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Abstract. We formulate a compositional specification theory for components
that interact by directed synchronous communication actions. The theory is an
extension of interface automata which is also able to capture both absence of
deadlock as well as constraints on data parameters in interactions. We define re-
finement, parallel composition, and quotient. The quotient is an adjoint of parallel
composition, and produces the most general component that makes the compo-
nents cooperate to satisfy a given system specification. We show how these oper-
ations can be used to synthesize mediators that allow components in networked
systems to interoperate. This is illustrated by application to the synthesis of me-
diators in e-commerce applications.

1 Introduction

Modern software-intensive systems are increasingly composed of independently devel-
oped and network-connected software components. In many cases, these components
exhibit heterogeneous behaviour, e.g., employing different protocols, which prevents
them from cooperating to achieve user-level goals. Such cases call for the synthesis of
mediators, which are intermediary software entities that allow software components to
interact by coordinating their behaviours. Mediator synthesis has many different ap-
plications, including protocol converters [22], web service composition [4], and driver
synthesis [20].

Component-based development, including mediator synthesis, should be performed
within a specification theory. The theory should express how specifications capture the
requirements for a component to function in an intended system context, while opera-
tors and refinement relations allow the composition and comparison of specifications,
in analogy with how components are composed and refined towards an overall system
design. Several such theories have been proposed, one of the earliest by Olderog and
Hoare for Hoare-style specifications of Communicating Sequential Processes [14]. A
more recent theory is that of interface automata of de Alfaro and Henzinger [7], in
which components are assumed to communicate by synchronisation of input and out-
put (I/O) actions, with the understanding that outputs are non-blocking. If an output is
issued when another component is unwilling to receive it, a communication mismatch
is said to occur. This allows to capture assumptions on the behaviour of a component’s
environment.

The theory of interface automata is formulated in a finite-state, finite-alphabet set-
ting. This falls short of adequately capturing the behavior of realistic systems, where



communicating components exchange messages containing data values (e.g., header
information or payload) ranging over large or infinite domains, and the overall con-
trol flow depends crucially on these values. Furthermore, the theory does not have any
facilities for modeling progress or deadlock properties.

In this paper, we address the aforementioned issues by extending the formalism of
interface automata to model both progress and constraints on data parameters. The con-
straints on data parameters are restricted to equalities and negated equalities between
data values; this still allows to use the formalism in many interesting applications. We
define refinement, parallel composition for structural composition of components, and
quotient for synthesizing new components to satisfy partial requirements. The quotient
is an adjoint of parallel composition, and produces the most general component that
makes the system components cooperate to satisfy a given system specification.

Thereafter, we demonstrate how our specification theory and its operators can be
used to automatically synthesize mediators in component-based systems. Several pre-
vious approaches to mediator synthesis require the user to supply a specification of the
overall system functionality. However, the facilities of our theory allow to automatically
generate such a system specification in many situations. More precisely, the ability to
model constraints on data allows to capture data flow properties of a system, which in
turn induces constraints on the control flow that result in a specification. We further
show how the ability to specify progress properties results in the pruning of unpro-
ductive behavior from the resulting mediator. We have implemented the computation
of quotients, and show the applicability of our approach by synthesizing mediators in
e-commerce applications.

Related Work Our component algebra is rooted in the theory of interface automata,
which was developed for finite-state specifications, without covering data or progress [7].
The extension to progress was developed in our previous work [6]. Another related the-
ory is the trace theory of Dill [8], which is based on the same distinction between inputs
and outputs, and a notion of progress based on infinite traces. Another variation of this
theory is the modal interfaces by Raclet and others [15–18], and the modal specifica-
tions by Larsen et al. [12], where must and may transitions play the role of input and
output transitions. Yet another related theory is the ioco theory for model based testing
due to Tretmans [21], which has a notion of deadlock that is very similar to ours.

For finite-state specifications, several works have presented a construction for com-
puting quotients. Bhaduri and Ramesh [5] showed that for finite-state interface au-
tomata, which do not capture progress properties, quotient can be reformulated by com-
bining parallel composition and renaming of interface actions: this reformulation does
not hold when deadlock and progress are considered. In our previous work [2], we used
finite-state quotient to synthesize mediators. In the absence of facilities for modeling
data, it was necessary to use an ontology for correlating different actions. In the current
paper, the ability to specify constraints on data makes the use of ontologies unnecessary.

All works mentioned in the preceding paragraph are developed for the finite-state
case, not covering data. There is one work that extends the theory of modal specifica-
tions with data [1]. It is based on a different model of interaction between processes,
where data values are communicated via shared variables rather than as parameters in



synchronization primitives. Moreover, the theory of modal specifications is based on a
semantic foundation different from ours, in which specifications are compared in terms
of the sets of transition systems that implement them. Our theory is based on notions of
simulation between specifications, which allows mainstream techniques from controller
synthesis to be adapted to the extension with data.

The synthesis of mediators has been addressed in works that target web service
composition, e.g., in [3, 4, 9, 10]. The authors of these works model components, rep-
resenting web services, using automata extended with data. Mediators are synthesized
using planning techniques, typically by a forward search in the space of possible me-
diators. The synthesized mediators are not required to be “best” or “most general” in
a sense provided by some speficiation theory. In [4], loop-free controllers are synthe-
sized that guarantee that the composed system reaches a target state while avoiding
unsafe states. In contrast, our specification is a combination of a safety condition and a
deadlock-freeness condition; these two kinds of specifications are of incomparable ex-
pressive power. Further difference include that our synthesized controllers may contain
loops, and [4] under-approximates infinite data domains by finite ones.

2 Processes

In this section, we define our model of processs with data.
We assume an unbounded domainD of data values and a set of actions. Each action

has a certain arity, which is the number of data parameters it takes. A symbol is a term
of the form α(d1, . . . , dn), where α is an action of arity n, and d1, . . . , dn are data
values in D. We further assume a set of variables, ranged over by x, y, z, etc., and a
set of formal parameters ranged over by pi for i ∈ N. A parameterized symbol is of
form α(p1, . . . , pn), where α is an action of arity n, and p1, . . . , pn are distinct formal
parameters. A guard is a conjunction of equalities and negated equalities over variables
and formal parameters.

