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ABSTRACT
We present a new efficient approach to the parallelization
of discrete event simulators for multicore computers, which
is based on exposing and disseminating essential informa-
tion between processors. We aim specifically at simula-
tion models with a spatial structure, where time intervals
between successive events are highly variable and without
lower bounds. In Parallel Discrete Event Simulation (PDES),
the model is distributed onto parallel processes. A key chal-
lenge in PDES is that each process must continuously decide
when to pause its local simulation in order to reduce the risk
of expensive rollbacks caused by future “delayed” incoming
events from other processes. A process could make such de-
cisions optimally if it would know the timestamps of future
incoming events. Unfortunately, this information is often
not available in PDES algorithms. We present an approach
to designing efficient PDES algorithms, in which an exist-
ing natural parallelization of PDES is restructured in order
to expose and disseminate more precise information about
future incoming events to each LP. We have implemented
our approach in a parallel simulator for spatially extended
Markovian processes, intended for simulating, e.g., chemi-
cal reactions, biological and epidemiological processes. On
32 cores, our implementation exhibits speedup that signif-
icantly outweighs the overhead incurred by the refinement.
We also show that our resulting simulator is superior in
performance to existing simulators for comparable models,
achieving for 32 cores an average speedup of 20 relative to
an efficient sequential implementation.

Categories and Subject Descriptors
I.6.8 [Simulation and Modeling]: Types of simulation—
Discrete Event,Parallel

Keywords
Parallel Discrete-Event Simulation, PDES, Optimism con-
trol, Multicore, Spatial Stochastic Simulation
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1. INTRODUCTION
Discrete Event Simulation (DES) is an important tool in a

wide-ranging area of applications, such as integrated circuit
design, modeling of biological systems, epidemics, network
analysis, etc. To improve performance and accommodate
for large scale models, a vast repertoire of techniques have
been developed for Parallel DES (PDES) during the last 30
years [12, 17, 24, 26]. New synchronization techniques have
been triggered by the advent of multicore processors (e.g., [4,
27, 34]). Still, achieving good performance and speedup for
larger number of processing elements has proven to be very
difficult in the general case.

In PDES, the simulation model is partitioned onto logi-
cal processes (LPs), each of which processes timestamped
events to evolve its partition along a local simulation time
axis. Events that affect the state of neighboring LPs are
exchanged to incorporate inter-LP dependencies. A major
challenge in PDES is to ensure that each LP’s processing
of incoming events from other LPs is correctly interleaved
with its local events, to guarantee that causally dependent
events are processed in the right order. If an LP could know
the timestamps and causal dependencies of future incoming
events, it would be able to optimally advance its local sim-
ulation as far as possible, without encountering incoming
events that arrive “too late” (so called stragglers), thereby
violating its local timestamp ordering. Unfortunately, LPs
do not in general have this information e.g., since there
is no shared state, and since incoming events may result
from still unprocessed events in other LPs. To handle this
lack of information, several approaches have been developed:
conservative approaches introduce additional synchroniza-
tion which guarantees that no stragglers will arrive [26],
possibly causing significant performance loss by excessive
synchronization and blocking of local LP execution; opti-
mistic approaches allow stragglers by invoking suitable cor-
rective action (rollback) [17, 24], possibly damaging perfor-
mance by excessive checkpointing and processing of roll-
backs. Many intermediate techniques have been proposed
that allow stragglers, but control the optimism by various
heuristic techniques (see for example the surveys [5, 16]).

In this paper, we show that availability of precise infor-
mation about timestamps of future incoming inter-LP events
is a crucial building block for the design of efficient PDES
algorithms. We show this by parallelizing a widely used al-
gorithm for simulation of spatial stochastic systems in two
steps: we first design a natural parallelization, in which each
LP has access to modestly precise information about future
incoming inter-LP events. We thereafter refine this natural



parallelization algorithm, by restructuring each LP’s simula-
tion algorithm in a way which exposes more precise informa-
tion about future inter-LP events. Both algorithms include
a synchronization mechanism for disseminating the available
information about future inter-LP events. Our experimen-
tal evaluation shows that the refinement increases the par-
allel efficiency to an extent that significantly outweighs its
overhead. The refinement also results in an efficient paral-
lelization, which outperforms other existing parallelizations
of the original simulation algorithm.

We consider stochastic spatial simulation of models gov-
erned by the Reaction-Diffusion Master Equation (RDME) [13].
The RDME describes a spatial Markov process, where the
spatial domain is discretized into subvolumes, also known
as voxels, each containing discrete numbers of entities (e.g.,
proteins) that evolve by performing reactions local to a sub-
volume or diffusions to neighboring subvolumes. In general,
each subvolume can host several types of reactions and diffu-
sions with different combinations of entities. The inter-event
times between reactions and diffusions are stochastic, highly
variable and without a lower bound. Chains of events may
propagate fast over the spatial domain, making paralleliza-
tion particularly challenging.

The most important algorithm for simulating this class of
models is the Next Subvolume Method (NSM) [9]. In the
NSM, the event queue contains the timestamp for the next
event of each subvolume, but does not say which reaction
or diffusion will happen. In other words, the reactions and
diffusions in a subvolume are aggregated into one subvolume
event. Only when processing a subvolume event, it is de-
termined (by a weighted coin toss) whether it is a reaction
(and of which type) or a diffusion to some neighboring sub-
volume. The advantage of the NSM is that the event queue
contains as many entries as there are subvolumes, thereby
adding modestly to the memory requirements. The NSM
algorithm has been used to study, e.g., protein fluctuations
taking part in cell division [10], regulatory processes rele-
vant for differentiation of stem cells [32], or the polarization
of yeast cells [20].

A natural parallelization of NSM, here called Direct Paral-
lel NSM (Direct PNSM), has been proposed in, e.g., [7,18].
It partitions the subvolumes and event queue onto LPs. The
event queue of each LP represents the timestamp of the next
event in each of its subvolumes. However, since the event
queue does not say which type of event will be processed,
the timestamp of the next diffusion to a particular neighbor-
ing LP is not represented, making it hard to communicate
precise information for optimism control.

