by the migrated load. Our protocol is

defined for simulation of spatial models that are discretized into

subvolumes (also known as voxels) which are partitioned onto LPs.

An example model is a bacterial cell, where the state of each voxel

is represented by a number of entities of different proteins. Each

LP is mapped to a core in a multicore processor. Our protocol

migrates individual voxels between LPs, with low overhead for

the underlying simulation algorithm. It assumes no restrictions on

the topology of the simulation domain, nor on the number of LPs

adjacent to a migrated element.

Our underlying implementation uses the time-warp protocol [20],

with some optimizations. One of these is the use of aggregated anti-
messages, each representing a set of inter-core anti-messages, that

reduce inter-core communication to improve performance. These

require extra care in the migration protocol, since their semantics

may change as a result of voxel migration. We have therefore devel-

oped a proof of correctness of our time-warp protocol with voxel

migration. The proof is inspired by that of [22], but adapted to our

version of time-warp with aggregated anti-messages, and thereafter

extended to cover the migration protocol.

A load balancing mechanism must also include a load metric

which represents the amount of load on an LP, and a mechanism

for deciding which voxels to migrate where. Defining a good load

metric in optimistic PDES is challenging, since natural metrics such

as the average CPU load, are no good indicators of the actual simula-

tion progress, since CPUs may be busy processing rollbacks. Many

existing approaches [1, 10, 12, 27] to load balancing in PDES base

their load migration choices on an LPs load metric related to some

global computation including all LPs’ load metrics. As our load mi-

gration protocol is local, there is a need for a local load metric. Here,

our starting point is that observed synchronization costs, such as

rollback processing, are very likely caused by load imbalance. In

the ideal case, when the load is perfectly balanced, (almost) no mes-

sages arrive too late, and thus there should be no need for rollbacks.

We therefore use the number of locally incurred rollbacks as a load

metric. Even though it is not realistic to completely avoid rollbacks,

it is reasonable to assume that by continuous dynamic rebalanc-

ing of the load, their incurred overhead should be substantially

lower than the overhead of adding an optimism control protocol:

our simulator therefore does not employ any additional optimism

control.

We show the correctness of the load balancing protocol, and eval-

uate the performance of our approach, together with two simple

metrics for when and where load balancing is needed, on realistic

benchmarks from computational cellular biology. Our evaluation

shows that the overhead of the load migration protocol is negligible

and that it significantly reduces the number of rollbacks caused

by load imbalance. On the other hand, the implementation mecha-

nisms that we added to support fine-grained load balancing incur a

significant cost.

The paper is organized as follows. In the next section, we give an

overview of related work. In Section 3, some necessary background

and the main ideas of our load migration protocol is presented.

In Section 4, a detailed description of the load migration protocol

is given. In Section 5, we provide a correctness argument for the

migration protocol. In Section 6, we give a short outline of the

load metric and load balancing algorithm that we’ve used for the

evaluation of the migration protocol, in Section 7.

2 RELATEDWORK

We review related work that addresses three aspects of the load

balancing problem: protocols for load migration, load metrics, and

finally how load balancing is initiated.

Load Migration Protocols. Different works have considered dif-
ferent granularity of the transferred load of a migration. Deelman

and Szymanski [10] consider a dynamic load balancing mechanism

on a two-dimensional circular model. The model is partitioned into

segments, each assigned to an LP. Thus, this is a rather simple

topology, where each LP only has two neighbors. The load bal-

ancing mechanism moves entire columns of the simulated domain

between adjacent processing elements. Similarly Schlagenhaft et al.

[30] move clusters of basic elements between processing elements.

However, they discard the option of moving single elements be-

tween partition, which we have opted for in this paper. They argue

that no significant change in load balance is achieved when moving

small basic elements between processors, but do not further investi-

gate how the granularity of the migrations affects performance. We

argue that load imbalance is a local phenomenon, thus accordingly

migrations have to be fine-grained.

Load balancing through process migration is studied in Glazer

and Tropper [18], Reiher and Jefferson [28] (and in [29], but there

process migration was only mimicked). It requires operating system

support, and with large numbers of migration units the overhead

becomes substantial.

Load balancing for conservative simulation in a shared-memory

environment is addressed by Gan et al. [16]. In their dynamic parti-

tioning scheme, LPs are shared through a central pool. To use their

method, it has to be decided when an LP should be put back into

the pool and simulation should continue at another LP, e.g., when

an LP is blocked in conservative simulation. The same decision is

non-trivial in optimistic PDES.

A few works outline their load migration protocol, albeit very

concisely [1, 4]. We give a detailed description of the load migration

protocol and a correctness proof.

Load Metrics. Many proposed load metrics relate to either the

local virtual time of each LP in relation to wall-clock time [12, 18,

27, 29, 30] or in relation to the GVT [23], in some cases also related

to the number of processed or committed (i.e., with timestamp

smaller than GVT) events [23, 27]. Deelman and Szymanski [10]

use the number of future scheduled events, weighted by imminence.

Instead, we look at the number of incurred rollbacks, which to the

best of our knowledge has not been evaluated before.

In comparison to load balancing procedures of other aggregated

LP approaches such as [1, 10, 30] (and to some extent [27]), our

load metric is local to each basic element of computation, and not

aggregated per cluster/LP (depending on notation used).

Some works have taken the communication cost between LPs

in account [1, 10, 27]. In [27], a load metric and a communication

metric is used alternately during migration. In [10], the communi-

cation cost of a migration is handled implicitly by only allowing



whole columns of the 2-dimensional simulation state to be migrated.

In [1], the migration candidate (with high load metric) with the

smallest communication metric is selected. Our method is similar

to that in [1], but it is local (i.e., the migration candidates come

from a small region).

Initiation of Load Balancing. Many papers on load balancing

in PDES prescribe that the load balancing should be initiated at

regular time periods, ranging from less than 5 seconds of wall-clock

time to 10 minutes of simulation time [3, 5, 18, 23, 27–29, 32, 33],

sometimes also expressed in multiples of GVT computations [4, 12].

The optimal period depends on the model and the speed of the

computer on which the simulator is running. In our method, load

balancing is initiated by a high rollback rate, thus it is independent

of the computer speed and dependent on the model to a lower

degree.

Some papers have looked into a more dynamic approach to initi-

ation of load balancing. In [1], a non-static interval is used, based on

measurements taken every 3 seconds. In [7], a non-static interval

is used, based on data updated every 500 events received. In [30]

and [1], the authors try to account for the temporary performance

decrease a load migration incur. In [1], a migration is initiated first

when the integral of the actual throughput of the simulator, us-

ing migrations, is superior to the integral of a projected estimated

throughput, had no load balancing taken place.

3 FRAMEWORK

Our load balancing protocol is developed in the context of spatial

stochastic simulation. Since this context has influenced some of our

design decisions, we describe it here briefly.