Definition 1. A processP is a tupleP = (IP , OP , LP , `
0
P , XP , σ

0
P , δP ,QuieP), where

– IP is a finite set of input actions,
– OP is a finite set of output actions,
– LP is a finite set of locations,
– `0P ∈ LP is the initial location,
– XP is a tuple x1, . . . , xk of variables,
– σ0
P : XP → D is the initial valuation, assigning to each variable in XP an initial

value,
– δP is a finite set of transitions, each of which is of form 〈`, stmt, `′〉 where `, `′ ∈
LP are locations, and stmt is a statement of form

α(p1, . . . , pn) ; g ; x1, . . . , xk := e1, . . . , ek ,

where
• α(p1, . . . , pn) is a parameterized symbol with α ∈ (IP ∪OP),
• g is a guard over XP and p1, . . . , pn,



• x1, . . . , xk := e1, . . . , ek assigns to each variable xi ∈ XP an expression ei
over variables in XP and formal parameters in p1, . . . , pn.

– QuieP maps each location in LP to a predicate over XP . ut

We write p̄ for p1, . . . , pn, d̄ for d1, . . . , dn, x for x1, . . . , xk, and similarly for e. We
write AP for IP ∪ OP . We use the term α-transition for a transition 〈`, α(p̄); g;x :=
e , `′〉 with the action α. For an action α and a location ` ∈ LP , let gα` denote the dis-
junction of the guards of the outgoing α-transitions from `; if there is no such statement,
then gα` is defined as false.

Intuitively, a process is at any point in time in a state, given by a location and a
valuation of its variables. The process can change its state by performing a transition
〈`, α(p̄); g;x := e , `′〉, provided that its current location is `, and that there is some
α(d̄) that makes the guard g[d̄/p̄] evaluate to true under the current valuation. It syn-
chronizes via the symbol α(d̄), binds the formal parameters p̄ to data values d̄, and
simultaneously assigns new values to the variables according to x := e.

The distinction between input and output actions is interpreted as follows. When in a
state 〈`, σ〉, a processP is willing to receive any input α(d) that is enabled in the current
state. Some input symbols may not be enabled: this expresses the assumption that the
environment never generates these inputs when P is in 〈`, σ〉. This is in contrast to I/O-
automata [11, 13], which in every state must be prepared to receive any input. A process
P can also emit any output symbol that is enabled. The predicate QuieP(`) constrains
when P can be quiescent, in the sense that if no input is received, the system must
eventually emit some output symbol, unless the predicate QuieP(`) is satisfied under
the current valuation σ. Quiescence can be used to model termination or deadlock. We
require that any process P is consistent with QuieP in the sense that for any location `
of P , the formula

QuieP(`) ∨
∨

α∈OP

∃p. gα`

is universally valid. Here, p refers to the formal parameters of the respective action α.

Determinism We assume that processes are deterministic, i.e., if g1 and g2 are the
guards of two outgoing α-statements from a location `, then g1 and g2 are mutually
exclusive. Note that this still allows to express non-determinism on the level of data
values. Consider, for instance, a process which nondeterministically selects an identi-
fier, assigns it to a variable id and then transmits it in an action showid(p), where p is
id. We can represent this behavior by a single transition labeled by the statement

showid(p) ; true ; id := p .

Since this transition has the guard true, the parameter of showid can be an arbitrary
identifier. We have just slightly remodeled the process so that id is assigned in connec-
tion with the transition, rather than before the transition; the external behavior remains
the same. We use this modeling idiom in several of the examples in Section 6.

Underlying Theory In this paper, we have restricted the relations in guards and pred-
icates to equalities and negated equalities, and avoided functions in expressions (i.e.,



each ei in an assignment x := e is either a formal parameter or a variable). Under these
restrictions, the elimination of existential quantifiers is fairly simple (as described at
the end of this section). Our solution to the synthesis problem does not inherently rely
on these restrictions. In principle, the set of relations and functions could be extended
to include other theories as well. Our constructions would still work under restrictions
that guarantee termination of concerned algorithms. We leave the precise formulation
of such restrictions as future work.

Semantics of Processes For a set X of variables, an X-valuation is a partial mapping
from X to D. For an X-valuation σ and a guard g over X , we let σ |= g denote that g
evaluates to true under the valuation σ. A state of P is a pair 〈`, σ〉 where ` ∈ LP and
σ is an XP -valuation. The initial state of P is 〈`0P , σ0

P〉, where `0P is the initial location

and σ0
P is the initial valuation. A step of P , denoted by 〈`, σ〉 α(d̄)−−−→P 〈`′, σ′〉, transfers

P from 〈`, σ〉 to 〈`′, σ′〉 while performing the symbol α(d̄). According to whether α is
in IP or OP , we call 〈`′, σ′〉 an input or output successor of 〈`, σ〉. It is derived from
a transition 〈`, stmt, `′〉 ∈ δP , with stmt of the form α(p1, . . . , pn); g;x1, . . . , xk :=
e1, . . . , ek, such that σ |= g[d/p], and for each xi ∈ XP , we have

1. σ′(xi) = σ(ei) when ei ∈ XP , and
2. σ′(xi) = dj when ei is formal parameter pj .

For a sequence of symbols w = α1(d̄1) · · ·αm(d̄m), we write

〈`, σ〉 w
=⇒P 〈`′, σ′〉 to denote that there is a sequence of steps 〈`, σ〉 α1(d̄1)−−−−→P

〈`1, σ1〉 · · · 〈`m−1, σm−1〉
αm(d̄m)−−−−−→P 〈`′, σ′〉. We write 〈`, σ〉 =⇒P 〈`′, σ′〉 to

express that there exists a w such that 〈`, σ〉 w
=⇒P 〈`′, σ′〉. A state 〈`, σ〉 is reach-

able if 〈`0P , σ0
P〉

w
=⇒P 〈`, σ〉 for some w. A trace of P is a sequence w such that

〈`0P , σ0
P〉

w
=⇒P 〈`, σ〉 for some 〈`, σ〉. The trace is quiescent if σ |= QuieP(`). We let

TP denote the set of traces of P , and let QP denote the set of quiescent traces of P .

A symbol α(d̄) is enabled in a state 〈`, σ〉 if there is a step 〈`, σ〉 α(d̄)−−−→P 〈`′, σ′〉 for
some state 〈`′, σ′〉. Intuitively, σ |= gα` [d̄/p̄] iff α(d̄) is enabled in 〈`, σ〉.

Computing pre- and postconditions The algorithms in later sections use, as a basic
building block, the computation of pre- and postconditions of statements. Let us first
consider postconditions. Let ϕ be a formula and let g be a guard. Let x′ be a vector of
the same length as x, containing fresh variables. The postcondition with respect to an
assignment and a guard, respectively, are computed in the standard way as

post(x := e ; ϕ) := ∃x′. (ϕ[x′/x] ∧ x = e[x′/x]) and post(g ; ϕ) := ϕ ∧ g.

