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Abstract. Model learning is a black-box technique for constructing
state machine models of software and hardware components, which has
been successfully used in areas such as telecommunication, banking cards,
network protocols, and control software. The underlying theoretic frame-
work (active automata learning) was first introduced in a landmark pa-
per by Dana Angluin in 1987 for finite state machines. In order to make
model learning more widely applicable, it must be further developed to
scale better to large models and to generate richer classes of models.
Recently, various techniques have been employed to extend automata
learning to extended automata models, which combine control flow with
guards and assignments to data variables. Such techniques infer guards
over data parameters and assignments from observations of test output.
In the black-box model of active automata learning this can be costly
and require many tests, while in many application scenarios source code
is available for analysis. In this paper, we explore some directions for
future research on how black-box model learning can be enhanced us-
ing white-box information extraction methods, with the aim to maintain
the benefits of dynamic black-box methods while making effective use of
information that can be obtained through white-box techniques.

1 Introduction

Model learning, also known as active automata learning, is a black-box technique
which constructs state machine models of software and hardware components
from information obtained by providing inputs and observing the resulting out-
puts. Model learning has been successfully used in several different application
domains, including

— generating conformance test suites of software components, a.k.a. learning-

based testing (e.g., [39, 38)]),

finding mistakes in implementations of security-critical protocols (e.g., [3,

16,62, 29, 30, 28]),

learning interfaces of classes in software libraries (e.g., [42]),

— checking that a legacy component and a refactored implementation have the
same behavior (e.g., [63]).



Active automata learning techniques are partly based on a landmark paper by
Angluin [6] showing that finite automata can be learned in the so-called Min-
imally Adequate Teacher (MAT) framework [6], using two types of queries. A
membership (or I/0) query asks what the output is in response to an input
sequence. An equivalence query asks whether a hypothesized state machine is
equivalent to the sought finite automaton; it is answered by yes if this is the
case, otherwise by a counterexample that distinguishes the hypothesized and
sought state machines.

Steffen et al [38] made the the important observation that the MAT frame-
work can be used for black-box learning of abstract and concise state machine
models of software components. They assume a software component, called the
System Under Learning (SUL), whose behavior can be described by (an un-
known) state machine, and which can always be brought back to its initial state.
An I/0 query can now be implemented by bringing the SUL to its initial state
and then observing the outputs generated in response to the given input se-
quence. Equivalence queries can be approximated using a conformance testing
tool [9,52,68] via a finite number of test queries to the SUL. Peled et al [60,
37] observed that learning models can be used as a basis for model checking of
black-box components.

The most widely known algorithm for model learning of finite automata is
L* [6], which has, e.g., been implemented in the LearnLib framework [48]. A
key strengh of model learning is that it aims to produce succinct models of the
externally observable behavior of the SUL. This allows it to extract simple mod-
els of complex software, especially if we choose the right perspective (e.g., focus
on a subset of a component’s functionality) and apply appropriate abstractions.
Examples are implementations of network protocols, which typically consist of
many thousands of lines of code, but after appropriate abstraction induce state
diagrams with at most a few dozen states, see e.g. [62, 29].

There is certainly a large potential for application of model learning to many
different aspects of software development, maintenance and refactoring, espe-
cially when it comes to handling legacy software. We survey examples of existing
such applications in Section 3. To realize this potential, two major challenges
must be addressed: (1) currently, techniques do not scale well, and (2) they are
not yet satisfactorily developed for richer classes of models. Let us elaborate on
these challenges.

1. Concerning scaling, we note that the complexity of the currently most ef-
ficient algorithm for active learning of finite-state models [50] has a cubic
worst-case time complexity in the size of the learned model. Another expen-
sive component of model learning is that sufficiently precise approximation
of equivalence queries in a black-box setting may require a number of mem-
bership queries that is exponential in the number of states of the SUL.

2. Concerning richness of models, in many situations it is crucial for models
to also be able to describe data flow, i.e., constraints on data parameters
that are passed when the component interacts with its environment, as well
as the mutual influence between control flow and data flow. For instance,



models of protocol components must describe how different parameter val-
ues in sequence numbers, identifiers, etc. influence the control flow, and vice
versa. Such models often take the form of extended finite state machines (EF-
SMs). Recently, various techniques have been employed to extend automata
learning to EFSM models, which combine control flow with guards and as-
signments to data variables [15, 3]. Such techniques either rely on manually
constructed mappers that abstract the data aspects of input and output
symbols into a finite alphabet, or otherwise infer guards and assignments
from observations of test outputs. The latter can be costly, especially for
models where control flow depends on test on data parameters in input: in
this case, learning an exact guard that separates two control flow branches
may require a large number of queries. For instance, to infer that a branch
is taken if an input parameter is greater than 42 may take a number of
membership queries.

One way to address these challenges is to augment model learning with white-
box information extraction methods, which are able to obtain information about
the SUL at lower cost than black-box techniques. When dealing with computer-
based systems, there is a spectrum of how much information we have about the
code. For third party components that run on separate hardware, we may not
have access to the code at all. Frequently we will have access to the executable,
but not anymore to the original code. Or we may have access to the code, but
not to adequate tools for analyzing it (this often happens with legacy compo-
nents). If we can construct a good model of a component using black-box learning
techniques, we do not need to worry about the code. However, in cases where
black-box techniques do not work and/or the number of queries becomes too
high, it makes sense to exploit information from the code during model learning.
In this article, we explore how existing approaches for model learning can be
improved by effective use of available white-box information about the SUL (the
full code, the executable,..), with the aim to maintain the benefits of black box
methods.* We will develop three promising directions for future research:

1. In a black-box setting equivalence queries are approximated using a finite
number of test queries to the SUL. This is time consuming and often consti-
tutes a major bottleneck in model learning [65]. Moreover, the approximation
may be incorrect because, as Dijkstra observed, testing can be used to show
the presence of bugs, but never to show their absence. We have no guaran-
tees that a learned model is correct. In Section 6.1, we review a number of
techniques that use white-box information about the SUL to reduce the time
required to find discrepancies in a hypothesis model, or to prove the absence
of such discrepancies.