3.1 Spatial Stochastic Simulation

The reaction-diffusion master equation (RDME) [17] describes sys-

tems where entities diffuse in some volume and may undergo transi-

tions, or reactions, when in proximity to each other. The RDME is a

popular tool for modeling biological systems where the population

of entities is low and discrete effects therefore play an important

role for the behavior of the systems.

In the context of RDME, simulation models are defined over a

spatial domain, which is discretized into subvolumes, also known

as voxels. Each voxel contains a discrete copy number of entities of
some set of species (e.g., proteins). The dynamics of the model is

described by a spatially extended Markov process, in which two

types of transitions are possible: (i) in a reaction a combination of

species residing in a voxel reacts and produces a new combination

within the same voxel, (ii) in a diffusion a single entity of a species

moves to a neighboring voxel. In general, each voxel can host sev-

eral types of reactions with different combinations of entities. The

inter-event times between reactions and diffusions are stochastic,

highly variable and without a lower bound. An important feature

of typical models is that diffusions are significantly more common

than reactions (by at least a factor of 10), and that the local state of

each voxel is relatively simple (consisting of the copy numbers of

all participating species).

Practically, the RDME is simulated using sampling methods that

produce single trajectories from the relevant probability space. The

most commonly used such method is the Next Subvolume Method

(NSM) [13]. The NSM algorithm takes the form of DES, whose event

queue contains the next occurrence time of the next event within

each voxel. The execution of that voxel event first decides (by a

random draw) which particular reaction or diffusion will occur, and

then performs it: the the states of concerned voxels are updated, and

the voxel’s next occurrence time is inserted into the event queue.

3.2 Parallelization using Standard Time Warp

Since the number of voxels is typically large, the natural approach

to parallelization is to partition the set of voxels into subdomains,

each of which is assigned to an LP, which is then mapped to a pro-

cessing element. Each LP simulates the dynamics of its subdomain,

using the NSM algorithm. We use the Time Warp synchronization

mechanism [20] without optimism control. In order to support mi-

gration of voxels between LPs, voxel-specific information is stored

in a self-contained structure, which for each voxel v maintains

• v .state, the local state of v ,
• v .next, the time of its next event occurrence,

• v .history, the history of its processed events,

• v .routing, a routing table maps each voxel neighbor in the

simulation model to the index of the LP on it is located.

We let LVT(v) be the time of the most recent event in v .history;
intuitively, this is the local simulation time of voxel v . Each LP LPi
itself maintains LP-global information, viz.

• LPi .EventQueue, a time-sorted event queue, containing the

occurrence time of the next event of each voxel in its subdo-

main,

• LPi .bnd, which maps each neighboring LP LPj of LPi to the

set of voxels of LPi that have some neighbor on LPj . This

is used to define the meaning of aggregated anti-messages

(defined below), i.e., voxels in LPi .bnd(LPj ) will be rolled

back when an aggregated anti-message is received from LPj .

Each pair of neighboring LPs exchange messages via unidirectional

channels. We let chani�j denote the channel from LPi to LPj (there

is then also a channel chanj�i in the opposite direction). Each diffu-

sion to a voxel residing on a different LP induces a message to that

LP. We usev t−→ v ′ to represent a message denoting that a diffusion

from voxel v to voxel v ′ has occurred at time t (the message also

contains the diffused species, which we ignore here). Channels also

carry other types of messages: anti-messages, and control messages

associated with the migration protocol, which are described later.

Each LP advances the simulation by finding the next event to

process, either from the top of its event queue or from a message

that is at the front of an incoming channel. Thereafter, the event is

processed by (1) updating the states of affected voxels, (2) adding

the event to the histories of affected voxels, and (3) if the event was

taken from the event queue, determining a new next event time

for the initiating voxel. If the event is a diffusion to another LP, a

diffusion message is transmitted to the neighbor.

Selective Rollback. Whenever the next event to process is an

incoming diffusion message of form v t−→ v ′ such that t ≤ LVT(v ′)
(also called a straggler), a rollback is initiated. To do so, events

are processed “backwards” until such a previous time is reached.

A simple approach would be to roll back all events performed

by the LP of v ′ with a time stamp higher than t . However, it is



typically less costly to perform a selective rollback, which only rolls

back events that may be causally dependent on rolled back events

involvingv ′ [2, 9]. In addition, rollback of causally dependent events
performed on other LPs must be initiated by sending anti-messages

to concerned LPs. In our algorithm, anti-messages are aggregated

per LP, i.e., in each rollback, at most one anti-message is sent per

neighboring LP. An aggregated anti-message from LPi to LPj only

carries a single timestamp, which is the minimum timestamp of a

rolled back inter-LP diffusion at LPi which also involves LPj . Since

the anti-message is only a single timestamp, it will initiate rollback

of all inter-LP diffusions involving both LPi and LPj , even those

that are not causally dependent on the initiating straggler.

More precisely, the rollback procedure on an LPi can be described

by specifying for each voxel v of LPi a rollback time RBT (v), and

for each neighbor LPj of LPi , a timeAMT (LPj ) for its anti-message.

These times are the largest ones (including ∞) that satisfy the

following constraints:

(1) if a straggler v t−→ v ′ arrives to LPi , then RBT (v ′) < t ,
(2) if voxels v and v ′ of LPi have performed a joint diffusion at

time t with RBT (v) ≤ t , then RBT (v ′) ≤ t ,
(3) if voxel v of LPi has performed a diffusion v t−→ v ′ such that

v ′ ∈ LPj and RBT (v) ≤ t , then AMT (LPj ) ≤ t ,
(4) if voxel v of LPi has performed a diffusion v t−→ v ′ such that

v ′ ∈ LPj and AMT (LPj ) ≤ t , then RBT (v) ≤ t .

Intuitively, Conditions 1 and 2 describe the causality constraints

for rolling back voxels on LPi , Condition 3 specifies the timestamp

of the aggregated anti-message to LPj , and Condition 4 specifies

the additional rollback that is caused by assuming that the anti-

message represents all diffusions between LPi and LPj that are not

earlier than AMT (LPj ).

When an aggregated anti-message from LPj with time t arrives
to LPi , then a rollback is initiated with the same constraints as

above, except that condition 1 is replaced by

(1’) if voxel v of LPi has received a diffusion v ′ t ′−→ v , with
v ′ ∈ LPj and t ≤ t ′, then RBT (v) < t ′.

4 MIGRATION ALGORITHM

In this section, we describe in detail the essential algorithms in-

volved in the migration protocol. We start by describing the data

structures being used, thereafter we describe the rollback and anti-

message routines, and finally we describe the processing of mes-

sages and the core migration protocol.