In this paper, we therefore propose a refinement of Di-
rect PNSM, called Refined PNSM, motivated by the need
to disseminate accurate information about timestamps of
future inter-LP diffusions. Refined PNSM differs from Di-
rect PNSM in that each LP explicitly keeps the outgoing
inter-LP diffusions to each neighboring LP separate. That
is, outgoing inter-LP diffusions are not included in the ag-
gregated subvolume event of their respective subvolume. In-
stead, each LP maintains, for each of its neighboring LPs, a
separate event queue for outgoing diffusions to that neigh-
bor, which explicitly represents the timestamp of the next
occurrence of each outgoing diffusion. This allows the LP
to disseminate precise information about timestamps of out-
going inter-LP diffusion events to neighboring LPs. For the
dissemination of information from these diffusion queues, we

use the Dynamic Local Time Window Estimates (DLTWE)
technique developed in our previous work [2]. A disadvan-
tage of Refined PNSM is that more memory is required for
representing the diffusion queues, and that effort is required
to update the DLTWE estimates from these queues.

The DLTWE method for synchronization between LPs in
our Refined PNSM is a further development of the method
introduced in our previous work [2]. There it was used to
parallelize the All Events Method (AEM) [1], which is an
alternative to NSM for simulation of RDME models. The
AEM does not aggregate reactions and diffusions in a sub-
volume, but maintains the next timestamp of all reactions
and diffusions of the subvolumes in the event queue. The
advantage of AEM is that it can be used for parameter sen-
sitivity estimation, but its disadvantage is that the event
queues require large amounts of memory and significant ef-
fort for maintaining them, causing sequential AEM to be
significantly slower than sequential NSM. This disadvan-
tage also applies to the parallelization of AEM. Therefore,
parallel AEM achieves poor speedup relative to sequential
NSM. However, its speedup over sequential AEM is quite
good, due to the availability of precise information about
timestamps of future inter-LP diffusions, as we showed in
our previous work [2]. More details on the comparison with
parallel AEM is found in Section 5.7.

We have implemented Refined PNSM with optimism con-
trol based on dissemination of information in its diffusion
queues. We have also implemented Direct PNSM, both in a
purely optimistic version without optimism control, as well
as with optimism control based on the information available
in its event queues: we have spent significant effort to inves-
tigate how to best use this information. The algorithms are
compared on a representative set of benchmarks comprising
unstructured and structured meshes. On 32 cores, Refined
PNSM achieves an efficiency ranging between 50–103% for
large models, and in average 35% for small models, com-
pared to an efficient sequential simulation without any code
for parallelization. In comparison to the Direct PNSM (with
optimism control), the Refined PNSM shows an increase in
efficiency between 24–84% for the large models. A detailed
analysis of our optimism control in the Refined PNSM shows
that rollbacks are almost eliminated, and that the amount
of blocking is modest.

We also compare our resulting simulator, based on Refined
PNSM, to other existing parallel simulators for the RDME
that have been reported in the literature. We show that our
simulator is superior in performance. E.g., in comparison
to the simulator reported by Wang et.al. [33], we achieve
a performance speedup on 32 cores which is approx. 63%
better than theirs.

In summary, the contributions of this paper include:

• a methodology for parallelizing simulation algorithms
based on the insight that availability and dissemina-
tion of precise information about future inter-LP events
is crucial for efficiency,

• an efficient parallelization of the NSM simulation algo-
rithm, which is superior in performance to other sim-
ulators reported in the literature, and

• experimental evidence that restructuring a simulation
algorithm to expose precise information about future
inter-LP events increases the parallel efficiency to an
extent that significantly outweighs its overhead.



The work of this paper is to be integrated into the upcoming
version 1.3 of the Unstructured RDME simulation frame-
work (URDME) [8].

Organization of Paper The next section reviews related work.
In Section 3, we describe the stochastic simulation frame-
work at which our work is aimed, and the NSM algorithm.
In Section 4, we describe the parallelization of the NSM by
Direct and Refined PNSM, and their respective optimism
control techniques. In Section 4.4, the algorithm is explained
in detail. The experimental evaluation is found in Section 5.
There we tune the optimism control parameters for the Di-
rect and Refined PNSM algorithms, and compare their per-
formance. The performance of the Refined PNSM algorithm
is also compared to that of other comparable works. Sec-
tion 6 contains the conclusions.

2. RELATED WORK
Numerous methods for parallelization of discrete event

simulation (PDES) have been proposed. Here we will only
review a selection and refer to the comprehensive surveys
in [5, 12,16].

Approaches to parallelization in PDES are coarsely classi-
fied into conservative [26] and optimistic [17,24]. Optimistic
approaches [17,24] have the potential to achieve a higher de-
gree of parallelism, but performance may be reduced by ex-
cessive rollbacks. To limit the frequency of rollbacks, various
optimism control techniques have been developed.

While we only consider shared memory, we find it instruc-
tive to look at methods designed for distributed systems as
well. Several techniques let LPs regulate their event pro-
cessing rate in response to various statistics, such as the
frequency of rollbacks [28], or the expected timestamps of
future incoming events as estimated from statistics of past
incoming events [11]. Another idea is to employ moving
constant size time windows, often computed using model-
specific knowledge, that bound how far each LP can ad-
vance its local time (e.g., [22, 29, 31]). We employ a simi-
lar concept in our optimism control. However, whereas the
mentioned approaches use static information about mini-
mum sizes of time windows, based on, e.g., known delays in
communication channels, our time windows change dynam-
ically and are based on dynamic and continuously updated
information from neighboring LPs, enabling more accurate
optimism control, even in situations where there are no min-
imum static time windows.

A further development of these approaches is the class of
“near-perfect” state information (NPSI) protocols, includ-
ing the elastic time algorithm [30]. Here, the time window
is based on GVT and information about future messages to
neighboring LPs, which is computed and communicated over
a special high-speed network. Our optimism control can be
seen as a refinement of this approach, where accurate infor-
mation on future inter-LP messages is disseminated and used
by neighboring LPs. We also realize this idea on a modern
multicore without using a dedicated high-speed network.