Putting the above rules together, we derive the postcondition of a statement as follows.

post(α(p); g;x := e; ϕ) := ∃p. ∃x′. ((g ∧ ϕ)[x′/x] ∧ x = e[x′/x]) .

Let us next consider preconditions in the analogous way. The precondition of an assign-
ment and a guard, respectively, is defined as

pre(x := e;ϕ) := ϕ[e/x] and pre(g;ϕ) := g ∧ ϕ,



and a precondition of a whole statement is obtained by putting these together:

pre(α(p); g;x := e ; ϕ) = ∃p. (g ∧ ϕ[e/x]) .

The existential quantifiers that arise in both the post- and precondition computation can,
in the equality domain, be eliminated by a procedure involving two steps, saturation
and elimination. Assume that ϕ is a formula in disjunctive normal form (DNF) over
equalities and negated equalities over a set of variables. Formula ∃(x1, . . . , xn). ϕ is
obtained by transforming every clause of ϕ in the following way:

1. Saturation: compute the reflexive, transitive and symmetric closure of the equality
relation = as partially given by the respective clause. This induces a partition on
the set of variables. Let [x]= denote the class of this partition containing x. Then,
transform ϕ by replacing every conjunct x = y with

∧
x′∈[x]=,y′∈[y]=

x′ = y′, and
x 6= y with

∧
x′∈[x]=,y′∈[y]=

x′ 6= y′.
2. Elimination: from the saturated predicate, remove all conjuncts involving some of
x1, . . . , xn. Thus, the conjunct x = y (x 6= y) is removed (or replaced with true) if
x or y (or both) are in {x1, . . . , xn}.

Example. Let ϕ be the predicate x = y∧y 6= z. For eliminating the existential quantifier
in ∃(y, z). ϕ, we first saturate ϕ, which yields x = y ∧ y 6= z ∧ x 6= z. Since every
conjunct in the saturated formula involves either y or z (or both), elimination leaves us
with the empty conjunction, which is equivalent to true.

3 Refinement

We adapt the refinement relation between interface automata [7] to our processes with
data, and at the same time we extend the definition to include quiescence.

Definition 2. Let S and P be processes. We say that S is refined by P , denoted P v S,
if IS ⊆ IP , OP ⊆ OS , and whenever t is a trace of both S and P (i.e., t ∈ TS ∩TP ),
then

1. for any input symbol i, if ti ∈ TS then ti ∈ TP ,
2. for any output symbol o, if to ∈ TP then to ∈ TS ,
3. if t is quiescent in P , then it is also quiescent in S (i.e., QP ∩ TS ⊆ QS ). ut

Condition 1 reflects the assumption that the environment does not supply unenabled
input symbols. This assumption must not be strengthened by refinement; hence P must
be prepared to accept any input that S can accept. Condition 2 reflects that the set of
enabled output symbols constrains what the process may produce, which must not be
weakened by refinement: hence P may at most produce the outputs that may be pro-
duced by S. Condition 3 similarly reflects the view that allowed quiescence is viewed
as a constraint on a process.

Given two processes, refinement can be checked by first computing the set of pairs
of states of S and P which can be reached by the same trace, and thereafter checking



Algorithm 1: Computing Reach(〈`S , `P〉) for all `S ∈ LS and `P ∈ LP
1 Initialise Reach as ϕ0 for 〈`0S , `0P〉 and false otherwise;
2 repeat
3 changed := false;
4 forall the 〈`S , stmtS , `′S〉 ∈ δS and 〈`P , stmtP , `′P〉 ∈ δP with equal actions do
5 φ := jointpost(stmtS , stmtP ;Reach(〈`S , `P〉));
6 if IsSat(φ ∧ ¬Reach(〈`′S , `′P〉)) then
7 Reach(〈`′S , `′P〉) := Reach(〈`′S , `′P〉) ∨ φ;
8 changed := true;
9 until ¬changed ;

the conditions in Definition 2 on these states. As the state space is infinite due to the
unboundedness of D, the set of reachable states has to be computed symbolically.

Let us assume (without loss of generality) thatXS∩XP = ∅. To check whetherP v
S, we compute for each pair 〈`S , `P〉 of locations a predicate Reach(〈`S , `P〉) over
XS ∪XP such that for an XS -valuation σS and XP -valuation σP , we have σS ∪σP |=
Reach(〈`S , `P〉) iff there is a trace w ∈ TS ∩TP such that 〈`0S , σ0

S〉
w

=⇒S 〈`S , σS〉
and 〈`0P , σ0

P〉
w

=⇒P 〈`P , σP〉.
We compute values of Reach by a repeated postcondition computation, starting

from the strongest condition that holds for the pair of initial states of S and P . Let ϕ0

be the strongest predicate satisfied by the union of the initial valuations σ0
S ∪ σ0

P of S
and P . This predicate expresses precisely that all variables have their initial values. The
computation of Reach is then carried out by a standard fixpoint procedure, shown in
Algorithm 1.

It is initialized by letting Reach(〈`0S , `0P〉) be ϕ0, and letting any other
Reach(〈`S , `P〉) be false. Therafter the predicates Reach(〈`S , `P〉) are iteratively
extended: for each pair of transitions 〈`S , stmtS , `′S〉 and 〈`P , stmtP , `′P〉 with the
same action, we calculate the postcondition φ of the joint transition, in which S
and P synchronize on a common symbol α(d). More precisely, letting stmtS be
α(p); gS ;xS := eS , letting stmtP be α(p); gP ;xP := eP , and letting ϕ be a for-
mula over xS and xP , we define the joint postcondition of stmtS and stmtP wrp. to
ϕ, denoted jointpost(stmtS , stmtP ; ϕ) as

jointpost(stmtS , stmtP ; ϕ) = ∃p. ∃x′S , x′P .

 (gS ∧ gP ∧ ϕ)[x′S , x
′
P/xS , xP ]

∧ xS = eS [x′S/xS ]
∧ xP = eP [x′P/xP ]


where x′S is a tuple containing fresh variables, of the same length as xS , and similarly
for x′P . In the algorithm, the predicates Reach(〈`S , `P〉) are iteratively extended: for
each pair of transitions 〈`S , stmtS , `′S〉 and 〈`P , stmtP , `′P〉 with the same action, we
calculate their joint postcondition in φ := jointpost(stmtS , stmtP ; Reach(〈`S , `P〉)).
As long as Reach(〈`′S , `′P〉) is not weaker than φ, it is weakened by updating it to the
disjunction of its previous value and φ. This process is repeated until convergence.



The following proposition states that, after Reach has been computed, checking re-
finement P v S amounts to checking validity of three conditions for each pair 〈`S , `P〉
of locations.