4 Of course, dynamic white-box techniques (for instance, based on symbolic execution)
or other static analysis white-box techniques can also be used to generate models
directly from code without using any active learning. Such models, however, will typ-
ically depend heavily on the internal structure of the SUL’s program, and programs
with the same observale behavior do not necessarily induce equivalent models.



2. In Section 6.2, we discuss extensions of Angluin’s MAT framework with new
types of queries. A learner may for instance ask which previous values and
operations have been used by the SUL to compute some output value. Or
she may ask if some previous input value may subsequently be tested or
output by the SUL. Such queries may dramatically simplify the task for the
learner, but can often be simply answered by the teacher using off-the-shelf
code analysis tools. An example would be a query about which registers are
needed in a specific state or location.

3. Finally, access to the source code of a program or component can be used
to compute information about the component that can help saving queries
during learning. Information about which methods access internal variables
and read or write those variables, e.g., can be used to decide whether queries
can be reduced or even skipped. We discuss possible use cases for static code
analysis in Section 6.3.

In order to make the discussion of the paper concrete, we will place it in a simple
setting that is well-understood, namely register automata. Register automata
(and the related nominal automata) constitute an extension of finite automata
in which data values may be communicated, stored and manipulated. Recently,
black-box learning algorithms have been generalized from finite automata to
register automata [15, 1, 57].

Outline. We start by giving a brief overview to the field of model learning:
In the next section, we provide a short introduction to the underlying learning
setting and the practical challenges that arise when using automata learning
for generating models of program behavior. Section 3 discusses related work and
highlights cases in which learning has been applied successfully in practice. In the
second half of the paper we develop several proposals for leveraging white-box
analysis techniques in the concrete setting of learning register automaton models:
We introduce register automata in Section 4 and we discuss existing learning
algorithms for register automata in Section 5. We conclude by presenting our
proposals in Section 6.

2 Inferring Models of Program Behavior

The general setting that we consider is illustrated in Figure 1. We assume a
SUL that execute some program in the set Programs. The semantics of pro-
grams is given by a function beh : Programs — Behaviors that describes the
external, observable behavior of the SUL when it runs a program. Two pro-
grams P, P’ € Programs are deemed equivalent if they induce the same be-
havior: P = P’ < beh(P) = beh(P’'). We postulate that each program
P € Programs can be described by a model model(P) from some universe
Models. In general, a program can be described by several models. The se-
mantics of models is specified by a function beh; : Models — Behaviors and
we assume beh(P) = behps(model(P)). Within the area of model-based test-
ing, this assumption is commonly referred to as the test hypothesis [11,31]. Two
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Fig. 1: Learning setting.

models M and M’ are equivalent if they induce the same observable behavior:
M=M <& behp (M) = behp (M.

Many instantiations of this general framework are possible. In the case of
reactive systems, for instance, the set Behaviors may consist of functions A :
¥ — 2* from sequences of inputs to sequences of outputs that preserve the
prefix ordering (here denoted <) and the length of sequences, that is, for all
w,w € X, w<w = ANw) < Aw') and | AM(w) |=| w |. In this case, the set
Models naturally consists of (deterministic) Mealy machines with inputs X and
outputs (2. For reactive systems in which inputs and outputs do not alternate
strictly, Behaviors may be defined as the class of prefix closed sets of suspension
traces and Models as the class of I/O transition systems [69,72].5

2.1 Model Learning

Model learning is relevant in situations where we do not know model(P), either
because we do not even know P, or because we know P but are somehow unable
to compute model(P) from P. In order to learn a model M with M = model(P),
we postulate a collection Queries of queries that can be applied to the SUL. A
function resp : Queries X Programs — Responses specifies the result of applying
a query to the SUL that is running some program. In the setting of Mealy ma-
chines, for instance, Angluin’s MAT framework uses I/O queries and equivalence
queries. An I/O query consists of a sequence of inputs w € X* and the response
is given by

resp(w, P) = beh(P)(w).

5 In fact, in the case of nondeterministic reactive systems, instantiations of our frame-
work may be defined for for each equivalence from the linear time — branching time
spectrum of Van Glabbeek [33]. However, as far as we know, such instantiations have
not yet been studied in the literature on model learning.



An equivalence query consists of an hypothesis H € Models and the response
satisfies

_ [ yes if behp(H) = beh(P)
resp(H, P) = {no,w otherwise, where w € X* and beh s (H)(w) # beh(P)(w).

The queries of the MAT framework are extensional: in order to answer them we
do not need access to the program, but only to its observable behavior. Formally,
for all programs P and P’ and queries Q,

P =P = resp(Q, P) = resp(Q, P).

2.2 Abstraction

As stated in the introduction, the strength of model learning is that it can
produce simple models of complex systems. This, of course, depends on the
application of an appropriate abstraction. In the above description of model
learning, such an abstraction is hidden in functions beh and behy;. While in
practice, beh s usually is the semantics associated with the class of models that
is inferred by some learning algorithm, the function beh abstracts the actual
observable behavior of a program to the level of this semantics. Angluin’s MAT
framework, e.g., has been implemented for Mealy machine models over finite sets
of inputs and outputs [46], where behy; is a mapping from sequences of inputs to
outputs. On the other hand, learning Mealy machine models of realistic software
components requires a test harness which translates the abstract sequences of
inputs to concrete seqeuences of method invocations on the component interface,
and abstracts concrete return values of invocations to abstract outputs.

The choice of a class of models requires the existence of a learning algorithm
for this class of models as well as the definition of a function beh that abstracts
concrete program executions to traces in the semantics of this class of models.
Defining such an appropriate abstraction beh oftentimes is not trivial as it is re-
quired to be deterministic and determines the aspects of a component’s behavior
that becomes observable.