4.1 Migration of a Voxel

Avoxelv is migrated between two LPs by sending a control message

−→v containing v . In the implementation, what is actually sent is a

pointer to the structure representing v , which includes v .history,
v .routing and v .next. Both the sending and the receiving LP will

update relevant status information concerning v upon sending and

receiving this message. The main challenge is that any messages

being in flight to the migrated voxel v have to be rerouted, and

must be guaranteed to arrive in the correct order. That is, to ensure

correctness, it must be guaranteed that for any pair of voxelsv0,v1,

messages sent from v0 to v1, including anti-messages, are received

in the same order as they are sent. A particular challenge is that

anti-messages are aggregated, and that their meaning changes as a

result of the migration. The protocol must therefore be carefully

designed to consider also this complication.

In Algorithm 1 the procedure for sending a voxel v from LPsrc

to LP
dst

is described. At line 2, the Lock function ensures that no

voxel neighbor to v is migrated simultaneously with v , details are
described in Algorithm 3. Essentially, it atomically sets a migration
flag on the channel to each neighboring LP that maintains a voxel

neighbor to v . If one such flag already is set, i.e., the migration of

some voxel neighbor v ′ to v has already been initiated, then the

migration of v is aborted. At lines 3 and 4, v is removed from the

local state. At line 6 internal routing information ofv’s neighboring
voxels are updated to locate v on LP

dst
. At line 7 the boundary

list of voxels bordering LP
dst

is updated to contain all neighboring

voxels ofv . The function returns a set of neighbors Neigh on which

v had neighbors. Since the neighbors in Neigh has voxels who are

neighbors to v , these neighbors have to be informed about the

migration, by means of message sent at line 10. The actual voxel is

sent to LP
dst

at line 11.

Algorithm 1 Sending a voxel v from LPsrc to some LP
dst

.

1 function SendVoxel(v)
2 if Lock(v) then return

3 EventQueue← {⟨vk , t⟩ | ⟨vk , t⟩ ∈ EventQueue ∧vk ̸= v}
4 State← State \v
5 for each v

nbr
∈ LPsrc that is a neighbor to v do

6 v
nbr

.routing[v]← LP
dst

7 bnd(LP
dst

)← bnd(LP
dst

) ∪v
nbr

8 for each LPk ̸= LPsrc with a neighbor to v do

9 remove v from bnd(LPk )

10 Send(mvv (LP
dst

), LPk )

11 Send(
−→v , LP

dst
)

Our protocol for migrating a voxelvm from LPsrc to LP
dst

makes

use of the following control messages.

−→vm is a control message, which transfers the migrated voxel vm ,

mvvm (LP
dst

) is sent by LPsrc to each LP (except LP
dst

) whose do-

main contains neighbors of vm , announcing that the voxel

vm has just been sent to LP
dst

,

recvvm is sent by LP
dst

to each LP (except LPsrc) whose domain

contains neighbors ofvm , announcing that the voxelvm has

just been received at LP
dst

,

forwvm is sent to LP
dst

by each LP (except LPsrc) whose domain

contains neighbors ofvm , announcing that they has received

recvvm and is about to send normal messages (containing

diffusion events) to vm .

An overall description of the message protocol for migrating a voxel

vm follows.

• LPsrc initiates the migration by sending
−→vm to LP

dst
. At

the same time, LPsrc also sends the message mvvm to each

neighbor LPk (except LP
dst

) whose domain contains some

voxel neighbor of vm , announcing that the voxel vm has

just been sent to LP
dst

. For each such neighbor LPk , and

also for LP
dst

, LPsrc creates a temporary data structure, de-

noted logk�src
(vm ), in which it stores all received messages

and anti-messages to vm ; these messages will thereafter be

retrieved by LPk in order to forward them to LP
dst

.



• upon receipt of mvvm , each LPk (except LPsrc and LP
dst

)

which formerly sent messages to vm via chank�src
, will first

send the message forwvm to LP
dst

, announcing that it will

start to send messages to vm over chank�dst
. Thereafter, it

retrieves all such messages sent, but not yet received, from

logk�src
(vm ) and chank�src

, and thereafter forwards them

(in order) to LP
dst

(over chank�dst
).

• Upon receipt of
−→vm , LP

dst
sends a message recvvm to LPs

(except LPsrc) whose domain contains neighbors of vm , an-

nouncing that the voxelvm has been received at LP
dst

. There-

after, it will (in the same manner as LPk in the previous step)

retrieve all messages to vm sent, but not yet received, from

log
dst�src

(vm ) and chan
dst�src

. The events in these messages

are then rolled back.

The control messages recvvm and forwvm block, i.e., prevent any

message from being received, from the channels from which they

were retrieved, unless mvvm < recvvm and
−→vm < forwvm , respec-

tively (where < denotes order of reception).

In Algorithm 2, the detailed protocol logic for how an LP handles

the different types of incoming messages is described. For each

message type, the description refers to lines in Algorithm 2, un-

less stated otherwise. In the algorithm, the LP where a message is

received is denoted LPi , and the sending LP is denoted LPk .

−→v The message
−→v carries a migrating voxel v . Upon receipt of

−→v ,

LPi first updates its bookkeeping information: v is added

to the local state (lines 3 and 4), the routing tables of v’s
neighboring voxels are updated (lines 5 to 8), v is marked as

located on LPi in each neighbouring voxel’s internal routing

table (line 6), and v’s local neighbors are also removed from

the list of voxels bordering LPk , if they no longer have any

neighbours on LPk (line 8). Thereafter, a message recvv is

sent to each LP (other than LPk ) with a neighbor voxel of

v , informing that the migration has completed (line 11). If

any incoming channel is closed due to the migration of v
(i.e., a message forwv has been received from some LPj ), it

can now be reopened (line 12). Thereafter, LPi retrieves all

pending messages sent from LPi to v , from the temporary

structure logi�k (v) stored at LPk and from chani�k ; this re-

trieval also transforms aggregated anti-messages (with only

a time t ) into voxel-specific anti-messages (denoted −tv ).
The retrieval from the channel is performed in the function

Project, described by (1) below. The sequence of retrieved

messages are collected into the ordered list Mv (line 13).