Proposition 1. P v S if and only if IS ⊆ IP , OP ⊆ OS , and for each pair 〈`S , `P〉
of locations of S and P it holds that

1. Reach(〈`S , `P〉)⇒ (gα`S ⇒ gα`P ) for all input actions α ∈ IS ,
2. Reach(〈`S , `P〉)⇒ (gα`P ⇒ gα`S ) for all output actions α ∈ OP , and
3. Reach(〈`S , `P〉)⇒ (QuieP(`P)⇒ QuieS(`S)). ut

Proof. First, assume that P v S . We exemplify the proof idea focusing on the first
condition only. Let σS ∪σP |= Reach(〈`S , `P〉), i.e., there exists a trace w ∈ TS ∩TP
such that 〈`0S , σ0

S〉
w

=⇒S 〈`S , σS〉 and 〈`0P , σ0
P〉

w
=⇒P 〈`P , σP〉. Furthermore, let i =

α(d), α ∈ IS , be any input symbol such that σS |= gα`S [d/p], i.e., α(d) is enabled in
〈`S , σS〉 and hence wi ∈ TS . Since P v S implies that wi ∈ TP , α(d) is enabled in
〈`P , σP〉 as well, thus σP |= gα`P [d/p], rendering the implication gα`S ⇒ gα`P true.

For the converse, assume that P 6v S. Then, at least one of the conditions of Defini-
tion 2 is violated. Again, we exemplify the proof idea by looking at the third condition
only, i.e., assuming that there exists a trace w ∈ TS ∩TP such that w is quiescent
in P but not in S. Let 〈`0S , σ0

S〉
w

=⇒S 〈`S , σS〉 and 〈`0P , σ0
P〉

w
=⇒P 〈`P , σP〉 (thus,

σS ∪ σP |= Reach(〈`S , `P〉)). Since w is quiescent in P , we have σP |= QuieP(`P).
Conversely, since w is not quiescent in S, we have σS 6|= QuieS(`S), and thus
σS ∪ σP 6|= (QuieP(`P)⇒ QuieS(`S)). ut

4 Parallel Composition

In this section, we generalize parallel composition of interface automata [7] to our pro-
cesses with data and quiescence. Intuitively, the parallel composition operator yields the
combined effect of its operands running asynchronously, but synchronizing on common
actions. We use a broadcast model of communication in which an output from a compo-
nent can be received by multiple components. An input ?a(d) and output !a(d) combine
to form an output !a(d). Here, the attributes ? and ! on actions (as in !a(d)) are not part
of the actions, they serve only to remind that the action in question is an input or output
in the considered context.

Product Operation Before defining parallel composition of processes, we will as an
auxiliary building block define the product of two processes as the process obtained
by letting them run in parallel, while synchronizing on common actions and ignoring
communication mismatches.

Let us define the parallel composition of two statements stmt1 = α(p); g1;x1 := e1

and stmt2 = α(p); g2;x2 := e2 with the same action α,4 in two processes with disjoint
sets of variables, as stmt1‖stmt2 = α(p); g1 ∧ g2;x1, x2 := e1, e2 .

We can now define product of two processes.
4 Similarly to many programming languages, we assume that actions only have positional argu-

ments, i.e., their formal parameters are identified solely by their order of occurrence in p, not
their name (if any).



Definition 3. Let P andQ be two processes. Then define δP⊗Q as the set of transitions
between product locations in LP × LQ, which is obtained from δP and δQ as follows.

– If 〈`P , stmt, `′P〉 ∈ δP has an action which is not an action of Q, (i.e., it is non-
synchronizing), then 〈〈`P , `Q〉, stmt, 〈`′P , `Q〉〉 ∈ δP⊗Q for any location `Q ∈ LQ.

– Symmetrically, if 〈`Q, stmt, `′Q〉 ∈ δQ has an action which is not an action of P ,
then 〈〈`P , `Q〉, stmt, 〈`P , `′Q〉〉 ∈ δP⊗Q for any location `P ∈ LP .

– If 〈`P , stmtP , `′P〉 ∈ δP and 〈`Q, stmtQ, `′Q〉 ∈ δQ have the same action, i.e., they
synchronize, then 〈〈`P , `Q〉, stmtP‖stmtQ, 〈`′P , `′Q〉〉 ∈ δP⊗Q. ut

Note that while we restrict ourselves to defining a product transition relation δP⊗Q
instead of a complete product operation P ⊗Q (mostly because there is no reasonable
choice for QuieP⊗Q), we nonetheless adapt the notation w

=⇒P⊗Q for sequences of
steps, as established in Section 2.

Parallel Composition We can now define parallel composition of processes. Note that
there does not always exist a parallel composition of two processes. A necessary (but
not sufficient, cf. Definition 5) precondition that has to be met is stated in the following
definition.

Definition 4. Two processes P and Q are composable if OP ∩OQ = ∅.5

Intuitively, the parallel composition will be obtained from the product by restricting
input transitions so that the product cannot reach an illegal state. A state of the product is
illegal if one of the processes can generate an output symbol in their joint set of symbols
which the other cannot receive. We say that a state of the product is unsafe if the product
can reach an illegal state by a sequence of output steps. The parallel composition is now
obtained by restricting input transitions so that they do not reach unsafe states.

Let us now formalize this intuition. First, we define a mapping, denoted IllegalP‖Q
from pairs of locations of P and Q to the formula

IllegalP‖Q(〈`P , `Q〉) :=
∨

α∈OP∩IQ

∃p. (gα`P ∧ ¬g
α
`Q) ∨

∨
α∈OQ∩IP

∃p. (gα`Q ∧ ¬g
α
`P )

Intuitively, IllegalP‖Q(〈`P , `Q〉) is true if P in location `P can produce a synchroniz-
ing output symbol for which Q does not have a matching input step, or vice versa.
Thereafter, we perform the pruning process, by defining the mapping UnsafeP‖Q from
pairs of locations of P and Q to formulas over XP ∪ XQ such that σP ∪ σQ |=
UnsafeP‖Q(〈`P , `Q〉) iff there exists a sequence of symbols w ∈ (OP ∪ OQ)∗

such that 〈〈`P , `Q〉, σP ∪ σQ〉
w

=⇒P⊗Q 〈〈`′P , `′Q〉, σ′P ∪ σ′Q〉 and σ′P ∪ σ′Q |=
IllegalP‖Q(〈`′P , `′Q〉). The mapping UnsafeP‖Q can be computed in a fashion simi-
lar to the computation of Reach , as illustrated in Algorithm 2.