PDES on multicores have gained increased attention lately.
As an example, load balancing can be improved on multi-
cores by allowing subdomains to be globally accessible by
all cores (e.g., [4,27]). This adds cost for synchronizing data
accesses across cores. Marziale et al. [25] tries to remedy the
cost of inter-core accesses by grouping domains of a certain
granularity to one single LP. Lin et al. [21] employed a tech-

nique called Multi-Level Queuing, in order to minimize the
communication latency among threads in a multicore RDME
simulator. Wang et al. [34] present a NUMA-optimized ver-
sion of the general optimistic simulator ROSS [3]. We believe
that our simulator would also gain from additional memory
optimizations, however such an improvement is orthogonal
to what we present here.

Parallel simulation of RDME models using the Next Sub-
volume Method was previously addressed by [7, 18, 21, 33].
The simulators are implemented in MPI, where each LP sim-
ulates a subvolume [21,33] or a subdomain [7,18]. Dematté
and Mazza [7] first proposed that optimistic PDES is fa-
vorable for solution of RDME models. Control of optimism
was realized by a static time window [18] or Breathing Time
Warp [33]. In Section 5.7, we compare our implementation
to measurements reported by Wang et al. [33] and Lin et
al. [21].

The synchronization method for optimism control of Re-
fined PNSM is a further development of the method intro-
duced in our previous work [2]. There it was used to paral-
lelize the All Events Method (AEM) [1], which is an alter-
native to NSM for simulation of RDME models. The AEM
does not aggregate reactions and diffusions in a subvolume,
but maintains the next timestamp of all reactions and diffu-
sions in the event queue. The advantage of AEM is that it
can be used for parameter sensitivity estimation, but its dis-
advantage is that the event queues require large amounts of
memory, causing sequential AEM to be significantly slower
than NSM. For this reason, Parallel AEM achieves poor
speedup relative sequential NSM. However, its speedup over
sequential AEM is quite good, due to the availability of pre-
cise information about timestamps of future inter-LP events
(see [2] and Section 5.7).

3. SPATIAL STOCHASTIC SIMULATION
The Reaction-Diffusion Master Equation (RDME) [13] de-

scribes systems where entities, called species, diffuse over a
discretized space and may undergo transitions, or reactions,
when in proximity to each other. The dynamics of the tran-
sitions are described by a spatially extended Markov process.
The RDME is thus frequently used to model biological sys-
tems where the copy number (discrete count) of chemical
species is low and discrete effects therefore play an impor-
tant role.

The spatial domain is divided into subvolumes, each of
which maintains the copy number of all participating species.
The dynamics of the model is a continuous-time Markov
chain over the state space, which consists of all copy num-
bers in all subvolumes. Two types of transitions are pos-
sible; (a) in a reaction a combination of chemical species
residing in a subvolume reacts and produces a new combi-
nation within the same subvolume, and (b) in a diffusion a
single entity of a chemical species moves to a neighboring
subvolume. The next occurrence time for each transition is
exponentially distributed with a rate that is proportional to
the product of the copy numbers of the involved species, as
given by the law of mass action.

Practically, the RDME is simulated using sampling meth-
ods, that produce single trajectories from the relevant prob-
ability space. Since the advent of the original algorithm,
known as the Gillespie’s Direct Method [15], numerous such
sampling methods have been proposed. For spatial models,



the most commonly used exact sampling method is the Next
Subvolume Method [9] (NSM).

The NSM algorithm takes the form of standard DES,
which proceeds by repeatedly a) selecting an event from the
event queue, b) processing it by updating the simulation
state, i.e., modifying the population in one or more subvol-
umes, and finally c) updating other scheduled events in the
event queue. The last step consists of updating the next
occurrence times of events whose rates depends on the copy
numbers of the subvolumes modified in step b, and subse-
quently sorting the event queue. The new next occurrence
times are obtained either by rescaling of the old occurrence
time or by sampling [14].

An important property of the NSM is that the events in
the event queue are not the next occurrence times of each
reaction and diffusion within each subvolume. Instead, all
reactions and diffusions within a subvolume are aggregated
into a single subvolume event, whose rate is the sum of the
individual rates of the aggregated reactions and diffusions.
Thus, the event queue contains the next occurrence time of
the next reaction or diffusion within each subvolume. Upon
executing the aggregated subvolume event, a random draw
decides which particular reaction or diffusion event occurred
in that subvolume. This significantly reduces the size of the
event queue and improves simulation efficiency.

4. PARALLELIZATION
In this section, we present our parallelization of NSM. In

Section 4.1, we first present a straightforward parallelization,
called Direct PNSM. Thereafter, in Section 4.2, we present
a refined version of the Direct PNSM, the Refined PNSM.
Direct and Refined PNSM both have parameters that can be
tuned to control the optimism, as described in Section 4.3.
Both methods are exact parallelizations of the NSM, i.e., no
additional error in the solution is introduced.

4.1 Direct PNSM
The Direct Parallel NSM (Direct PNSM) is a straight-

forward parallelization of the NSM algorithm to optimistic
PDES based on Time Warp [17]. The subvolumes of the
simulation model are partitioned into approximately equally
sized subdomains, each of which is assigned to an LP. Each
LP simulates the dynamics of the local subdomain while
maintaining three main data structures: (a) the subdomain
state, i.e., for each subvolume, the copy number for each
species, (b) a time-sorted event queue, containing the oc-
currence time of future events in its subdomain, and (c) a
rollback history, which is a time-sorted sequence of events
that have already been processed.

Each LP advances the simulation by finding the next event
to process, either from the top of the event queue or from
a message that has been received from another LP. In the
NSM, a local event specifies the subvolume to be processed.
A random draw then decides which individual transition oc-
curs in the subvolume. Thereafter, the event is processed by
(a) updating the states of affected subvolumes, (b) adding
the event to the rollback history, and (c) if the event was
taken from the local event queue, determining a new next
occurrence time for it.

If the event is a diffusion to another LP, a timestamped
message is transmitted to the neighbor. In practice, the
information is written into a bidirectional FIFO channel.
Upon arrival, the message must be processed in the correct

temporal order with respect to the local events of the receiv-
ing LP.