The extension of learning algorithms to richer classes of models is an effort
that has two positive impacts in this scenario: On the one hand, using more
expressive classes of models can help representing more interesting aspects of
a component’s behavior in a model. On the other hand, using more expressive
models can mitigate the laborious and often error-prone burden of defining ap-
propriate functions beh.

This has led to multiple lines of works that extend Angluin’s MAT framework
to richer classes of models — most notably classes that can describe control-flow
as well as data-flow or timing information. Extensions require finding right-
congruences for more expressive classes of automata. One principal challenge
that all these works face is that in a black-box setting, models can only be learned
from observable behavior. Inferring complex causal relations like data manipu-
lations or timed behavior quickly requires many queries and often has principle



class WindowProtocol {
uint32_t seqg = 0;
public:
void msg(uint32_t s, int d) {
assert ( segtl <= s
&& s <= seq + 100);
seq = s;
—Oo msg(IN.WINDOW) o
// data handling
//

- msg(p) | x+1=p
z:=0 *’9@ o=p }
” int ack() {

msg(p) | z4+100=p
z:=p

return seqg;

}
L msg(p) | z<pAp<z+101 }
z:=0—>0<o —p

Fig. 2: Models (left) and code (right) for a fictitious protocol component

limitations (e.g., the absence of a right-congruence) as has been shown for learn-
ing timed automata [36] models which cannot in general be determinized.

White-box access to a component can be beneficial for defining adequate beh
functions, for reducing the number of required tests as well as for alleviating
limitations on the expressivity of inferred models.

2.3 Example: A protocol component

We illustrate the above concepts using a small fictitious protocol component
as an example. The C-code for the component is shown in the right half of
Figure 2. The component has two methods msg(uint32_t s, int d) and ack(),
and one internal field seq that is initialized to 0. The msg method is guarded to
accept only sequence numbers s in a certain window relative to seq. If the guard
is satisfied, the internal field seq is updated to the value of s . The method then
performs some operation on the payload data d that is not observable from the
outside of the component (values of d are not stored and no observable error can
occur while operating on d). The ack method returns the current value of seq.

When inferring a model of the behavior of the WindowProtocol component,
a class of models and a corresponding function beh has to be fixed that abstracts
the observable behavior of the component to the semantics of this class. The left
half of Figure 2 shows four models of the behavior of this component at different
levels of abstraction, i.e., for different classes of models and different functions
beh. For the purpose of illustration, the models only cover the behavior of the
component under the msg(uint32-t s, int d) method. In each model, we con-
sider a behavior to be a sequence of calls to the msg(uint32_t s, int d) method
(at some level of abstraction), which does not trigger any failing assertion. The
model itself represents the set of such behaviors.



The first model is the (huge) finite state automaton that results from using
(abstract) inputs msg(i) for all ints ¢ and translating those to calls msg(i,d)
with some random fixed d. Each state of the model represents one concrete
valuation of the variable seq of the component. All states can be distinguished
since they accept pairwise different sets of invocations of msg(i) for Integer data
values 7. Only accepting locations are shown. While this model is finite and
faithful to the behavior of the component, it is expensive to infer (due to the
size) and of limited explanatory value.

The second model is a much more concise finite state machine that can be
obtained by using the same learning algorithm as for the first model but with
a much more involved function beh that basically models the implementation of
the msg method and can concretize sequences of abstract msg(IN.WINDOW)
inputs to consecutive concrete method invocations with sequence numbers in the
accepted respective windows. While the model is a perfect and concise documen-
tation of the behavior of the component, it can only be inferred and interpreted
with the help of an involved and state-dependent beh function.

The third model is a register automaton that can encode storing of method
parameters (p) in registers (z) and compares parameters and sums of registers
and constants for equality. We define register automata formally in Section 4. For
this preliminary discussion, please note that the register automaton has a single
accepting location that corresponds to all concrete accepting states in the first
model. The model has one hundred transitions that loop from this location for
all guards « + ¢ = p where 1 <4 < 100. Current learning algorithms for register
automata models [15] would need two inputs for producing such a model: a
grammar for terms allowed in equalities, e.g., t == z 4+ ¢ | p, and the set of
allowed constants c.

Finally, in the fourth model, the one hundred transitions of the third model
are merged into a single transition with a slightly more expressive guard, using
inequalities instead of equalities and the single constant 101. As in the above
case, a learning algorithm would need to be capable of inferring guards with
inequalities and receive the constant as an input.

The example shows the potential for application of white-box information
during model inference. Access to the source code of the component can be
used, e.g., to identify methods that do not change the state of the component,
to identify the required expressivity of guards or the necessary constants in an
automated fashion. White-box analyses can also be used to determine, which
parameters are stored in fields or to compute symbolic guards with fewer execu-
tions.

3 Related Work and Applications

Active automata learning gained a lot of traction over the past few years as a
technique for inferring models of software components. One indication of the
growing attention is a recent article on model learning in the Communications
of the ACM [70]. In fact, the field and its applications have grown and diversified



to an extent that makes it impossible to provide a complete and comprehensive
overview here. Instead, we try to sketch the lines of work that target increased
expressivity of inferred models or the integration of white-box approaches. Ad-
ditionally, we provide some examples of works that have shown positive results
of using learned models for the (formal) analysis of components and systems.

From DFA to more expressive models. Dana Angluin presented the MAT
model and a first learning algorithm (named L*) in her seminal 1987 paper [6].
The L* algorithm infers deterministic finite automata models of unknown regu-
lar languages. Hungar and co-authors presented the first learning algorithm for
Mealy machine models in the MAT model [46]. Their work was motivated by
the goal of producing more natural models of input/output behavior as well as
reducing the cost of learning models.

Learning algorithms for Mealy machine models have been the basis for a
line of works that construct behp functions (so-called mappers) for inferring
models of infinite-state components. This approach is described explicitly for
the generation of models from protocol entities in [3].