5 Formally, composing P and Q also requires XP and XQ to be disjoint. However, this can be
assumed without loss of generality (as remarked in Section 3), as renaming variables does not
change the behaviour of a process.



Algorithm 2: Computing UnsafeP‖Q for product of P and Q
1 UnsafeP‖Q := IllegalP‖Q;
2 repeat
3 changed := false;
4 forall the output transitions 〈`, stmt, `′〉 of δP⊗Q do
5 φ := pre(stmt; UnsafeP‖Q(`

′));
6 if IsSat(φ ∧ ¬UnsafeP‖Q(`)) then
7 UnsafeP‖Q(`) := UnsafeP‖Q(`) ∨ φ;
8 changed := true;
9 until ¬changed ;

Definition 5. Let P andQ be processes. The parallel composition of P andQ exists if
and only if 1. P and Q are composable, and 2. σ0

P ∪ σ0
Q 6|= UnsafeP‖Q(〈`0P , `0Q〉). In

this case, it is the process P‖Q, obtained as
P‖Q = (IP‖Q, OP‖Q, LP‖Q, `

0
P‖Q, XP‖Q, σ

0
P‖Q, δP‖Q,QuieP‖Q), where

– IP‖Q = (IP ∪ IQ) \OP‖Q,
– OP‖Q = OP ∪OQ,
– LP‖Q = LP × LQ,
– `0P‖Q = 〈`0P , `0Q〉,
– XP‖Q = XP ∪XQ,
– σ0
P‖Q = σ0

P ∪ σ0
Q,

– δP‖Q is obtained from δP⊗Q by strengthening every guard g of every input transi-
tions of form 〈〈`P , `Q〉, α(p); g;x := e, 〈`′P , `′Q〉〉 in δP⊗Q to

g ∧ pre(x := e;¬UnsafeP‖Q(〈`′P , `′Q〉)) ,

– QuieP‖Q(〈`P , `Q〉) = IllegalP‖Q(〈`P , `Q〉) ∨ (QuieP(`P) ∧QuieQ(`Q)). ut

An important observation is that parallel composition preserves the consistency re-
quirement introduced in Section 2.

Proposition 2. Let P and Q be processes such that the parallel composition P ‖ Q
exists, and that P and Q are consistent with QuieP and QuieQ, respectively. Then,
P ‖ Q is consistent with QuieP‖Q, i.e., for any location `P‖Q ∈ LP‖Q,

QuieP‖Q(`P‖Q) ∨
∨

α∈OP‖Q

∃p. gα`P‖Q

is universally valid.

Proof. Let `P‖Q = 〈`P , `Q〉, and let σP‖Q be a valuation such that σP‖Q 6|=
QuieP‖Q(〈`P , `Q〉), i.e., we have σP‖Q 6|= IllegalP‖Q(〈`P , `Q〉) and either of
σP‖Q 6|= QuieP(`P) or σP‖Q 6|= QuieQ(`Q) (or both). Without loss of generality,
we only consider the first case. Due to the consistency of P , there exists an output ac-
tion α ∈ OP such that σP‖Q |= ∃p. gα`P . If α is not an (input) action of Q, then, by



definition of the parallel composition, we have gα`P‖Q ≡ gα`P (note that only guards of
input transitions are strengthened in Definition 5) and thus σP‖Q |= ∃p. gα`P‖Q . Oth-
erwise, we have gα`P‖Q ≡ gα`P ∧ g

α
`Q

. From σP‖Q 6|= IllegalP‖Q(〈`P , `Q〉) we can
conclude that σP‖Q |= ∀p. (gα`P ⇒ gα`Q). Combining this with σP‖Q |= ∃p. gα`P yields
σP‖Q |= ∃p. gα`Q , and thus σP‖Q |= ∃p. gα`P‖Q . ut

The following proposition establishes the important property that refinement is pre-
served by parallel composition.

Proposition 3. Let P , Q, S and T be processes with P v S and Q v T , such that
the parallel composition S ‖ T exists. Then the parallel composition P ‖ Q exists and
P ‖ Q v S ‖ T . ut

5 Quotient

In this section, we introduce the quotient operation, which can be seen as an “inverse”
of parallel composition. It is connected to the synthesis problem in the following way:
given a specification for a system R, together with a component P implementing part
of R, the quotient, denoted R \ P , yields the least refined (in the sense of v) process
for the remaining part of R, i.e., such that P ‖ (R \ P) v R. Therefore, quotient can
be thought of as an adjoint of parallel composition.

Looking at the treatment of sets of actions in Definition 5, we see that a necessary
requirement for the existence of a quotient is that OP ⊆ OR. Then, the set of output
actions of the quotient must be OR \ OP . However, there is some freedom for the set
IR\P of input actions of the quotient. From Definition 5, we take as a natural choice
IR\P to be (OP ∪ IR), since a quotient with these actions will always exist if there
is one with a smaller set, and since the subsequently presented technique to produce
a quotient will not have to consider the difficulties that come with actions that are not
visible to the quotient.

Computing the Quotient Let us provide an algorithmic construction of the quotient.
The structure of our construction is the following. We first construct the product of P
andR using the product construction of Definition 3. We thereafter constructR\P so
that it ensures that the combination of P and R does not reach an undesired state. An
undesired state occurs if 1. P can produce an output which cannot be produced by R,
or 2. R can receive an input which cannot be received by P , or 3. the state of R is not
quiescent, but it is a deadlock, that is, no output transition of R can be taken without
R\P losing control (i.e.,R\P will no longer be able to ensure that an undesired state
will not eventually be reached).

To enforce the above criteria, we define a mapping Bad from pairs of locations of
P and R to predicates over XP ∪ XR such that σ |= Bad(〈`P , `R〉) iff there exists
a sequence of symbols w ∈ O∗P such that 〈〈`P , `R〉, σ〉

w
=⇒P⊗R 〈〈`′P , `′R〉, σ′〉 and

〈〈`′P , `′R〉, σ′〉 is an undesired state according to any (or all) of the above criteria. In the
following, we describe how Bad can be computed algorithmically. As a first step, we
define a mapping NotRefineR\P from pairs of locations of P andR to predicates such



Algorithm 3: Computing Bad

1 Bad := NotRefineR\P ;
2 repeat
3 changed := false;
4 forall the OP -transitions 〈`, stmt, `′〉 of δP⊗R do
5 φ := pre(stmt;Bad(`′));
6 if IsSat(φ ∧ ¬Bad(`)) then
7 Bad(`) := Bad(`) ∨ φ;
8 changed := true;
9 forall the 〈`P , `R〉 ∈ LP × LR do