Whenever an LP receives a diffusion message that causes
a causality violation (wrong temporal order of event up-
dates), a so-called straggler, it must perform a rollback to
a local time before the straggler’s timestamp, using infor-
mation from the rollback history. To do so, events are pro-
cessed “backwards” until such a previous time is reached. In
addition, all diffusion messages that have been sent by the
LP during the rollback interval must be undone by sending
anti-messages to the corresponding LPs. An anti-message
cancels any event that was sent earlier with the same or
a later timestamp. Anti-messages can cause cascading roll-
backs that may involve several LPs, and are costly to resolve.
In our implementations we use a refinement of the rollback
technique, called selective rollback [2]. It is an adaptation of
the breadth-first rollback mechanism [6], and prescribes that
an LP that receives a straggler or an anti-message reverts
only the events that are causally dependent on the received
straggler or anti-message.

Rollbacks are undesirable, as the processing of rollbacks
degrades performance. Hence, an LP should ideally not ad-
vance its local simulation time past the timestamp of a diffu-
sion message that will be received in the future. For this pur-
pose, we would like to design an optimism control strategy.
Such a strategy involves the computation of time window
estimates, which represent when the next diffusion message
will be sent to a given neighbor, based on some available
information in the inter-LP diffusion process. These esti-
mates are then communicated to the respective neighbors
via shared variables. The receiving neighbor is then able to
use the estimates to derive a bound on its local simulation.
If the timestamp of the next local event is larger than this
bound, the neighbor blocks the execution, thereby causing
waiting time, but reducing the risk of rollbacks.

However, it is not feasible to construct an accurate estima-
tor of future inter-LP diffusion times in the Direct PNSM,
since the method aggregates inter-LP diffusions into subvol-
ume events. In a nutshell, the problem can be described
as follows. Consider a subvolume on the boundary of an
LP, which contains a number of intra-LP and a number of
inter-LP diffusions, as well as a number of reactions. Since
the NSM is used, the next occurrence time of the subvolume
specifies solely when the next event in the subvolume occurs,
without specifying which of the reaction or diffusion events
it will be. Which event precisely occurs is determined only
when the next occurrence time is reached, thus the simula-
tor can not know the time of a specific inter-LP diffusion
event in advance.

As the model dynamics is stochastic and variable in time,
the best alternative for deriving time window estimates in
the Direct PNSM algorithm is to compute the expected time
of the next diffusion event from the inter-LP diffusion rates
and the current local simulation time. The estimates are
communicated to neighbors and updated at each simulator
loop. We refer to this best effort technique as Time Window
Estimates(TWE) in the evaluation. The estimates can be
tuned with a scaling parameter, as described in Section 4.3.

4.2 Refined PNSM
To alleviate the problem of limited information about fu-

ture messages in the Direct PNSM, we have developed a
refined approach, dubbed Refined PNSM. It is an extension
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Figure 1: Schematic drawing of the Refined PNSM
algorithm. The domain is divided into several LPs
(solid lines), each operating at a local simulation
time Ti. Each LP contains a number of subvolumes
(dashed lines), within which a set of reactions and
diffusions take place. We store the future sched-
uled events within the LP in different event queues.
All reactions and internal diffusions (blue overlay)
are stored in a local event queue. The local event
queue contains aggregated next occurrence times for
each subvolume. All outgoing inter-LP diffusions
(red, green, cyan and yellow overlay) are stored in
inter-LP queues, one per neighbor. The inter-LP
event queues contain explicit next occurrence times
and are used to compute DLTWEs. The DLTWEs
are communicated to the LP’s neighbors, which use
them to derive a bound on their local simulation.
A straightforward way to use the bounds are to ad-
vance the local simulation if the resulting local sim-
ulation time satisfies Ti < DLTWEi, otherwise block
the execution in order to minimize the risk of roll-
backs.

to the direct approach. We propose that outgoing inter-LP
diffusions are not contained in aggregated subvolume events,
but instead form separate events with an explicit next oc-
currence time. These timestamps are accurate predictors
of inter-LP diffusion events and can be used for optimism
control. LP-local events are still aggregated per subvolume,
which is more memory efficient.

In practice, within each LP we create (i) one event queue
containing the aggregated subvolume events, representing
reactions and intra-LP diffusions, and (ii) for each of its
neighbors an event queue containing all outgoing inter-LP
diffusions to that neighbor (see Figure 1).

The prediction of future inter-LP messages in the Refined
PNSM is straightforward. The next occurrence times of the
outgoing inter-LP diffusions are extracted from the top of
the inter-LP queues. Then, they are communicated to each
neighbor as a time window estimate, and updated when-
ever the top entry of the queue changes. This is essentially
the Dynamic Local Time Window Estimate (DLTWE) tech-
nique, introduced in our previous work [2].

The DLTWEs are accurate predictors of future inter-LP

diffusions, which a receiver may use to significantly reduce
the amount of rollbacks. In contrast to the Direct PNSM,
they accurately predict the times at which the inter-LP event
will occur. However, rollbacks cannot be completely ruled
out. The estimates are updated frequently due to state
changes in the model, and may be updated to an earlier
time as well. Thus, a neighbor may read an estimate, decide
that it is safe to progress with local simulation, upon which
the estimate is updated to an earlier time. The correspond-
ing message from which the estimate was derived may then
cause a rollback at arrival.

4.3 Tuning of Optimism Control
Typically, adaptive PDES can be tuned for optimal per-

formance. In particular, the goal is to find the optimal
trade-off between the cost of over-optimism (“too many roll-
backs”) against the cost of lost opportunity (“too much wait-
ing time”).

For the Direct PNSM and Refined PNSM, this tuning is
given in terms of a parameter n, which defines how many of
the received time window estimates should be used to com-
pute a bound for the local simulation. Our experiments have
shown that if all estimates are used, the result is an overly
conservative simulation. By only considering a subset of the
communicated estimates, the level of optimism can be in-
creased. A further observation is that some neighbors may
generate significantly more messages than others, thus pro-
voking more rollbacks. The parameter n thus refers to the
set of n neighbors, which have incurred the highest amount
of rollbacks on the LP during the simulation. An exception
is made for LPs with a few number of neighbors, where the
DLTWEs of all neighbors are used.