The projected diffusions are simultaneously removed from

the corresponding channel, and the migration flag for v in

chani�k is unset, indicating that no more messages should be

added to the backlog logi�k (v) when messages are received

from chani�k (lines 15 and 16). Finally, the state of v and the

messages inMv are rolled back (lines 17 to 20), to avoid any

ordering conflicts of future and already sent messages.

mvv (LPj ) This type of message is sent to LPs that have voxel neigh-

bors to some migrating voxel
−→v destined for LPj , but which

are not the recipient of
−→v (at line 10 in Algorithm 1). Upon

the receipt of the message at some LPi , retrieves into Mv
all pending messages sent from LPi to v , from the tempo-

rary structure logik(v) stored at LPk and from chani�k in

the same way as described for messages of type
−→v (using

the function Project). The messages inMv are forwarded to

LPj , the new LP ofv , in the same order they previously were

sent to LPk , prefixed by a message of type forwv (lines 26

and 27). Thereafter, for each voxel-neighbor vn to v residing

on LPi , the LPs boundary information is updated as follows:

If vn has no other voxel neighbors on LPk , then vn is re-

moved from the list of voxels representing the boundary to

LPk (line 31). The set of v’s voxel neighbors is then stored

in mvbnd, tagged with v (line 32). The voxels will later be

added to the boundary of LPk facing LPj . If the channel from

LPj to LPi is marked as closed, then it is reopened, and each

voxel-neighborvn are immediately added to the list of voxels

bordering to LPj (lines 33 to 36).

recvv This type of message is sent by the LP receiving a message

−→v to LPs that are not the sender of the message
−→v , but

have voxels neighboring v . Upon receipt of a message recvv
at LPi , a check is done whether a corresponding message

mvv has been received, by checking if tag v exists in the set

mvbnd (line 38). If not, the channel to LPi is closed to enforce

that a message mvv is received first for each migration of a

voxel. Otherwise, the set of v’s neighboring voxels on LPk ,

previously bordering LPi , are now included in the boundary

towards LPj (line 41).

forwv This type of message is sent by an LP that has voxels neigh-

boring some recently migrated voxel v , but was neither the
sender nor the recipient of the corresponding migration mes-

sage
−→v . It is sent to the LP to which v has been migrated.

The message indicates that after the transmission of forwv
from LPk to LPj , LPk starts forwarding messages destined

for v to LPj . Upon receipt of forww , LPj checks if
−→v has

already been received. If not, the channel chank�j is closed

(line 50). This enforces that
−→v is received before any mes-

sages destined for v .
−t When receiving an anti-message −t from LPk at time t , the

history of each voxel v that may have received a diffusion

from LPk is scanned (line 43). If there is such a diffusion

w t ′−→ v,w ∈ LPk which happened after t , rollback vi to
t ′ (line 44). Then, for all voxels that have been migrated to

some other LP, say LPj , and who previously were on the

boundary to LPk (and thus have an entry in chank�i .flags), a

copy of the anti-message is put in the corresponding backlog

(line 45).

w t−→ v When receiving a diffusion, if the receiving voxel v has

migrated, the diffusion is added to the backlog of messages

for v , located on chank�i (line 53). If the diffusion is a strag-

gler, a rollback is performed (line 55), before processing the

diffusion (line 56).

The Project function (1) extracts all messages in a channel

chan destined for a voxel v . It should be noted, that the channel

is protected by a lock, thus the effect of Project is observed to

take place instantaneously for any LP. The projection is done as

follows: The messages in chan are recursively traversed. Diffusions

destined for v are returned, and anti-messages −t are converted
to local anti-messages −tv , only affecting v . Other messages are



Algorithm 2 Receipt of message from LPk at LPi .

1 function HandleMessage(m)

2 if m =
−→v then

3 EventQueue← insert (EventQueue, ⟨v .next,v⟩)
4 State← State ∪v
5 for each v

nbr
∈ LPi that is a neighbor to v do

6 v
nbr

.routing[v]← LPi
7 if v

nbr
has no more neighbors on LPk then

8 remove v
nbr

from bnd(LPk )

9 add v to bnd(LPk )

10 for each LPj ̸= LPk with a neighbor to v do

11 Send(recvv , LPj )

12 if chanj�i closed by migration of v then open chanj�i
13 Mv ← logi�k (v)++Project(chani�k ,v)
14 logi�k (v)← ∅
15 remove all diffusions destined for v from chani�k
16 remove ⟨v, LPk ⟩ from chani�k .flags

17 tmin← min{ t | w t−→ v ∈ Mv ∨ −t ∈ Mv ∨ −tv ∈ Mv }
18 Rollback(v , tmin)

19 for eachw t−→ v ∈ Mv do

20 Rollback(w, t )
21 if m = mvv (LPj ) then

22 Mv ← logi�k (v)++Project(chani�k ,v)
23 logi�k (v)← ∅
24 remove all diffusions destined for v from chani�k
25 remove ⟨v, LPk ⟩ from chani�k .flags

26 Send(forwv , LPj )

27 Send(Mv , LPj )

28 V
bnd
← {v

nbr
| v

nbr
∈ LPi ∧vnbr

neighbor to v}
29 for each v

nbr
∈ V

bnd
do

30 if v
nbr

has no more neighbors on LPk then

31 remove v
nbr

from bnd(LPk )

32 mvbnd ← mvbnd ∪ ⟨v,V
bnd
⟩

33 if chanj�i .closed then

34 bnd(LPj )← bnd(LPj ) ∪Vbnd
s.t. ⟨v,V

bnd
⟩ ∈ mvbnd

35 if chanj�i closed by migration of v then

36 open chanj�i
37 if m = recvv then

38 if ̸∃ V
bnd
.⟨v,V

bnd
⟩ ∈ mvbnd then

39 close channel chank�i
40 else

41 bnd(LPk )← bnd(LPk ) ∪V
bnd

s.t.⟨v,V
bnd
⟩ ∈ mvbnd

42 if m = −t then ▷ Aggregated anti-message
43 for each v ∈ bnd(LPk ) do

44 Rollback(v, t ) ▷ According to (1’), Section 3
45 for each ⟨v, LPj⟩ ∈ chank�i .flags do

46 logj�i (v)← logj�i (v) · −tv
47 if m = −tv then ▷ Local anti-message
48 Rollback(v, t ) ▷ According to (1’), Section 3
49 if type = forwv then

50 if v /∈ State then close chank�i
51 if m = w t−→ v then ▷ Regular diffusion to v
52 if v /∈ State then ▷ v is migrated to some other LP
53 logk�i (v)← logk�i (v) ·m
54 if t ≤ LVT(v) then ▷ Handle straggler
55 Rollback(v, t )
56 processw t−→ v

filtered out.

Project(chan,v) =


m · Project(chan,v) ifm = w t−→ v

−tv · Project(chan,v) ifm = −t
Project(chan,v) otherwise

(1)

In Algorithm 3, we see the mechanism for preventing simultaneous

migrations of neighboring voxels. For all channels coming from

LPs where v has a neighbor, a migration flag is set marking that an

attempt migrating v is undertaken (line 5). If, after having set the

flag, a flag of the corresponding neighbor is seen on the outgoing

channel, all flags already set on the channels are unset, and the lock

procedure returns false (line 8). If the procedure manages to set all

flags without seeing a flag set on a corresponding outgoing channel,

it has succeeded the migration may take place, and returns true.

Algorithm 3 Prevent simultaneous migration of a voxel v from

LPi and any of its neighbors vn .