However, defining mappers is an error-prone and laborious manual effort.
In [44] automated alphabet abstraction refinement is integrated with active
learning to overcome this problem. More recent works extend this approach
and combine automata learning with learning symbolic descriptions of transi-
tion structures, e.g., for models with large or infinite structured alphabets [56],
or for alphabets that expose an algebraic structure [25].

The above approaches essentially still infer finite state machine models. An-
other different line of work aims at extending model learning to infinite state
models in which states are defined over sets of variables. The authors of [10]
present a technique for inferring symbolic Mealy machines, i.e., automata with
guarded transitions and state-local sets of registers. The presented technique
learns a Mealy machine over a large enough finite domain. In a post-processing
step, from this Mealy machine a symbolic version is constructed.

Howar et al. extend active automata learning in the MAT model to register
automata, which model control-flow as well as data-flow between data parame-
ters of inputs, outputs, and a set of registers [43]. Registers and data parameters
can be compared for equality. The authors demonstrate the effectiveness of their
approach by inferring models of data structures [42] and extend the expressivity
to allow for arbitrary data relations that meet certain learnability criteria [15, 14].
Aarts and co-authors develop a slightly different approach for inferring register
automata models that can compare registers and data parameter for equality [5,
1]. The two approaches are compared in [2].

A more in-depth overview of works that extend active automata learning to
infinite state models is provided in [49].

Applications. After Peled and co-authors suggested active automata learn-
ing for making black-box systems amenable to the application of formal meth-
ods [60], Hagerer et al. pioneered the application of active automata learning for
generating models of components; components of a computer telephony system
in their particular case [38,39]. The models were used as a basis for testing the



system. In recent years, generating models for testing has been continued by
different authors for several types of systems, e.g., for Event-B models [23, 24],
for graphical user interfaces of android applications [18,19], and for integration
testing [64] of automotive components. Meinke and Sindhu present LBTest, a
tool for learning-based testing for reactive systems, integrating model checking,
active automata learning, and random testing [55].

Other applications target generating behavioral specifications of Web appli-
cations [61], the new biometric European passport [4], bot nets [12], and enter-
prise applications [73]. Margaria et al. showed that model learning may help to
increase confidence that a legacy component and a refactored implementation
have the same behavior [53]. Inspired by this work, Schuts et al. use inferred spec-
ifications and equivalence checking to assist re-engineering of legacy software in
an industrial context at Philips [63]. Sun et al. use active automata learning
in combination with automated abstraction refinement and random testing for
finding abstract behavioral models of Java classes [67].

An emerging area of applications is the learning-based analysis of safety or
security of components and systems: De Ruiter and Poll use active automata
learning for inferring models of TLS implementations and discover previously
unknown security flaws in the inferred models [62]. Xue et al. use active au-
tomata learning for inferring behavioral models of JavaScript malware [74]. Fit-
erau et al. use learning and model checking to analyze the behavior of different
implementations of the TCP protocol stack and document several instances of
implementations violating RFC specifications [29]. Using a similar approach,
Fiterau et al. show that also three different implementations of the SSH pro-
tocol violate the RFC specifications [30]. Khalili and co-authors [51] use active
automata learning to obtain behavioral models of the middleware of a robotic
platform. The models are used during verification of control software for this
platform.

Integration of white-box techniques. In [54], Margaria et al. investigate the
potential of what they call “domain-specific knowledge” for reducing the cost
of learning models. Their domain-specific knowledge, e.g., assumptions about
prefix-closedness of an unknown target language or the independence of inputs,
is a first example of the kind of information about a system that can be computed
by white-box techniques.

The first works that actually used white-box techniques to implement more
powerful queries explore combinations of active automata learning and different
forms of symbolic execution for producing expressive models of components. Gi-
annakopoulou and co-authors develop an active learning algorithm that infers
safe interfaces of software components with guarded actions. In their model, the
teacher is implemented using concolic execution [32]. Cho et al. present MACE an
approach for concolic exploration of protocol behavior. The approach uses active
automata learning for discovering so-called deep states in the protocol behavior.
From these states, concolic execution is employed in order to discover vulnerabil-
ities [17]. Botincan and Babié present a learning algorithm for inferring models
of stream transducers that integrates active automata learning with symbolic ex-

10



ecution and counterexample-guided abstraction refinement [13]. They show how
the models can be used to verify properties of input sanitizers in Web applica-
tions. Their work is the first in this line of of works that produces infinite-state
models that can store data values in a set of registers. Finally, Howar et al.
extend the work of [32] and integrate knowledge about the potential effects of
component method invocations on a component’s state to improve the perfor-
mance during symbolic queries [45]. The knowledge is obtained through static
code analysis.

Another (earlier) line of work uses active learning in model-checking contexts.
The moderate style of exploration that achieved by learning is used to mitigate
the problem of state space explosion (e.g. [22]). Recent advances in this area have
been made by finding active automata learning for expressive classes of models.
Learning algorithms are usually based quite directly on the classic L* algorithm.
The required extensions in expressivity of models are usually realized through
powerful teachers. For instance, Feng et al. present an algorithm for inferring
assumptions for probabilistic assume/guarantee reasoning [27, 26].

4 Register Automata

In order to make the discussion of the paper concrete, we will place it in a setting
that is well-understood, namely register automata. These extend finite automata
with data values that may be communicated, stored and manipulated. In this
section, we introduce basic definitions of data languages and register automata
that generalize corresponding concepts for languages and finite automata.

In our setting, data languages and register automata are parameterized on
a vocabulary that determines how data can be examined, which in our setting
is called a theory. A theory is a pair (D, R) where D is an unbounded domain
of data values, and R is a set of relations on D. The relations in R can have
arbitrary arity. Known constants can be represented by unary relations.

Examples of simple theories include

— (N,{=}), the theory of natural numbers with equality; instead of the set of
natural numbers, we could consider any other unbounded domain, e.g., the
set of strings (representing passwords or usernames).