Furthermore, in the Direct PNSM, the expected next dif-
fusion time is also scaled with a tunable parameter k ≥
0. The communicated time window estimate then equals
t + σ · k, where t is the local simulation time of the send-
ing LP and σ is the expected inter-event time to the next
inter-LP diffusion event. A small k implies a larger cost of
lost opportunity, while a large k leads to a larger amount of
rollbacks.

4.4 Detailed Algorithm Description of the Re-
fined PNSM

Table 1: Structure of an LP.
1 structure LPi:
2 m . Number of neighbors
3 n . Optimism control parameter
4 EventQueue[0 . . .m] . Time-sorted queues

. of events
5 SubvolumeState[1 . . . ni] . State of subdomain
6 History . History of past events
7 Channel[1 . . .m] . Channels of incoming messages
8 Dltwe[1 . . .m] . Incoming DLTWEs

Below we outline the structure of an LPi with m neigh-
bors. Each LP contains:

• EventQueue[0 . . .m] is an array of priority queues, con-
taining scheduled events sorted by timestamp. Here,
EventQueue[1 . . .m] are the inter-LP queues, each con-
taining the diffusion events destined for a particular



Algorithm 1: Main loop of the Refined PNSM algorithm, executed by each LPi.

1 while true do
. First phase: find the next event to process

2 emsg ← earliest message in { RetrieveMsg(Channel[j]) | 1 ≤ j ≤ m} . Peek at top of each message channel
3 elocal ← earliest event in {peek(EventQueue[j]) | 0 ≤ j ≤ m}
4 if emsg.time ≤ elocal.time then . If emsg precedes any local event
5 e ← pop emsg from its message channel . The event e to be processed is from the incoming channels
6 else
7 HotDltwe ← {indices of the n channels having caused the most rollbacks}
8 while ∃j ∈ HotDltwe s.t. Dltwej < elocal.time do . If next event is later than any selected DLTWE
9 if (Channel[j] has message) or (for some k 6= j, ∃em ∈ Channel[k] s.t. em.time < Dltwej) then

10 restart main loop
11 e ← pop elocal from event queue . Otherwise the next event to be processed is local

. Second phase: process selected event
12 if e.time < SubvolumeState[e.dest].time or e is an anti-message then
13 SelectiveRollback(e) . Revert state if e is a straggler (which may be local) or an anti-message
14 if e is an anti-message then restart main loop
15 add e to History
16 update SubvolumeState[e.subvol]
17 update timestamps of affected future reactions/diffusions in EventQueue[0 . . .m]
18 if e is a diffusion then
19 if e.dest is local then
20 update SubvolumeState[e.dest]
21 else
22 send diffusion message to LPj where e.dest ∈ LPj .SubvolumeState
23 for each neighbor LPj do
24 LPj .Dltwei ← time of peek (EventQueue[j]) . Update the DLTWEs of neighbors

neighbor, and EventQueue[0] is the intra-LP queue,
containing subvolume events that aggregate reactions
and diffusions within the LP;

• SubvolumeState is an array representing the state of
each subvolume in the subdomain, i.e., the number of
entities of each species, and the timestamp of the last
event affecting the subvolume (i.e., each subvolume has
an individual timestamp),

• History is a time-sorted sequence of events already pro-
cessed by the LP; old events are regularly removed
from the history by fossil collection,

• Channel[1 . . .m] is an array of incoming message chan-
nels, one for each neighbor, and

• Dltwe1...m is a set of incoming DLTWE estimates, one
for each neighbor.

For an event e, we let e.time denote its timestamp; for a
diffusion event e, we let e.dest denote its destination subvol-
ume, which may reside in a different LP.

The main simulator loop consists of two phases, the se-
lection of the next event to process, and the processing of
the event. It has some similarities to the algorithm we pre-
viously presented in [2], where, in addition, the functions
RetrieveMsg and SelectiveRollback are explained in
more detail.

The first phase (lines 2–11), selects the next event to be
processed, as follows. First, for each incoming channel, the
first message that is not canceled by a later anti-message
in the channel, is retrieved by means of the function Re-
trieveMsg. Intuitively, the retrieved message is the first

one in the channel that should be processed, after all anti-
messages occurring in the channel have been processed. The
earliest message is assigned to emsg. Second, the earliest lo-
cal event elocal from all event queues is read. If emsg is earlier
than elocal (line 4), then emsg is assigned to e for processing.
Otherwise, the event elocal is assigned to e for processing,
but only if none of the n selected DLTWE estimates is vio-
lated (line 8). If a DLTWE estimate would be violated, the
LP blocks until a message from the corresponding neighbor,
or an earlier message from another neighbor, is received, at
which time the main loop is restarted, in order to process
the message (line 10).

The second phase (lines 12–24) updates the subdomain
state of the LP by processing the event e that was selected
in the first phase. If e is an aggregated event, the type
of transition and the destination are resolved by a random
draw. It starts by checking whether e is a straggler or a local
diffusion which violates causality in its destination subvol-
ume, or if it is an anti-message; in all three cases a roll-
back is necessary. The rollback is performed by the function
SelectiveRollback(e) (line 13), which reverses the effect
of all events, that are causally dependent on e. Thus, sub-
volumes may be rolled back to different times. The latter
is also the reason why we might have rollbacks induced by
other local events. In case the rollback performed was due to
an anti-message, the main loop must restart (line 14), since
the state of the subvolume of the currently selected event e
may have changed. For a detailed description of the rollback
function, we refer to our previous work [2].

After these checks, the selected event e is processed by
adding it to the event history (line 15), updating the states of
affected subvolumes, and updating the times of future events



in the event queue that are affected by the state change(s)
(lines 16 through 20). If e is a diffusion to another sub-
domain, a message is sent (line 22) to the appropriate LP.
After that, the DLTWEs are updated (line 24) to inform the
neighbors of the possibly new estimated times of the next
diffusion events.