1 function Lock(v)
2 Vn ← {vn | vn /∈ LPi ∧vn neighbor to v}
3 for each vn ∈ Vn do

4 m← v .routing[vn]
5 chanm�i .flags← chanm�i .flags ∪v
6 if vn ∈ chani�m .flags then

7 unset all set flags and abort

8 return false

9 return true

p

5 CORRECTNESS

In this section, we give a proof for the correctness of our migra-

tion protocol. It is inspired by that of [22], but adapted to cover

our version of time-warp with aggregated anti-messages and voxel

migration. We will focus on the property of safety: that any parallel

execution produces the same simulation run as the corresponding

sequential simulation algorithm. The notion of “produced simula-

tion run” is well-defined if the simulation model is deterministic,

so that a simulation run is uniquely determined by the initial state

and the transition rules, which in our case are fixed (we make the

assumption that no two events in a voxel have exactly the same

time-stamp). In the presence of random events, the simulation is

made deterministic by using deterministic pseudorandom number

generators, whose states are included in the local states of the cor-

responding voxels, and which are reverted together with the voxel

state when performing rollbacks.

As described in Section 3, our simulationmodels consist of voxels,

which evolve the state of the model by performing reactions, which

are local, and diffusions that also affect the state of a neighbouring

voxel. Within a voxelv , the simulation run is defined by the ordered

sequencev .history of its processed time-stamped events. We define

In
v ′

(v) as the sequence of processed incoming diffusion from v ′

in v .history, and let Out
v ′

(v) be the sequence of sent diffusions

to voxel v ′ in v .history. A sequential simulation run satisfies the

following two properties.

(i) The history v .history in a sequential simulation is the one

that is uniquely determined by following the simulation



rules from the initial voxel state and the sequences In
v ′

(v) of

processed incoming diffusion messages from each neighbour

v ′ in the simulation model.

(ii) For each pair v , v ′ of neigbour voxels in the simulation

model, In
v

(v ′) = Out
v ′

(v), i.e., the sequence of incoming dif-

fusions to v ′ from v is the same as the sequence of outgoing

diffusions from v to v ′.

Property (i) uses the assumption that no two events in v .history

have exactly the same timestamp. Property (ii) follows by noting

that in a sequential simulation, a diffusion from v to v ′ is simulta-

neously added both to v .history and to v ′.history.

Conversely, any completed simulation run, which is constructed

from voxel histories that satisfy (i) and (ii) is the same as the

uniquely defined simulation run. We can then establish safety of

the parallel simulation by proving that it satisfies properties (i) and

(ii).

Property (i) for the parallel simulation algorithm can be estab-

lished by checking that each step (both forward simulation steps

and rollbacks) in the simulation algorithm respect the rules of the

simulated model. This is not difficult, an we omit the details.

Property (ii) is less straightforward: in general it does not hold

during the simulation run, since diffusionmessages and anti-messages

may be in transit between v and v ′ when they reside on different

LPs.Wewill therefore replace property (ii) by a set of invariants that

hold during the simulation, and which imply property (ii) when the

simulation is completed and channels are empty. In the remainder

of this section, we will formulate and prove this set of invariants.

In Subsection 5.1 we formulate and prove them for our version of

the underlying Time Warp algorithm. Then, in Subsection 5.2, we

will extend them to our migration protocol.

Notation. We say a message is of the form v → v ′ if it is sent
fromv and destined forv ′. We write a timestamp ordered sequence

of messages m0 ·m1 · · ·mn , where we let m0 be the oldest mes-

sage in the sequence, andmn the most recent. We use ++ to denote

concatenation of sequences. We let In
v

(v ′) be the sequence of pro-
cessed diffusion messages of form v → v ′ in v ′.history, and let

Out
v ′

(v) be the sequence of sent diffusion messages of formv → v ′

in v .history. In particular, no anti-messages occur in the histories.

The time of the earliest anti-message affecting a voxelv (aggregated

or local), in a channel chan, is denoted chan.min(v). If there is no

such anti-message, chan.min(v) is∞.

5.1 Correctness for Time Warp

Intra-LP Consistency. For all pairs v,v ′ of voxel, that reside on
the same LP, the incoming and outgoing diffusion histories are

always consistent.

In
v

(v ′) = Out
v ′

(v). (IV1)

Proof sketch of (IV1). Since each LP processes messages in

timestamp order, all diffusions from v to v ′ are added in timestamp

order. At each processing of some event with a timestamp t , both

In
v

(v ′) and Out
v ′

(v) will be extended with the same diffusion. A

local rollback caused by a straggler or received anti-message will,

by rule (2) of the rollback operation, remove all diffusions from

both In
v

(v ′) and Out
v ′

(v) whose timestamps are greater than some

common time t , thereby preserving (IV1). □

Inter-LP Consistency. In the case where the two voxels reside

on different LPs, messages reside in a channel chan connecting

the two LPs, before being received. Thus we must characterize

the relationship between in- and out-histories at voxels and the

messages in the corresponding channels. To this end, we define the

effect with respect to voxels v and v ′ of the messages in a sequence

chan, denoted effectv�v ′ (chan), as follows.

effect

v�v ′
(chan ·m) =


effect

v�v ′
(chan) ·m ifm = v t−→ v ′

rmt (effect

v�v ′
(chan)) ifm = −t orm = −tv ′

effect

v�v ′
(chan) otherwise

(2)

where rmt (chan) is obtained by removing all messages with time-

stamp ≥ t from chan. Intuitively, effectv�v ′ (chan) is the subse-

quence of diffusions fromv tov ′ in chan that will not be reverted by
a later anti-message in chan. This property can be derived from (2)

and expressed as the following property of effectv�v ′ (chan).

effect

v�v ′
(m·chan) =


m · effect

v�v ′
(chan) ifm = v t−→ v ′ and

(∄m′ ∈ chan.∃t ′ ≥ t .

(m′ = −t ′ orm′ = −t ′v ′ ))
effect

v�v ′
(chan) otherwise

(3)

Let v and v ′ be two neighboring voxels on two different LPs,

communicating through a channel chan, and let t = chan.min(v ′).
Then the sequences of diffusions from v to v ′ in the two voxel

histories are related by the following invariant.

rmt (In
v

(v ′)) ++ effect

v�v ′
(chan) = Out

v ′
(v) (IV2)

Proof sketch of (IV2). We establish the invariant by induc-

tion over the length of a simulation run. Initially, In
v

(v ′) and

Out
v ′

(v) and the channel are empty, and the invariant holds triv-

ially. Assume non-empty In
v

(v ′) and Out
v ′

(v), and a state of the

channel chan such that Invariant (IV2) holds. We will let In
′v

(v ′),
Out
′v ′

(v), and chan′ be their states after the performed action. Let

t = chan.min(v ′). Line numbers refer to Algorithm 2. We get the

following cases depending on the performed action.