— (R, {<}), the theory of real numbers with inequality: this theory also allows
to express equality between elements.

Operations, such as increments, addition and subtraction, can in this frame-
work be represented by relations. For instance, addition can be represented by
a ternary relation p; = ps + p3. In the following, we assume that some theory
(D, R) has been fixed.

Data languages We assume a set X of actions, each with an arity that de-
termines how many parameters it takes from the domain D. For notational
convenience, we will here assume that all actions have arity 1. A data symbolis a
term of form «(d), where « is an action and d € D is a data value. A data word

11



is a sequence of data symbols. The concatenation of two data words w and w’ is
denoted ww'. Two data words w = a1 (dy) ... an(d,) and w' = a1 (d}) ... an(d),)
are R-indistinguishable, denoted w ~x w’, if they have the same sequence of ac-
tions, and R(d;,,...,d;;) < R(d;,,...,d; ) whenever R is a j-ary relation in R
and i1,--- ,i; are indices among 1...n, i.e., the sequence of data values cannot
be distinguished by any of the relations in R.

A data language L is a set of data words that respects R in the sense that
w ~p w' implies w € L + w’ € L. We will often represent data languages as
mappings from the set of data words to {+, —}, where + stands for ACCEPT and
— for REJECT.

Register Automata We assume a set of registers x1,xa,.... A parameterized
symbol is a term of form «(p), where « is an action and p a formal parameter.
A guard is a conjunction of negated and unnegated relations (from R) over the
formal parameter p and registers. An assignment is a simple parallel update
of registers with values from registers or the formal parameter p. We represent
an assignment which updates the registers z;,,...,x;, with values from the
registers x;,,...,x;, or p as a mapping 7 from {x;,,...,2;, } to {z;,,...,z;, }U
{p}, meaning that the value of the register or formal parameter 7 (z;,) is assigned
to the register x;,, for £ = 1,...,m. Using multiple-assignment notation, this
would be written as x;,,...,x;, = w(2s),...,7(x;, ).

Definition 1 (Register automaton). 4 register automaton (RA) is a tuple
A= (L,ly, X, T, \), where

— L is a finite set of locations, with ly € L as the initial location,

— X maps each location | € L to a finite set X (1) of registers, and

— I is a finite set of transitions, each of form (I, a(p), g, m,1'), where

l € L is a source location,

I' € L is a target location,

a(p) is a parameterized symbol,

g is a guard over p and X (l), and

7 (the assignment) is a mapping from X(I') to X(1) U{p}, and

— A maps each l € L to {+,—}. O

Register automata are required to be completely specified in the sense that for
each location [ € L and action «, the disjunction of the guards on the a-
transitions from [ is equivalent to true.

A restriction of register automata, as defined by Definition 1, is that transi-
tions do not allow to assign arbitrary expressions to registers, only the value of
a formal parameter or a register. A main reason for this restriction is to limit
the number of possibilities for inferring guards and assignments that match the
result of membership queries. As an example, suppose that a SUL accepts se-
quences with increasing parameter values, e.g., offer(4) offer(5) offer(6) offer(7).
We could then learn a RA if the theory includes, e.g., the relation issucc, defined
by issucc(x,y) iff  + 1 = y. If assignments to registers would allow expressions
that include e.g., the +1 operator, or even arbitrary addition, then the learning
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algorithm would have to choose between a potentially large number of different
guards and assignments on each transition, This would complicate the design
of a learning algorithm. On the other hand, we do not foresee any fundamental
difficulty in extending the theory for learning RAs in order to produce more
expressive classes of RAs; we conjecture that this could be done by making the
implementation of tree queries more advanced and extending the Nerode equiv-
alence (cf. Section 5.2). However, in order to focus on the conceptual extensions
needed to learn RAs, we have so far excluded expressions in assignments of RAs.

The semantics of register automata is defined in the standard way. Let A be
an RA A= (L,lp,X,I,\). A state of A is a pair ([, v) consisting of a location [
and a valuation v : X (1) — D of the registers X (l) of that location. A step of A,

denoted (I, v) o), (I, V"), transfers A from state (I, v) to state (I, ') on input
of the data symbol «(d) if A has a transition (I, «(p), g, 7, ') € I', whose guard
is satisfied by d under valuation v (i.e., v | g¢[d/p]), and whose assignment
produces the updated valuation v’ (i.e., v'(z;) = v(z;) if w(z;) = x;, otherwise
Vi(x;) =dif w(x;) = p). A run of A over a data word w = a(dy)...a(d,) is a
sequence of steps of A

ay(dy)

<ZO,V0> Em— <l1,V1> <ln,1,Vn,1> M}

<lnayn>

for some initial valuation vy. The run is accepting if A\(l,,) = + and rejecting if
A(l,) = —. The word w is accepted (rejected) by A under vy if A has an accepting
(rejecting) run over w which starts in (lo, vp).

Existing techniques for active learning of register automata only consider
RAs that are determinate, meaning that there is no data word over which it has
both accepting and rejecting runs. A nondeterministic but determinate RA can
be easily transformed into a deterministic RA by strengthening its guards. Note
that, unlike for finite automata, nondeterministic (and nondeterminate) RAs are
strictly more expressive than deterministic RAs (for instance, the universality
problem for nondeterministic RAs is undecidable [59]).

offer(p) | p<zy
T =pPyx2i=T]

offer(p) | true
©1:=p offer(p) | p>x1

T1i1=x1;T2:=P

poll(p) | p=z1

poll(p) | p=z1
T1:=xT9

Fig. 3: Priority queue with capacity 2.