5. EVALUATION
In this section, we evaluate the efficiency and scalability

of the Refined PNSM and the Direct PNSM algorithms. We
look at the following five questions:

• How do we tune the optimism control? (Section 5.4)

• How effective is the Refined PNSM algorithm? (Sec-
tion 5.5)

• How big is the overhead of the Refined PNSM algo-
rithm? (Section 5.6)

• How well does the Refined PNSM compare to other
works? (Section 5.7)

• Which model parameters affect the performance? (Sec-
tion 5.8)

5.1 Algorithms
To evaluate and compare the Direct PNSM and the Re-

fined PNSM we implemented both algorithms. For both im-
plementations, the baseline is the sequential implementation
of the NSM method used in the URDME simulation frame-
work [8], that has been shown to be efficient in comparison to
other NSM implementations [8, Suppl. data]. Thus, all im-
plementations share the same code for the sequential logic,
but are extended for parallel execution in different ways.
The optimism control, as described in Sections 4.1 and 4.2,
was made optional and tunable in both implementations.
In the following, we refer to the different configurations as
follows.

nsm The original sequential NSM simulator.

d-pnsm The Direct PNSM simulator, without optimism con-
trol.

d-pnsm[twe] Identical to d-pnsm, but with approximative
adaptive optimism control turned on, as defined in Sec-
tion 4.1.

r-pnsm The Refined PNSM algorithm, without optimism
control.

r-pnsm[dltwe] Identical to r-pnsm, but with adaptive op-
timism control using DLTWEs turned on, as defined
in Section 4.2.

The DLTWE technique requires detailed state information
which is only available in the Refined PNSM algorithm,
whereas the approximative TWE technique can directly use
aggregated information, and therefore also works for the Di-
rect PNSM algorithm.

To understand how the effort of the simulators is used,
a fine-grained, low overhead (approx. 2%) instrumentation
of the simulator was implemented, which records the time
spent on different activities of interest. We categorize the
activities of interest as follows (line numbers refer to Algo-
rithm 1):
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Figure 2: Instrumentation data for the d-pnsm[twe]
algorithm for 32 cores on the sphere[l,d10] model.
Time is normalized to the first bar of each group of
the parameter n.

aggregated Time spent on evaluating events from the queue
with aggregated events. Corresponds to lines 15–24, if
e is picked from the aggregated queue.

inter-LP Time spent on evaluating events from the inter-
LP queues, lines 15–24, if e is picked from an inter-LP
queue.

messaging Time spent on processing events from neighbor-
ing LPs, lines 15–24, if e is a received diffusion event.

overhead Time spent on updating the event history and
fossil collection, that are directly related to the par-
allelization overhead. These are not detailed in Algo-
rithm 1.

rollback Time spent in SelectiveRollback, line 13, and
time spent on re-simulating the time interval reverted
by the rollback. The re-simulation cost is naively esti-
mated to be equal to the cost of the rollback.

waiting Time spent on waiting for a neighboring LPs time
window estimate, lines 8–10.

time window update Time spent on updating the time win-
dow in the d-pnsm[twe] algorithm, as described in
Section 4.1.

Of the above mentioned categories, aggregated, inter-LP
and messaging represent useful work. The rollback cost is
caused by over-optimism, and waiting is the cost caused by
too much conservatism.

5.2 Benchmarks
We now give a brief description of the benchmarks con-

sidered in the evaluation. The benchmarks are constructed
to represent a variety of realistic RDME model properties.
The topology is varied, which has an impact on the con-
nectivity of LPs, and the reaction to diffusion event ratio
(D:R ratio) is varied, which has an impact on the amount of
communication between LPs. A more detailed description
of the benchmarks is available in our previous study [2].

(1) The reversible isomerization benchmark consists of
spatial models defined on three different geometries; sphere,
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Figure 3: Instrumentation data for the r-
pnsm[dltwe] algorithm for 32 cores on the
sphere[l,d10] and the pp[l,d1] models. Time is nor-
malized to the first bar of each group per bench-
mark.

disc and rod. The geometries are discretized into three-
dimensional unstructured meshes, leading to a high number
of neighbors for each LP, except in the case of the rod model.
For each shape, a model is generated in two different sizes of
about 14.000 (small) and 140.000 (large) subvolumes. Each
model contains two chemical species, A and B, which are
allowed to freely diffuse within the domain with equal diffu-
sion rates. The species may undergo the reversible reaction,

A
c−→ B, B

c−→ A,

with the tunable reaction intensity c. To arrive at a specific
D:R ratio, we have determined the parameter in preceding
test runs. For each model size, we set the D:R ratio to
either 1:1, 10:1, or 100:1, which are the magnitudes found
in realistic models, as in [10,32].

(2) The spatial predator-prey (denoted pp in the following)
model was used as a benchmark in the study by Wang et
al. [33]. In contrast to the previous models, the geometry is
two-dimensional and the discretization is given by structured
meshes, leading to a small number of neighbors for each LP.
For the sake of comparison, we present the model at the
same configurations as Wang et al., namely at a system size
of 40.000 (small) and 160.000 (large) subvolumes and D:R
ratios of 1:1 and 2:1.

We will denote specific model configurations as [s,dy],
which means that the system size s is s (small) or l (large),
and the D:R ratio is y : 1.

5.3 Experimental Setup
All experiments were run on a 4 socket Intel Sandy Bridge

E5–4650 machine. Each processor has 8 cores and 20 MB
L3-cache. Hyperthreading was not used, and threads were
pinned to cores. The computer runs Linux 3.16.0, and the
binaries were compiled using GCC 4.9.2. For the graphs,
each data point is the average of three runs. The three-
dimensional models were constructed using Comsol Multi-
physics 4.3 and converted to computational models using
the URDME framework. The two-dimensional structured
meshes used in the spatial predator-prey model were con-
structed using custom Matlab scripts. All the meshes were
then partitioned into subdomains using the multilevel k-

way partitioning method provided by the Metis library [19].
Metis optimizes the partitioning for minimal number of dif-
fusions crossing subdomain boundaries, while maintaining
an equal number of subvolumes in each subdomain.