• v’s LP sends a diffusionm of form v t̂−→ v ′ to v ′’s LP.
Then In

′v
(v ′) = In

v
(v ′), and Out

′v ′
(v) = Out

v ′
(v) ·m, and

chan′ = chan ·m. We get

Out
′v ′

(v) = Out
v ′

(v) ·m = (by (IV2))

rmt (In
v

(v ′)) ++ effectv�v ′ (chan) ·m = (by (2))

rmt (In
v

(v ′)) ++ effectv�v ′ (chan ·m) =

rmt (In
′v

(v ′)) ++ effectv�v ′ (chan ·m).

• v’s LP sends an aggregated anti-message −t̂ tov ′’s LP, while
reverting diffusions in Out

v ′
(v) with a timestamp ≥ t̂ , since

v ∈ LP
dst
.bnd(LPsrc) (Condition 4 in the the calculation of

RBT in the rollback operation in Section 3). Let t ′ = min(t , t̂ ).
Then t ′ = chan′.min(v ′).
We have Out

′v ′
(v) = rmt̂ (Out

v ′
(v)) = (by (IV2))

rmt̂ (rmt (In
v

(v ′))) ++ rmt̂ (effectv�v ′ (chan)) = (by (2))

rmt ′ (In
v

(v ′)) ++ effectv�v ′ (chan · −t̂ ) =

rmt ′ (In
′v

(v ′)) ++ effectv�v ′ (chan′).
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Figure 1: Schematic of LPs involved in themigration of voxel

vm , and the types of messages,
−→vm ,mvvm , recvvm and forwvm ,

being involved in the migration.

• v ′’s LP receives a diffusionm of form v t̂−→ v ′ from v’s LP
(line 51). Details are analogous and omitted.

• v ′’s LP receives an anti-message of form −t̂ or −t̂v ′ from
v’s LP, reverting diffusions in In

v
(v ′) with a timestamp ≥ t̂

(lines 42 and 47). Again, details are analogous.

□

5.2 Correctness for the Migration Protocol

In this section, we show that the algorithm maintains consistency

when extended with migrations of voxels between two LPs. The mi-

gration protocol introduces several types of control messages, viz.,

−→vm ,mvvm , recvvm and forwm . Since the migration protocol does

not modify the histories of voxels directly, effect is defined to ignore

such control messages c , i.e., effectv�v ′ (chan · c) = effectv�v ′ (chan).

An aggregated anti-message −t changes in meaning when a

voxel vm is migrated from LPsrc to LP
dst

. If −t is sent from LPsrc,

after
−→vm , then it does not affect messages sent from vm to v on

LP
dst

, which is achieved by the removal of vm from bnd in the

algorithms (line 9 in Algorithm 1 and line 8 in Algorithm 2). To

capture this, we define an operator cutm′ , which simply truncates

a sequence after the first occurrence ofm′, by

cutm′ (m · chan) =

{
m ifm = m′

m · cutm′ (chan) otherwise

5.2.1 Consistency between sender and receiver of migrated voxel.
Now, we are ready to define the invariants. Let vm and v be two

neighboring voxels, wherevm , previously located on LPsrc, is being

migrated to the same LP as v , LP
dst

. We have to show the consis-

tency of messages in both directions relative themigration direction.

After the transmission of
−→vm , and before

−→vm has been received, we

have the following two invariants.

• For diffusions from vm to v :
Let t = (cut−→vm (chan

src�dst
)).min(v). Then we have

rmt (In
vm

(v)) ++ effect

vm�v
(cut−→vm (chan

src�dst
))

= Out
v

(vm ).
(IV3)

This invariant is analogous to (IV2), but considers only the

part of chan
src�dst

that precedes
−→vm .

• For diffusions from v to vm :

Let t = (log
dst�src

(vm ) ++ chan
dst�src

).min(vm ). Then

rmt (In
v

(vm )) ++ effect

v�vm
(log

dst�src
(vm ) ++ chan

dst�src
)

= Out
vm

(v).
(IV4)

This invariant extends (IV2) by considering that diffusions

from v to
−→vm are collected in log

dst�src
(vm ).

We note that vm neither can send nor receive any messages

while in transit, thus the proof of Equation (3) is only concerned

with v receiving a message, and the proof of Equation (4) is only

concerned with v sending a message.

5.2.2 Correctness of receipt of migrated voxel. During migration

of a voxelvm , consistency is defined by Equations (3) and (4). When

the migrated voxel vm has been received and processed by LP
dst

,

these invariants are replaced by Invariant (IV1), stating that vm is

locally consistent with all its neighbors v ∈ LP
dst

. Again, we omit

the details.

5.2.3 Consistency between voxel being migrated and neighbor-
ing voxels on other domains. Let vm ,v be two neighboring voxels,

where vm is being migrated from LPsrc to LP
dst

and v is located on

a third LP, LPw, as depicted in Figure 1. At the transmission of
−→vm ,

a message mvvm is sent to all neighboring LPs except the receiver

of
−→vm (line 10 in Algorithm 1). At the receipt of

−→vm , a message

recvvm is sent to all neighbors, except the sender of
−→vm (line 11 in

Algorithm 2). Thus, in the following, we have to take into account if

the control messages mvvm and recvvm have been received or not,

since they affect the protocol. We split the argument into the two

possible directions in which messages may be sent, viz. vm → v
and v → vm .

Case vm → v : We let −t be the earliest anti-message preceding

the message mvvm in chansrc�w or succeeding the message recvvm
in chan

dst�w . The cut operator reflects that anti-messages change

in meaning upon receipt of mvvm (line 31 in algorithm 2). After the

transmission of
−→vm , but before mvvm has been received by LPw,

we have

rmt (In
vm

(v)) ++ effect

vm�v
(cutmvvm (chansrc�w ) ++ chan

dst�w )

= Out
v

(vm ).
(IV5)

Intuitively, this invariant extends (IV2) by considering that diffu-

sions from vm to v are found preceding mvvm in chansrc�w . Af-

ter the reception of vm by LP
dst

, they are then transmitted over

chan
dst�w . We also note, that after the reception of mvvm by LPw,

any outstanding diffusions from vm to v are in chan
dst�w , obeying

the corresponding instance of (IV2).

Case v → vm : In this direction, we have two cases, depending

on whether LPw has yet observed the migration or not:

• mvvm has been received by LPw.

We let t be the time of the earliest anti-message in chanw�dst

following forwvm ; if forwvm is not in chanw�dst
, let t be the

time of the earliest anti-message in chanw�dst
. Then

rmt (In
v

(vm )) ++ effect

v�vm
(chanw�dst

) = Out
v

(vm ) (IV6)

This invariant is essentially the same as (IV2).



• mvvm has not been received by LPw.

We let t be the time of the earliest anti-message in

logw�src
(vm ) and chanw�src.

rmt (In
v

(vm )) ++ effect

v�vm
(logw�src

(vm )++chanw�src)

= Out
v

(vm )

(IV7)

This invariant reflects that messages fromv tovm are stored

in logw�src
(vm ) until mvvm is received by LPw.