Example As a simple example of a determinate register automaton, let us con-
sider a priority queue with capacity two. A priority queue stores a set of keys
from some totally ordered set. We will use the set of rational numbers as the set
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of keys. We abstract from values that are stored along with keys. The interface
of the priority queue supports two operations:

— offer inserts a given key into the priority queue. It succeeds if the queue is
not full;

— poll asks for the smallest key in the queue; the operation returns that key
and removes it; if the queue contains several copies of the smallest key only
one is removed. If the queue is empty, the operation does not succeed.

The interface consists of operations with input parameters and return values.
In order to represent it as a data language, we model sequences of successful
operations as data words. A successful offer is represented by the data symbol
offer(d), where d is the inserted key. A successful poll operation is represented
by the data symbol poll(d), where d is the returned value. A valid sequence
of operations is represented by the sequence of data symbols that represent its
successful operations.

The RA in Figure 3 accepts the language which models a priority queue with
capacity two. The two keys are stored in registers x; and x5, respectively, with
1 < 3, so that a successful poll operation always returns the value of x;.

For conciseness, we have omitted nonaccepting locations. Thus the RA in
Figure 3 should be extended with a terminal non-accepting location; from each
location, there should be transitions to the non-accepting location for data sym-
bols that do not satisfy any of the existing guards. For instance, from [; there
is a transition to the non-accepting location for poll(p) symbols where p # x.

5 Black-box learning of register automata

In this section, we summarize some of the proposed algorithms for learning
register automata. A number of such algorithms have been proposed, which
generalize the classical L* algorithm in some way. The obvious challenge for
such algorithms is that register automata is a much richer formalism than finite
automata. It is a challenge to devise techniques that can infer all the features
of an RA, including locations, registers, guards, and assignments, in a black-
box context, using only membership queries and counterexamples returned by
equivalence queries. The only a priori information available is the static interface
of the SUL, i.e., the set of actions that it can process, and a theory (i.e., set of
relations on the data domain) which is assumed to be expressive enough to model
the behavior of the SUL.

5.1 Learning Symbolic Automata

Let us first consider the subclass of symbolic automata, which are essentially
register automata without registers and assignments. Symbolic automata have
been studied in recent years as a tool for string processing, where transitions
are guarded by predicates of various theories [40, 71]. They allow automata over
large or infinite alphabets to be expressed compactly.
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For large finite domains of data values, symbolic automata are equivalent to
ordinary finite automata. However, a naive application of L* to such automata
will lead to an excessive number of membership queries, since queries must be
performed for each data value in the data domain. More efficient approaches
have been presented by Isberner et al. [47] and by Mens and Maler [56]. A
main idea is to associate to each transition a representative data value which
satisfies its guard. The hypothesis is that all data values that satisfy the guard
induce the same behavior in the SUL; formally this means that they lead to
the same residual languages. When such a hypothesis is refuted, typically as
a result of an equivalence query (i.e., two data values that satisfy the guard
lead to different residual languages), the algorithm splits the guard accordingly.
In [47,56], some predefined structure for splitting guards by need is assumed.
For instance, when the data domain is the set of integers, the algorithm could
prescribe that all membership queries initially be performed using a specific
integer (e.g., 0). If later, it turns out that different behavior is induced by a
negative number, a transition may be split into two, one for nonnegative and
one for negative numbers.

The approach of [47] has been shown to improve over naive L* by several
orders of magnitude on a set of benchmarks of moderate size. So far, the approach
has not been applied to learn symbolic automata of the form considered in,
e.g., [40,71] with its rich collection of predicates.

5.2 Learning Register Automata: the SL* Algorithm

The class of register automata with registers and assignments brings additional
challenges to the design of learning algorithms. For symbolic automata, which
do not have registers, the learning algorithm can still be based on the classical
definition of Nerode congruence for identifying locations. That is, two data words
are Nerode congruent if they induce the same future behavior (i.e., residual lan-
guage), and each congruence class corresponds to a location. In this case, the
main problem is to infer, for each state, a suitable partitioning of data symbols
that processed as input in that state, and map the partitioning onto guards on
outgoing transitions. For register automata, the future behavior from a location
(i.e., its residual language) depends also on the data values assigned to its regis-
ters. A learning algorithm must thus infer both (i) which registers are needed in
a location, and (ii) how to partition the set of data values in input data symbols
to produce guards on different outgoing transitions, in a way that depends on the
register valuation. Thus, the concept of residual language must be generalized
to a mapping from register valuations to future behaviors. Furthermore, since
assignments can permute registers, the concept of Nerode congruence must be
defined in such a way that it allows permutations of registers: different permu-
tations will result in different assignments to registers on incoming transitions.

As an illustration, the future behavior from location I in Figure 3 depends
on two data values. A learning algorithm will infer that a word leading to Iy
has two memorable data values; intuitively, an input value d is memorable if it
has an impact on the future behavior of the SUL: either d occurs in a future
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output, or a future output depends on d (e.g., if d appears in a guard). A learning
algorithm will therefore create two registers: 1 and xo. Assume that location /5 is
represented by the word offer(3). Initially, a learning algorithm may assume that
all outgoing offer-transitions from I; can be represented by a single symbol, say
offer(5), and generate a single outgoing transition from [; with the guard true.
A subsequent counterexample, e.g., of form, offer(3)offer(1)poll(1) will make
the learning algorithm realize that the future behavior after offer(3)offer(1) is
equivalent to that after offer(3)offer(5), if we are allowed to adapt the contents
of registers so that x; is assigned the smaller value and xo the larger value. The
learning algorithm will therefore split the transition guarded by true into two
different transitions, with a guard that compares the parameter of the current
data symbol to the value of the register, as in Figure 3, and equip each transition
with a different assignment.

The above concepts are a basis for the SL* algorithm for learning register au-
tomata [15]. In extends predecessor algorithms such as [6,47,56] by the concept
of tree queries, which are used in place of membership queries. The arguments
of a tree query is a prefix data word, and a set of so-called symbolic suffizes, i.e.,
data words with uninstantiated data parameters. The tree query returns a so
called symbolic decision tree (SDT), which has the form of an “RA-fragment”
which accepts/rejects suffixes obtained by instantiating data parameters in one
of the symbolic suffixes.