5.4 Tuning the Optimism Control
In this section we tune the parameters of the d-pnsm[twe]

and r-pnsm[dltwe] algorithms, as described in detail in
Section 4.3. For both algorithms, we tune how many of an
LP’s received time window estimates are used, denoted as
parameter n. For the d-pnsm[twe], we additionally tune
the parameter k in the time window estimate, as described
in Section 4.3.
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Figure 4: Speedup over nsm for the sphere[l,d10]
model. The d-pnsm and r-pnsm did not complete for
more than 16 cores due to rollback explosions. For
16 cores, the success rate of the d-pnsm is approx.
73%, and for the r-pnsm it is approx. 94%.

Figure 2 shows the time breakdown of the d-pnsm[twe]
algorithm, for different values of k and n in the sphere[l,d10]
model. Each bar shows the time breakdown of a simulation
with 32 cores and a combination of values of k and n. We
find that the optimal values of k and n are at 0.1 and 1,
respectively. The same values were found to be optimal for
other benchmarks as well. In the figure, we also observe
how the cost of rollbacks increases for bigger k, i.e., when
communicating a bigger time window estimate.

Figure 3 shows the effort breakdown of the r-pnsm[dltwe]
algorithm for different values of the parameter n, evaluated
on the sphere[l,d10] and the pp[l,d1] models. We see that
the best performance is achieved for n = 1, which we have
also confirmed for several other benchmarks, not shown.
Thus, in general, the best performance is achieved by ob-
serving the timestamps of future incoming diffusion events
from only a single neighbor, viz., the one producing the most
rollbacks.

To understand why it suffices to wait on a single LP, we
recall that the goal of controlling optimism is to make each
LP progress at the same “speed”, i.e., no LP should advance
the simulation time faster than the slowest LP, roughly ex-
pressed. Thus, intuitively, it should suffice that each LP
wait for a single slower LP, creating chains of waits-on de-
pendencies, typically rooted at the slowest LP. All depen-
dency chains may not necessarily be connected, in which
case they progress at the same speed. Now, increasing n,
would add more waits-on relations than necessary, and thus
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Figure 5: Speedup over nsm, 32 cores (top) and 16 cores (bottom), for all benchmarks.

increase the overhead. Another factor is that increasing n
makes the simulation more rigid than necessary. Since the
selective rollback technique is used, a straggler may not nec-
essarily generate rollbacks, and hence it is good to allow a
certain degree of out of order between LPs.

5.5 Scalability Comparison
In this section we compare the scaling of the two algo-

rithms d-pnsm and r-pnsm, with and without optimism
control.

In Figure 4, the speedup curves for the four parallel al-
gorithms, evaluated on the sphere[l,d10] benchmark, are
shown.

We would like to point out that the d-pnsm and the r-
pnsm algorithms, i.e., the algorithms without optimism con-
trol, often suffer from rollback explosions, in which case the
simulation does not finish within a reasonable amount of
time (3 times the expected finishing time), or runs out of
memory. In the cases the algorithms finish, the amount of
rollbacks is relatively low. Similar behavior has previously
been observed by others [23]. We have nevertheless chosen
to include the data for the successful runs only for both the
algorithms, as it is illustrative for the understanding of the
performance of the algorithms. For the sphere[l,d10] bench-
mark, 16 cores, the success probability of the d-pnsm algo-
rithm is 73%, and of the r-pnsm algorithm it is 94%. For 32
cores it is 0% for both the algorithms, clearly showing the
necessity of using a mechanism for optimism control.

Now, comparing the speedup for the d-pnsm and the r-
pnsm algorithms in Figure 4, we see that the d-pnsm exhibits
34% better performance than the r-pnsm, for 2–16 cores,
considering only successful runs. The performance cost of
the optimism control for the two algorithms r-pnsm[dltwe]
and d-pnsm[twe] is also illustrated in the figure. For the
r-pnsm[dltwe] algorithm, the performance loss over the r-
pnsm is marginal. This is because the time window calcula-
tion, in this case maintaining the inter-LP queues, is already
included in the r-pnsm algorithm. For the d-pnsm[twe],
the performance loss over d-pnsm is 25% for 16 cores.

Comparing both algorithms with optimism control on the
same benchmark, the d-pnsm[twe] algorithm has better
performance than the r-pnsm[dltwe] when only a small
number of cores are being used. For 8 cores, it is 16% faster.
However, for more than 16 cores, the opposite holds, and the
r-pnsm[dltwe] is up to 51% faster. The r-pnsm[dltwe] al-
gorithm clearly scales better than the d-pnsm[twe].

The overall performance of the r-pnsm[dltwe] and the
d-pnsm[twe] algorithms is illustrated in Figure 5. For 32
cores, the r-pnsm[dltwe] achieves an efficiency ranging be-
tween 50–103% on the large models, compared to nsm. Com-
pared to the d-pnsm[twe], we see a performance improve-
ment in the range of 24–84%. For the smallest model, under
several different diffusion ratios, the performance of the r-
pnsm[dltwe] is up to almost 4x better than the d-pnsm[twe]
algorithm. The average speedup of r-pnsm[dltwe] over
nsm for all benchmarks is 20.



On 16 cores, the performance improvement of the r-pnsm-
[dltwe] over the d-pnsm[twe] is in general smaller. The
r-pnsm[dltwe] algorithm has on average 23% better per-
formance. We note that on the sphere[l,d100] benchmark,
the d-pnsm[twe] algorithm actually performs better.

We observe that for both algorithms, the unstructured
models are in general more challenging than for example
the predator-prey models, where the number of neighbors
per LP is small. Likewise, the smaller models are more chal-
lenging, due to the limited amount of parallelism available.
Especially for the smallest model, the performance difference
of the d-pnsm[twe] and the r-pnsm[dltwe] is particularly
accentuated. It also seems that the d-pnsm[twe] algorithm
performs better (in comparison to the r-pnsm[dltwe]) in
highly diffusive models.

5.6 Overhead of the Refined PNSM Algorithm
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Figure 6: Instrumentation data for all algorithms on
the sphere[l,d10] model. Time is normalized to the
first bar of each group of cores. We recall from Fig-
ure 4, that the d-pnsm and r-pnsm did not complete
for more than 16 cores due to rollback explosions.
For 16 cores, the success rate of the d-pnsm is approx.
73%, and for the r-pnsm it is approx. 94%.