Invariants (IV6) and (7) are also established by induction over

the steps of the algorithm. Details are omitted for space reasons.

6 LOAD BALANCING

In this section, we describe the load metric, the communication met-

ric, and the load balancing algorithm that we use for the evaluation

of the load migration protocol in the next section.

Load balancing can be seen as an online local rebalancing tech-

nique for data partitioning. In our case, the simulator is given an

initial partition of the model, generated offline by the METIS li-

brary [21]. Due to factors not available to the offline partitioning,

such as a dynamic or variable load, the partitions may need contin-

uous rebalancing locally to ensure that the load remains balanced.

Data partitioning and rebalancing algorithms typically try to opti-

mize for a balanced workload and minimize communication.

For the evaluation of the migration protocol we selected a load

balancing that takes two metrics into account: a load metric based

on the number of rollbacks caused by stragglers received at a par-

ticular voxel, which is used to initiate a load balancing locally, and

a communication minimizing step that selects some voxel in the

vicinity whose migration minimizes communication. Below, we

first define the metrics, and then the load balancing algorithm.

The load metric is defined per voxel. We define the inverse voxel
load for a period of wall-clock time ∆t and voxel v as

Lv =

∆t

∆rv
,

where ∆rv is the total number of rollbacks during time ∆t , including
secondary, that are incurred due to stragglers received at v . The
measure could be seen as the mean distance, in wall clock time,

between two consecutive rollbacks. The inverse rate of rollbacks is
then defined as the limit of Lv as ∆t goes to 0.

We define the communication metric, or the gain, of a voxel v
on LP LPi relative a neighboring LP LPj as

дi j (v) =

| |{E(v,v ′) | v ′ ∈ LPj }| |
| |{E(v,v ′) | v ′ ∈ LPi }| |

,

where E(v,v ′) denotes an edge, i.e., a communication channel, be-

tween v and v ′. Thus, the gain is defined as the external degree
towards LPj over the internal degree. The gain as defined above

describes how well connected a voxel is to its domain.

The load balancing algorithm is defined in terms of the load met-

ric and the gain of a voxel. If the inverse rate of rollbacks surpasses

a threshold, R, then a request for load balancing is sent to the LP

LPsrc that sent the last straggler to v (a simplification, which never-

theless should result in a correct destination of the request most of

the time). Upon receipt of the request at LPsrc, the voxel neighbor

to v with the highest gain is selected for migration. To limit bad

migrations that do not improve the load or communication balance,

we introduce a gain threshold, G, so that only voxels with a gain

superior to G may be migrated.

The successful migration of one or more of the neighboring

voxels to v , based on the load and communication metrics defined

above, would serve two purposes. First, migrating voxels balances

the amount of work between two LPs, and potentially reduces the

number of future rollbacks. Second, a high rate of rollbacks at the

boundary also means a high rate of local communication between

two or more voxels located on different LPs. The migration thus

also reduces inter-LP communication, if the voxels to migrate are

chosen wisely, e.g., by selecting to migrate the voxel that minimizes

the communication.

7 EVALUATION

In this section, we evaluate the performance of the migration pro-

tocol coupled with the load balancing algorithm and the load and

communication metrics defined in Section 6. We try to specifi-

cally understand the performance of the migration protocol and its

shortcomings, as it can be used together with many different load

balancing algorithms and load and communication metrics.

We look at the following questions:

• What is the overhead of the migration protocol? (Section 7.4)

• How to tune the threshold for the load measure? (Section 7.5)

• How well does the protocol, together with a load balancing

algorithm, adapt to a changing load? (Section 7.6)

• How does load balancing perform compared to optimism

control? (Section 7.7)

7.1 Algorithms Evaluated

For the evaluation of the load balancing algorithm, we use three

algorithms:

nsm An efficient sequential NSM implementation, taken from the

URDME framework[11].

r-pnsm The so-called Refined PNSM algorithm of [24], that uses

optimism control.

pnsm-lb The load balancing parallel NSM algorithm described in

this paper, derived from the r-pnsm algorithm.

We compare the results of the pnsm-lb algorithm with and with-

out load balancing activated to the sequential nsm algorithm and

the parallel r-pnsm algorithm. Of particular interest is that the

r-pnsm algorithm include optimizations that are possible when

statically assigning the partitions to LPs. One such optimization is

that there is only a single rollback history per LP. In contrast, the

load balancing parallel NSM algorithm of this paper has arranged

the data so that each voxel easily can be moved from one LP to

another; in particular, each voxel has its own rollback history. We

can estimate the cost of the compromises that we have taken when

restructuring the parallel NSM algorithm to enable load migration,

by comparing the performance of the pnsm-lb algorithm without

load balancing to the performance of the r-pnsm algorithm.

7.2 Benchmarks

To evaluate the algorithm, we use two types of benchmarks:

• Simulation of the Min-protein system in a three-dimensional

unstructured (i.e., an irregular mesh) model of the E. coli



bacterium [14]. The Min-protein has a central role in the

cell division of the bacterium, where the oscillation of the

min-proteins help determine the position of the septum,

the new cell wall. The model consists of 5 species, and the

dynamics are described by 5 reactions. It is complicated

by some reactions only taking place on the membrane of

the cell. We present data for two different stages of cell

division, short and long, comprising 1500 and 2700 voxels,

respectively. The two models are denoted mincde[s] and

mincde[l], respectively. Due to the oscillation of the proteins,

the load is highly dynamic. Since the number of voxels is

small, the amount of available parallelism is limited.

• Simulation of a reversible isomerization process, where two

species are randomly transformed into each other, and may

diffuse freely with equal diffusion rates within a spherical

domain. The domain is represented as a 3-dimensional un-

structured mesh, and comprises ∼ 13000 voxels. The load is

well balanced, and the number of reaction events stand in

a 1:10 proportion to the number of diffusions events. The

model is denoted sphere.

7.3 Experimental Setup

The experiments are run on a 4 socket Intel Sandy Bridge E5–4650

machine. Each processor has 8 cores and 20 MB L3-cache. Hyper-

threading was turned off, and threads were pinned to cores. The

operating system of the machine is Linux 4.9.0, and the binaries

were compiled using GCC version 6.3.0. The models were initially

partitioned using the multilevel k-way partitioning method from

the METIS library [21].

7.4 Overhead of Migration Protocol

We would like to understand how much overhead the migration

protocol incurs during a simulation. The migration of a voxel may

cause rollbacks, which in turn may cause anti-messages. Therefore,

we have traced the time spent sending and receiving all types of

control messages involved in a migration, including time spent on

processing rollbacks and anti-messages generated by the migration

of a voxel. In none of the benchmark runs presented here did the

total cost of the migration protocol exceed 0.5%.