10 φ := DeadlockBad(〈`P , `R〉) ∧ ¬QuieR(`R);
11 if IsSat(φ ∧ ¬Bad(〈`P , `R〉)) then
12 Bad(〈`P , `R〉) := Bad(〈`P , `R〉) ∨ φ;
13 changed := true;
14 until ¬changed ;

that NotRefineR\P(〈`P , `R〉) is true in the situations that should be avoided according
to Criterion 1 or 2 above. We can represent NotRefineR\P(〈`P , `R〉) as the formula∨

α∈IR∩IP

(gα`R ∧ ¬g
α
`P ) ∨

∨
α∈OP

(gα`P ∧ ¬g
α
`R)

To formalize Criterion 3, we first define deadlock as a predicate parameterized by the set
of states which are uncontrollable (represented by the predicate Bad ), i.e., from which
R \ P cannot guarantee avoiding undesired states. We define DeadlockBad(〈`P , `R〉)
as

¬
∨
〈〈`P ,`R〉,stmt,〈`′P ,`′R〉〉∈δ

OR
P⊗R

pre(stmt; ¬Bad(〈`′P , `′R〉))

where δORP⊗R are the OR-transitions of δP⊗R. Notice that DeadlockBad(〈`P , `R〉) is
automatically true if 〈`P , `R〉 has no output transitions. A state 〈〈`R, `P〉, σ〉 is unde-
sired according to Criterion 3 above if

σ |= DeadlockBad(〈`P , `R〉) ∧ ¬QuieR(`R) .

The complete computation of Bad is illustrated in Algorithm 3.
After Bad is computed, we computeR \ P as the process

R \ P = (IR\P , OR\P , LR\P , `
0
R\P , XR\P , σ

0
R\P , δR\P ,QuieR\P) where

– IR\P = OP ∪ IR,
– OR\P = OR \OP ,
– LR\P = LP × LR,
– `0R\P = 〈`0P , `0R〉,
– XR\P = XP ∪XR,
– σ0
R\P = σ0

P ∪ σ0
Q,



– δR\P is obtained from δP⊗R by strengthening every guard g of every OR\P -
transition of the form 〈〈`P , `R〉, α(p); g;x := e, 〈`′P , `′R〉〉 in δP⊗R to

g ∧ pre(x := e;¬Bad(〈`′P , `′R〉)

– QuieR\P = QuieP(`P)⇒ QuieR(`R)

The input transitions ofR\P are the same as the input IR\P -transitions of δP⊗R. Out-
put transitions ofR\P will be obtained from OR\P -transitions of δP⊗R by equipping
them with additional guards which keep computations of (R\P) ‖ P outside Bad and
hence also outside undesired states.

The following proposition states that the quotient, if it exists, is indeed the most
general component that can cooperate with P to satisfyR.

Proposition 4. Let P and R be such that OP ⊆ OR and IP ⊆ (IR ∪ OR). If R \ P
as computed in this section exists, then

– P ‖ (R \ P) v R, and
– for any Q with OQ = OR\P and IQ = IR\P such that P ‖ Q v R, we have
Q v (R \ P). ut

Pruning the Quotient The quotient obtained by the above method may contain a sig-
nificant amount of redundancy. Particularly, 1. some of its states may never be reached,
2. some transitions may never be taken, and 3. some parts of conditions within guards
may be true for every computation reaching the source location of the transition.

To obtain a more compact solution, we will prune the redundant parts of R \ P .
Using a procedure analogous to Algorithm 1 in Section 3, we compute for every lo-
cation 〈`P , `R\P〉 of P ‖ (R \ P) a predicate Reach(〈`P , `R\P〉) such that a state
〈〈`P , `R\P〉, σ〉 is reachable in P ‖ (R \ P) iff σ satisfies Reach(〈`P , `R\P〉). As be-
fore, we assume (w.l.o.g.) that XR\P ∩XP = ∅; further, let us assume that XP is the
tuple xP1 , . . . , x

P
k . Then, for every location `R\P ofR \ P , we will compute

Reach(`R\P) = ∃xP1 , . . . , xPk .
∨

`P∈LP

Reach(〈`P , `R\P〉)

which characterizes all possible valuations of variables of R \ P that can appear in a
computation of P ‖ (R\P) together with `R\P . We then prune the redundancies of the
types 1–3 above fromR \ P as follows:

1. Remove locations `R\P where IsSat(Reach(`R\P)) is false.
2. Remove transitions 〈`R\P , α(p); g;x := e, `′R\P〉where IsSat(Reach(`R\P)∧g)

is false.
3. For each remaining transition 〈`R\P , α(p); g;x := e, `′R\P〉, we weaken the guard
g to Reach(`R\P) ⇒ g, possibly enabling further simplification of the formula
(e.g., by transforming it to DNF and removing redundant literals and clauses).
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CFRing XMPP

?start()

!msgout(p); true;msg1 := p

!id(p); true; id1 := p

?X(p1, p2, p3, p4);
p1 = id1 ∧ p2 = msg1

?who(p); true; id2 := p

?msgin(p); true;msg2 := p

?X(p1, p2, p3, p4);
p3 = id2 ∧ p4 = msg2

r0

r1

r2

R

!start() !msgout(p)
!msgin(p)
!id(p)
!who(p)!X(p1, p2, p3, p4); p1 = p3 ∧ p2 = p4;

Fig. 1. Messaging clients CFRing and XMPP , on the left. The synthesis problem is specified
by the processR on the right.

6 Applications to the Synthesis of Mediators

We demonstrate our framework and our implementation on examples from mediator
synthesis. A mediator is a process that mediates communication between several par-
ties with incompatible interfaces, ensuring that they interact to achieve a certain aim,
while preventing any communication mismatches. We demonstrate how this task can be
specified as a problem of computing a quotient for a specificationR which can be auto-
matically generated from this aim. We have implemented the computation of quotient,
and illustrate its application on mediator synthesis in e-commerce applications.

Messaging Protocol In the first example, the scenario consists of two incompatible
messaging protocols, CFRing and XMPP , both of which need to communicate with
one another through a mediator that we must construct. The two messaging clients are
represented by the two processes shown on the left in Figure 1. In the description, we
omit guards of transitions that are true. Variables are initialized by a special value ⊥.

– The process CFRing has input actions start, output actions msgout and id, vari-
ables msg1 and id1, and locations {l0, l1, l2, l3, l4}.

– The process XMPP has input actions msgin and who, variables msg2 and id2,
and locations {m0,m1,m2,m3}.