In this section we investigate the overhead of the r-pnsm
algorithm over the sequential nsm and the d-pnsm algo-
rithm, i.e., the cost of the parallelization and the cost of
maintaining the inter-LP queues.

First, to estimate the parallelization overhead over nsm,
we ran the d-pnsm sequentially (on a single LP) and com-
pared it to the nsm, on the sphere[l,d10] benchmark. Note
that, in the sequential case, the r-pnsm algorithm is identi-
cal to d-pnsm. The parallelization incurred an overhead of
approx. 36%.

Next, in order to better understand the differences in Fig-
ure 4, we observe the instrumentation data of the same ex-
periment, shown in Figure 6. The total height of each bar
in the figure corresponds to their execution time. The exe-
cution time is normalized to that of the r-pnsm[dltwe] for
each number of cores. To estimate the overhead of the r-
pnsm algorithm over the d-pnsm, we calculate the difference
in the amount of effort spent on all activities except waiting

and rollback for each algorithm, as defined in Section 5.1.
We see that the r-pnsm exhibits a significant amount of
overhead over the d-pnsm: 38% at 8 cores, and 40% at 16
cores.

As we observed in Figure 4, the d-pnsm[twe] algorithm
is faster than the r-pnsm[dltwe] for 2 and 8 cores, but the
r-pnsm[dltwe] is faster for more than 16 cores. An ex-
planation is provided: For the r-pnsm[dltwe] the relative
amount of effort not spent on useful work increases by 63%
when going from 8 to 16 cores, due to waiting. For the d-
pnsm[twe], the same effort more than doubles. Similar val-
ues are found for any increase in the number of cores. Thus,
the initial cost of the r-pnsm[dltwe] is higher, but the rate
at which the overhead increases for the r-pnsm[dltwe] is
lower than for the d-pnsm[twe], making it scale better.

5.7 Comparison to Other Works
In this section, we compare the performance of the Re-

fined PNSM algorithm to that of similar algorithms of other
works. We have looked at all to us known relevant papers
for comparable experiments; the only two previously pub-
lished RDME models for which experiments with more than
12 cores have been reported are [33] and [21].

Wang et al. [33] simulate a predator-prey model on a two-
dimensional 200 × 200 structured grid, using their paral-
lel Abstract NSM algorithm. Though it is unknown to us
which sequential baseline they use for the comparison, they
report a speedup of 11 on 32 cores. For the same bench-
mark, we achieve a speedup of 17.9. Lin et al. [21] simulate
a three-dimensional calcium wave model using the NTW-
MT simulator. They report a speedup of 9 on 32 cores. The
parameters for the model were not available to us, thus we
could not test our simulator on the benchmark.

In our previous work [2], we presented the PAEM algo-
rithm, a parallelization of the AEM algorithm which does
not aggregate reactions and diffusions in a subvolume, but
maintains the next timestamp of all reactions and diffusions
in the event queue. The sequential AEM is significantly
slower than NSM, largely due to high memory requirements.
Compared to sequential AEM, the PAEM achieved a speedup
of 16.4 on 32 cores, for the above benchmark from [33]. The
speedup for PAEM over the NSM, however, is only 5.2 on the
same benchmark, largely due to its poor memory efficiency.

5.8 Performance Indicators: Degree and Inter-
LP Diffusion Ratio

In this section, we investigate the relation between the
parallel performance and the model parameters. We inves-
tigate the impact of two performance indicators, namely

Degree The graph degree of the communication network
between LPs.

Inter-LP Diffusion ratio The number of inter-LP diffu-
sions over the total number of diffusions.

In Figure 7 we compare the benchmark results of three
models on 32 cores. Only one of the performance indicators
differ between each model. The rod-sphere benchmark is a
modified version of the rod[l,d10] benchmark, with an inter-
LP diffusion ratio that is equal to that of the sphere[l,d10]
benchmark. All the three models have the same number of
subvolumes, and the benchmarks take the same time to com-
plete for the sequential simulator. We also want to ensure
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Figure 7: Instrumentation data of r-pnsm[dltwe]
using all DLTWEs, on the sphere[l,d10], the rod-
sphere, and the rod[l,d10] models, 32 cores.

that the same number of inter-LP diffusions is used when
deciding if an LP should block. Thus, we set the algorithm
to use all the DLTWEs for this benchmark, and not only
the n most important DLTWEs, as described in Section 5.4.

Comparing the sphere, with a degree of 9.8 to the rod-
sphere, with degree 2, we see a performance difference of
38%. As expected, more time is spent on messaging and
processing of inter-LP events for the sphere model. Ad-
ditionally, the waiting time is increased. Comparing the
rod-sphere, with an inter-LP diffusion ratio of 0.08, to the
rod, with a ratio of 0.002, we see a performance difference
of 71%. This gives some insight of the performance results
in Section 5.5, where the large models in general had bet-
ter performance than the small models, as they exhibit a
smaller inter-LP diffusion ratio. Likewise it explains why
the rod and the predator-prey benchmarks exhibited bet-
ter performance than the other benchmarks, as they have a
lower degree.

p

6. CONCLUSION
We have presented a new efficient approach to synchro-

nization in optimistic PDES for spatial stochastic simula-
tion of reaction-diffusion models, and used it to develop a
parallel simulator, called Refined PNSM. A main contribu-
tion is to show that by refining the representation of the
model state in order to expose explicit times for future dif-
fusions between LPs, we can improve the accuracy of the
optimism control, thereby significantly reducing the amount
of rollbacks as well as maintaining the blocking at a mod-
est level. Even though the refinement incurs a substantial
overhead, experimental evaluation shows that the resulting
parallel efficiency significantly outweighs the overhead.

We have also showed that our resulting simulator is supe-
rior in parallel performance to existing simulators for com-
parable models that have been reported in the literature, for
cases where it has been possible to obtain data on simulated
models.

We expect that the general strategy for the design of our
parallelization also can be applied to simulators for other
classes of models, where the partitions of different LPs ex-
hibit tight and frequent interaction.
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