{z1}

oﬁer(p) poll(p)
true p =121

O O

Fig.4: Symbolic decision tree returned by tree query for prefix offer(3) and
symbolic suffixes {offer(p), poll(p)}

Let us illustrate this on the priority queue example for the prefix offer(3) and
the set of symbolic suffixes V' = {offer(p), poll(p)}. The acceptance/rejection of
suffixes obtained by instantiating data parameters in V after offer(3) can be
represented by the SDT in Figure 4. In the initial location, the value 3 from
offer(3) is stored in a register. We use the convention that register x; stores the
ith data value from the prefix. Thereafter, suffixes of form poll(d) are accepted
if the data value d equals the value stored in the register, and rejected otherwise
(for each action there is an implicit transition to a rejecting location with a
guard that is the conjoined negations of all accepting transitions). Suffixes of
form offer(d) are always accepted.

Tree queries can be implemented by perfoming several membership queries
and combining their results. A straightforward implementation of a tree query for
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a prefix u and an uninstantiated suffix of form a(p) produces a set of maximally
refined but still satisfiable guards over registers z;, storing values from u, and
suffix parameter p without introducing additional constraints between registers.
For each such maximally refined satisfiable guard in the theory a membership
query for the concatenation of u and «(d) for some d that satisfies the guard is
sufficient to characterize the behavior for all data values satisfying this guard.
For instance, the SDT of Figure 4 can be formed by combining the results of
the membership queries offer(3)offer(1) for guard (x1 > p), offer(3)offer(3) for
guard (1 = p), offer(3)offer(5) for guard (z; < p), and analogous membership
queries for suffix poll(p).

One reason for using the tree queries instead of simple membership queries
is that they allow to properly approximate a Nerode equivalence under which
words can be equivalent after permutation of data values. Suppose, for in-
stance, that we would only pose the membership query offer(3)offer(5)poll(3),
which is accepted; we then use the principles of [47,56] to infer that after
offer(3) offer(5) all symbols of form poll(p) are accepted. If then the member-
ship query offer(3)offer(1)poll(3) is rejected, we infer that after offer(3)offer(1)
all symbols of form poll(p) are rejected. We would then conclude that the pre-
fixes offer(3)offer(5) and offer(3)offer(1) are not Nerode equivalent and represent
different locations, although in the final automaton (see Figure 3) they are repre-
sented by the same location. Thus, our preliminary approximation of the Nerode
equivalence would not overapproximate the “actual” Nerode equivalence. This
would destroy the partition-refinement structure of the L* algorithm, which in
turn is the basis for establishing convergence guarantees of the learning algo-
rithm.

5.3 Limitations and Extensions

Section 5.2 outlined the principles of a framework for extending active automata
learning to register automata [15]. This framework has been implemented in
RAlib [14], and used to infer register automata and register mealy machines
with simple theories, such as theories of numbers with equality and inequality.
In order to make it more generally usable, some limitations must be overcome,
of which we list some here.

— Richer theories with structured data types: The simple framework
outlined in the preceding sections can be used to infer register automata
models, whose registers are assigned scalar values, such as the priority queue
model in Figure 3. Obviously, this model structure does not scale to modeling
priority queues of arbitrary size. For this, we need to work with theories
that can describe structure data, such as sequences, and operations on such
sequences. It remains to be seen whether the overall framework for learning
RAs outlined in this section will also function well with such structured data
type.

— Scalability: The realization of the ideas is still somewhat naive. For in-
stance, the number of membership queries used to realize a tree query is
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exponential in the length of the prefix (and suffix) of the query. As explained
in Section 5.2 this is motivated by the desire to stay within a partition re-
finement framework, but there is still much room for optimizing this aspect
of the algorithm.

One way to address these limitations is to augment the learning algorithms with
white-box information extraction methods. Some directions will be discussed in
the next section.

6 Exploiting White-box Techniques

We have discussed the potentially positive impact of exploiting white-box tech-
niques in automata learning in previous sections and have sketched the current
limitations and open questions when learning register automata models. We
conclude the paper by discussing directions for future research with a particular
focus on using white-box techniques to improve learning of expressive register
automata models while retaining the benefits of the black-box approach, i.e.,
concise and abstract models.

6.1 Improving the Equivalence Oracle

Black-box learning approaches, although effective in constructing hypothesis
models for finite state machines, typically have difficulties to find counterex-
amples for hypotheses with a large number of states and events [65]. If we have
direct access to the code or binary of the SUL, several additional techniques
become available to discover counterexamples for hypothesis models. There is a
range of white-box symbolic execution techniques, such as veritesting [7], con-
colic testing [35], and white-box fuzz testing [34] that can be adapted to find
counterexamples for hypothesis models. We survey some works that exploit this
idea.

Smetsers et al [66] used American fuzzy lop (AFL)S to efficiently obtain
counterexamples for hypothesis models. AFL is a fuzzer that uses compile-time
instrumentation and genetic algorithms to automatically discover test cases that
trigger new internal states in the targeted binary. By combining model learning
with AFL, Smetsers et al were successful in the RERS 2016 challenge”, which
alms to compare verification techniques and tools.

The Psyco tool integrates active automata learning and dynamic symbolic
execution for generating component interfaces [32]. Recent work explores the
potential of using symbolic search on a component’s state space [58] for estimat-
ing an upper bound on the length of counterexamples that can be found during
learning by Psyco. Fully symbolic and synchronized exploration of a SUL and
a conjectured model, i.e., checking the conjecture against the SUL, would al-
low it to decide equivalence (assuming decidability of the corresponding SMT

S http://lcamtuf.coredump.cx/afl/
" http://www.rers—challenge.org/2016
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encoding). The white-box learning algorithm X* [13] uses predicate abstraction
to construct models that overapproximate stream processing code in order to
answer equivalence queries.