The goal of the communication is that the two clients agree on the message and the id.
That is, the values of variables msg1 and id1 of CFRing should on termination be
equal to the values of msg2 and id2 of XMPP . This goal can be captured by adding
a special action X, which is performed at the end, and which reveals the values of the
relevant variables of CFRing and XMPP . The specificationR allows the components
to perform any sequence of actions, but requires that quiescence is reached only after
jointly performing the X action, where the revealed variables satisfy the desired goal
constraints. In other words, the communication parties are forced to reveal the values of
their variables within action X, andR checks that they correspond.R does not specify
what exactly happens before, it only states that the trace should begin with start and
may continue by any sequence of actions msgout, msgin, id, and who. To ensure that



〈l0,m0〉 〈l1,m0〉 〈l2,m0〉 〈l3,m0〉

〈l0,m1〉 〈l1,m1〉 〈l2,m1〉 〈l3,m1〉

〈l0,m2〉 〈l1,m2〉 〈l2,m2〉 〈l3,m2〉

〈l4,m3〉

P
?start()

!msgout(p); true;
msg1 := p

!id(p); true;
id1 := p

?X(p1, p2, p3, p4);
p1 = id1 ∧ p2 = msg1 ∧ p3 = id2 ∧ p4 = msg2

?who(p); id2 := p

?msgin(p);msg2 := p

〈〈l0,m0〉, r0〉 〈〈l1,m0〉, r1〉 〈〈l2,m0〉, r1〉 〈〈l3,m0〉, r1〉

〈〈l1,m1〉, r1〉 〈〈l2,m1〉, r1〉 〈〈l3,m1〉, r1〉

〈〈l1,m2〉, r1〉 〈〈l2,m2〉, r1〉 〈〈l3,m2〉, r1〉

〈〈l4,m3〉, r2〉

δP⊗R
start()

msgout(p); true;
msg1 := p

id(p); true;
id1 := p

who(p); true; id2 := p

msgin(p); true;msg2 := p

X(p1, p2, p3, p4);
p1 = id1 ∧ p2 = msg1 ∧ p3 = id2 ∧ p4 = msg2∧

p1 = p3 ∧ p2 = p4

Fig. 2. The process P = CFRing ‖XMPP and the transition relation δP⊗R. The statements of
the transitions marked by vertical arrows are defined by the labels on the left margin of the figure.
The statements of the transitions marked by horizontal arrows are defined by the labels on the top
margin of the figure.

X will indeed be performed eventually, that is, that both processes reach their terminal
states, QuieR is defined to be false for r0, r1 and true for r2.

We follow the scheme of the previous sections, and compute first the process P =
CFRing ‖XMPP shown in the upper part of Figure 2, which inherits all the transitions
of CFRing and XMPP unsynchronized. We are looking for the least refined process
such that its composition with P refines R, that is, we are looking for the quotient
R\P . The next step is the construction of the transition relation δP⊗R which is shown
in Figure 2 (lower part). We proceed by computing the mapping Bad that characterizes
uncontrollable states of R \ P (from where R \ P cannot guarantee that no undesired
state is reached). This is done by running Algorithm 3.

Let us discuss some steps of the computation of Bad in detail. The undesired
states here are only those which deadlock and are not quiescent according to R, that
is, the location of R is different from r2. Since Bad(`) is initially false for all lo-
cations of R \ P , the computation starts by evaluating DeadlockBad . Let us pick
the location ` = 〈〈l3,m2〉, r1〉. DeadlockBad(`) evaluates initially to the disjunction
ϕ ≡ id1 6= id2 ∨ msg1 6= msg2, which falsifies the guard of the only output tran-
sition of ` (leading to 〈〈l4,m3〉, r2〉). We set Bad(`) to ϕ and we then propagate
Bad(`) = ϕ backwards via output transitions of R. The precondition of ϕ with re-
spect to the transition from `′ = 〈〈l2,m2〉, r1〉 to ` is evaluated as true (particularly, the
disjunct id2 6= id1 is first transformed into id2 = p which is then turned into true by



〈〈l0,m0〉, r0〉 〈〈l1,m0〉, r1〉 〈〈l2,m0〉, r1〉 〈〈l3,m0〉, r1〉

〈〈l3,m1〉, r1〉

〈〈l3,m2〉, r1〉

〈〈l4,m3〉, r2〉

R \ P
!start()

?msgout(p); true;
msg1′ := p

?id(p); true;
id1′ := p

!who(p); p = id1′; id2′ := p

!msgin(p); p = msg1′;msg2′ := p

!X(id1′,msg1′, id2′,msg2′)

Fig. 3. The resulting mediatorR \ P for the application with messaging.

the existential quantification over p). Hence, we set Bad(`′) to true; therefore, R \ P
must avoid visiting `′ in all situations. Note that it is indeed the case that if R \ P al-
lows XMPP to reach state m2 (where the value of msg2 is already fixed) before msg1
is generated by CFRing , then R \ P cannot guarantee msg1 = msg2 at the end of
the communication which may lead to an undesired deadlock. Let us now look at the
precondition of ϕ wrt. the transition from 〈〈l3,m1〉, r1〉. Since ` is its successor and we
have set Bad(`) = ϕ, DeadlockBad(〈〈l3,m1〉, r1〉) evaluates to id2 6= id1 (particu-
larly, the disjunct msg1 6= msg2 turns into msg1 6= p which after the universal quan-
tification over p becomes false). (Particularly, ¬Bad(`) ≡ id1 = id2∧msg1 = msg2,
pre(¬ϕ,msgin(p);msg2 := p) evaluates to id1 = id2 which is then negated.) Intu-
itively, this reflects the fact that when CFRing is in state l3 and XMPP in statem1, the
values of id1 and id2 should be already equal since they cannot become equal other-
wise. The rest of the symbolic backward computation of Bad is carried out analogously.

The construction of R \ P continues by adding guards to the transitions of δP⊗R
to guarantee that any computation stays outside of Bad . Finally, we prune unreachable
states, useless transitions, and redundant guard conditions, as described in Section 5.
The resulting quotientR \ P is shown in Figure 3.

E-Commerce The next example is a more realistic and larger system. Due to its size,
we only explain the specification and the functionality of the system and the synthesized
mediator. We are given both a client and a customer service application, shown in Fig-
ure 4, that together are supposed to realize an e-commerce workflow, but are incompat-
ible. The client Blue starts by sending a StartOrder message containing its id and ex-
pects to receive an id of a new order. It then orders a number of items in some quantities
using the AddToOrder action, provides its payment information via the PlaceOrder
action, and expects all items together with their quantities to be confirmed by the cus-
tomer service. It blocks in case that it does not receive the right confirmation. Blue then
announces that it is ready to quit the transaction and expects to receive the result of the
payment transaction, Result (indicating whether or not the payment transaction was
successful).