7.5 Tuning of the Rate and Gain Parameters

In this section, we tune the inverse rollback rate parameter R for

locally initiating a migration of a voxel and the gain threshold

parameter G, as described in Section 6.

In Figures 2 and 3, results for tuning of the inverse rollback rate

parameter R and the gain threshold parameter G of the migration

mechanisms is presented. In the figures, each line represents one

value of the gain threshold. R is varied from 0 (no migration) to 80,

and the gain threshold is varied from 0.5 to 0.7. The left hand sub-

figure within each figure shows the speedup relative to not using

migration, and the right hand sub-figure shows the total number

of rollbacks occurring during the simulation. In Figure 2 the tuning

is done on the mincde[s] benchmark for 3 threads. The maximum

speedup, of about 15% over when no migration is used, is reached

with a rollback rate threshold R of 40, and a gain threshold G of

0.6–0.7. In Figure 3, the tuning is done on the same benchmark, run
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Figure 2: Inverse rollback rate parameter R impact on

the number of rollbacks and speedup. Evaluated on the

mincde[s] benchmark, 3 threads. Speedup relative R = 0.
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Figure 3: Inverse rollback rate parameter R impact on

the number of rollbacks and speedup. Evaluated on the

mincde[s] benchmark, 16 threads. Speedup relative R = 0.

with 16 threads. Here, the maximum speedup, with an improvement

of 25% over when no migration is used, is reached at a rollback rate

threshold R of 10–20, for a gain thresholdG of 0.6–0.7. Beyond R =

20, the results tend to become noisier, not resulting in significantly

better speedup than for a low rollback rate threshold.

In general, the run time improvement of using load migration

over not using migration peaks at about 25%, with greater im-

provement being achieved for more threads. With a few number

of threads, each thread has more work to do, and thus leaving less

room for improvement by load balancing. The number of rollbacks

is greatly reduced, by a factor of 2–4. The decrease in rollbacks is

in line with the performance improvement, given the amount of

time spent on rollbacks relative the total execution time.

7.6 Effective Utilization

In this section, we look at the effect load balancing has on the

amount of time individual LPs spend on rollback overhead, i.e., pro-

cessing rollbacks and redoing the rolled back time interval (roughly

estimated to take the same amount of time as the rollbacks them-

selves) and anti-messages, denoted non-useful work. In Figure 4,

we visualize a simulation run of the mincde[s] benchmark on 16

threads. Each bar represents the time allocation of one individual



LP, divided into useful and non-useful work. The variance of the

amount of time spent on non-useful work is more than halved

when using migration. However, as can be seen by the amount

of non-useful work even with load balancing activated, we can

conclude that the load imbalance is still momentarily high during

the simulation.

t
i
m
e

useful

non-useful

no migrationmigration

Figure 4: Instrumentation data for each thread of the r-pnsm

and pnsm-lb algorithms on the mincde[s] benchmark, 16

threads.

To illustrate in more detail, we try to visualize the rollbacks and

the behavior of the load balancing mechanism during a simulation.

In Figures 5 and 6, a timeline of the simulation of the mincde[s]

benchmark with the pnsm-lb algorithm on 3 threads is depicted.

For each thread, one individual timeline is depicted, horizontally.

In each timeline, the total population, the number of voxels, and

the number of rollbacks is shown. In Figure 5, no migration is used.

We see how the population varies with time, and how the number

of rollbacks increases when the population difference between LPs

is big. We also see how the middle LP always has more work to do

than its two neighbors, and suffers from practically no rollbacks. In

Figure 6, migration is used. We see that during the entire simulation,

there are much fewer rollbacks, and the rollbacks are more evenly

distributed over the LPs. The population still varies, but the middle

LP has in general a lower population than in Figure 5, i.e., the load

is better balanced.
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Figure 5: Time series of the population, number of voxels

and rollbacks per LP in the mincde[s] benchmark run with

the pnsm-lb algorithmwithout load balancing for 3 threads.
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Figure 6: Time series of the population, number of voxels

and rollbacks per LP in the mincde[s] benchmark run with

the pnsm-lb algorithm with load balancing for 3 threads.

7.7 Performance

In this section, we compare the scaling of the pnsm-lb algorithm

with and without load migration, and also compare it to the r-pnsm

algorithm, from which it is derived.
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Figure 7: scaling over nsm on the sphere[s] benchmark.

First, in Figure 7, we see the speedup over the sequential nsm

for the parallel algorithms, evaluated on the sphere[s] benchmark.

The benchmark is uniform in load, and we see as expected that

the r-pnsm algorithm, which does not have any control logic to

handle migrations, perform much better. However, for the pnsm-lb

algorithm, that has been restructured to handle migrations, using

load balancing is better than not using load balancing, with up to

a 65% better speedup on 32 threads. The fact that there actually

is an improvement indicates that the initial partitioning provided

by the METIS library is not perfect. In Figures 8a and 8b, we see

the speedup over nsm for the parallel algorithms, evaluated on the

mincde[s] and the mincde[l] benchmarks, respectively. We see that

for up to 8 threads, the parallel algorithms show approximately the

same performance. For 16 threads, the r-pnsm algorithm clearly has

better performance. The difference between the pnsm-lb algorithm

with and without load balancing is minimal for less than 16 threads.

We believe this to be due to a suboptimal load balancing algorithm,

that does not make the best decision on where to move and when

to move the voxels. For 16 threads, using load balancing results in



approx. 25% better speedup than when not using load balancing, in

both benchmarks.
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Figure 8: Scaling over nsm on the mincde[s] (a) and the

mincde[l] (b) benchmarks.

In general, we see that the r-pnsm algorithm scales better than

the pnsm-lb algorithm, particularly for the benchmark with the

well-balanced model (Figure 7). We note again that the pnsm-lb

algorithm is derived from the r-pnsm algorithm. Hence, the differ-

ence in scalability between the r-pnsm algorithm and the pnsm-lb

algorithm without load balancing represents the performance cost

of modifying the algorithm so that load balancing can be applied.

E.g., intra-LP diffusions, which make up the majority of the events,

affect two voxels, and require updating one event history per af-

fected voxel in the pnsm-lb algorithm, instead of a single event

history as in the r-pnsm algorithm.

8 CONCLUSIONS

We have described a load migration protocol aimed at fine-grained

dynamic load balancing. The protocol works across aggregated anti-

messages, a technique used to reduce inter-LP communication. The

protocol has been evaluated together with a local load metric and

load balancing algorithm. The load balancing is shown to reduce

the number of incurred rollbacks by a factor of 2–4, and the speedup

is improved by up to 25%, due to a reduced number of rollbacks.

We observe that the main challenge is the performance penalty

incurred by restructuring the existing PDES algorithm in such a

way that it is suitable for load balancing. We hypothesize that the r-

pnsm algorithm benefits from having better data locality and more

efficiently uses shared data structures, such as the event history

and the model state.
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