6.2 Introducing New Queries

In a black-box setting, one important reason why many membership queries are
needed is that the learner cannot see directly whether a value is stored by the
SUL, or whether it is compared to other values in the guard of a transition.
The task of the learner is to figure this out using black-box experiments only.
In [15], learning algorithms are presented that accomplish this task for some
simple theories with equality and/or inequality. These algorithms have a high
query complexity, however, and it is not clear how they can be generalized to
richer theories. Consider, for instance, a trace offer(2) offer(3) offer(4) offer(4)
in a setting with equality, successor and addition. What guard was used on the
last transition? Is the last value required to be equal to the previous one? Or
is it the successor of the second value (3 +1 = 4)7 Or has it been obtained
by addition from the first value (2 + 2 = 4)? A number of works use forms of
symbolic execution for making symbolic constraints on execution paths visible
when performing tests on a component during membership queries. In this way,
a learner can observe directly which values are stored and which predicates are
tested in a trace. The idea is to replace membership queries (is word w in the
language?) by a symbolic version in which the reply consists not only of a yes/no
answer but also includes the complete symbolic run induced by input word w.
The white-box learning algorithm X* [13] is an example of an approach in which
the learner may pose “symbolic” membership queries.

A lightweight alternative for the use of symbolic executions is provided by
taint analysis. Dynamic taint analysis (also referred to as dynamic information
flow tracking) [20, 21,8, 41] is a technique in which code is instrumented in order
to mark and track data in a program at run time. Inputs to a program are
“tainted”, i.e. labeled with a tag. When the program executes, these tagged
values are propagated such that any new values derived from a tagged value
also carry a tag derived from these source input tags. Dynamic tainting, as
implemented for instance in Autogram [41], allows to precisely identify which
program inputs are stored, tested, or processed at any point in time.

In order to see how a learner may use tainting information, consider the
priority queue example of Figure 3. Suppose the learner is using the SL* al-
gorithm of Section 5.2 and needs to construct a symbolic decision tree for the
prefix offer(3) and the set of symbolic suffixes V' = {offer(p), poll(p)}. Suppose
that taint analysis reveals that the parameter of a call to offer is stored in some
variable, say 1, and that the return value of a subsequent call to poll is equal
to the value of this variable. Based on this information, the learner may deduce
the right branch of Figure 5. After calls offer(3) offer(4), taint analysis tells
that the first parameter is stored in x1, the second parameter is compared with
1 in a test p > x1, and then stored in z5. Based on this, the learner deduces
the left branch of Figure 5, and infers that the tree is still incomplete. In order
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to complete the tree, the learner performs calls offer(3) offer(2), where 2 is an
arbitrary value less than 3. Using taint analysis, the learner can now infer the
third and final branch in the tree.

Fig. 5: Symbolic decision tree constructed using dynamic taint analysis

It is interesting to compare the SDTs of Figures 4 and 5. Whereas a black-
box tree query initially returns the incorrect decision tree of Figure 4 for prefix
offer(3), and several additional tree queries (and even an equivalence query) are
required before a correct decision tree is found, a white-box tree query produces
the correct decision tree of Figure 5 right away. This benefit comes at a price,
as application of taint analysis requires instrumentation of the code. According
to [41], their tainting framework for Java programs (which is not yet optimized)
runs approximately 100 times slower than the original, uninstrumented code.

A key benefit of taint analysis is that it enables the application of the SL*
algorithm in settings with richer theories. The SL* algorithm crucially depends
on an oracle that answers tree queries. In [15] it is shown how a tree oracle can
be implemented via (black-box) membership queries for some commonly occur-
ring theories: the theory of equalities, the theory of equality and inequality over
rational (or real) numbers, and the theory of equality and inequality over inte-
gers. Every single tree query is mapped to an exponential number of membership
queries (in the number of data values in a queried word w) that identify relevant
relations between data values in w. Moreover, these tree oracle implementations
are nontrivial and their correctness proofs are involved. Computation of decision
trees and counterexample analysis becomes harder (or even impossible) when
more relations are added to the theory.

6.3 Computing Domain-specific Information

The state of a component is usually maintained as valuations of internal vari-
ables. A static code analysis that produces, e.g., for a Java class, which methods
write internal variables, can help identifying methods that cannot alter the state
of a component before actually learning a model of the component. A compar-
ative analysis (reads and writes) can identify pairs of independent methods for
which the order of execution is irrelevant. Information of this kind can be used
to reduce the number of membership queries as has been shown in [54, 45].
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When inferring register automata, static code analysis can reveal important
information about a component.

Live Variables. Knowing about live variables can help deciding if values have
to become memorable or not in certain states without performing extensive
testing or expensive symbolic analysis.

Tests and Computations on Variables. Knowing that only certain tests are
performed on a variable can help when determining the theory that is used
for learning the behavior that is possibly associated with this variable. This
can help reducing the number of tests that have to performed when learning
models. On the other hand, knowledge about the set of computations that
can be used on parameters or register contents may enable learning more
expressive models that, e.g., describe application of cryptographic primitives
on parameters or internal fields.

Independent Parameters/Fields. If there are subsets of parameters and fields
that are independent, a learning algorithm does not have to perform tests for
inferring potential relations between these sets. The typing mechanism that
is presented in [14] allows to exploit this information during learning. Static
code analysis could be used to compute it in a fully automated approach.

The above list is not exhaustive but rather a starting point for future research.

In all three directions, initial positive results exist and indicate the potential that
lies in the application of white-box techniques for the implementation of more
performant learning algorithms, inferring more expressive classes of models.

7 Conclusion

We have outlined current techniques and applications for model learning, a.k.a.
active automata learning, and pointed at challenges for improving its scalability
and applicability to richer models. We then outlined proposals for exploiting
white-box techniques in order to overcome these limitations. We indicated some
approaches that have started in these directions, and we expect a significant
body of techniques to be developed over the next years.
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