The customer service Moon expects to receive the client’s id, then it sends a con-
firmation and sends an id of a new order, together with a client verification. It is then
prepared to repeat a loop in which it 1) receives an order of an item, 2) receives a quan-
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stmt = PlaceOrder(p1, p2); p1 = OrderId;CreditCardNo := p2
stmti = AddToOrder(p1, p2, p3); p1 = OrderId;

ItemIdi, Quantityi := p2, p3
stmt′i = ReceiveConfirmation(p1, p2, p3);

p1 = OrderId ∧ p2 = ItemIdi ∧ p3 = Quantityi
stmtia = process item(p1, p2); p1 = order id; item idi := p2
stmtib = set quantity(p); true; quantityi := p
stmtic = confirm item(order id, item idi, quantityi)
stmtd = close order(p1, p2); p1 = order id; credit card no := p2

Blue(n) Moon(n)

Fig. 4. Client Blue and service Moon , parameterized by maximum number of ordered items n.
.



tity in which the item is ordered, and 3) confirms that the item in the given quantity is
ordered. After that, it receives payment information, arranges the payment via a third-
party service (which is invisible to the client and not modelled here), and sends the
result of the payment transaction.

Ideally, we would like to model the scenario where the client can order any number
of items. However, our modelling mechanism allows only processes with a finite num-
ber of variables. This scenario would require processes with an unbounded number of
variables, both for the Blue and Moon services and for the specification, as well as for
mediator. We therefore restrict ourselves to the case where the number of ordered items
is bounded by a constant n, which becomes a parameter of the synthesis problem.

The specification (parameterized by the maximum number of ordered items n) is
given by the processR(n) in Figure 5. QuieR is defined as true for r2 and false other-
wise. Similar to the previous examples,R specifies that both sides finish the transaction
and that at the end of the transaction, both sides agree on all the important values.

A mediator for a fixed number of ordered items n can be synthesized analogously
to the previous example. We construct the process P = Blue(n) ‖Moon(n) and syn-
thesize the mediator in the form of the quotient R \ P by: 1. computing the predicate
Bad characterizing uncontrollable states of the product of P andR, using Algorithm 3,
2. strengthening guards in δP⊗R so that no uncontrollable state (and hence no unde-
sirable state) can be reached, and 3. pruning the useless states and transitions, utilizing
Algorithm 1. The synthesized mediator for the case n = 2 is shown in Figure 6. For
simplicity, the figure displays only the P-component of locations of R \ P , i.e., the
locations of Blue(2) ‖Moon(2). The location 〈b0,m0〉 is coupled with r0, the location
〈b6,m6〉 with r2, and all the other displayed locations with r1.

The functionality of the synthesized mediator can be explained as follows. It first
brings the system to the point when Blue has ordered its first item (the state 〈b12,m0

3a〉).
It can now decide to start forwarding the first order to Moon (vertical transitions). At
the same time, it has to be ready to receive either the second order or the credit card
details from Blue (the horizontal transitions). If Blue ordered also the second item,
the mediator will forward the second order to Moon after it has forwarded the first
one. The mediator will send the payment credit card details to Moon only after it has
received it from Blue and after it has forwarded all orders of Blue (this is taken care
of by the guard of the statement stmt∗d). It waits for Blue to confirm all orders. Sending
confirmations to Blue is independent from receiving confirmations from Moon since
to send the right confirmations, the mediator only needs to know what was ordered
by Blue. The mediator can therefore choose from many variants of interleaving the
communication with Blue and Moon .

7 Summary and Future Work
We have extended the theory of interface automata [7] with data and progress, using
mechanisms that have been naturally adapted from similar other works in the literature.
The resulting theory allows to capture data-flow behaviour at the modelling level, and
can also be used to formulate the mediator synthesis problem. Further extensions can
be done along several dimensions. One is to extend the theory to richer sets of relations
and functions over the data domain. Another dimension is to handle non-deterministic
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!StartOrder′(p), !PlaceOrder(p1, p2, p3),
!AddToOrder(p1, p2, p3),
ReceiveConfirmation(p1, p2, p3),
!Quit(p), Quit′(p)
!login(p), !login′(p), !create order(p1, p2, p3),
!process item(p1, p2), !set quantity(p),
!confirm item(p1, p2, p3)
!close order(p1, p2, p3), !close order

′(p)

!X(p1, . . . , p4n+6);
∧2n+3

i=1 pi = pi+2n+3

Fig. 5. Specification of the synthesis problem where the number of ordered items is bounded by
n is given by the processR(n).
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?StartOrder(p);
true;

CId := p

!login′(p);
p = CId;
cid := p ?login(p)

?create order
(p1, p2); true;
oid, cv := p1, p2

!StartOrder′(p);
p = oid;
OId := p

?stmt1

?stmt2

?stmt

!stmt1a

!stmt1b

?stmt1c

!stmt2a

!stmt2b

?stmt2c

!stmtd

?close order′(p);
true; r := p

!stmt′2!stmt′1?Quit(p)

!Quit(p); p = r;R := p

!X(I1, . . . , In, Qi, . . . , Qn, OId, CCN,R,
i1, . . . , in, qi, . . . , qn, oid, ccn, r)

?stmt

?stmt

?stmt

?stmt

!s
tm

t∗ d

!s
tm

t∗ d

!s
tm

t∗ d

R \ P

stmt = PlaceOrder(p1, p2); true;CCN := p2
stmti = AddToOrder(p1, p2, p3); true; Ii, Qi := p2, p3
stmt′i = ReceiveConfirmation(OId, Ii, Qi)
stmtia = process item(p1, p2); p1 = oid; ii := p2
stmtib = set quantity(p); p = Qi; qi := p
stmtic = confirm item(p1, p2, p3)
stmtd = close order(p1, p2); true; ccn := p2
stmt∗d = close order(p1, p2);

I1 ∧ q2 = Q2 ∧ i2 = I2; ccn := p2

Fig. 6. Resulting mediator R \ P for the e-commerce service with n = 2. The labels of the
vertical edges in a row agree with the label of the right-most edge in the row, the labels of the
horizontal edges in a column agree with the label of the bottom edge of the column.



processes, which brings the problem of uncertainty – the mediator cannot be completely
sure about the state of the systems it controls. A further dimension is to extend the spec-
ification framework to cover liveness properties. Such extensions have been considered
for the finite-state case in the literature (see, e.g., [19]), but their adaption to handle data
appears nontrivial.
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